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M icrolocation plays a key role in the transformation of tra-
ditional buildings into smart infrastructure. Microloca-
tion is the process of locating any entity with a very high 

accuracy, possibly in centimeters. Such technologies require 
high detection accuracy, energy efficiency, wide reception 
range, low cost, and availability. In this article, we provide in-
sights into various microlocation-enabling technologies, tech-
niques, and services and discuss how they can accelerate the 
incorporation of the Internet of Things (IoT) in smart build-
ings. We cover the challenges and examine some signal pro-
cessing filtering techniques such that microlocation-enabling 
technologies and services can be thoroughly integrated with 
an IoT-equipped smart building. An experiment with Blue-
tooth Low-Energy (BLE) beacons used for microlocation is 
also presented.

Overview of microlocation
The interconnectedness of all things is continuously expand-
ing. The aim is to have every individual interconnected with 
his or her surroundings, whether it be at home, at work, or 
in public spaces. Some of these services might include but 
are not limited to indoor mapping and personalized environ-
ment changes, such as lighting and temperature settings, as 
well as directed advertisement. For these systems to perform, 
it is essential to have reliable hardware and accurate data. 
Outdoor localization technologies, such as the Global Posi-
tioning System (GPS), do not work indoors due to the physi-
cal barriers that block the signal and do not provide location 
data accurate enough for microlocation. Current solutions use 
received signal strength indication (RSSI) to determine posi-
tion. A variety of solutions that use RSSI have been proposed 
to provide location services for indoor environments, though 
each solution presents its own drawbacks. Multiple technolo-
gies and techniques have been adapted to provide indoor loca-
tion information, all of which attempt to overcome the noise 
and dynamics of a changing indoor environment.

A promising approach includes the effective use of the 
plethora of IoT devices that are available on the market. BLE 
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beacons, usually referred to as beacons, are a promising can-
didate to improve indoor localization accuracy. They are small 
Bluetooth transmitters designed to attract attention to a specif-
ic location. As in many IoT-based networks, the performance 
of such networks relies on the network lifespan and accuracy. 
BLE beacons are a cheap, simple, and very scalable means of 
implementing indoor localization services. In recent years, 
BLE technology has grown in popularity, and much more 
research has been developed in using it for indoor localiza-
tion [1]–[3]. The fundamental operation of these beacons for 
localization purposes is based on RSSI techniques, where the 
received RSSI value is translated into a distance by using a 
best curve fit signal propagation model. BLE beacon protocols, 
such as iBeacon [4] and Eddystone [5], provide the necessary 
information and configuration capabilities for microlocation. 
Along with the low power consumption of BLE, beacon devic-
es are easily deployed and require low maintenance, hence 
their scalability for any complex indoor environment.

Intrinsic to any wireless technology, BLE beacons are high
ly susceptible to noise and interference. To overcome the effects 
of noise and dynamic changes in the physical environment, 
many methods devised around advanced positioning algo-
rithms and filtering techniques have been adapted to beacon-
based systems to improve the accuracy obtained in using RSSI 
localization techniques, as shown in Figure 1. Some of the most 
common filter implementations are Kalman filters, as detailed 
in [6]. Kalman filtering has also been examined in the context 
of indoor localization [7]. These filters provide a reasonably 
accurate state estimation and can be adjusted for changes is 
environmental/process noise. Other filters, such as particle fil-
ters (PFs), are also used. PFs are highly accurate but at the cost 
of greater computational complexity, hence the need for a cli-
ent-server-based model, as outlined in [2] and [8]. Positioning 
algorithms can also have an effect on beacon accuracy. The 
work presented in [9] implements the K-nearest neighbor algo-
rithm to calculate the position of the user. The experiments 
showed an average error of 1 m. Other algorithms, such as the 
pedestrian dead-reckoning approach, have been implemented 
with BLE beacons [10]. In these experiments, the integration 
of smartphone sensors for data regarding step detection, step 
direction, and walking length are combined with beacon cali-
bration zones to provide a more accurate position. All tech-
niques may provide different accuracy results and may behave 
differently depending on the environment, so it is important 
to note the characteristics of each tested environment when 
deciding on what technique to implement.

In this article, we survey available wireless technologies for 
microlocation systems in a smart building. Then we discuss sig-
nal processing techniques and characteristics that can be used 
to improve microlocation performance, along with filtering 
approaches. We focus on the use of BLE beacons, and, through 
an experiment, we discuss how they can enhance microlocation.

Smart buildings with IoT technologies
The IoT revolution has brought a swarm of continuously inter-
connected and sensor-packed devices opening a vast number 

of opportunities in equipping existing infrastructures. The IoT 
has enabled applications that transform facilities to intelligent 
spaces able to critically affect and improve the productivity 
and life quality of the occupants. Reducing energy costs and 
detecting and building knowledge based on human patterns 
as well as improving the human–building interaction are only 
some cases in point.

The Institute for Building Efficiency [11] defines smart 
buildings as buildings that can provide low-cost services, such 
as air conditioning, heating, ventilation, illumination, secu-
rity, sanitation, and various other services, to tenants without 
adversely affecting the environment. This requires the collabo-
ration of multiple sensors that form a building’s IoT ecosystem. 
The basic motive behind the construction of smart buildings 
is to provide the highest level of comfort and efficiency. At 
the same time, the interconnection of the automation systems 
can assist with disaster management and provide emergency 
services. The collaboration of the fire system with the air con-
ditioning system, e.g., can create an environment where a fire 
will not expand to the rest of the building.

To that end, indoor-focused location-based services (LBSs) 
are the fundamental components for providing a tenant-to-
building interaction. LBSs provide the ability to efficiently 
track occupants in real time. They either attempt to esti-
mate the user’s two-dimensional (2-D) coordinates, which is 
referred to as microlocation, or they assign the user in the 
locality of certain points of interest, which is known as prox-
imity sensing.

The integration of smart buildings with the IoT creates a 
number of challenges. A smart building with an IoT ecosys-
tem requires three main components: the sensors, the integra-
tion, and the actuators. The sensors must be connected to 
a reliable, highly available network that optimally can self-
diagnose and heal. Integration is probably the part where 
innovation is now taking place. It consists of some software 
that would receive the input from the sensors, process and 
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FIGURE 1. The microlocation system using the Kalman filter.
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analyze, and provide some actuator as a service to the ten-
ants, e.g., unlocking a door, switching on the TV, calling 
the elevator, or configuring the room temperature based 
on needs.

Overview of microlocation systems

Wireless technologies
Microlocation systems can leverage existing wireless infra-
structure for microlocation to minimize the cost or may re-
quire a specific wireless deployment [1]. By wireless tech-
nologies we refer both to high-frequency technologies as 
well as low frequency. The most common high-frequency 
wireless technologies that have been used in a microloca-
tion deployment are, e.g., Wi-Fi [12], Zigbee [13], radio-
frequency identification (RFID) [14], and Bluetooth [15]. 
However, low-frequency technologies like the ones based 
on physical light have also seen some research and com-
mercial use [16]. Light fidelity (Li-Fi), e.g., is one of the 
wireless technologies in the form of visible light commu-
nication (VLC) technology. These technologies have been 
used successfully in the past for indoor location and naviga-
tion, and their popularity among IoT devices makes them 
an ideal solution for microlocation as well. There are also 
technologies such as Wi-Fi HaLow [17], BLE version 5.0 
[15], and LoRaWAN [18], which are specifically designed 
for IoT devices.

IEEE 802.11, Wi-Fi
The IEEE 802.11 standard [12], commonly known as Wi-Fi, 
is among the most popular technologies used for localiza-
tion when GPS is inadequate. The great distribution of access 
points and signal availability at an indoor environment make 
it easy to collect the received signals from various access 
points and calculate the location of the receiver. The indoor 
transmission range can vary from 3.3 m with a bandwidth of 
6.7 Gbit/s (IEEE 802.11ad), up to 70 m with a bandwidth of 
600 Mbit/s (IEEE 802.11n), and it can operate in 2.4, 5, and 
60 GHz.

Wi-Fi networks are deployed for communication; hence, 
data rate and connectivity are important, whereas localization 
is not their priority. Also, Wi-Fi networks are designed for a 
plethora of devices, from smartphones and laptops to phablets 
and smartwatches. This is a tradeoff for microlocation tech-
niques. The availability of Wi-Fi signals and Wi-Fi-enabled 
devices is an advantage for microlocation as the number of 
portable devices and potential reference points for localization 
increases. Advanced signal processing techniques can be used 
to improve the quality of the Wi-Fi signals for localization. At 
the same time, there is no need for extra hardware deployment 
with Wi-Fi technology.

However, IoT devices have unique characteristics, such 
as size and limited energy resources, that are not taken into 
consideration for general Wi-Fi technology. As the number of 
these devices increases, the 2.4- and 5-GHz channels become 
overcrowded, whereas the interference increases with a drop 

in the network capacity. Unfortunately, traditional Wi-Fi was 
not originally designed to tackle these interference issues 
and the increasing capacity in dense environments. To fill 
this gap, the Wi-Fi Alliance announced the Wi-Fi HaLow 
(IEEE 802.11ah).

IEEE 802.11ah, Wi-Fi HaLow
Wi-Fi HaLow [17] was designed to enable connectivity to 
a variety of new power-efficient use cases in smart homes, 
smart cities, and connected vehicles and supporting the con-
cept of the IoT in general. It extends Wi-Fi into the 900-MHz 
band to enable the low power connectivity that is necessary 
for IoT devices. The transmission range is twice the range of 
Wi-Fi, and it increases the signal robustness in challenging 
environments, such as complex indoor environments with 
lots of furniture and walls. It can operate in multiple trans-
mission modes from low rates, starting from 150 and up to 
347 kilobit/s.

The ability to operate in the low-power, high-transmission 
range and low propagation loss make Wi-Fi HaLow a good 
candidate for microlocation with IoT devices. However, it is 
relatively new in comparison with other technologies (pub-
lished in 2017); hence, it is not widely available, and it will be a 
while before we see HaLow clients and infrastructure devices. 
This delays the experimentation that is necessary before decid-
ing if it is suitable for microlocation.

Zigbee
Zigbee is a high-level communication protocol known for its 
simplicity, low power usage, and secure networking [13]. It is 
based on the IEEE 802.15.4 standard, which defines the oper-
ating point of wireless personal area networks (WPANs) with 
low-data-rate antennas. They are able to control the flow of 
information and prevent any loss of data by using carrier-sense 
multiple access with collision avoidance. Devices using Zig-
bee are designed with additional features, such as link quality 
and energy detection, that allow for measurements, such as the 
RSSI, to be easily determined. Zigbee is commonly used for 
localization in wireless sensor networks due to its low power 
requirements. Among IoT devices, though, it is not popular due 
to the extra hardware that is needed.

Bluetooth
Bluetooth is another wireless technology for exchanging data 
over short distances [15]. The IEEE standardized Bluetooth as 
IEEE 802.15.1 but no longer maintains the standard, which is 
managed by the Bluetooth Special Interest Group (SIG). Ac-
cording to the SIG, Bluetooth is all about proximity, not about 
exact location. Bluetooth was not intended to offer a pinned lo-
cation like GPS. However, it is known as a geofence or micro-
fence solution, which makes it an indoor proximity solution, 
not an indoor positioning solution.

Introduced by the Bluetooth SIG in 2010, BLE was designed 
for applications that do not require large amounts of data 
transfer, reducing the power consumption and cost of devic-
es. Microlocation and indoor mapping have been linked to 
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Bluetooth and to the BLE-based iBeacon promoted by Apple 
[4]. Large-scale indoor positioning systems based on iBea-
cons have been implemented and applied in practice.

Similar to Zigbee, BLE is a technology used in WPANs. 
The low power consumption of BLE has led to a number of 
new devices in the IoT. BLE 4.0 can reach 25 Mbit/s at a dis-
tance of 60 m. Applications using BLE have greatly increased 
during the past couple of years. A number of new devices have 
been developed, in such fields as health care [19], sports, fit-
ness, security, and home entertainment. One device that has 
been created is known as a beacon. Beacons are small, inex-
pensive devices that contain only a central processing unit, a 
radio, and batteries.

Bluetooth 5.0 [15] is the competitor of Wi-Fi HaLow in 
the IoT domain. It is claimed to have twice the speed of the 
previous version, four times longer transmission range, and 
exchange data eight times faster. The simplicity and popularity 
among IoT devices are advantages of Bluetooth for microlo-
cation. The small size of beacons and their low cost with the 
energy efficiency of the BLE and the extended lifespan that it 
can provide can be used to enhance microlocation in a complex 
environment without interfering with other wireless infrastruc-
tures. For disadvantages, even though the security of BLE is 
good, it is even better on Wi-Fi.

RFID
RFID devices were primarily designed for data transfer and 
storage [14]. There is a need for an RFID reader that can com-
municate with RFID tags. There are two types of RFIDs. The 
active RFIDs operate in the ultrahigh frequency and micro-
wave frequency ranges. They need to be connected to a local 
power source while they transmit their ID periodically up to 
100 m. Passive RFIDs, however, operate without battery but 
within 1–2-m transmission range.

In the IoT era, RFID is not a promising solution for micro-
location. Its accuracy is not high enough, and it is not available 
on many portable devices.

LoRaWAN
LoRaWAN is a long-range, low-power-consumption technol-
ogy used in the development of personal wide area net-
works [18]. Originally developed by the LoRa Alliance, 
the LoRaWAN protocol transmits at a lower frequency of 
915 MHz. The benefit of using a lower frequency is that 
the smaller wavelength allows for a greater distance that 
the signal can reach. Due to that, it can pass through walls 
and obstacles without issue. It is also no longer as easily sus-
ceptible to noise because it does not interfere with any devices 
transmitting on the 2.4-GHz band.

The disadvantage of using such a low frequency is a reduc-
tion in the data rate that can be sent between transmitting 
devices. For microlocation, this is not an issue, as the nodes 
are not transmitting large amounts of information. Due to the 
915-MHz band being unlicensed, it is free for anyone to use 
for his or her personal networking needs.

For devices that are moving at high speed in a large area, 
LoRa might be a candidate for localization with the IoT. Unfor-
tunately, in the short range, LoRa performance does not over-
come the high cost and the extra equipment that are needed to 
set up a LoRa node.

Li-Fi
Li-Fi is a VLC technology [20]. VLC is a subset of optical 
wireless communication, which uses light-emitting diodes 
(LEDs) as a medium to enable high-speed communication. 
Data are transmitted by modulating the intensity of LED light 
at nanosecond intervals, too quick to be detected by the hu-
man eye.

Table 1 summarizes the specifications of each wireless 
technology along with the advantages and disadvantages of 
usage for microlocation.

Radio signal features for microlocation
As the wireless signal propagates from the sender to the re-
ceiver, there are signal characteristics that can be used for the 

Table 1. The wireless technologies for microlocation.

Technology Throughput Transmission Range Power Consumption Advantages Disadvantages 

IEEE 802.11ac 3.5 Gbit/s 35 m Moderate Available in many  
environments 

Prone to noise and  
interference 

IEEE 802.11ad 6.7 Gbit/s 3.3 m 

IEEE 802.11ah 347 Mbit/s 1 km Low Wide reception range Not widely available 

Zigbee 250 kbit/s 75 m Low Easy to set up Extra hardware 

BLE v4.0 25 Mbit/s 60 m Low High throughput Prone to interference 

BLE v5.0 50 Mbit/s 240 m 

RFID active 1,067 100 m Low Low power Low accuracy 

RFID passive 1,067 2 m 

LoRaWAN 50 kbit/s 15 km Extremely low Wide range Extra hardware 

Li-Fi 1 Gbit/s 10 m Low Dense environments Low range 
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localization of one of the communicating devices. There are 
four main signal features that can be used for localization.

RSSI
RSSI is one of the most commonly used characteristics for 
indoor localization [1]. It is based on measuring the power 
present in a received signal from a client device to an ac-
cess point. As radio waves propagate according to the in-
verse-square law, the distance can be approximated based 
on the relationship between transmitted and received signal 
strength, as long as no other errors contribute to faulty re-
sults. The combination of this information with a propagation 
model can help to determine the distance between the client 
device and the access points. Lateration-based methods are 
commonly used along with RSSI to estimate the location of 
the client.

It can be assumed that the more access points, the more 
information can be collected, and hence the accuracy can 
be increased. This, however, works also as a tradeoff. An 
increase of the access points will also increase the interfer-
ence between different signals. A key challenge in wireless 
localization systems is that the range measurements are often 
associated with errors. Although RSSI techniques are among 
the cheapest and easiest methods to implement, the disad-
vantage is that RSSI does not provide very good accuracy, 
with a median of 2–4 m. This is mainly because the RSSI 
measurements tend to fluctuate according to environmen-
tal changes or multipath fading, events that are common in 
indoor environments.

Angle of arrival
Angle of arrival (AoA) is another characteristic that can be 
used for localization. It tries to estimate the direction of the 
signal propagation, i.e., the angle from which the signal ar-
rives at a receiver. AoA is typically achieved by using an ar-
ray of antennas. The line connecting two reference points 
may be used as an internal reference. The spatial separation 
of antennas leads to differences in arrival times, amplitudes, 
and phases.

Time of arrival
In time of arrival (ToA) (also known as time of flight), the dis-
tance between the sender and receiver of a signal can be de-
termined using the measured signal propagation time and the 
known signal velocity. ToA is the amount of time a signal takes 
to propagate from transmitter to receiver. The signal propaga-
tion rate is constant and known; hence, the travel time of a 
signal can be used to directly calculate distance. This is the 
technique used by GPS.

The accuracy of the ToA-based methods often suffers 
from massive multipath conditions in indoor localization, 
which is caused by the reflection and diffraction of the RF 
signal from objects (e.g., interior wall, doors, or furniture) 
in the environment. However, it is possible to reduce the 
effect of multipath by applying temporal or spatial sparsity-
based techniques.

Time difference of arrival
The time difference of arrival (TDoA) is the ToA of a spe-
cific signal at physically separate receiving stations with 
precisely synchronized time references. TDoA measures the 
difference in ToA at two different receivers. Three or more 
TDoA measurements can be used to locate a device with hy
perbolic lateration.

Although TDoA sounds similar to ToA, there is a differ-
ence. In ToA, the absolute time at a base station is used. In 
TDoA, the measured time difference between departing from 
one and arriving at the other station is used.

Indoor positioning techniques

Proximity detection
Proximity detection techniques, shown in Figure 2(a), are based 
on the proximity of the mobile device to previously known lo-
cations. These techniques determine the position of an object 
based on closeness to a reference in the physical space. When 
the mobile device receives the signal from a reference point, 
then the device should be within the coverage range of the 
reference point, i.e., in close proximity to the reference point. 
Proximity detection does not provide the location in the form of 
coordinates but rather in the form of sets of possible locations.

This method is also based on the premise that the refer-
ence point has a limited range. For simplicity, it is common 
to assume that the range of a wireless infrastructure would be 
well represented by a circle of given radius .r  Then, the result 
of the proximity detection would be located inside this circle. 
For several circles, one can limit the possible location to the 
intersection of the different circles.

Lateration
Lateration is the process of estimating the location of a mo-
bile device’s given distance measurements to a set of points 
with a known location, shown in Figure 2(b). Lateration-
based methods use the distance measurements from multiple 
reference points to compute the position of a receiver. Trilat-
eration is a commonly used technique to calculate the esti-
mated client device position relative to the known position of 
three access points. It uses the distance from the three refer-
ence points to estimate the location and track the position 
of the receiver when the receiver is moving within the three 
points. Given the distance to an anchor, it is known that the 
node must be along the circumference of a circle centered at 
the anchor and a radius equal to the node–anchor distance. In 
2-D space, at least three noncollinear anchors are needed; in 
three-dimensional space, at least four noncoplanar anchors 
are needed.

Angulation
Angulation-based positioning techniques can be used to em-
ploy the AoA of a wireless signal and determine the position 
of a receiver, as shown in Figure 2(c). A commonly used ap-
proach is triangulation, where the location of a point is de-
termined by forming triangles to it from known points. In 
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triangulation, a known baseline can be used to find the loca-
tion relative to two anchor transmitters. It uses the geometric 
properties of triangles to estimate the location and relies on 
angle (bearing) measurements. It requires a minimum of two 
bearing lines and the locations of anchor nodes or the dis-
tance between them for 2-D space.

Fingerprinting
Fingerprinting techniques are based on the reproducibility of 
patterns of measurable variables, shown in Figure 2(d). Tradi-
tional fingerprinting records the signal strength from several 
access points and stores them in a database, along with the 
known coordinates of the client device in an offline phase. 
Then, during the localization phase, the current vectors at an 
unknown location are compared to those in the database, and 
the closest match is returned as the estimated user location.

Fingerprinting has the advantage that it does not require 
any assumption regarding the nature of the propagation envi-
ronment. It just creates a model environment based on the 
training data. At the same time, this can be a disadvantage. 
Any change of the environment, such as adding or removing 
furniture or access points, requires an update to the model.

Localization metrics
To evaluate the performance of a localization system, accuracy 
and precision are used. Accuracy measures the deviation of 

the estimated location from the truth, whereas precision mea-
sures the deviation of location estimates from each other for 
the same location. A system with high accuracy can be used for 
an application that focuses on long-term localization determi-
nation, and the errors cancel out over time. A system with high 
precision can be used to find the proximity between devices, 
but it is hard to use for localization.

Improve accuracy through signal  
processing filtering techniques
There are a number of signal processing filtering techniques 
that are used for indoor localization. In the following, we sum-
marize two: Kalman filtering and dynamic Kalman filtering.

Indoor localization model
We model the indoor localization problem as posed by Aru
lampalam et al. [21]. Extended versions as applied in BLE can 
also be found in [7]. Because we seek to estimate the user posi-
tion/state under a set of measurements obtained in a typical 
noisy indoor environment, Bayesian filtering is an attractive 
approach for such problems. However, Bayesian filtering re-
quires the following two models.
1)	 System model: A system model describes the variation of 

the state (user position in our case) with time. The system 
model relates the position vector yi  with the process noise 
mi  and previous state.

BeaconBeacon

Beacon

Beacon
Beacon

Beacon

Beacon

Beacon

Beacon Beacon

Beacon

Beacon

Beacon

Beacon

θ1

θ2

θ3

r1 r 2

r3

(a)

(c) (d)(b)

FIGURE 2. The localization techniques: (a) proximity, (b) lateration, (c) angulation, and (d) fingerprinting.
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2)	 Measurement model: A measurement model relates the 
noisy measurements (RSSI for PF and the user position for 
extended Kalman filtering) with the state/position.
We construct the posterior probability density function (pdf) 

describing the state from all available information, including 
the measurements from the reference nodes (beacons in our 
case). The pdf is considered as the complete solution to the 
state estimation problem because it contains all of the required 
information. The problem involves recursively estimating the 
user state/position as we receive measurements from the bea-
con. Therefore, we require a recursive filter. Recursive filters 
consist of the prediction and update stage in which the state is 
predicted and then updated once the measurements are avail-
able. The presence of noise in indoor settings affects the posi-
tion calculation, so the pdf is usually distorted. The obtained 
measurements in the update state are used to modify the pre-
diction pdf using Bayes’ theorem.

Mathematically, state yi  at time i  is a function of the state 
at time step  i 1–^ h as well as the process noise mi 1-  [22], as 
described in (1):

	 ( , ).y f y mi i i i1 1= - - � (1)

The nonlinear function :f i
n n ny m y"#0 0 0  (as indoor local-

ization is a nonlinear problem) relates the previous state yi 1-  
and process noise mi 1-  with the current state yi as described 
by Arulampalam [21]. The sequence { , }m ii "!  represents an 
independent and identically distributed (i.i.d.) process noise 
sequence. The integer ny  represents the state noise vector, 
and nm  represent the process noise vector. The set of natural 
numbers is represented by " . The measurement model relates 
the obtained measurement xi  to the state y  and measurement 
noise n at time i [22] as given in (2):

	 ( , ).x h y ni i i i= � (2)

The mapping function :hi
n n ny n x"#0 0 0  can be either 

linear or nonlinear. Functions fi  and hi  rely on the laws of 
motion/physics. The sequence { , }n ii "!  is a measurement 
noise sequence that is i.i.d. The integers nx  and nn  repre-
sent the measurement and measurement noise vectors dimen-
sion, respectively.

Recursively calculating the pdf p y x :i i1^ h  allows us to 
continuously calculate the belief in the state yi at any particu-
lar time instance i  in the presence of noisy measurements. 
The initial pdf p y xo 0^ h is assumed to be equivalent to the 
state vector’s prior ( )p y0  [21]. We assume that the prior is 
available. The available information is enough to calculate 
the pdf p y x :i i1^ h recursively in the prediction and update 
stages. In the prediction stage, if the pdf p y x :i i1 1 1- -^ h is 
available, we can use the Chapman–Kolmogorov equation 
given in (3) to obtain the prior pdf of the state at any time 
instance i:

	 .p y x p y y p y x dy: :i i i i k i i1 1 1 1 1 1 1=- - - - -^ ^^ h hh # � (3)

At any time instance i, we collect the observations xi  from 
the sensors to update the prior using Bayes’ rule given in (4) 
[21]. The denominator in (4) is explained in (5):

	 ,p y x
p x x

p x y p y x
:

:
i i

i i

i i i i
1

1

1 1
=

-

-^ ^
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^h h
h
h

� (4)

	 .p x x p x y p y x dyi i i i i i i1 1=- -^ ^^ h hh # � (5)

The collected measurements xi  in the update stage are 
then used to update the prior density, resulting in the required 
current state’s posterior density. Recursively updating the sys-
tem using (3) and (4) results in an optimal Bayesian solution. 
However, analytically, it is not possible to obtain the recursive 
propagation of posterior probability density as done in (3) and 
(4). Therefore, a number of different algorithms, including PF, 
Kalman filter, and extended Kalman filter, are used to obtain 
a solution.

Kalman filter
The Kalman-filter-based RSSI smoother is based on the work 
of Guvenc [23]. The state ,xi  which in our case consists of 
RSSI and rate of change of RSSI, at time i is a function of the 
state at time  i 1–  and the process noise ,wi 1-  which is given 
mathematically by (6). The obtained RSSI measurements zi  
at instant i from the iBeacons is a function of the state at  i 1–  
and the measurement noise vi  as given by (7), as described in 
Arulampalam [21]:

	 ( , ),x f x wi i i1 1= - - � (6)

	 ( , ) .z h x vi i i1= - � (7)

The traditional Bayesian-based approach consists of the 
prediction and update stage, as described by Guvenc [23], and 
is given as follows:
1)	 prediction stage:

	 .p x z p x x p x z dx: :i i i i i i i1 1 1 1 1 1 1=- - - - -^ ^ ^h h h# � (8)

2)	 update stage:

	 ,p x z
p z z

p z x p x z
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:
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i i

i i

i i i i
1

1 1

1 1
=

-

-^ ^
^
^h h

h
h

� (9)

where

	 .p z z p z x p x z dx: :i i i i i i i1 1 1 1=- -^ ^^ h hh # � (10)

We assume that both the process noise and measurement 
noise are Gaussian and the functions f and h in (6) and (7) are 
linear. As a result of the linearity assumption, we can apply a 
Kalman filter because it is the optimal linear filter.

Due to the aforementioned assumptions, (6) and (7) can be 
rewritten as described by Guvenc [23]:

	 ,x Fx wi i i1= +- � (11)

	 ,z Hx vi i i= + � (12)
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where ~ ( , )w N Q0i  and ~ ( , ).v N R0i  Table 2 lists the param-
eters of a Kalman filter. The prediction and update stages for 
the Kalman filter as described by Guvenc [23] are
1)	 prediction stage:

	 ,x Fxi i=t tr � (13)

	 .P FP F Qi i
T

1= +-r � (14)

2)	 update stage:

	 ( ) ,K P H HP H Ri i
T

i
T 1= + -

r r � (15)

	 ( ),x x K z Hxi i i i i= + -t t tr r � (16)

	 ( ) .P I K H Pi i i= - r � (17)

The higher the Kalman gain, the higher will be the influ-
ence of the measurements on the state. The prediction and 
update steps are recursive in nature.

For the purpose of filtering the RSSI values, we use a state 
vector xi  that consists of the RSSI value yi  and the rate 
of change of RSSI yi 1D -  as follows: .xi y

y

i

i
= D8 B

Depending on the environment, yiD  signifies how drasti-
cally RSSI value fluctuates. The higher the noise in the envi-
ronment, the higher will be the fluctuation. The current value 
of RSSI yi  is assumed to be the previous RSSI yi 1-  plus the 
change yiD  and process noise .wi

y  Hence (11) can be written as

	 ,
y
y

t y
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w
w

1
0 1

i

i

i

i

i
y

i
y

1

1

d

D D
= + D
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; ; ; =E E E G � (18)

which means that the state transition matrix F is given by

.F
t1

0 1
d

=; E

The parameter td  is to be adjusted as per the variation in 
RSSI, which depends on the environment. For our set of exper-
iments, td  was taken as 0.2 (using trial and error). Similarly, 
(12) can be rewritten as

	 .z
y
y

v1 0i
i

i
i
y

D
= +6 6 ; 6@ @ E @ � (19)

The observation matrix H is given by

.H 1 0=6 @

Parameters , ,P Q  and R  used in the experiments were ob
tained using trial and error and are as follows:

, . , . .P Q R100 0 001 0 10I I22 22= = =6 @

The Kalman filter, once calibrated, effectively smooths the 
RSSI values. The smoothed RSSI values were then input into 
the path-loss model to obtain distances between the iBeacons 
and the user, and the user’s proximity to the beacon was classi-
fied in any of the aforementioned zones.

Dynamic Kalman
A dynamic variation of the Kalman filter computes Q  as 
the variance of a set number of previously collected RSSI 
values to make up for real-world process noise changes. It is 
continuously recalculated at each iteration of reading in the 
next RSSI value.

Different set sizes of recorded RSSI values can be used to 
find the ideal number of values to use in this calculation. It 
can be inferred that as the array size increases, the accuracy 
increases as well, up to an array size of n. After a size of ,n  any 
increase of the size leads to a decrease of the accuracy. The 
optimal n  can be found through experimentation, whereas the 
increase of the size can lead to waste of resources without any 
increase in the accuracy. At the same time, a decrease of the 
size below n  does not give sufficient information to the system 
to increase its prediction accuracy.

The set of RSSI values is stored in an array list of data 
type double. Algorithm 1 illustrates the procedure. It adds 
entries to each index in increasing order starting from index 0. 
When an entry is deleted, all entries ahead get pushed down 
one index value. At the start of each iteration, the algorithm 
checks the size of the array; once it reaches the desired size 

,n  it removes the oldest entry (index 0) and adds in the newest 
measurement.

When developing the dynamic noise component of the Kal-
man filter, it is essential to find the ideal number of previously 
obtained RSSI values to maintain, for calculation purposes. 
This is because the size of this set will have a direct impact on 
the performance of the filter.

Table 2. The Kalman filter parameter notation.

Symbol Meaning 

x State vector 

z Measurement/observation vector 

F State transition matrix 

P State vector estimate covariance or error covariance 

Q Process noise covariance 

R Measurement noise covariance 

H Observation matrix 

K Kalman gain 

w Process noise 

v Measurement noise 

Algorithm 1. Maintain RSSI set.

1:  if . ()RSSIArray size n==  then

2:      [ ].removeRSS IArray 0

3:  . ()last Index RSSI Array size!

4:  [ ]  newRSSIRSSI Array lastIndex !
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BLE beacon technology

BLE beacons
BLE beacons are small wireless transmitters that broadcast 
their identifier to nearby electronic devices, such as smart-
phones, wearables, and other IoT devices. An analogy of the 
way beacons work is with the operation of a lighthouse. The 
lighthouse represents a known location that can be uniquely 
identified by its light. All of the ships that can see the light 
know about the existence of the lighthouse. However, the 
lighthouse neither communicates with the ships, nor does it 
know how many ships see its light or how many other light-
houses are in the area. Similarly, every beacon is sending out 
a radio signal to inform all of the radio-enabled devices in its 
range that the beacon is there. It does not know how many 
beacons or receiving devices are in the area, and it does not 
connect with them. An example of beacon operation is shown 
in Figure 3.

Beacons broadcast signals at a certain interval and within a 
certain transmission range. A beacon broadcasts a signal to all 
nearby devices that can receive the Bluetooth signal, i.e., the 
devices that have a Bluetooth receiver and the receiver is on. 
To collect the signal from the beacon, it is necessary to have 
a device with a BLE receiver. This can be a smartphone or a 
single-board computer, such as a Raspberry Pi. Applications 
or functions can be implemented based on the signal from the 
beacons. However, these applications are running on the host-
ing device, i.e., a smartphone or a Raspberry Pi, and not on 
the beacon.

Beacons are using BLE. The way the peripheral device 
announces its existence to the other devices is the opposite 
of how it is in the original Bluetooth classic. BLE enables a 
peripheral device to transmit an advertisement packet with-
out being paged by the master/central device [24]. Due to this 
communication model, it is possible to construct energy-effi-

cient transmitters. Moreover, when two BLE 4.0 devices are 
paired, they waste less battery power because the connection 
is dormant unless critical data are being shared. With the pre-
vious generation of Bluetooth, it was best to shut down your 
hardware when it was not in use. The Bluetooth SIG esti-
mates between one and two years of battery power in some 
devices with Bluetooth 4.0.

Configuration parameters
BLE beacons have configuration parameters and a set of 
values that can determine their performance and utility for 
different applications. Some of these parameters are impor-
tant when beacons are used in microlocation applications.

Transmission power
Transmission power is the required power to broadcast the 
beacon signal. As in every wireless device, transmission 
power directly affects the transmission range. The higher the 
transmission power, the longer the signal range of the bea-
con. This is an important tradeoff for most beacon applica-
tions. Technically, a beacon’s range can reach up to 70  m. 
However, the battery might last for only six months. If the 
transmission range is constrained to 2 m, then the beacon 
might go up to two years without the need for battery re-
placement. A small transmission power can also increase the 
required number of beacons to cover an area, whereas a large 
transmission power can increase the collisions and interfer-
ence. As can be inferred, an optimal transmission range can 
help to extend the lifetime of the beacons and minimize the 
battery replacement cost. At the same time, it can minimize 
unnecessary collisions with other beacons in the area.

Advertising interval
Advertising interval is another characteristic that affects 
the overall performance of beacons. It describes the time 
between consecutive transmissions. Applications that need 
to notify or detect the users that are moving in the area re-
quire a short advertising interval, and applications where 
the users are moving less frequently might improve their 
performance with a longer advertising interval. Similar to 
transmission power, the advertising interval affects bea-
con performance. The shorter the interval, the more stable 
the signal from the beacon. At the same time, the short-
er the interval, the higher the power consumption. Once 
again, there is a tradeoff between beacon performance and 
power consumption.

BLE beacon protocols
Beacon protocols are standards of BLE communication. Each 
protocol describes the structure of the advertisement pack-
et beacon’s broadcast. It is necessary for the advertisement 
packet to have the media access control address of the beacon.  
There are different protocols, the most popular of which are 
the following.

■■ iBeacon: Apple’s iBeacon was the first BLE beacon tech-
nology to come out [4]. iBeacon is a proprietary, closed 

BLE
Beacon

FIGURE 3. A BLE beacon broadcasting a signal to nearby devices. Each 
device can receive the signal and take an action in response.
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standard. It broadcasts four pieces of information: 1) a uni-
versally unique identifier that identifies the beacon, 2) a 
major number identifying a subset of beacons within a 
large group, 3) a minor number identifying a specific bea-
con within the subset, and 4) a transmission power level in 
the major number’s complement, indicating the signal 
strength 1 m from the device. This number must be cali-
brated for each device by the user or manufacturer. iBea-
con has a simple implementation and large documentation, 
but it has fewer features in comparison with the following 
protocols. iBeacon works with iOS and Android but is 
native to iOS.

■■ Eddystone: Eddystone was announced from Google, and it 
is another protocol that defines a BLE message format for 
proximity beacon messages [5]. Eddystone protocol is able 
to transmit four different frame types: 1) a unique identifi-
er, which is used to identify the individual beacon; 2) a 
uniform resource locator, which can be a website link that 
redirects to a website that is secured using secure sockets 
layer, eliminating the need for a mobile app; 3) telemetry, 
which includes sensor and administrative data from the 
beacon through telemetry, e.g., the beacon’s battery level 
and its temperature; and 4) an encrypted identifier, which 
is an encrypted ephemeral identifier that changes periodi-
cally at a rate determined during the initial registration 
with a web service. This frame type is intended for use in 
security- and privacy-enhanced devices. Eddystone also 
works with both iOS and Android.

■■ AltBeacon: AltBeacon is an open-source beacon proto-
col [25] that was designed by Radius Networks. It has the 
same functionality as an iBeacon, but it is not company 
specific. This makes AltBeacon compatible with any 
mobile operating platform and more flexible because it has 
a customizable source code.

■■ GeoBeacon: GeoBeacon is another open-source beacon 
protocol, designed for usage in geocaching applications 
[26]. It has a very compact type of data storage. GeoBeacon 
can provide high-resolution coordinates, and it is also com-
patible with different mobile operating platforms.

Hardware solutions
There are a great variety of BLE beacon devices on the mar-
ket. Most of them operate on batteries, such as Estimote, Kon-
takt, Gimbal, Glimworm, and BlueCats [27], but there are also 
solar-power beacons, such as the CYALKIT-E02. Each has its 
own unique features, such as additional sensors, battery life, 
reconfigurability, and dimensions, though all fundamentally 
work the same.

At the physical layer, BLE transmits in the 2.4-GHz indus-
trial, scientific, and medical band with 40 channels, each 
2-MHz wide. From those channels, 37 are used to exchange 
the data among paired devices, and three channels are desig-
nated for broadcasting advertisements. These three channels 
are primarily used by beacons and are chosen deliberately 
to minimize any collision with the Wi-Fi channels. A bea-
con broadcasts its advertisement packet repetitively based on 

the selected advertising interval while hopping over the three 
designated channels [28].

Beacon advantages for microlocation
Beacons have several advantages for use for microlocation.

■■ Size: Beacons are small in size and hence can be placed in 
almost any indoor environment with no problem. They 
can be placed behind the ceiling, under objects, or even on 
the walls.

■■ Energy efficiency: The great advantage of beacons 
comes from the energy efficient BLE protocol. At the 
same time, as the market of the beacons increases, so do 
the different design approaches. There are small bea-
cons that work with one single coin cell battery, there 
are beacons with two AA batteries, and there are solar-
powered beacons [29]. The lifetime of these beacons 
can be up to two years without the need for battery 
replacement [27].

■■ Cost: Most of the beacons in the market are cheap. Many 
beacons can be placed in a complex indoor environment to 
improve microlocation with minimum cost.

■■ Interferences: Beacons use BLE, and they will not inter-
fere with other wireless infrastructures in the area.

■■ Passive mode: Beacons are broadcasters that do nothing 
else besides sending a piece of information. The logic 
behind each signal is done by the supporting device, such 
as a smartphone. Beacon signals are used by applications 
to trigger events and call actions, allowing the users to 
interact with physical things. All of the implementation 
is done on the device, and the beacons just broadcast 
the signal.

■■ Platform independent: Beacons can be used with iOS and 
Android devices. Each platform requires different proto-
cols that have different packet layouts, but most platforms 
are able to listen to the different protocols.

Using BLE beacons for microlocation

Test case
Museums and art galleries usually provide visitors with either 
paper booklets or audio guides. Unfortunately, interest may 
vary from person to person, and each visitor’s experience is 
also related to the available time to visit most of the exhibits. 
Interactive and personalized museum tours need to be devel-
oped. BLE beacons as a newly emerged technology can en-
hance a visitor’s experience through microlocation, as shown 
in Figure 4.

Beacons can offer museums an opportunity to provide 
context to visitors through a smartphone application. Micro-
location technology can make locating an exhibit much 
easier; at the same time, it can provide personalized sugges-
tions to the user regarding the available exhibits. A mobile 
application can be developed that interacts with the avail-
able beacons.

When visitors are close to an exhibit, they can get all of the 
necessary information about the exhibit on their smartphone or 
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BLE-enabled mobile device in general. The application can 
also provide a recommendation to the visitor on the next exhibit 
he or she can visit, based on current location and interest. At the 
same time, the application can provide an optimal tour of the 
museum based on each individual’s preferences. Beacons will 
also provide useful analytics to the museum. The number of vis-

itors per exhibit can be collected, without violating visitor pri-
vacy. These analytics can be used to improve exhibit visibility.

The use of beacons provides several advantages for the muse-
um and the visitors.

■■ Promote exploration: The application can encourage 
users to visit exhibits in different places of the museum. 

FIGURE 4. The BLE beacons used in an interactive museum scenario.
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Usually, visitors tend to spend most of their time in 
exhibits near the entrance, missing the opportunity to 
explore exhibits across all of the museum. Microlocation 
can help them identify more quickly the rooms in which 
they are interested.

■■ Personalized tour: When a user is interested in an exhibit, 
the application can provide a guided tour based on that 
interest. An interactive and personalized tour with exhibits 
from the same chronological period or within the same 
interest category can be provided to the user, who might 
miss them without the application.

■■ Tour optimization: For many visitors, the available time to 
spend in the museum is limited. The real-time analytics 
from the beacons can be used to provide an optimal route 
for the visitor, based on the available time for the visit.

■■ Data analytics: Beacon analytics can be used to improve 
the general visitor experience. There are exhibits that are 
missed due to their location, and there are exhibits that 
are overcrowded during a specific time of the day. Ana
lytics can be used to optimize both cases and enhance the 
visitor experience.

Experimental results
In this section, we showcase the performance of the BLE bea-
cons through a simple experimentation. We used BLE beacons 
from Gimbal Series 21 to examine the proximity estimation 
performance along with a smartphone, which was used to col-
lect the signals [30]. The Kalman filter was applied on the col-
lected data offline.

The Kalman filter estimation is shown in Figure 5. These 
are the collected RSSI values when the smartphone is 2 m 
away from the beacon. It is clear that the Kalman filter can 
minimize the effect of interference between the beacon and the 
smartphone, such as when people are moving between the two 
communicating devices.

To examine the performance of the Kalman filter, we placed 
the smartphone at ten different distances, starting from 50 cm 
and up to 5 m, increasing the distance 50 cm every time. In 
every location, we collected data on the smartphone for approx-
imately 2 min. The average RSSI values are shown in Figure 6. 
When the smartphone is close to the beacon, the accuracy is 
high enough without filtering. As the distance increases, the 
accuracy without filtering decreases, and the standard devia-
tion of the data increases as well. Interference and noise affect 
the data transmission; hence, as the distance between the com-
municating devices increases, these factors increase as well. 
Kalman filtering helps to keep the data close to the real value, 
and the standard deviation is smaller. The use of Kalman filter-
ing helps minimize the effect of random noise and interference 
during the experiment.

We further examined the error between the estimated dis-
tance and the real distance and the number of occurrences of 
each group of errors, as shown in Figure 7. Without filtering, 
the error is within 3 m from the real location when distances up 
to 5 m are tested. In many applications that use microlocation, 
such as the test case, the location error should be smaller. A 

smaller error comes when the Kalman filter is used. The error 
is within 1 m from the real location, which can be acceptable 
for many microlocation applications.

Concluding remarks
This article provides an overview of wireless technologies 
that can be used for microlocation in smart buildings with the 
use of IoT devices. BLE is among the most energy-efficient 
technologies. BLE beacons are small, low-cost devices that 
can be used for localization. Unfortunately, they are prone to 
interference due to their wireless nature. Signal processing 
techniques, such as Kalman filters, can be used to enhance 
their performance.

A case study of BLE beacons in an interactive museum was 
also discussed. According to the experimental results, signal 
processing techniques can enhance beacon performance and 
provide accurate microlocation in the era of the IoT.
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