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ABSTRACT
Topic models such as probabilistic Latent Semantic Anal-
ysis (pLSA) and Latent Dirichlet Allocation (LDA) have
been shown to perform well in various image content anal-
ysis tasks. However, due to the origin of these models from
the text domain, almost all prior work uses discrete vocab-
ularies even when applied in the image domain. Thus in
these works the continuous local features used to describe
an image need to be quantized to fit the model. In this
work we will propose and evaluate three different exten-
sions to the pLSA framework so that words are modeled as
continuous feature vector distributions rather than crudely
quantized high-dimensional descriptors. The performance
of these continuous vocabulary models are compared in an
automatic scene recognition task. Our experiments clearly
show that the continuous approaches outperform the stan-
dard pLSA model. In this paper all required equations for
parameter estimation and inference are given for each of the
three models.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Computer vi-
sion; I.4.10 [Image Processing and Computer Vision]:
Image Representation—Statistical

General Terms
Algorithms, Experimentation, Theory

Keywords
scene recognition, pLSA, continuous visual vocabulary

1. INTRODUCTION
Scene recognition or scene classification is the task of au-

tomatically assigning an image to one category out of a fixed
number of scene categories. A closely related task is image
retrieval, which consists of finding images of similar content
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to a candidate image. Both tasks become more important as
personal as well as on-line image repositories grow. In this
work we will focus on a scene recognition task. Nevertheless
the proposed approaches may also be applied to other tasks
such as image retrieval.

Probabilistic models with hidden/latent topic variables
such as probabilistic Latent Semantic Analysis (pLSA) [8]
and Latent Dirichlet Allocation (LDA) [4] and their exten-
sions are popular in the document and language modeling
community as well as in the pattern recognition community.
Originally developed for the purpose of text document mod-
eling in large collections, those models have been introduced
and re-purposed for image content analysis tasks including
object recognition [16], scene recognition [11], automatic im-
age segmentation and image annotation [2].

Latent topic models model each document in a collection
as a distribution over a fixed number of topics. Each topic
aims to model the co-occurrence of words inside and across
the documents and is in turn characterized by a distribution
over a fixed size and discrete vocabulary. Applied to visual
tasks, the distribution of hidden topics in an image refers to
the degree to which an abstract object such as grass, water,
sky, street, etc. is contained in the image. This gives rise to
a low-dimensional description of the coarse image content,
which can be used e.g. to enable classification or retrieval
of images.

As these models have originally been designed for text
analysis, words are modeled as discrete variables. In the vi-
sual domain we are challenged with the fact that visual fea-
tures describing an image, especially local image descriptors,
are often continuously distributed in some high dimensional
space. Thus visual features are quantized into a fixed-size
visual vocabulary in order to be able to apply the original
pLSA model to image analysis tasks.

In most related efforts, quantization is done by clustering
descriptor vectors, representing each cluster by one visual
feature vector (the so-called “cluster center”), and subse-
quently mapping each feature vector to its closest cluster
center in order to get a visual word representing the de-
scriptor vector. However, this procedure does not necessar-
ily produce optimal results since for example, it does not
account for the distance of features to their closest cluster
center.

In speech recognition applications it has been shown that
introducing continuous variable models, especially in the
case of Hidden-Markov-Models (HMMs), significantly im-
proves performance [20]. Thus in this work we introduce and



study models in which continuous visual vocabulary models
are considered and thus we model words with continuous,
high-dimensional feature vector distributions. We propose
three different approaches that extend the discrete pLSA
model. We will competitively evaluate their performance in
a scene recognition task using the results from a discrete
pLSA model as the baseline. Parameter estimation and in-
ference algorithms are presented for each of the proposed
models.

1.1 Related Work
There exist basically two fundamental approaches to solve

the scene recognition task so far. Earlier works [17, 18] con-
sidered mostly global, low level image features to describe
the scene images. It later work [19, 5, 11, 15, 14] interme-
diate concepts are used to represent the images. Whereas
some models [14, 19] use supervision to learn the concepts,
others [5, 11, 15] employ probabilistic latent topic models to
learn the concepts in an unsupervised manner.

Latent topic models have been applied successfully in sev-
eral image content analysis tasks such as object categoriza-
tion [16], image retrieval [12, 9], automatic segmentation [6]
and automatic annotation [2]. Further variations of latent
space models have been applied to the problem of modeling
annotated images [2, 3]. Especially in a scene classification
task, as considered in this paper, these models have been
shown by Bosch et al. [5] to outperform previous models [14,
19].

The majority of these related works use quantized local
image descriptors as the starting point to build their model.
As mentioned earlier the mapping from continuously dis-
tributed local features to a discrete visual vocabulary does
not necessarily lead to optimal performance. In this work
we therefore consider continuously vocabulary models which
do not require a quantization of the high-dimensional fea-
ture vectors. In the context of latent topic models there
has been very little work in this area. In order to model
annotated data, Blei et al. used a multivariate Gaussian to
represent image regions conditioned on a topic variable in
two extensions of the LDA [3].

The two closest related works to our approach are the
work by Ahrendt et al. [1] and the work of Larlus and Ju-
rie [10]. The first work [1] proposes the so called Aspect
Gaussian Mixture Model (AGMM), which extends the pLSA
model to the case of continuous feature vectors. This model
is equivalent to our second proposed model, the SGW-pLSA.
The model is evaluated in a music genre classification task.
However, they use supervised training with known concepts
for each training sample, while we learn the model’s param-
eters completely unsupervised. In the second work [10] a
similar extension is proposed for the closely related LDA
model. Gibbs sampling is used for parameter estimation,
and the model is applied in an object categorization task.
The difference to our work is that we propose three different
models and we apply those models in a scene recognition
task. Furthermore we consider the pLSA model instead of
the LDA model and we perform parameter estimation via
the EM algorithm.

1.2 Contributions
The main contributions of this paper are:

• We propose three different extensions to the pLSA
which model the visual vocabulary continuously.

• We present the algorithms for parameter estimation
and inference for each proposed model.

• We perform a competitive evaluation of the models in a
scene recognition task taking the discrete pLSA model
as the baseline.

The paper is organized as follows. Section 2 describes the
baseline system we use to solve the scene recognition task.
We discuss local feature generation as well as the visual vo-
cabulary computation and we review the pLSA model in
detail. We present our three proposed continuous vocabu-
lary pLSA models in Section 3. In Section 4, we show how
parameter estimation and inference is performed for each of
the models. In Section 5 we describe the experimental eval-
uation, we show and discuss results. Finally we summarize
and conclude the paper in Section 6.

2. PLSA-BASED SCENE RECOGNITION
In this work we adopt the scene recognition approach pro-

posed by Bosch et al. [5]. This approach uses a discrete
pLSA model to represent each image in a database. In the
next section we will then present the continuous vocabulary
pLSA models and explain how the scene recognition system
is modified when using a continuous visual vocabulary pLSA
model instead of the discrete one.

The pLSA [8] was originally developed in the context of
text modeling, where words are the elementary parts of doc-
uments. Documents are modeled as mixtures of intermedi-
ate hidden topics, and topics are characterized by a distribu-
tion over words. Applied to image modeling, the images are
our documents. The mixture of hidden topics then refers to
the degree to which certain objects or certain object parts
are contained in an image. It is important to note that
pLSA allows us explicitly to represent an image as a mix-
ture of topics, i.e. as a mixture of one or more objects/object
parts. Since for all currently practical applications the num-
ber of topics modeled is much smaller than the number of
visual words, the topic distribution gives rise to a compact,
low-dimensional description of the image content.

The starting point for building a pLSA model is to rep-
resent the entire corpus of documents by a term-document
co-occurrence matrix of size M×N . M indicates the number
of documents in the corpus and N the number of different
words occurring across the corpus. Each matrix entry con-
tains the number of times a specific word (column index) is
observed in a given document (row index). Such a repre-
sentation ignores the order of words in a document, and is
commonly called a bag-of-words model.

In order to construct a co-occurrence table in the visual
domain, and thus to be able to apply the pLSA model un-
changed, we first need to define an equivalent to words in
documents. These elementary parts are commonly called
visual words. They are usually derived by vector quantizing
automatically extracted local image descriptors.

In our work, visual words are derived by clustering a sub-
set of automatically extracting local image descriptors from
the training images using the k-means algorithm. The means
of each cluster are kept as the visual words, together they
form the visual vocabulary.

Given the vocabulary, features are extracted from each
image in the database. Each image di is represented as con-
sisting of Ni visual words by replacing each detected feature
vector by its most similar visual word, defined as the closest



Figure 1: Scene classification system based on a discrete pLSA model.

word in the high-dimensional feature space. The word oc-
currences are counted leading to the term-frequency vector
for each image document and the term-frequency vectors of
all images constitute then the co-occurrence matrix. Since
the order of terms in a document is ignored, any geomet-
ric relationship between the occurrences of different visual
words in images is disregarded.

Given the co-occurrence matrix, the pLSA uses a finite
number of hidden topics to model the co-occurrence of vi-
sual words inside and across image document. This model
assumes that every word occurring in a document in the
corpus is associated with a hidden, i.e. unobservable, topic
variable. Probability distributions of the visual words given
a hidden topic as well as probability distributions of hidden
topics given the documents are learned in an unsupervised
fashion. We estimate the model parameters on the training
data and apply this model to all images in the database in or-
der to derive the topic distribution for each image. This low-
dimensional topic vector is further used to represent each
image document.

For scene recognition we perform a simple k-Nearest Neigh-
bor (kNN) search for the topic vectors of the unlabeled test
images over the labeled training images using the L2-norm as
distance metric. More sophisticated distance metrics and/or
machine learning algorithms such as Support Vector Ma-
chines (SVMs), Random Forrest (RF), or Adaboost could
be applied for improving the recognition results further. As
our main goal in this work is to compare the original dis-
crete word model with three different continuous word mod-
els in the pLSA framework, we have chosen a simple kNN
approach. Figure 1 gives a system overview.

2.1 Local Feature Descriptors
For this work we chose the well-known SIFT features pro-

posed by David Lowe [13] as local image descriptors. They
are computed in two steps: A sparse set of interest points
is detected at extrema in the difference of Gaussian pyra-
mid, and a scale and orientation are assigned to each in-
terest point besides its position. Then we compute a 128-

Figure 2: Graphical representation of the pLSA

model. M denotes the number of images in the

database and Ni the number of visual words in image

di. Shaded nodes highlight the observable random

variables w for the occurrence of a visual word and

d for the respective document. z denotes the hidden

topic variable.

dimensional gradient-based feature vector from the local gray
scale neighborhood of each interest point in a scale and ori-
entation invariant manner.

Note that each image usually leads to a different number of
features even if two images have the same size. The number
of feature computed depends on the structure and texture
of the image.

After having computed all 128-dimensional SIFT feature
vectors for each image we perform a whitening PCA to
extract the 75 most important components from the 128-
dimensional vectors. This is done by only keeping the 75
components belonging to the largest eigenvalues. The lower
dimensionality ensures faster computation of the pLSA mod-
els. Our experiments also showed that no/very little perfor-
mance is lost due to this dimensionality reduction, compared
to the original 128-dimensional feature vectors.

2.2 pLSA
We assume that in the discrete case each image di is rep-

resented as consisting of Ni visual words wj . There are K

different visual words in the vocabulary and each wj is a 75
dimensional feature vector.

The pLSA model then assumes that the following gener-



Figure 3: Model structure of the three proposed continuous vocabulary pLSA approaches.

ative process has created the co-occurrence matrix [8]:

• Pick a document di with prior probability P (di)

• Select a latent topic zh with probability P (zh|di)

• Generate a (visual) word wj with probability P (wj |zh)

Note that the number of topics and words are predefined.
This generative process results in the following model:

P (wj , di) = P (di)
H
X

h=1

P (wj |zh)P (zh|di) (1)

where H denotes the number of topic in the model. Figure 2
shows the graphical representation of the pLSA model.

The probability distributions P (wj |zh) of the visual words
wj given a hidden topic zh as well as the probability distri-
butions P (zh|di) of hidden topics zh given the images di

are learned completely unsupervised by means of the Ex-
pectation Maximization (EM) algorithm [7]. For detailed
equations please refer to [8]. The topic distributions of new
images that are not part of the original training corpus are
estimated by a fold-in technique [8]. Here the EM algo-
rithm is applied to the unseen images. However, this time
the word distributions conditioned on the topic P (wj |zh)
are fixed (i.e., not updated) and only the topic distribution
P (zh|di) for each image is computed.

3. APPROACHES
When applying the discrete pLSA model to image data,

the high-dimensional feature vectors need to be quantized
first in order to obtain a fixed number of discrete, visual
words. However, the quantization procedure, as described
in the previous section, is not necessarily optimal. In this
work we will therefore describe three different ways to model
directly the probability of features vectors under each topic,
and thus making the quantization of the descriptors obso-
lete.

Ideally we would like to have a separate probability distri-
bution over the feature space for each topic. We do this by
using Gaussian Mixture Models (GMM). We call this model
GM-pLSA and describe it in Section 3.3. But a model of
this complexity is expensive to train, both in time and data.
Thus we also test two simplifications that reduce the model
complexity.

In a slightly simpler approach we learn Gaussians that
are shared across all topics. In Section 3.1 we describe the

SGW-pLSA model that learns the means and covariances of
a single set of Gaussians as part of the topic determination
algorithm.

A further computational simplification is possible if we
cluster the feature data in advance, much as is done for dis-
crete pLSA, and learn the probability of each cluster given a
topic. We represent each cluster by a Gaussian distribution.
This model is called FSGW-pLSA and is described in Sec-
tion 3.2. Figure 3 shows an overview of the different model
structures.

In the continuous case we represent each image di as con-
sisting of Ni local feature descriptors fj .

3.1 pLSA with Shared Gaussian Words (SGW-
pLSA)

In the SGW-pLSA approach we modify the original pLSA
model such that each word is represented by a multivariate
Gaussian distribution and we assume that each high-dimen-
sional feature vector is sampled from one of those Gaussian
distributions. This results in modeling the topics, i.e. the
probabilities P (w|z), by a multivariate mixture of Gaussian
distributions, where Gaussians are shared between the dif-
ferent topics.

This approach is similar to the model presented by Larlus
et al. [10] for the case of the LDA – a pLSA related model.
For the case of pLSA a similar model has been presented
but the authors consider only supervised learning [1].

The SGW-pLSA model assumes the following process for
sampling a feature descriptor fj from the image database:

• Pick a document di with prior probability P (di)

• Select a latent topic zh with probability P (zh|di)

• Choose a Gaussian component gk depending on the
chosen topic zh with probability P (gk|zh)

• Sample a descriptor fj from N(fj |µk, Σk), which is
a multivariate Gaussian distribution over the feature
vector space modeling the Gaussian component gk

According to this generative process, equation 1 becomes:

P (fj , di) = P (di)

H
X

h=1

K
X

k=1

P (fj |gk) · P (gk|zh) · P (zh|di) (2)

where

P (fj |gk) = N(fj |µk, Σk). (3)



Here H and K denote the total number of the topics and
Gaussian words in the model, respectively.

It can be seen that the parameters of the Gaussian dis-
tributions, i.e. of the continuous visual vocabulary, become
part of the model. Thus, those parameters are estimated si-
multaneously with the other model parameters in the learn-
ing algorithm (see Section 4.1). Additionally we can also
omit the computation of the co-occurrence table/vector in
our scene recognition system (see Figure 1).

As in the case of a discrete pLSA model the necessary
quantization is performed before the actual model compu-
tation and thus does not account for the probabilistic model
learned in the subsequent step, the joint learning of the
Gaussian distributions with the other pLSA parameters may
be advantageous. On the other hand the SGW-pLSA model
estimation might be more difficult as many more parameters
(i.e., the means and covariance matrices) must be estimated.

3.2 pLSA with Fixed Shared Gaussian Words
(FSGW-pLSA)

In order to examine the influence of modeling the visual
words continuously by Gaussian distributions, we proposes
the FSGW-pLSA. Here we assume the same probabilistic
model as in the SGW-pLSA. However, during the model
estimation we do not explicitly estimate the parameters of
the Gaussian distributions representing the words.

We learn an ordinary Gaussian mixture model represent-
ing the shared continuous vocabulary on the extracted lo-
cal image descriptors of the training image set in advance.
Then, in the subsequent probabilistic model computation of
the SGW-pLSA we assume the parameters of the Gaussians,
i.e. the means µk and covariance matrices Σk, are fixed and
only the topic and component probabilities P (zh|di) and
P (gk|zh) are estimated.

Summarizing, in the FSGW-pLSA, the words are modeled
by a continuous distribution over the feature space, making
quantization unnecessary. In contrast to the SGW-pLSA,
the parameters are of the Gaussian distributions modeling
the continuous visual vocabulary are computed separately
previous to the topic model parameter estimation.

3.3 pLSA with Gaussian Mixtures (GM-pLSA)
In the above two approaches (SGW-pLSA and FSGW-

pLSA) all topics share a single visual vocabulary. It may be
beneficial to allow for different means and covariance matri-
ces for each topic, i.e. no sharing of Gaussian components
between topics. This results in modeling each topic, i.e. the
probabilities P (fj |zh), by its individual multivariate Gaus-
sian mixture model over the feature space. Thus given a
topic we select a Gaussian mixture component out of the
Gaussian mixture model associated with the topic, and de-
pending on the mixture component the feature is sampled.

We assume that each feature fj in image di is generated
as follows:

• Pick a document di with prior probability P (di)

• Select a latent topic zh with probability P (zh|di)

• Choose a Gaussian component gh
k depending on the

topic zh with probability P (gh
k |zh) = πhk, where gh

k is
the k-th Gaussian component associated with topic h

• Sample a descriptor fj from N(fj |µkh, Σkh), which is
a multivariate Gaussian distribution over the feature
vector space modeling the multivariate Gaussian dis-
tribution gh

k

According to this generative process, introducing a mul-
tivariate Gaussian mixture over the feature space for each
topic zh

P (fj |zh) =
K
X

k=1

πkh · N(fj |µkh, Σkh) (4)

yields to the following model:

P (fj , di) = P (di)
H
X

h=1

 

P (zh|di)·

K
X

k=1

πkh · N(fj |µkh, Σkh)

!

(5)

In contrast to the model described in the previous subsec-
tion, here the multivariate Gaussian distributions modeling
the feature space are not shared, thus the means and covari-
ances of the K Gaussians are different for each topic. On the
one hand this enables to use the optimal means and covari-
ances for each topic. On the other hand, as we need more
Gaussians in total to model all topics, the number of param-
eters in the model is significantly larger for the same number
of Gaussians per topic. Having observed that most topics
are only represented by a small number of words/Gaussians
compared to the entire number of visual words/Gaussians in
the model, we should be able to reduce the number of Gaus-
sians per topic without performance degradations. Thus, in
our experiments we use fewer Gaussians to represent a topic
compared to the SGW-pLSA and FSGW-pLSA approaches.
However the total number of Gaussians and parameters for
this third model will still be larger than the number for the
other two models.

As in the SGW-pLSA model, in the GM-pLSA model the
computation of the Gaussian distributions parameters and
therefore the continuous visual vocabulary becomes part of
the model estimation. We can also omit the computation
of the co-occurrence table/vector in our scene recognition
model if we replace the discrete pLSA model by the GM-
pLSA model (see Figure 1).

4. PARAMETER ESTIMATION
We will now present the algorithms for parameter estima-

tion and inference in the three proposed continuous vocab-
ulary pLSA models.

4.1 SGW-pLSA
According to the SGW-pLSA model (Equation 2 and 3),

the log likelihood l of all images in the database is given by:

l =

M
X

i=1

Ni
X

j=1

log

 

H
X

h=1

K
X

k=1

[P (di) · P (zh|di)·

P (gk|zh) · N(fj |µk, Σk)]

!

(6)

where M denotes the number of images in the database and
Ni the number of local descriptors representing the image
di.



During model estimation we need to learn the topic and
component probabilities P (zh|di) and P (gk|zh) as well as the
parameters of the Gaussian distributions N(·|µk, Σk). Due
to the existence of the sums inside the logarithm, direct
maximization of the log-likelihood by partial derivatives is
difficult. Thus we use the Expectation Maximization (EM)
algorithm [7]. The EM-algorithm is an iterative optimiza-
tion method that alternates between two update steps. The
expectation step (E-step) in the EM-algorithm consists of es-
timating the posterior probabilities for the latent variables
taking as evidence the observed data and the current param-
eter estimates. Thus in the E-Step we calculate the variables
βkh

1.

β
ij

kh =
P (zh|di) · P (gk|zh) · N(fj |µk, Σk)

PH

h=1

PK

k=1
P (zh|di) · P (gk|zh) · N(fj |µk, Σk)

(7)

The M-step consists of maximizing the expected complete
data-likelihood E(lcomp):

E(lcomp) =
M
X

i=1

Ni
X

j=1

H
X

h=1

K
X

k=1

“

β
ij

kh · log [P (di) · P (zh|di)·

P (gk|zh) · N(fj |µk, Σk)]
”

(8)

Then, the update equations for the M-step become:

µ
new
k =

1

pk

M
X

i=1

Ni
X

j=1

H
X

h=1

β
ij

kh · fj (9)

Σnew
k =

 

1

pk

M
X

i=1

Ni
X

j=1

H
X

h=1

β
ij

kh · f2

j

!

− (µnew
k )2 (10)

where

pk =

M
X

i=1

Ni
X

j=1

H
X

h=1

β
ij

kh (11)

and

P (zh|di)
new =

PNi

j=1

PK

k=1
β

ij

kh

Ni

(12)

P (di)
new =

Ni
P

i
Ni

(13)

P (gk|zh)new =

PM

i=1

PNi

j=1
β

ij

kh
PK

k=1

PM

i=1

PNi

j=1
β

ij

kh

(14)

In fact the solution to P (di) is trivial, thus we will not have
to estimate this distribution.

In order to estimate P (zh|di) for test images, we fix the
learned Gaussian mixtures, i.e. P (gk|zh) and the associated
Gaussian distributions, i.e. Σk and µk, and perform the
remaining steps of the above algorithm.

As the iterative EM-algorithm does not necessarily con-
verge to the optimal solution, it is important to initialize the
model, especially the parameters of the Gaussian distribu-
tions, appropriately in order to avoid local minimums. We
initialize the means and covariances of the Gaussians rep-
resenting the visual vocabulary by computing an ordinary
multivariate Gaussian mixture model of the same size us-
ing all local features extracted in our training images. The

1Derivations of the EM equations will be published simul-
taneously in a technical report with this paper.

topic and component probabilities are initialized randomly.
It should be noted that we consider only the case of diagonal
covariance matrices in our experiments.

4.2 FSGW-pLSA
In order to learn a FSGW-pLSA model, we perform ex-

actly the same EM iteration steps as described in the pre-
vious subsection 4.1, but we do not update the µk’s and
Σk’s of the Gaussian distributions in the M-step. Compared
to the SGW-pLSA the FSGW-pLSA is less computational
expensive, as the means and covariances of the Gaussian dis-
tributions do not have to be estimated in every the EM-step.

To derive the parameters of the Gaussians representing
the fixed continuous vocabulary, we compute a multivari-
ate Gaussian mixture model on the local feature vectors of
the training set in advance. The Gaussian mixture model
computation is initialized with the outcome of a k-means
clustering on a feature subset of the training set. Note that
again, we only consider the case of diagonal covariance ma-
trices.

4.3 GM-pLSA
The log likelihood of the images in the database when

using the GM-pLSA model is given by:

l =
M
X

i=1

Ni
X

j=1

log

 

H
X

h=1

K
X

k=1

[P (zh|di) · P (di)·

πkh · N(fj |µkh, Σkh)]

!

(15)

As before, the existence of the sums inside the logarithm
makes direct maximization of the log-likelihood by partial
derivatives difficult. Thus we again use the EM-algorithm to
iteratively estimate the parameters. We derive the following
update equation for the variables βkh in the E-step:

β
ij

kh =
P (zh|di) · πkh · N(fj |µkh, Σkh)

PH

h=1

PK

k=1
P (zh|di) · πkh · N(fj |µkh, Σkh)

(16)

The M-step updates result in:

µ
new
kh =

1

pkh

M
X

i=1

Ni
X

j=1

β
ij

kh · fj (17)

Σnew
kh =

 

1

pkh

M
X

i=1

Ni
X

j=1

β
ij

kh · f2

j

!

− (µnew
kh )2 (18)

where

pkh =
M
X

i=1

Ni
X

j=1

β
ij

kh (19)

and

P (zh|di)
new =

PNi

j=1

PK

k=1
β

ij

kh

Ni

(20)

P (di)
new =

Ni
P

i
Ni

(21)

π
new
kh =

PM

i=1

PNi

j=1
β

ij

kh
PK

k=1

PM

i=1

PNi

j=1
β

ij

kh

(22)

Again, the solution to P (di) is trivial and does not need to be
estimated in our iterative algorithm. Computing P (zh|di)



Figure 4: Example images per category of OT

dataset.

for test images is performed by keeping the parameters of
the Gaussian mixtures fixed and only fitting the P (zh|di)
parameters during the EM iterations.

An important aspect of this model is the choice of the
number of Gaussian mixtures per topic. Here we compro-
mise between the accuracy to represent the feature distri-
butions per topic and the computational complexity as well
as the ability to fit the model with a very large number of
parameters. In addition, due to local maxima, special care
has to be taken to initialize the model appropriately. In this
work we initialize the parameters of the Gaussian mixtures
by using the result of the SGW-pLSA. Only the K most
important Gaussians per topic, i.e. the Gaussians with the
highest probability of occurrence in each topic, are chosen.
All other parameters are initialized randomly. Again we only
consider the case of diagonal covariance matrices.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We evaluate the three proposed continuous vocabulary

models by means of scene recognition experiments on the
often used OT dataset. The OT dataset [14] consists of a
total of 2688 images from 8 different scene categories: coast,
forest, highway, inside city, mountain, open country, street,
and tall building. Table 1 and Figure 4 show the number
of images as well as sample images for each category, re-
spectively. For performance evaluation, each test image is
assigned automatically by our system to one of the eight
categories, and the achieved recognition rate is used as the
performance measure throughout our experiments.

For evaluation we divide the images randomly into 1344
training and 1344 test images. We further subdivide the
1344 training images in a training and a validation set of size
1238 and 106, respectively. The validation set is used to find
the best parameter configuration for the respective pLSA-
based model. In the model we fix the number of topics to
25 and optimize the number, K, of visual words/Gaussian
distributions as well as the number of EM iterations per-
formed for the different models. It should be noted that
pLSA-related models are susceptible to overfitting, thus an
early termination may help with this issue. A number of 25

category scene type # of images
1 coast 360
2 forest 328
3 highway 260
4 inside city 308
5 mountain 374
6 open country 410
7 street 292
8 tall building 356

total 2688

Table 1: List of the categories and their respective

number of images in the OT dataset.

topics has been shown to result in good performance on this
dataset [5].

Having determined for each model the best parameter set-
ting for the number of visual words and EM iterations, we
pick the according model and apply it to the entire training
set (i.e., the set resulting from merging training and valida-
tion set). The model is also applied to all test set images in
order to compute a topic distribution for each image. This
topic vector for each image is then used to determine the
most similar images in the training set to each query (test)
image thus to finally determine the test image’s category by
the k-Nearest Neighbor algorithm.

Scene recognition is performed on all images in the test
set. Based on these recognition results we compare the dif-
ferent proposed models. We use the performance of the dis-
crete pLSA model as a baseline.

5.2 pLSA
The recognition rates for different numbers of visual words

K, different k’s of the kNN algorithm, and different num-
bers of EM iterations on the validation set are depicted in
Figure 5. We can see that the best recognition rates on the
validation set are achieved for a vocabulary size of 500 vi-
sual words and 25 iterations. The best recognition rate of
approximately 71% is obtained for k = 13 and k = 15.

The results of the original pLSA model on the test set us-
ing the entire training set for K = 500 and 25 EM iterations
will serve in Subsection 5.6 as a baseline for the evaluation
of the proposed pLSA models with continuous vocabulary
representations.

5.3 SGW-pLSA
Next we perform the above experiments with varying pa-

rameter configurations for the proposed SGW-pLSA model.
The results are displayed in Figure 6. We clearly see that the
results for a visual vocabulary size of K = 1500 are better
than the ones obtained for 500 and 750 Gaussian distribu-
tions in the mixtures. A recognition rate of about 76% is
achieved for K = 1500, k = 15 and 200 EM iterations. Thus
we choose this parameter setting for computing the results
on our test set in Subsection 5.6.

It can be also seen in Figure 6 that the model needs about
100 iterations to stabilize its performance. Thereafter the
performance improves only slightly – in some cases even gets
slightly worse. This could be a sign of overfitting. It should
also be notes that a training set size of 1238 images, each
producing in average about 550 local descriptors, is not very
large for the number of parameters that must be estimated



Figure 5: Recognition rates of the original pLSA model on the validation set for various k’s of the kNN

algorithm, different numbers of iterations of the EM algorithm, and different numbers of visual words K in

the model.

Figure 6: Recognition rates of the SGW-pLSA on the validation set for various k’s of the kNN algorithm,

different numbers of iterations of the EM algorithm, and different numbers of Gaussians K in the model.

for a SGW-pLSA model containing 1500 Gaussian distribu-
tions.

5.4 FSGW-pLSA
Figure 7 shows the results obtained for the FSGW-pLSA

model on the validation set. Again the size of the vocabu-
lary, the parameter k in the kNN algorithm and the number
of EM iterations in model estimation have been varied.

It can be seen that a vocabulary consisting of 750 and
1500 Gaussians give the best results. Especially the results
for 1500 words and 250 iterations performed best with a
recognition rate of about 72% for k = 11 and k = 15. As
the results for K = 1500 and 250 iterations are close to the
70% for a larger range of k values compared to the results
for K = 750 and 100 EM iterations, we will use the former
parameter setting for the final model comparison on the test
set.

5.5 GM-pLSA
In Figure 8 the recognition rates of the GM-pLSA on the

validation set for various parameter settings are shown. The
number of Gaussians K per topic ranges between 20 and
120. This results in a total number of between 500 and 3000
Gaussians in the model.

The results show that 20 and 30 Gaussians per mixture
seem not to be sufficient as results improve with larger K.
The best result is obtained for K = 120, i.e. a total num-
ber of 3000 Gaussian in the model, and 250 EM iterations.
Here we obtain recognition rates of more than 72% for k =

13, 15, 17. Thus this parameter setting will be used to com-
pute the performance of the model on the test set.

The results show that the total number of Gaussians in
this model needs to be larger than in the previous exam-
ined models. Likely the results will further improve when
going to even larger numbers of Gaussian distributions per
topic. Nevertheless, this gets computational very expensive.
The required larger total number of Gaussians might be ex-
plained by the fact that topics will still partly use similar
Gaussians, but those have to be estimated for each topic
separately.

5.6 Results
We will now compare the results of the different models

using the parameter sets that have lead to the best perfor-
mance on the validation set. We merge the training and
validation set and use the computed models for these se-
lected parameter sets to perform inference on the test set.
Given the topic distribution on the test images, each test
image is classified based on the dominant scene label in the
k-Nearest Neighbor (kNN) set of the training images to the
test image vector.

Figure 9 compares the achieved recognition rates on the
test data set for different numbers of k of the nearest neigh-
bor search. All three proposed continuous vocabulary mod-
els clearly outperform the original pLSA. The best perform-
ing model is the SGW-pLSA model, which only slightly out-
performs the second best model, the FSGW-pLSA. Both
approaches show a performance improvement of roughly 2%



Figure 7: Recognition rates of the FSGW-pLSA on the validation set for various k’s of the kNN algorithm,

different numbers of iterations of the EM algorithm, and different numbers of Gaussians K in the model.

to 4% over the pLSA. The third best model, the GM-pLSA
shows a recognition rate which is about 1% to 2% above the
performance of the pLSA.

It should be noted that in the case of SGW-pLSA, we
need to compute the parameters of 1500 Gaussians, whereas
in the case of GM-pLSA we compute estimates for a total
number of 3000 multivariate Gaussian distributions. Param-
eter optimization in Section 5.5 has shown that we do need
this large number of Gaussians in the GM-pLSA to accu-
rately model the database images. Nevertheless, the lower
performance compared to the SGW-pLSA may be an result
of having not enough training data to reliably learn this large
number of parameters in the GM-pLSA model.

In summary, we conclude that a continuous pLSA model
describes the visual environment better than a discrete pLSA
model as used in previous topic model based scene recog-
nition work. In this application domain the SGW-pLSA
model and the FSGW-pLSA model outperform the GM-
pLSA model, which has also the disadvantage of being com-
putationally more expensive. Furthermore the performance
improvement of the SGW-pLSA over the FSGW-pLSA is
small, thus if low computational cost is required one should
consider using the FSGW-pLSA over the SGW-pLSA.

6. CONCLUSION
In this paper we have proposed and evaluated three dif-

ferent extensions to the pLSA where the visual vocabulary
is modeled by continuous feature vector distributions. For
each of the models we have presented algorithms for parame-
ter estimation and inference. A competitive evaluation in an
automatic scene classification task shows that the proposed
approaches outperform the discrete pLSA model. Further-
more, we found that the SGW-pLSA performed best closely
followed by the FSGW-pLSA.
Future work will be to verify the results on a large scale
dataset in an image retrieval task and using different local
region detectors and descriptors in the experiments.
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