Improved Resource Sharing for FPGA DSP Blocks

Bajaj Ronak
School of Computer Science and Engineering
Nanyang Technological University, Singapore
Email: ronakl @ntu.edu.sg

Abstract—Sharing multi-cycle hardware blocks like the
DSP48E1 primitive in Xilinx FPGAs can result in significant re-
source savings, but complicates scheduling. For high-throughput,
DSP blocks must be pipelined, which results in a high initiation
interval (II) for resource shared implementations. In this paper,
we propose a resource reduction technique that minimises DSP
block usage while also offering improved II over traditional
approaches. This is integrated in a high-level tool which takes
datapath descriptions in C and generates synthesisable Verilog
RTL with different levels of resource sharing. We demonstrate
significantly improved throughput compared to traditional re-
source sharing while achieving resource reduction compared to
resource unconstrained and HLS implementations. The approach
explores an otherwise infeasible design space between resource
unconstrained and traditional resource sharing methods.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have evolved
significantly over the last two decades from implementing glue
logic to platforms for implementing complex architectures.
Embedded hard blocks on modern devices implement often-
used functions directly in silicon, thus consuming less area and
power, and running at a higher clock speed than the equivalent
function in logic. These include memory blocks, DSP blocks,
embedded processors, and more. The DSP48E1 primitive in
modern Xilinx FPGAs consists of multiple sub-blocks which
can be combined in different ways to perform up to three
different operations per DSP block. They can be pipelined
with up to four stages allowing maximum throughput when
all three sub-blocks are used. Another key feature is their
dynamic programmability, allowing the functionality of the
DSP block to be modified at runtime in each clock cycle. This
greatly enhances the capabilities of a DSP48E1 primitive, as
it can be reprogrammed and multiple different operations can
be mapped to a single DSP block. This flexibility has been
exploited to create lean soft processors [1] and to support high
performance programmable overlays [2].

Hard blocks are typically a constrained resource, and hence
resource sharing should be applied where possible to free up
more for other uses. Traditionally, operations scheduled in
non-overlapping time schedules can be mapped to same hard-
ware resource. A major disadvantage of traditional resource
sharing is that it generally increases schedule length and results
in high initiation interval (II). DSP blocks require internal
pipeline stages to be enabled to achieve high frequencies which
significantly impact II when shared.

Suhaib A. Fahmy
School of Engineering
University of Warwick, Coventry, UK
Email: s.fahmy@warwick.ac.uk

In this paper, we present a scheduling and implementation
technique for resource sharing of DSP blocks that overcomes
the II limitations of traditional approaches. We exploit the
dynamic programmability to allow different computational
patterns to share the same DSP block. Instead of reconfiguring
a set of DSP blocks to implement all operations, we use
multiple sets of DSP blocks controlled using different state
machines ensuring that each set achieves the target II. In
traditional resource sharing, the structure of the dataflow graph
limits the achievable II. As a result, the choice is often between
an implementation with no resource sharing, or a resource
shared implementation with very low throughput. We discuss
this limitation in detail in Section III-B.

We have integrated the proposed techniques into a high-level
tool, which generates synthesisable RTL from C descriptions
of complex mathematical expressions. The tool can generate
a wide range of implementations, exploring the trade-off
between highly pipelined, fully parallel and resource shared
implementations with improved throughput, allowing better
balancing of LUT usage in large designs.

II. RELATED WORK

A significant amount of research has been done on resource
sharing at the RTL level as well as in high-level synthesis. An
algorithm was proposed in [3] combining temporal partition-
ing, resource sharing, scheduling, allocation, and binding to
obtain resource efficient implementations. Five heuristics for
global resource sharing were proposed in [4] which focuses
on inter-basic-block sharing in addition to resource sharing for
each basic block. The approach in [5] combined module se-
lection and resource sharing to minimise area while achieving
throughput requirements.

Generally, HLS tools use static scheduling to determine the
extent of resource sharing possible. Work in [6] proposed
source-to-source transformations to improve efficiency and
IT using dynamic scheduling techniques. Multi-pumping is
another approach for reducing utilisation of hard blocks like
DSPs [7], [8], by running them at double the frequency of the
surrounding circuit, computing two DSP block operations in
one system clock cycle.

Various heuristics have been proposed including list
scheduling, force-directed scheduling (FDS) [9], and a recent
scheduler based on a system of difference constraints (SDC)
was proposed in [10]. We are not aware of any work that
focuses on multi-cycle flexible hard blocks like the DSP48EI.

Outl Out2 Out3

Fig. 1: Dataflow graph of case study example.

These present unique challenges due to their ability to be
shared by different computations, and the complex latency
constraints enforced by their pipeline configuration. As a
result, when previous techniques are applied, the resource
sharing is sub-optimal.

III. SCHEDULING

In this section, we explore traditional resource sharing
(TRS) techniques and the proposed improved resource sharing
(IRS) approach. Both are built on top of the system of
difference constraints (SDC) scheduling proposed in [10] for
generating optimised schedules. SDC scheduling formulates
the scheduling problem mathematically as a set of linear
constraints that can then be solved using a linear programming
(LP) solver.

A. Traditional Resource Sharing (TRS)

To apply traditional resource sharing, the scheduling algo-
rithm takes a dataflow graph and a constraint on the number of
DSP blocks. The algorithm then uses as many DSP blocks as
possible to schedule the computation in as short a latency as
possible. SDC formulation typically generates a final schedule
in four steps. The first step is to initialise the LP problem with
scheduling variables for each node. The second steps adds
constrains to guide the final schedule. For TRS, constraints
for multi-cycle hardware blocks, dependencies, and resources
available are added. The next step formulates the objective
function for which the LP is solved. The final step determines
the schedule times for each node from the formulated LP
problem solution satisfying all the constraints.

B. Example for Traditional Resource Sharing

We illustrate this approach using a simple example as a case
study. The synthetic DFG for the case study is shown in Fig. 1.
Each node in the dataflow graph represents a configuration of
a DSP48E1 primitive.

For the DDFG in Fig. 1, the maximum number of DSP
blocks in a schedule time is three due to data dependencies.
DSP block constraints higher than three would not improve 11

TABLE I: Schedule length and II achieved for different TRS
constraints.

| #DSP=1 #DSP=2 #DSP =3
Schedule length 62 32 22
I 56 26 16

TABLE II: Schedule length and number of DSP used for
different IRS constraints.

| I=1 II=6 II=11 II=16
Schedule length | 22 22 32 22
#DSPs 12 6 4 3

any further. For DSP block constraints of 1, 2, and 3, different
implementation achieving different IIs can be generated. Here,
we define control step as the number of clock cycles required
to complete the computation for one set of configurations of
the DSP blocks, which is five in this case. The schedule length
and II are calculated as ((# ControlSteps x DSP gepin,) + 2)
and ((# ControlStep — 1) x DSP gepsn, + 1) respectively. The
schedule length and II for DSP block constraints of 1, 2, and
3 is shown in Table I. The best II achievable using traditional
resource sharing is 16 clock cycles.

C. Improved Resource Sharing (IRS)

We have seen that the long datapath latency of DSP blocks
coupled with the way TRS approaches schedule operations
results in high II implementations. Since TRS uses a single
bank of DSP blocks to implement the complete computation,
the II is determined by the maximum number of configurations
required per DSP block, i.e., the level of re-use. To improve
on this, we adopt a new approach that optimises for II rather
than the number of DSP blocks. We first generate schedules
using TRS for all DSP block constraints from 1 to the
maximum width of graph, most of which will not meet lower
IT constraints. For each of these schedules, we identify which
shared operations can be split to achieve the II constraint.
This results in an increase in DSP block usage but achieves
the target II. Among all these possible schedules, we pick the
schedule with minimum area-delay product, i.e., product of
number of DSP blocks and schedule length.

D. Example for Improved Resource Sharing

Consider again the example DFG in Fig. 1. For a given
constraint of I1,,,,, with each control step of five cycles, the
number of stages which can be implemented using a set of
DSP blocks is determined as (/1,45 + 4)/5. Table II shows
the schedule length and number of DSP blocks used for II
constraints of 1, 6, 11, and 16.

We can see from Tables I and II, that we are able to improve
on the best II offered by TRS (16) by increasing DSP block
usage beyond 3, thereby offering more points in the design
space.

IV. AUTOMATED TooL FLoOwW

We adapt the tool flow in [11] to generate synthesisable RTL
for TRS and IRS implementations. In addition to TRS and IRS,
we also generate Vivado HLS implementations to understand
how Xilinx’s HLS tool performs with different II constraints.
Vivado HLS uses directives to guide RTL generation.

The tool in [11] accepts a computational kernel description
in C. LLVM passes are used to translate the input C file in
to a set of DOT files, one for each function. These DOT
files are then parsed to generate a dataflow graph, which
is then partitioned into sub-graphs that can be mapped to
DSP block configurations. The partitioned graph, called the
DSP dataflow graph (DDFG), comprises nodes that are either
DSP48E1 primitive configurations or adder/subtractors to be
implemented in FPGA logic. These add/sub nodes are those
that cannot be merged with multipliers in the original graph to
map to DSP block configurations. The partitioning algorithm
is discussed in detail in [11].

After generating the DDFG, we perform scheduling (ac-
cording to TRS and IRS techniques discussed in Section III)
and register balancing, and generate a Vivado HLS implemen-
tation. For fair comparison, we ensure the same wordlengths
for all operations across TRS, IRS, and HLS implementations.
The Vivado HLS directive for pipelining is used with the input
IT constraint.

The next stage involves generating RTL for all three tech-
niques. For TRS and IRS, DSP blocks have a latency of five
clock cycles. All four internal pipeline stages are enabled to
achieve high throughput and one extra register is added at the
output to hold the output value of the configuration when the
DSP block is used for other computations. Resource sharing
implementation can be divided into a data path and control
path. The data path includes DSP blocks with multiplexers at
inputs, add/sub blocks, and pipeline balancing registers. The
design of the control path for TRS and IRS varies.

TRS: For a given constraint on the number of DSP blocks
(n), a maximum of n DSP blocks are used in each sched-
ule time. The control path includes a microcoded read-only
memory (ROM) initialized with control signals depending on
the schedule generated. The tool analyses the nodes scheduled
in each schedule time, and correspondingly generates ROM
contents for initialisation. The ROM output controls the input
multiplexers and configurations for the DSP blocks in each
clock cycle. The II for the TRS implementation is determined
by the maximum number of configurations required for any
DSP block.

IRS: IRS uses multiple sets of separately shared DSP
blocks. Thus, the control path consists of multiple state ma-
chines, one for each set of DSP blocks. For each state machine,
a microcoded ROM is initialized with the correct control
signals. Due to the pipeline depth of five for DSP blocks, the
supported constraints on II are increments of five, i.e. 1, 6, 11,
16, and so on. An II of 1 implies a fully pipelined resource-
unconstrained implementation, where each DSP block is used
for only one operation.

‘ o Freq ‘ ‘ o Regs 2aLUTs
5 4 3 2 1

3 T T T T T 1.2

0 $ o 1
= I A - B
¢ ° o8 &
% 0 =
£ 2f 5
e s 106 Z
15] a o
4 a 8 04
5 k
=

1 & g @ % 0.2

|
—0

[0
g
w -
=

#DSPs

Fig. 2: Frequency/area tradeoff for constraints on number of
DSPs varying from 5 to 1, normalized against 5 DSPs.

HLS: For HLS, we run the Vivado HLS project generated
in the previous stage, which translates the high-level C++
implementation into synthesisable RTL.

After generating RTL for all the techniques, the vendor
tool flow is executed to generate final results using a fully
automated set of scripts.

V. EXPERIMENTS AND ANALYSIS

All implementations target the Virtex 6 XC6VLX240T-1
FPGA as found on the ML605 development board, and use
the Xilinx ISE 14.6 and Xilinx Vivado HLS 2013.4 tools.

To explore the effectiveness of the proposed technique,
we implemented a number of benchmark multiply-add flow
graphs. These include the Mibench?2 filter, quadratic spline,
and Savitzky-Golay filter from [12]; the ARF, EWF, Horner
Bézier, motion vector, and smooth triangle extracted from
MediaBench [13]; and 7 polynomials of varied complexity
from the Polynomial Test Suite [14]. Note that these represent
computational kernels within larger applications. As we are
analysing the low-level effects of this resource sharing tech-
nique, we feel this is more appropriate than analysing large
applications where the optimised logic is only a very small
fraction.

We present the trade-off between post-place-and-route area
(LUTs and registers) and throughput in Fig. 2. All values
are normalized to the resources used and maximum frequency
achieved for implementation with 5 DSPs since TRS does not
utilise more than 5 DSP blocks for any of the benchmarks.
We can see that with fewer DSP blocks, as schedule length
increases resulting in more balancing registers being required,
and as more operations are mapped onto the same DSP blocks,
the complexity of the state machines increases, contributing to
increased usage of LUTSs and registers.

Fig. 3 shows the throughput gain as more DSP blocks are
added for all benchmarks in our set. The increase is with
reference to the number of DSP blocks used for the highest
throughput TRS implementation. The traditional approach
achieves a best II of 11 for more than half of the designs

— | Chebyshev —©— Mibench2 e FIR2
—— SG Filter —@— Horner Bezier —@— Poly1l
—8— Poly2 —a Poly3 —o— Poly4
—o— Polys —eo— Poly6 - Poly7
—@— Polys —@— Quad Spline —¢— ARF
-@- EWF — @ - Motion Vector —-@ - Smooth Triangle

T T T T

. 8

g

E

5}

g

= 6 N

5

=

-

B 4

=

°0

=

=)

o

-

=

| | | |

2 4 6 8
Increase in #DSP

Fig. 3: Tradeoff between increase in DSP blocks usage and
throughput improvement. Throughput values are normalised
with maximum throughput achieved using TRS.

but cannot achieve 6 for any. For an II of 11, the improved
approach offers an average throughput improvement of 1.8x
(0.92x-4x) at a cost of 1.4x DSP blocks. For an II of 6,
throughput improvements are up to 8x (Poly6) at a cost of
a 3x increase in DSP blocks. Our proposed approach hence
enables possible design points between resource unconstrained
implementations and the best throughput achievable using the
traditional approach (design points shown in Fig. 3), allowing
designers more flexibility in the area-throughput trade-off.
Within the context of a high-level synthesis tool, this means
computational sections of code can be optimised to minimise
resource usage given the throughput constraints imposed by
the rest of the design, rather than over-using DSP blocks but
clocking them at reduced rates.

Compared to resource unconstrained implementations
(II=1), our approach achieves up to a 50% reduction in DSP
blocks for an II of 6, and up to 67% for II of 11. Recall that
these configurations are not achievable with TRS for many
benchmarks. For fairness, both TRS and IRS implementations
explored use the DSP block’s dynamic programmability, such
that different operations can be mapped to the DSP48El
primitives in different cycles.

We used Vivado HLS with II constraints of 1, 6, and
11 and compared with IRS implementations. The Vivado
HLS implementations do not exploit DSP block dynamic
programmability which is crucial in our work. For an II of
1, equivalent to an unconstrained implementation, DSP block
utilisation for HLS is similar to that of IRS. However, for
higher II constraints, the tool is not able to optimise designs
for relaxed IIs, resulting in designs without reduction in DSP
block utilisation.

VI. CONCLUSIONS

Traditional resource sharing of DSP blocks results in high
IT due to their long pipeline depths. As a result, any sort of
sharing results in very low throughputs that are insufficient for
many applications. Meanwhile, resource unconstrained imple-
mentations often achieve higher frequencies and throughputs
than needed, at a cost of excessive DSP block usage. In this
paper, we have presented an SDC based scheduling technique
that allows for lower IIs than are achievable using traditional
approaches. This results in throughput improvements of up to
8X at a cost of up to 3x the number of DSP blocks, with
resulting designs better balancing LUT and DSP block usage.
The proposed technique has been integrated into an automated
tool flow, which can generate synthesisable RTL from an input
C description, allowing exploration of an otherwise infeasible
space between unconstrained and traditional resource sharing
methods. We also showed that Vivado HLS does not offer the
same DSP block savings when opting for lower IIs.

REFERENCES

[1] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA
DSP block-based soft processor for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, pp. 19:1—
19:23, 2014.

[2] A.K.Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented FPGA
overlays using DSP blocks,” in Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, 2016, pp. 1628-1633.

[3] J. Cardoso, “Novel algorithm combining temporal partitioning and
sharing of functional units,” in Proceedings of IEEE Symposium on
Field-Programmable Custom Computing Machines, March 2001.

[4] S. O. Memik, G. Memik, R. Jafari, and E. Kursun, “Global resource
sharing for synthesis of control data flow graphs on FPGAs,” in
Proceedings of the Design Automation Conference, June 2003.

[5]1 W. Sun, M. Wirthlin, and S. Neuendorffer, “FPGA pipeline synthesis
design exploration using module selection and resource sharing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 254-265, 2007.

[6] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for

loop pipelining in high-level synthesis,” in Proceedings of the Design

Automation Conference, May 2013.

A. Canis, J. H. Anderson, and S. D. Brown, “Multi-pumping for resource

reduction in FPGA high-level synthesis,” in Proceedings of Design,

Automation Test in Europe Conference and Exhibition (DATE), March

2013, pp. 194-197.

[8] B. Ronak and S. A. Fahmy, “Minimizing DSP block usage through
multi-pumping,” in Proceedings of the International Conference on Field
Programmable Technology (FPT), Dec 2015, pp. 184-187.

[9] P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic

data path synthesis,” in Proceedings of the Design Automation Confer-

ence, 1987, pp. 195-202.

J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm

based on SDC formulation,” in Proceedings of the Design Automation

Conference, 2006, pp. 433—438.

B. Ronak and S. A. Fahmy, “Mapping for maximum performance on

FPGA DSP blocks,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 35, no. 4, pp. 573-585, April 2016.

S. Gopalakrishnan, P. Kalla, M. Meredith, and F. Enescu, “Finding linear

building-blocks for RTL synthesis of polynomial datapaths with fixed-

size bit-vectors,” in Proceedings of IEEE/ACM International Conference

on Computer-Aided Design, Nov 2007, pp. 143-148.

C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a tool for

evaluating and synthesizing multimedia and communications systems,”

in Proceedings of the International Symposium on Microarchitecture,

Dec 1997, pp. 330-335.

“[Online] Polynomial Test Suite,” http://www-sop.inria.fr/saga/POL/.

[7

—

[10]

(11]

[12]

[13]

[14]

