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ABSTRACT

A new method for hyperspectral image (HSI) visualization

is proposed in this paper, which emphasizes on pairwise dis-

tance preservation and detail enhancement. It includes two

sequential steps. The first reduces the high dimensional spec-

tral space of HSI to 3-D color space by distance preservation

method, and then enhances the detailed information by Lapla-

cian pyramid. Distance preservation is an optimization prob-

lem that minimizes the difference between the pairwise pixel

distances in the original spectral space and the corresponding

color space. In general, solving this optimization problem is

always very time and storage consuming. A multi-resolution

multidimensional scaling algorithm is proposed in this paper

to mitigate this hardness. Obviously the loss of some local

details is not avoided in multidimensional scaling. In order

to enhance the spatial distinction of different scene objects,

Laplacian pyramid is used to draw the locally details from the

original HSI, and embed it into the color image. The proposed

HSI visualization method takes the global and local informa-

tion of spectral and spatial distribution in HSI into account for

visualization, which makes the color display of HSI carry as

much original information as possible.

Index Terms— hyperspectral image, visualization, multi-

resolution multidimensional scaling, Laplacian pyramid

1. INTRODUCTION

Nowadays, with the development of remote sensing tech-

niques, hyperspectral imaging sensors are widely used to ac-

quire images with hundreds of spectral bands. Hyperspectral

images (HSI) make material detection, classification, identi-

fication and quantification more accurate. However, its high

dimensional spectral space is unsuitable for visualization.

The goal of HSI visualization is to integrate multiple spectral

bands into RGB space which is more suitable for display

instrument and human visual system [1]. By fast browsing,

viewers can acquire the information of ground objects easily.

However, reducing hundreds spectral bands to three dimen-

sional color space suffers from information loss inevitably.
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It is crucial to create a visualized image that preserves both

spectral and spatial information as much as possible.

The simplest way of HSI visualization is to select three

specific input bands and map them to RGB channels respec-

tively, but the remaining spectral bands are totally discard-

ed. More sophisticated mappings created through data driven

linear dimension reduction, e.g., principal component anal-

ysis (PCA) and independent component analysis (ICA) are

applied to obtain the prime information of original data. An

alternative idea for visualization is to use nonlinear method-

s for dimension reduction, such as locally linear embedding

(LLE) and isometric feature mapping (ISOMAP). However,

these nonlinear methods are fairly time consuming. Some

researchers seek to create natural-looking visualized images.

Color-matching functions (CMFs) are used to project HSIs

onto a basis inspired by human vision and specify how much

each of three primary colors (e.g., a red, a green, and a blue

primary) should be mixed to create the color sensation at a

particular wavelength, but it is sensor-dependent. In [2], the

feature-level semisupervised manifold alignment is used to

transfer the RGB information of a color image to a HSI over

the same scene, so that a natural dispaly of HSI can be ob-

tained. However, sometimes it is difficult to get the reference

color image for HSI.

Preserving the distance of pairwise spectral vectors and

their corresponding distance in color image is faithful to the

raw HSI, so many state-of-the-art distance preservation meth-

ods have been presented in recent years [3, 4]. For example,

in [3] an interactive visualization based on convex optimiza-

tion is proposed for preserving the distance while considering

the boundaries of the hue, saturation, and value (HSV) color

space. [4] gave a nonstationary multiresolution Markov mod-

el to solve the optimization of distance preservation. Com-

pared with other HSI visualization approaches, pairwise dis-

tance preservation methods always demonstrates the compet-

itive performance, but solving the optimization problem of

minimizing the pairwise distance between HSI and color s-

paces is not easy.

Distance preserved dimension reduction can be seen as

a problem of multidimensional scaling (MDS) [5]. Howev-

er, most of MDS algorithms are only applicable to small-

size images due to their heavy computation and storage load,

even though we transform MDS to an eigendecomposition

problem. To overcome this obstacle, a coarse-to-fine multi-
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Fig. 1. Structure of Multi-resolution MDS

resolution MDS algorithm is proposed in this paper. This

method reduces the spectral dimension of HSI in the sequen-

tial resolution levels. At the lowest resolution level, MDS is

used to obtain a coarse solution and a conjugate-gradient al-

gorithm is then used to find a more precise solution for each

higher resolution levels. The solution in lower level is used

as an initialization for the adjacent higher level until the full

resolution level is reached.

Furthermore, in order to enhance the spatial distinction of

different scene objects, Laplacian pyramid is used to draw the

locally details from the original HSI, and embed it into the in-

termediate color image that is generated by multi-resolution

MDS. In this procedure, the local details that are represent-

ed by a weighted combination of images at different pyramid

levels are transfered from the original HSI to the visualized

color image. In summary, the proposed HSI visualization

method includes two sequential steps. The first reduces the

high dimensional spectral space of HSI to 3-D color space by

multi-resolution MDS algorithm, and then enhances the de-

tailed information by Laplacian pyramid.

2. MULTI-RESOLUTION MDS

MDS is a dimension reduction method which constructs low

dimensional samples whose pairwise distances are similar to

those in high-dimensional space. It tries to minimizes the op-

timization problem with the following function:

E(u) =
∑

s6=t

(‖vs − vt‖2 − ‖us − ut‖2)
2 (1)

where vs, vt denote spectral vectors in the spatial lo-

cations s and t, respectively. us = (Rs, Gs, Bs)
T , ut =

(Rt, Gt, Bt)
T denote the pixel vectors in the corresponding

locations in color space.

However, heavy computation and memory loads limit its

use in high-resolution image processing. In order to over-

come this disadvantage, multi-resolution MDS is proposed

in this paper, which is based on the multi-resolution pyra-

mid. An L-level multi-resolution pyramid is constructed by

downsampling original HSI I . Let I [i−1] denote the image at

level i, satisfying I [0] = I , and size(I [i]) = size(I [0])/4i−1

(i = 1, 2, ..., L), which means the multi-resolution is only

applied to the spatial dimensions but not spectral dimension.

The structure of multi-resolution MDS algorithm is presented

in Fig. 1.

At the lowest resolution level (level L), I [L] is trans-

formed to a corresponding color image D[L] by the traditional

MDS algorithms such as SVD based method, since the size

of image in this level is very small compared to the original

HSI. This result is used as the initial solution for the next

higher resolution level.

At this time, as the initial solution of MDS has been de-

rived from the lower level, a conjugate-gradient algorithm can

be used to to solve MDS problem. The conjugate-gradient al-

gorithm has state of the art performance among the existing

MDS algorithms.

In order to update the initial solution to approach optimal

value, gradient descent of objective function E(u) is used.

u
[l+1] = u

[l] + γd[l] (2)

where l means number of iterations, γ is the step size of gra-

dient and d represents the direction.

d[l] = −∇E
(

u
[l]
)

+ b[l−1]d[l−1] (3)

where

b[l] =
< ∇E

(

u
[l]
)

−∇E
(

u
[l−1]

)

,∇E
(

u
[l]
)

>

< ∇E
(

u
[l−1]

)

,∇E
(

u
[l−1]

)

>
(4)

At the level i (i=1,2,...,L), an interpolation method is used

to get the initial solution P [i] for the conjugate-gradient algo-

rithm at level i − 1, which takes into account the inherent s-

patial dependencies between neighboring spectral vectors [4]

u
[i−1]
s =

∑

t∈Ns

w(s, t)u
[i]
t (5)

where Ns is a square neighborhood with fixed size centered

around the pixel s. The weight w(s, t) depends on the simi-

larity between the spectral vectors located at s and t.

w(s, t) =
1

Z(s)
exp{−

||I [i−1](s, .)− I [i−1](t, .)||22
h

} (6)

where I [i−1] is the HSI at level i−1 and Z(s) is the normaliz-

ing constant ensuring
∑

t w(s, t) = 1. The parameter h acts

as a degree of filtering.

Finally, the three dimensional image M is obtained at the

highest resolution level.
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3. LAPLACIAN PYRAMID BASED DETAIL

ENHANCEMENT

The preservation of spectral pairwise distance alone does not

guarantee that the local details are well preserved at the same

time. As human visual system is sensitive to the visual dis-

continuous regions, the local detail enhancement is required

to improve the visualization quality. The detail enhancemen-

t is always manipulated in HSL (Hue, Saturation, Lightness)

color space, especially color saturation, as well as lightness,

plays an key role in achieving good image enhancement. In

this paper, Laplacian pyramid is proposed to restore details

in lightness (L) and saturation (S) channels [6], and linearly

stretch is used simultaneously to enhance the contrast in Hue

(H) channel.

For channels L and S, Laplacian pyramid based detail en-

hancement is used respectively. The Laplacian pyramid is a

sequence of images h1, h2, ..., hN , each is the difference be-

tween two adjacent levels of the Gaussian pyramid [7]. Thus,

for 0 ≤ i < N

hi = gi − expand(gi+1) (7)

where gi is the image of Gaussian pyramid at level i, and

expand (gi+1) means expanding gi+1 to the same size with

gi.
In our method, Laplacian pyramids are built for each band

image of HSI. As the same method is applied for the enhance-

ment of L and S channel respectively, we only introduce the

enhancement method on L channel. The detail enhanced L

channel image EL can be calculated as

EL = ML +

N
∑

i=1

λihiML (8)

where ML is the L channel of the color image derived from

MDS method, which is also called intermediate image. The

weight parameters λi are used to control the intensity of detail

enhancement, which can be estimated as

λi =





√

∑d

k=1 hi(Ik)
2

|hi(LM )|





p

(9)

where Ik is the kth band image of HSI, and the parameter

0 ≤ p ≤ 1 is used to remap the values to a non-linear scale

so that weaker details can be enhanced without over empha-

sizing stronger details.

To further enhance the contrast of different regions, lin-

early stretch is used in the H channel so that 2% of pixels are

at the minimum and 2% are at the maximum display value.

The minimum and maximum pixels are then assigned 0 and

1, respectively, while the hue of remaining pixels are calcu-

lated as:

EH =
MH −MH min

MH max −MH min
(10)

Table I. Comparison of correlation γ/δ for AVIRIS images

Image PCA CMF Intermediate Final

Result Result

MF1 0.55/ 139 0.72/ 129 0.97/ 44 0.91/ 113

MF2 0.47/ 142 0.78/ 150 0.98/ 45 0.96/ 143

MF3 0.55/ 134 0.73/ 137 0.99/ 39 0.95/ 135

JR1 0.64/ 146 0.71/ 134 0.91/ 52 0.90/ 109

JR2 0.65/ 150 0.70/ 142 0.81/ 43 0.82/ 145

JR3 0.53/ 149 0.66/ 145 0.94/49 0.93/ 137

JR4 0.55/ 150 0.68/ 146 0.88/ 30 0.86/ 135

C1 0.48/ 136 0.73/ 130 0.97/ 48 0.96 104

C2 0.41/ 149 0.74/ 142 0.95/ 56 0.95/ 123

C3 0.36/ 157 0.64/ 143 0.95/ 57 0.91/ 122

C4 0.45/ 148 0.61/ 133 0.95/ 41 0.89/ 112

LL1 0.31/ 138 0.50/ 142 0.96/ 45 0.95/ 123

LL2 0.39/ 128 0.52/ 123 0.96/ 57 0.94/ 103

where MH is the H channel of the intermediate image, and

MH max, MH min are the maximal and minimal values of MH

respectively.

4. EXPERIMENTS

To evaluate the performance of the proposed HSI visualiza-

tion method, AVIRIS data have bee used, including three im-

ages from Moffett Field, four images from Jasper Ridge, four

images from Cuprite, and two images from Lunar Lake. Pair-

wise distance preservation γ and separability of features δ are

used as quantitative metrics to measure the performance of

HSI visualization [3].

γ =
XTY/|X | −X Y

std(X) · std(Y )
(11)

whereX is the distance vector between each pairwise spectral

vectors in HSI, and Y is their corresponding distances vector

in the visualized color space. XT , |X |, X and std(X) de-

note the transpose, cardinal, mean and standard deviation of

X respectively. In the ideal case, the normalized correlation

is desired to be 1.

δ = |Y |1/ |Y | (12)

where |Y |1 denotes the L1 norm. It should be as large as

possible.

Compared with PCA and CMF approaches, the proposed

detail enhanced HSI visualization method provides better re-

sults (see Table I). The intermediate results obtained by multi-

resolution MDS have good performances of distance preser-

vation but unfavourable separability. After detail enhance-

ment, feature separability is improved significantly with a lit-

tle sacrifice of distance preservation. From Fig. 2, it is found

that edges and some color regions in the result of PCA method

seem bright (see Fig. 2(a)) and colors of the result of CMF

method are more natural-looking, but edges can not be well
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(a) PCA (b) CMF

(c) Intermediate Result (d) Final Result

Fig. 2. Visualizations of Moffet02

(a) PCA (b) CMF

(c) Intermediate Result (d) Final Result

Fig. 3. Visualization of Pavia University

distinguished (see Fig. 2(b)). The intermediate result of pro-

posed method seems too dark for human visual system (see

Fig. 2(c)) and the final result has a greater perceptive display

with more distinguished edges (see Fig. 2(d)).

Furthermore, we use classification to measure the effect

of information preservation of visualization. Pavia Universi-

ty data set which acquired by the Reflective Optics System

Imaging Spectrometer (ROSIS-03) optical sensor over the U-

niversity of Pavia is used in our experiment. There are nine

land cover classes and the corresponding labeled samples in

the data set, whose details can be found in [8]. The number

of training samples is set as 50 per class. The classification

accuracy of proposed method is better than those of PCA and

CMF (see Table II), which means our method has a better p-

reservation of structure and details.

Table II. Classification on 3-D color images
method γ δ OA κ

PCA 0.64 135 49.64% 39.73%

CMF 0.71 118 35.26% 26.43%

Intermediate Result 0.95 51 62.33% 52.50%

Our method 0.90 112 62.16% 52.33%

5. CONCLUSION

The method proposed in this paper consists of two sequential

steps. First step is multi-resolution MDS based distance p-

reservation, and second step is the Laplacian pyramid based

local detail enhancement which restores spacial details from

HSI. By combining these two steps, a competitive visualiza-

tion performance is achieved.
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