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ABSTRACT 

A system for automated detection of epileptiform activity in the electroencephalogram 

(EEG) has been developed and tested on prerecorded data from a range of patients. 

Epileptiform activity is manifest as spikes in the EEG and consequently the automated 

detection of spikes in the EEG is an important tool in the diagnosis of epilepsy and 

is a goal sought by many researchers. The system presented herein is centred around 

artificial neural networks (ANNs), in particular the multi-layer perceptron (MLP) and 

the self-organising feature map (S·OFM). The MLP is used in the form of an adaptive 

filter to enhance the presence of epileptiform transients in the EEG while the SOFM 

is used to form a novel pattern classifier. A modification to the 'standard' calibration 

technique for the SOFM is proposed based on a method involving Bayesian probabil­

ities. The SOFM allows a large quantity of EEG data to be used to form a pattern 

classifier in an unsupervised manner. Fuzzy logic is introduced in order to incorporate 

spatial contextual information in the spike detection process. By using fuzzy logic it 

has been possible to develop an approximate model of the spatial reasoning performed 

by an electroencephalographer (EEGer) as opposed to a precise biological model. 

The human brain is overviewed in terms of its structure, organisation and function. 

Simplistic mathematical modelling of the neural network of the brain is discussed and 

ANNs are introduced. After reviewing ANNs in general the perceptron based network is 

introduced and discussed. The SOFM is introduced and through a number of computer 

simulations several suggestions are put forward regarding the choice of parameters for 

training the SOFM. After a review of the literature on spike detection systems, in 

particular ANN based systems, a multi-stage spike detection system is proposed. There 

are four stages to the system: spike enhancer, mimetic stage, SOFM and fuzzy logic 

stage. Each stage of the system is discussed at length and measures of performance are 

indicated at each stage. The importance of spatial and temporal contextual information 

is discussed and a method using fuzzy logic is proposed to model the spatial reasoning 

of an EEGer. 

The system was trained on 35 epileptiform EEGs containing in excess of 3000 

epileptiform events and was tested on a different set of 7 EEGs (6 containing epilepti­

form activity and 1 'normal') containing 133 epileptiform events. The EEGs consisted 

of standard clinical recordings with an average length of 22.9 minutes. Preliminary 
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results show that the system has a sensitivity of 59% and a selectivity of 31 % with an 

average false detection rate of 61 per hour. The performance compares well with other 

leading systems to be found in the literature once the measures of performance obtained 

in each are case placed in context. Several aspects in the system have been identified 

for modification which should lead to considerable improvements in performance (e.g., 

temporal context, improved mimetic stage). 

The new approach to the spike detection problem presented in this thesis shows 

that it is possible to form an accurate classifier in a self-organised fashion, thus elim­

inating the need to accurately label large quantities of data - a weak point in many 

spike detection systems. Furthermore, the importance of spatial contextual analysis 

is highlighted showing that it is possible to model the spatial reasoning of an EEGer 

with a fuzzy logic system, thus eliminating the need to produce accurate models of the 

process. 
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PREFACE 

The work presented in this thesis is the culmination of three years as a Ph.D. stu­

dent in the Department of Electrical and Electronic Engineering at the University of 

Canterbury. The work presented has involved collaboration with the Department of 

Neurology and the Department of Medical Physics and Bioengineering at Christchurch 

Hospital. 

My first exposure to the application of engineering to medicine was in 1991 when 

Professor Charles Pule of the Department of Electrical Engineering at the University 

of Malta introduced me to the basics of reconstruction of images as used in computed­

tomography scanners. This led to a final year project for my Bachelor of Electrical 

Engineering degree in which I performed a simple simulation of the image reconstruc­

tion techniques employed in CT-scanners. From that point onward it has been my 

desire to pursue a career in the field of biomedical engineering. Due to the absence of 

postgraduate degree opportunities in the EE Department of the University of Malta, 

in 1993 I applied for, and was subsequently awarded, a Commonwealth Scholarship to 

New Zealand. 

On my arrival in New Zealand in 1994 I enrolled for the degree of Doctor of 

Philosophy in Electrical and Electronic Engineering under the supervision of Dr Philip 

Bones and Dr Richard Jones. It was then that I was introduced to the spike detection 

problem which has occupied much of my time, energy, and thoughts for the past three 

years! 

Work on automated detection of spikes in the EEG had already become well estab­

lished as a major collaborative project between the Departments of Medical Physics 

and Bioengineering and Neurology at Christchurch Hospital and the Department of 

Electrical and Electronic Engineering at the University of Canterbury. As part of their 

Ph.D. research Dr Bruce Davey and, subsequently, Dr Alison Dingle had developed 

working spike-detection systems based on the use of a mimetic stage followed by an ex­

pert system; encouraging results had been reported on both systems [Davey et ai. 1989], 

[Dingle et ai. 1993]. Alison's research had led to the suggestion that investigating the 

use of artificial neural networks (ANNs) for the spike detection problem could be a 

worthy avenue of research; I was keen to pursue this approach. 

During my first few months at the University of Canterbury I was fortunate to 
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attend a series of lectures introducing ANNs by Associate Professor Martin Hagan, a 

visiting lecturer from Oklahoma State University, U.S.A. This provided a very impor­

tant starting point for my work. 

A more general review of the spike detection problem and spike detection methods 

reported in the literature was followed by a closer look at methods which focused on 

the use of ANNs. While getting to grips with the problem, I developed a number of 

tools using MAT LAB to allow the viewing and manipulation of digitized EEG. 

My first line of research was centred around a method of adaptively enhancing the 

presence of epileptiform activity in the EEG and led to the development of a system 

based on the technique of multi-reference adaptive noise cancelling through the use of 

ANNs. 

On researching the use of ANN s as pattern classifiers it soon became clear that 

many of the ANN-based solutions to the spike detection problem involved mainly su­

pervised methods and more often than not used perceptron networks. The problem 

with supervised methods for spike detection is the need to 'label' large quantities of 

data. The large disagreement amongst EEGers about what constitutes a spike means 

that there is no real 'gold-standard' and, hence, there is an element of uncertainty in 

labelling large numbers of spikes. In addition, the perceptron networks, while quite 

powerful in pattern classification applications, required the choice of many parameters, 

the values of which could greatly influence the performance. 

These two points moved my research towards unsupervised networks and finally 

to the self-organising feature map (SOFM). The SOFM benefits from training on large 

quantities of data in a self-organised manner and was particularly appealing for the 

spike detection problem. At this point I set about gaining a better understanding of 

the SOFM and its training parameters through a number of simulations. This resulted 

in my drawing up a number of suggestions for training the SOFM. This work was then 

applied to training a number of SOFMs using EEG data. 

Another important point made by Alison in her thesis was that considerable use 

must be made of spatial and temporal contextual information in order for a spike 

detection system to follow the reasoning of an EEGer. With this in mind, while working 

on the SOFM based classifier I began to investigate the possibilities of combining spatial 

and temporal information in the spike detection system that was beginning to emerge. 

This led to the use of fuzzy logic and the derivation of an experimental fuzzy rule-base 

in order to combine the spatial information of the multi-channel EEG recording. Due 

to time constraints, the investigation of utilising temporal contextual information is 

limited to a proposed system which is intended to further enhance the overall spike 

detection system developed. 

The software for the EEG manipulation tools, as well as for each stage of the 

system, has been developed in MATLAB. The SOFM training algorithms and the 
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overall spike detection system, however, were finally implemented in 'C'. Through the 

use of 'C', it was possible to obtain 'real-time' operation of the spike detection system 

an important secondary goal for the project. 

This thesis is divided into three main parts. The first part provides an introduction 

to the human brain and the EEG, giving a historical overview of the discovery of the 

EEG, recording techniques and its use in the diagnosis of epilepsy (Chapters 1 and 2). 

The second part introduces ANNs. Following a brief historical overview of their 

development, it discusses the different architectures and learning paradigms of the most 

important networks in the literature (Chapter 3). Perceptron networks are discussed 

in greater detail in Chapter 4, along with the error-backpropagation algorithm most 

commonly used for their training. Methods for enhancing the performance of the 

system and for obtaining the optimal network architecture for the task at hand are 

also discussed. Chapters 5 and 6 focus on the SOFM, proposed by Kohonen in 1981 

and employed here for the first tim~ for detecting spikes in the EEG. Chapter 6 presents 

the results of a number of computer simulations carried out in order to obtain a better 

understanding of the various training parameters needed to train a SOFM for a given 

problem. 

The third and final part deals with the spike detection problem in the EEG and 

the development of an automated system based mainly on the use and attributes of 

ANNs. Chapter 7 reviews the spike detection problem and the diverse approaches in 

the literature aimed at providing a solution. A multi-stage system is then proposed 

based around an ANN approach and implementation. The first stage is presented in 

Chapter 8 and describes a method to enhance the presence of epileptiform activity 

in the EEG based upon an ANN implementation of multi-reference adaptive noise 

cancelling. Chapters 9, 10 and 11 then proceed to describe various aspects of the 

spike detector/classifier system in detail. Chapter 9 presents the two single-channel 

stages mimetic and SOFM - of the system. Chapter 10 presents the spatial­

combiner stage of the system which makes use of valuable multi-channel cues (i.e., 

spatial context) implemented by fuzzy logic, to enhance performance. Chapter 11 

assesses the performance of the overall system and compares the results obtained to 

systems described in the literature. 

The thesis then concludes with a discussion on the relative merits of ANNs and 

their application to the spike detection problem. Areas which could benefit from future 

research are also mentioned. 

During the period of doctoral study, I have presented the work herein at the fol­

lowing meetings: 

1. James, C. J., Hagan, M. T.,Jones, R. D., Bones, P.J. and Carroll, G. J., 'Neural 
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network based spatio-temporal filtering of the EEG via multireference adap­

tive noise cancelling', Engineering and Physics in Medicine, Queenstown, New 

Zealand, November 20-24, 1995. 

2. James, C. J., Hagan, M. T., Jones, R. D., Bones, P.J. and Carroll, G. J., 'Spatio­

temporal filtering of the EEG via neural network based multireference adaptive 

noise cancelling', 3rd New Zealand conference of Postgraduate Students in Engi­

neering and Technology, Christchurch, New Zealand, July 1-2, 1996. 

3. James, C. J., Jones, R. D., Bones, P.J. and Carroll, G. J., 'The self-organising fea­

ture map in the detection of epileptiform discharges in the EEG', 3rd New Zealand 

conference of Postgraduate Students in Engineering and Technology, Christchurch, 

New Zealand, July 1-2, 1996. 

4. James, C. J., Hagan, M. T., Jones, R. D., Bones, P.J. and Carroll, G. J., 'Neural 

network based spatio-temporal filtering of the EEG', Canterbury Medical Re­

search Society, Christchurch, New Zealand, July 11, 1996. 

5. James, C. J., Hagan, M. T., Jones, R. D., Bones, P.J. and Carroll, G. J., 'Spatio­

temporal filtering of the EEG via neural network based multireference adaptive 

noise cancelling', Proceedings of the 18th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, Amsterdam, 31 October - 3 

November, 1996. 

(Finalist in IEEE/EMBS Whitaker Student Paper Competition representing Re­

gion 10). 

6. James, C. J., Jones, R. D., Bones, P.J. and Carroll, G. J., 'The self-organising 

feature map in the detection of epileptiform transients in the EEG', Proceedings of 

the 18th Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, Amsterdam, 31 October - 3 November, 1996. 

7. James, C. J., Jones, R. D., Bones, P.J. and Carroll, G. J., 'The detection of 

epileptiform activity in the EEG: An artificial neural network based system', 

Signal processing research group, EE Department, University of Malta, Malta, 6 

November, 1996. 

The following has been accepted for publication: 

1. James, C. J., Hagan, M. T., Jones, R. D., Bones, P.J. and Carroll, G. J. (1996), 

'Multireference adaptive noise cancelling applied to the EEG', accepted by: IEEE 

Transactions on Biomedical Engineering. 

The following is in press: 
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1. James, C. J., Hagan, M. T., Jones,R. D., Bones, P.J. and Carroll, G. J., 'Neural 

network based spatio-temporal filtering of the EEG', in press: New Zealand Med­

ical Journal. 

It is planned to submit papers on the following: 

1. 'The Bayesian approach to calibrating the self-organising feature map.' 

2. 'Spike detection in the EEG: incorporating spatial information with fuzzy logic.' 

3. 'A multi-stage system to detect epileptiform activity in the EEG.' 
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Chapter 1 

THE HUMAN BRAIN 

1.1 INTRODUCTION 

The human brain is an organ that enables man to survive in an ever changing envi­

ronment. Signals from the environment are received and processed by the brain and 

appropriate actions are taken in response. It also stores information, both for the short 

term, and for the longer term, allowing relevant information to be extracted at will. 

This highly complex organ is still relatively poorly understood, although research 

into the inner workings of the brain can be traced back to the time of the ancient Greeks 

of around 500 BC. Understanding how the brain works is now an interdisciplinary 

task, in which an increasingly large number of disciplines address different aspects 

of the same problem. For example, neuroanatomists study the various components 

of the brain and how they are connected together, while neurophysiologists examine 

the operation of these components. The higher functions of the brain (e.g., language, 

memory, etc.) are the field of study of psychologists and philosophers. The advent 

of high speed digital computers, along with new mathematical techniques, means that 

engineers have become more directly involved in brain research through measuring, 

analysing and modelling brain activity and function. 

In this chapter, a brief overview of brain structure and organisation is given, along 

with a some brief notes on brain functions and disorders. Unless otherwise specified, 

the major sources of information for this chapter are Clarke and Dewhurst [1972], 

Coen [1985J and Dingle [1992]. 

1.2 BRAIN 

The brain in humans consists of a watery mass weighing about 1400 g, divided by 

delicate membranes into a huge number of compartments. Each compartment contains 

very complicated chemical and electrical systems, which are in a perpetual state of 
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change, fuelled by energy derived from respiration. If these changes cease, we first lose 

consciousness and then quickly die. 

1.2.1 Basic building blocks 

The major components of the brain are the many cells, the most important being the 

nerve cells or neurons. Neurons, which only make up about 10% of the cells in the brain 

[Thompson 1967], are cells specialised for the task of processing and communicating 

information. The 3 main components of the neuron are the (a) dendrites through which 

most input signals are received, (b) the soma or cell body which collates the inputs 

from the dendrites and sums and thresholds the inputs, and finally (c) the axon along 

which the output is transmitted to other neurons (see Figure 1.1). Each neuron has 

a membrane potential due to the differences in ion concentrations in the intracellular 

and extracellular fluids (such as Na+, K+, CI-). At rest, the membrane potential is 

typically -70 m V, and it is certain changes in the membrane potential at the origin 

of the axon that determines whether an action potential, or electrical output pulse, is 

carried along the axon to other surrounding neurons. Information across the junction 

between neighbouring axons and dendrites is transmitted by way of uni-directional 

chemical interfaces called synapses. When an action potential reaches a synapse, a 

chemical substance known as a neurotransmitter is released, which crosses the synapse 

and activates receptors, which are special molecules attached to the membrane of re­

ceiving (or post-synaptic) neuron. A post-synaptic potential is thus induced in the 

membrane potential of the post-synaptic neuron, this post-synaptic potential may be 

either excitatory or inhibitory. The strength of synapse coupling is variable and it is 

this variability that facilitates the important learning and memory effects seen in the 

brain. 

A neuron may receive tens of thousands of inputs by way of the synapses and the 

resultant post-synaptic potentials are integrated (both spatially and temporally) to 

produce a change in the membrane potential. When the membrane potential just before 

the axon exceeds a threshold value (typically around -20 mY), an action potential is 

generated and transmitted along the axon to other neurons. Once a neuron has 'fired' 

it needs a finite time - the absolute refractory period (1-2 ms) - to recover, during 

which the neuron is unable to produce an action potential, regardless of the strength 

of the inputs. This is then followed by a relative refractory period of 5-7 ms during 

which the neuron operates with an elevated threshold, before resuming normal activity 

[Amit 1989]. 

It is the firing frequency of a neuron that is often measured by neuroscientists and 

it appears that the only significant expression of information in a train of pulses in a 

nerve signal is the frequency of action potentials. 
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---Dendrites 

Cell body 

Figure 1.1 ,A simplified schematic of neurons. 

Most of the remaining 90% of the cells in the brain are collectively termed glial 

cells. These surround, support and nourish the neurons. In particular: the astrocytes 

provide neurons with physical and nutritional support, the microglia, along with some 

astrocytes, remove neurons which have died as a result of injury or from 'old age' 

and the oligodendroglia produce the myelin sheath which insulates the axons and thus 

prevents messages from interfering with each other [Carlson 1986]. 

1.2.2 Protection of the brain 

The brain is the most protected organ of the body, the greatest protection being pro­

vided by the skull surrounding the brain. However, protection is also provided by 

the meninges or protective sheaths around the brain. The meninges consist of three 

layers, as shown in Figure 1.2. The outer layer is known as the dura mater and is 

thick and tough, yet flexible. The middle layer is known as the arachnoid membrane 

and is soft and spongy. Finally, the pia mater, which is the innermost layer, is closely 

attached to the brain and follows every convolution of its surface. A gap between the 

arachnoid membrane and the pia mater, known as the subarachnoid space, is filled with 

cerebrospinal fluid. This fluid is responsible for absorbing much of the shock caused by 

sudden head movements. 
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Cerebrospinal fluid 

Arachnoid 
membrane 

Figure 1.2 The protective layers of the brain. 

1.3 THE ORGANISATION OF THE BRAIN 

The 1011 or so neurons which make up the human brain are grouped together in an 

organised fashion. The brain can be split into three major regions: the cerebrum, the 

brain stem and the cerebellum. (See Figure 1.3). 

Cerebrum 

Frontal lobe 

Occipital lobe 

Temporal lobe 

Figure 1.3 The major regions of the brain. 
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1.3.1 The cerebrum 

The cerebrum, the largest of the three regions, is divided into two almost equal halves 

known as the left and right ceTebral hemispheTes. These two hemispheres are intercon­

nected by several commissures, the largest and most important of which is the corpus 

callosum. 

The outer portion of the cerebrum is 3-4 mm thick and is known as the cerebml 

cortex. The cerebral cortex consists of a large number of sulci (small grooves), fissures 

(larger grooves) and gyri (bulges between adjacent grooves). These convolutions es­

sentially mean that the cerebral cortex has quite a large surface area. In fact, there 

is a general correlation between the surface area of the cerebral cortex of an animal 

and the complexity of its behaviour [Hilgard et al. 1979]. The surface of each cerebral 

hemisphere is divided into four lobes: the frontal lobe, the tempoml lobe, the parietal 

lobe and the occipital lobe (see Figure 1.3). 

• frontal lobes The frontal lobes are specialised for the planning, control and 

execution of movements, as well as several cognitive and personality functions. 

In particular, the primary motor cortex contains neurons that participate in the 

control of movement. Studies have shown that the movement of particular parts 

of the body is controlled by particular parts of the motor cortex. In fact, the 

body is effectively mapped onto the motor cortex, with disproportionately large 

areas dedicated to movement of the muscles involved in speech and to the fingers. 

Damage to the frontal lobe may also cause changes in personality [Walsh 1978]. 

• parietal lobes The parietal lobes are concerned with somatic sensation and 

perception, as well as intersensory or cross-modal association. In particular the 

primary somatosensory cortex receives information from the somatosenses (touch, 

pressure, pain, temperature, body position and vibration). The body is mapped 

onto the somatosensory cortex in a similar way as onto the motor cortex. 

lID occipital lobes The occipital lobes are specialised for vision, containing the 

primary visual cortex, which receives sensory signals from the retina, and are 

involved with visual perception and visual memory. 

• temporal lobes - The tempoml lobe contains the primary auditory cortex which 

receives sensory information from the receptors of the inner ear. Auditory signals 

are mapped onto the auditory cortex according to their frequency (tonotopic 

mapping). The temporal lobes are also concerned with olfaction, the integration 

of visual experience with other forms of sensory information, and memory. 

Although the hemispheres give the appearance of symmetry, each hemisphere has 

its own specialised talents. The somatosensory and motor regions of each hemisphere 
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are concerned mainly with the opposite or contralateral side of the body. Similarly, 

in the visuosensory system the right occipital cortex processes the left half of the 

visual field, while the left occipital cortex processes the right half of the visual field. 

Other, more specialised functions, are often represented asymmetrically in the brain. 

Linguistic abilities, for example, tend to reside mainly in the left hemisphere, while the 

right hemisphere appears to be important for the recognition of emotion, perception 

of melodies and the recognition of complex non-verbal visual patterns [Walsh 1978]. 

Figure 1.4 shows the mapping of the specialised functions handled by the different 

regions of the cerebral cortex. 

Planning _----7: 

movements 

Motor 
Somatosensory 

cortex 

Figure 1.4 Mapping functions onto the cerebral cortex. 

The cerebral cortex is often referred to as grey matter, due to the large concen­

tration of glia, cell bodies, dendrites and interconnecting axons of neurons which gives 

the cortex a greyish brown appearance. Beneath the cerebral cortex run millions of 

axons which connect the neurons of the cerebral cortex with those of the subcortical 

structures. The large concentration of myelin gives this tissue an opaque appearance, 

whence comes the name white matter. 

The subcortical structures include: the basal ganglia, which forms an important 

part of the motor system; the thalamus, which relays sensory information to the cerebral 

cortex; the hypothalamus, which organises behaviours related to survival (e.g., fleeing, 

feeding, fighting and mating) the limbic system, which is involved in emotional behav­

iour, motivation and learning; the hippocampus is an important structure of the limbic 

system which appears to playa major role in learning and memory [Carlson 1986]. 
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1.3.2 The brain stem 

The brain stem contains structures that control arousal and sleep as well as vital 

functions, such as respiration and the cardiovascular system. 

1.3.3 The cerebellum 

The cerebellum receives a large amount of sensory information which it uses to exert 

a coordinating and smoothing effect on movements. 

1.4 FUNCTIONS OF THE BRAIN 

It is the human brain that allows us our capacities to live out a conscious life. For 

example, at the occicipit are areas especially concerned with vision. Others in the 

temporal region deal with hearing and higher up are those for touch. Further areas 

are necessary for speech, both for production and for understanding. The Russian 

neurosurgeon Luria has emphasised how injury to the frontal lobes produces, among 

other things, defects of intention, when patients are unable to initiate action and are 

liable to sit for hours passively doing nothing [Luria 1973]. 

It is important to recognise that all living things have a purpose or aim, essentially 

to continue life of the individual or the species. The brain is geared to controlling or 

handling all the functions that make life possible, most of which occur without our 

conscious knowledge. These functions include breathing, a rhythm which is controlled 

by the neurons in the lower parts of the brain, and other long term rhythms such as that 

of sleep. In the higher parts of the brain more complicated tasks are catered for, such as 

consulting the memory when we recognise a face or find answers to questions, recognise 

speech, etc. It is important to note that these activities do not proceed in a random 

manner but are all directed or aimed by the overriding goal of the continuation of life, 

or homeostasis. These aims stem from the actions of relatively small central parts of 

the brain, still little understood. The reticular system serves to activate both what 

comes in and goes out, keeping the whole organisation going. These areas, therefore, 

set the aims of the whole individual, they establish the needs. The satisfaction of such 

needs provide the experience of pleasure; Olds and Milner first showed in 1954 how 

rats with electrodes placed in such centres will quickly learn to press a lever that gives 

the pleasure of this stimulus [Olds and Milner 1954]. 
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1.5 DISORDERS OF THE BRAIN 

For many people, the brain is an organ which functions quite effectively for most of 

their life, 60 70 years on average. However, defects do sometimes arise in its structure 

or in its electrical and chemical processes. This can be due to many causes, including 

accident or some hereditary defect. In order to adequately treat brain disorders, an 

understanding of its mode of operation is essential. An example is Parkinson's disease, 

which is a progressive chronic condition characterised by muscle rigidity and involuntary 

tremor. Research has revealed that the disea.''le is caused by the progressive destruction 

of dopamine pathways in thebrainj this discovery has led to an effective treatment to 

be developed to adequately treat the cause of the illness [Kety 1979]. 

Epilepsy is a condition characterised by recurrent seizures associated with a distur­

bance of consciousness. In many cases, the cause and mechanisms of seizure activity 

are not understood, yet, surprisingly, the condition can often be effectively treated 

with anticonvulsant drugs, such as Dilantin. If drugs fail, surgery may be performed 

to remove the source of seizure activity, if that can be accurately localised. 

One might think that due to the present limited understanding of the functioning 

brain, treatment of many disorders would not be possible. However) empirical treat­

ments are often surprisingly successful. Treatments for schizophrenia and depression, 

for example, were discovered quite by accident, without knowledge of their effects on 

the brain. 

Paradoxically, it is unfortunate that it is disorders of the brain which provide a 

valuable source of information about the operation of the brain. The oldest and still 

most widely used approach to the problem of brain function is to analyse the effects of 

lesions to areas of the brain. However, conclusions from studies of this kind need to be 

made carefully, in order to avoid incorrect conclusions being drawn. 

Imaging techniques, such as CT, MRI and PET, are revealing both structural and 

physiological differences between brains of certain patients and those of the normal 

population. In particular functional MRI is helping to locate areas of the brain specific 

to particular tasks with a high degree of accuracy [Singh et al. 1996]. 



Chapter 

THE ELECTROENCEPHALOGRAM 

2.1 INTRODUCTION 

The electroencephalogram (EEG) is a recording of the electrical activity in the brain, 

generally measured at the scalp. Although the origin of the EEG is not completely 

understood, it is generally accepted that it represents the averaged activity of many 

millions of neurons in the brain, after being filtered by layers of fat, bone and cerebro­

spinal fluid. This aside, the EEG has been found to be a valuable tool in the diagnosis of 

numerous brain disorders. Nowadays, the EEG recording is a routine clinical procedure 

and is particularly useful in the investigation of epilepsy. 

This chapter first gives a brief overview of the history and origin of the EEG be­

fore reviewing standard recording techniques. Then what constitutes normal EEG 

is discussed along with how that can be contaminated with artifacts. Finally the 

abnormal EEG and what makes an EEG abnormal, is discussed along with the ap­

plication of the EEG as a diagnostic tool with particular reference to the diagnosis of 

epilepsy. Unless otherwise specified, the major sources of information for this chapter 

are Spehlmann [1981], Empson [1986] and Dyro [1989]. 

2.2 THE HISTORY AND ORIGIN OF THE EEG 

2.2.1 History of the EEG 

The development of electroencephalographic (EEG) analysis, like that of other electro­

physiological techniques, was dependent on advances in the science of electromagnetism 

finding appropriate applications in the mid- to late nineteenth century. However, there 

were earlier attempts at investigating the relationship between electricity and living 

organisms during the eighteenth century. Louis XV 'caused an electric shock from a 

battery of Leyden jars to be administered to 700 Carthusian monks joined hand to 

hand, with prodigious effect'. More reliable experiments had to await the invention 
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of reliable sources of electric current. Volta, with the help of his newly invented bat­

tery cell (the Voltaic pile), gave the opportunity of electrical stimulation to those early 

researchers interested in the effects of electricity on living organisms. 

Following Volta's invention came the development and elaboration of electromag­

netic principles. Insight by Faraday as early as 1831 allowed the immediate development 

of sensitive electrical instruments, such as the string galvanometer, which was standard 

equipment for the early electroencephalographers. 

Despite the crudeness of the equipment available, and the difficulties in recording 

the electrical changes in living tissue, Du Bois-Reymond, working in Berlin in 1848, 

discovered the standing voltage between the surface and the cut end of a nerve, and also 

the sudden variation in response to a stimulus, now known as the 'action potential'. 

So the apparatus and techniques now existed to record from animals' brains and also 

to stimulate living preparations. Two Prussian medical officers, Fritsch and Hitzig, in 

1870 took advantage of the opportunity offered by the Franco-Prussian War to study 

the exposed brains of soldiers struck down on the battlefield. They discovered that 

Galvanic stimulation of some parts of the cortex caused movements in the contralateral 

limbs, and that these movements could be reliably elicited by stimulation at the same 

place. 

So, it was now obvious that with sufficiently sensitive recording techniques it should 

be possible to map the sensory cortex. This task was taken up by Richard Caton, 

working in Liverpool, who in August 1875 published a report in the British Medical 

Journal which stated [Caton 1875]: 

'In every brain hitherto examined, the galvanometer has indicated the exis­

tence of electric currents. The external surface of the grey matter is usually 

positive in relation to the surface of a section through it. Feeble currents 

of varying direction pass through the multiplier when the electrodes are on 

two points of the external surface . .. ' 

Caton had thus discovered spontaneous EEG in animals and also showed that it was 

possible to detect electrical brain responses to stimuli and located the visual cortex 

in the occiput, or rear of the head. He was unable to find any location specifically 

responsive to sound stimulation. The observation of spontaneous electrical activity at 

the surface of the cortex may not have meant much at the time but it was the discovery 

of the electroencephalogram. 

This work was duplicated by Adolf Beck, a Polish scientist, in 1890 [Beck 1890]. 

He also discovered spontaneous oscillations of voltage from the occipital cortex which 

disappeared with light stimulation but not with noise. (This seems analogous with the 

phenomenon of alpha blocking found in humans some 40 years later). 

Since many of the techniques in use at around this time were quite crude, it is not 

surprising that many researchers were quite reluctant to publish any findings in this 
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field. Until a means was found of permanently recording the EEG, the spontaneous 

activity shown by the cortex could only be regarded as a curiosity. 

It was Hans Berger who in 1929 first published the recorded electroencephalogram 

of his young son, measured four years earlier [Berger 1929]. Berger discovered the 

alpha rhythm, running at 10 Hz, and also discovered that it disappeared if the eyes 

were opened, with mental effort and with loud noises or painful stimuli. Berger's work 

was disregarded by physiologists at the time, party because he published in psychiatric 

journals, and also perhaps because of his reputation for eccentricity. Only after his work 

was replicated by Adrian and Matthews in Cambridge [Adrian and Matthews 1934] did 

he get the credit he deserved for having established human electroencephalography. 

2.2.2 Origin of the EEG 

There have always been doubts as to whether the actually originates in the 

cortex. Berger, when recording from the scalps of patients with trephined holes in 

the skull, found that the alpha rhythm was always greater when one of the electrodes 

was placed over the hole, and greatest when a needle pierced the scalp above the 

opening [Berger 1929]. He took this as evidence that the EEG did not originate in the 

scalp. He made sure that subjects remained still during recording so as to eliminate 

eye movements and other movements as a cause. 

Adrian and Matthews [1934] found that movements of the eyes did not affect the 

voltages recorded between the occiput and the vertex and the only recordable effects 

were greatest around the eyes themselves (such as those produced by blinking). Adrian 

and Yamigawa [1935] used a cadaver to confirm that electrodes at the scalp surface 

could indeed be used to pick up signals emanating from an artificial dipole generator 

placed inside the brain. 

There have periodically been suggestions that waves such as the alpha rhythm are 

artifactual and not generated by the brain itself. One good reason for this is that it 

is difficult to conceive how such regular sinusoidal waves could be generated by nerve 

cells whose own electrical activity has always been regarded as being exclusively spikey. 

Adrian and Matthews suggested that the alpha rhythm represented a spontaneous beat 

in a group of cortical neurons, that the neurons depolarised almost simultaneously and 

that the gross EEG represents the envelope of the activity of the underlying tissue. 

The gross EEG, recorded from the other side of a centimeter of bone, skin, fat and 

cerebro-spinal fluid, was thought to represent a blurred and averaged picture of the 

sum of the activity of many individual cells. 

However, Elul [1972] implanted micro electrodes in the brains of experimental ani­

mals and found that wave-like EEG activity could be recorded when the electrodes were 

only 30 fLm apart. Elul continues to say that 'In fact, decreasing the inter-electrode sep-



12 CHAPTER 2 THE ELECTROENCEPHALOGRAM 

aration had no appreciable effect on the wave activity recorded differentially between 

them. These results can be interpreted only as a contradiction of the Adrian-Matthews 

model'. 

Other suggestions have been put forward by many researchers: the EEG may be 

due to the slow changes in neuronal synaptic potential [purpura 1959]; or it may be due 

to the pyramidal neurons in the underlying cortex, kept in synr.hrony by generators in 

the thalamus [Andersen and Andersson 1968]. Put simply, neurophysiologists do not 

know exactly how the human EEG is generated. There is no doubt, however, that 

electrical activity originating in the human cortex can be measured from the scalp. 

2.3 RECORDING THE EEG 

The modern EEG machine is a far cry from the crude string galvanometers used by 

Berger. It consists entirely of electronic amplifiers to provide simultaneous, multichan­

nel recordings which are recorded on paper or on some other storage device (tapes, 

disk drives, etc.). Multichannel recordings usually comprise 8, 16, 19 or 32 channels of 

EEG. 

2.3.1 Electrode placement 

Recording takes place across a number of electrodes, generally placed on the scalp. 

Scalp electrodes are cup shaped and are applied to the cleaned scalp with a conduc­

tive paste and are held in place by a rubber head-set or some kind of adhesive (e.g., 

collodion). Another type of electrode is the needle or dermal electrode, which may be 

inserted into the scalp. Other types of electrodes are nasopharyngeal electrodes, which 

are long S-shaped plastic coated wires with a silver ball at the tip inserted via the nose 

and advanced until they make contact with the nasopharynx, and sphenoidal electrodes 

which are inserted under the brain via an entry near the ear. These type of electrodes 

may reveal specific activity when routine scalp recordings appear normal. Finally, in­

tracranial depth-needle electrodes are sometimes used intraoperatively to locate foci of 

epileptic activity. 

The standard method for scalp electrode localisation is the 10-20 electrode system, 

so called because it is derived by 10% and 20% measurements relative to four scalp 

landmarks [Jasper 1958]. The four scalp landmarks are: (1) the bridge of the nose 

(the nasion), (2) the bmnp at the back of the head immediately above the neck (the 

inion) and (3) & (4) the left and right preauricular points (depressions above the angle 

of the cheekbone just in front of the ear). The system derives 19 locations on the 

scalp, of which right-sided electrodes are even numbered and left-sided electrodes are 

odd numbered. Letters preceding the numbers refer to cortical regions. Frontal is 
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F, prefrontal is Fp (or frontopolar) , parietal is P, temporal is T, central is C, and 

occipital is O. Electrodes along the midline have no number, only the letter z (e.g., Fz 

and Cz, with Cz being the vertex). When nasopharyngeal electrodes are used, they 

are designated NP or PG. Figure 2.1 depicts the 10-20 system of electrode localisation 

and the numbering system used to label each electrode. 

2.3.2 Montages 

Electrodes are connected together under different montage8 (montage is the French 

word for "array"). In general, montages can be divided into two types: referential and 

bipolar. Most of the information obtained with one type of montage can be obtained 

with the other, but each montage has some shortcomings which can be overcome to 

a certain extent through the use of the other. A combination of both types is used 

routinely in recording the EEG for this reason. Note that it is possible to extract 

bipolar EEG from that originally. recorded using a referential montage but not vice 

ver8a. 

2.3.2.1 Referential Montage 

Referential montages connect one input of each differential channel to electrodes placed 

at various parts of the head and the remaining input for each channel to a common 

electrode placed in an area considered to be electrically quiet; this electrode is called 

the 'reference electrode'. In this way, the voltages between the various points on the 

head and the reference electrode are recorded. Figure 2.2 shows a referential montage 

recording the voltage at a number of scalp electrodes. In the referential montage, the 

origin of this voltage on the head is recognised by the amplitude, i.e., the channel 

which records the voltage of highest amplitude is connected to the electrode nearest 

the source of the voltage. If the output of two channels is of equal amplitude, the 

source of the voltage is considered to be located approximately equidistant from each 

of the two electrodes connected to the inputs of these channels. 

The advantage of a referential montage is that the recording can give an undistorted 

display of the shape of voltage changes and is especially useful for recording voltages 

which have a wide distribution. 

The disadvantage of a referential montage is that it is often impossible to find 

a reference electrode which is entirely electrically 'quiet' or inactive. Sources located 

near the reference electrode may generate signals on all channels connected to that 

electrode. 

Some standard referential montages are listed below and are described in more 

detail in Appendix A. 
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Figure 2.1 The 10-20 system of electrode localisation (from Jasper [1958]). 
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Figure 2.2 Recordings made using a referential montage. The polarity of the waveform at each 
channel is determined by subtracting the electrode potential from the reference potential. 
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A verage: the reference signal is composed of the average of all of the recorded EEG 

signals. 

Ipsilateral ear-reference: the reference electrode used is the ipsilateral ear-electrode 

for each group of electrodes. 

Linked ear-reference: both ear electrodes are linked and serve as the reference chan­

nel. 

A veraged ear-reference: the average of both ear electrode signals are used as the 

reference channel. 

Vertex: the vertex electrode Cz is used as the reference channel. 

2.3.2.2 Bipolar Montage 

With a bipolar montage, different pairs ~f electrodes are connected to the differential 

inputs of each channel amplifier. The best bipolar montages link electrodes in chains so 

that an electrode which is serving as a reference for one channel becomes an input for the 

next channel, and so on down the chain (Figure 2.3). With this type of arrangement 

the location of a source is detected, more by the direction of the deflection of the 

recording rather than by the amplitude. A peak in the potential field located at an 

electrode which is common to two amplifiers in a bipolar chain causes deflections in 

the EEG recording of opposite direction, or what is known as phase reversal at the 

output of these amplifiers. Figure 2.3 shows bipolar montage recordings for different 

potential fields featuring a region of relatively negative potential. It should be noted 

that the phase reversal does not indicate a reversal in the polarity of the voltage but 

only a reversal in the direction of deflection due to the physical setup of the channel 

amplifiers. A region of relatively positive potential would give rise to a phase reversal in 

the opposite direction to the case of a negative region. If the maximum of the voltage 

at the scalp occurs between two of the recording electrodes (Figure 2.3a) then no 

deflection is recorded at that channel connected to both the electrodes. However, due 

to the chain nature of the connections, adjacent channels will show a phase reversal. As 

a rule, phase reversals due to a region of negative surface potential cause deflections in 

channels "towards" each other and, in the case of a region of positive surface potential, 

"away" from each other (based on standard in neurophysiology whereby negative-going 

is upwards). 

The advantage of using bipolar montages is that voltage changes in neighbouring 

electrodes can be sharply distinguished and thus can localise regions of activity more 

precisely than can referential montages. 

The disadvantage of bipolar montages is that they distort the waveshape and am­

plitude of voltages which are distributed widely and affect both recording electrodes 
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Figure 2.3 Recordings made using a bipolar montage. The polarity of the waveform at each channel 
is determined by subtracting the electrode potential from the potential at the next electrode in the 
bipolar chain. 
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connected to one channel. Also voltages between the last two electrodes in a chain 

may produce confusing recording deflections and widespread abnormal voltages may 

be missed. 

Some of the more common bipolar montages include Longitudinal, Transverse, 

Longitudinal-Transverse and CircumferentiaL These are described in more detail in 

Appendix A. 

Figure 2.4 shows how the same potential field recorded at the scalp using both 

referential and bipolar montages can be depicted in terms of phase reversal or not, as 

the case may be. What is immediately apparent is how the localisation of the centre of 

negativity can be obtained (a) by the maximum amplitude deflection of the recording 

in the referential montage case and (b) by observing the phase reversal in adjacent 

channels in the bipolar montage case. 

(a) 

(b) 

.. .. 

.. 
• 
• 

Figure 2.4 Plotting EEG recording deflection using (a) referential and (b) bipolar montages. 

2.3.3 The electroencephalograph 

As has already been alluded to in the previous section, each channel in the multichannel 

recording of the EEG makes use of a separate differential amplifier. The differential 

voltage recorded at the scalp is normally less than 200 J1.V, while common mode volt­

ages may be much higher. The amplifiers must therefore have high differential gain, 
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very high common mode rejection and low noise characteristics. As the EEG signal 

components of interest are usually within the 1.5-70 Hz range, a band-pass filter with 

cut-off frequencies of about 1 and 70 Hz is usuaL Older EEG systems produced a paper 

record of the EEG and so the amplified EEG signals are made to drive galvanometer 

pens to produce deflections proportional to the input voltages. More recent 'paper­

less' systems sample the (analog) voltages and convert them to digital equivalents for 

on-line storage, facilitating computer analysis of the signals and printout in a variety 

of formats. Different montages can be used by re-routing the connections to the scalp 

electrodes to give a separate recording montage. On modern digital EEG machines all 

signals tend to be recorded on one montage (e.g., ear-reference) from which others can 

be generated as required via "reformatting". 

2.4 NORMAL EEG 

A wide variety of normal EEG patterns can be seen in different persons of the same age, 

and an even greater variety of normal patterns can occur in different age groups; also, 

the waking pattern generally shows more variability between subjects than the sleep 

EEG. All these show that it is not practical to define the normal EEG by listing all 

the normal patterns and their variations. Neither can the normal EEG be defined by 

requiring that specific normal components be present. In fact, as there are only a few 

EEG components known to be definitely abnormal in each age group, the normal EEG 

can be defined more effectively by the absence of abnormal components than by the 

presence of .normal patterns. Conversely, an EEG is considered abnormal if it contains 

abnormal components regardless of whether or not it also contains normal components. 

Although severe abnormalities of the brain are likely to cause EEG abnormalities, 

normal EEGs may be seen in some cases of long-standing, mild and small cerebral 

abnormalities. The converse is also true, Le., although most abnormal EEG patterns 

indicate abnormal brain function, a few specific mild EEG abnormal patterns occur 

occasionally in persons not showing evidence of brain disease. 

In order to analyse the EEG, the recording must be broken down into its many 

components in order to try and make sense of the underlying brain activity. Compo­

nents include individual waveshapes and how often they are repeated. The distribution 

ofthe waveforms (spatially) is also important. The frequency and amplitude are further 

qualities looked for when analysing the EEG. 

2.4.1 Normal rhythms 

The on-going activity is referred to as the background activity. Although it is 

essentially a mixture of waves of multiple frequencies, under particular conditions waves 
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of a certain frequency often dominate. When looking at the 'normal' (or background) 

EEG, the frequency of EEG waves is often divided into four groups or frequency bands, 

given by: 

1. delta frequency band < 4 Hz 

2. theta frequency band ~ 4 Hz to < 8 Hz 

3. alpha frequency band ~ 8 Hz to < 13 Hz 

4. beta frequency band ~ 13 Hz. 

Although these divisions are somewhat arbitrary, they help to set apart the most normal 

and abnormal waves in the EEG. Waves under 8 Hz are commonly called slow waves 

and waves over 13 Hz are called fast waves. Table 2.1 provides a concise description of 

the principal characteristics of each frequency band observed in the EEG. 

Delta < 4Hz Ubiquitous during deep (Stage IV) sleep. 
Theta ~ 4 Hz to < 8 Hz Young children and normal adults during light sleep. 
Alpha ~ 8 Hz to < 13 Hz Dominates occipital scalp. 
Beta ~ 13 Hz Precentral, frontal. Rare except during sleep. 
Mu ~ 7 Hz to < 11 Hz Central, left and right. Blocked by 

contralateral movement. 

Table 2.1 A summary of the frequency bands in the normal EEG. 

2.4.2 Drowsiness, sleep and drugs 

Progressing from the alert resting state to the drowsy state, and finally to sleep, also 

affects the EEG. The 'normal' background EEG is replaced by waveforms which do not 

correspond to the 'usual' background EEG, but are nonetheless normal when the state 

of the patient is taken into account. 

Drowsiness is the first stage of sleep (stage I sleep) and with it comes a 'slowing 

down' of the EEG, where the rhythmic background EEG drops to around 5 Hz. As the 

patient progresses from stage I sleep to stage II sleep, slower waves begin to appear. 

At this point, 14 to 15 Hz sleep spindles appear. As sleep progresses these waveforms 

increase in amplitude and become more prominent. Deep sleep (stage III sleep) is 

characterised by large amounts of spindle activity and a very slow but symmetrical 

record. 

Finally, drugs, such as barbiturates and benzodiazepines, as well as other sedatives 

may produce excessive fast activity initially, which is followed by generalized slowing. 

The effects of sleep and drugs on the EEG must be taken into account when analysing 
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the EEG. When under the influence of sleep or drugs the EEG may not necessarily 

appear 'normal', but when put in context, the EEG is not necessarily abnormal either. 

2.5 ARTIFACTS 

Artifacts are waveforms recorded in the EEG not caused by cerebral activity. They may 

be due to other physiological activity originating from the patient, interference from 

power lines and other electrical sources affecting the recording electrodes, or waveforms 

generated by the recording system itself, including the recording electrodes themselves. 

Artifacts are not desirable in the EEG recording because they may mimic or obscure 

cerebral activity. Great care and attention is taken during the recording of the EEG 

to minimise artifacts, although it is rather difficult to obtain a completely artifact-free 

EEG recording. 

The following are the most commonly observed artifacts in EEG recordings which 

can be confused with abnormal cerebral activity or even partially or totally obscure 

abnormal cerebral activity. 

o Eye blinks and other eye movements Since the eye is a dipole (the aqueous 

humor is 100 mV electropositive with respect to the retina), when the patient 

blinks and Bell's phenomenon occurs (Le., the eyes roll upward), this increases 

the positivity of the prefrontal electrodes Fpl and Fp2. This, in turn, makes 

F4 and F3 relatively more negative and causes a downward deflection in the 

EEG recording for Fpl-F3 and Fp2-F4 in bipolar longitudinal EEG recording 

(see Figure 2.5a). Lateral eye movements also cause deflections of the recording, 

when recording with lateral or transverse bipolar electrode chains, mainly in Fpl­

F7 and Fp2-F8. Blinking, or eye closure causes a large downwards deflection, 

and eye opening a large upward deflection. Eye movement artifacts in the EEG 

can usually be identified by their frontal distribution, their symmetry on the two 

sides and their characteristic shape. 

• Muscle activity Muscle artifact is usually easily identified by its shape and 

repetition. This type of artifact can be generated by movement of the jaw, grind­

ing of teeth, shivering/trembling, and generally any movement involving the scalp 

and/or facial muscles. Muscle artifact may not only be mistaken as an abnormal 

EEG pattern but, can frequently obscure abnormal EEG activity in the EEG 

recording (Figure 2.5b). 

• Electrocardiogram Voltage changes generated by the heart may be picked up 

in the EEG, mainly in recordings with wide intel'electl'ode distances, especially in 

linkages across the head. Small electrocardiogram (ECG) artifacts usually reflect 
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the R-wave of the ECG, although larger artifacts may reflect additional compo­

nents of the ECG. These artifacts are usually recognised due to their periodicity 

and the fact that they usually appear on all channels using a common reference 

(Le., referential montages) (Figure 2.5c). 

• Electrical interference The most common artifact due to electrical inter-

ference is the 50/60 Hz noise coming from power lines and equipment. EEG 

recording equipment generally has filters specifically to filter out mains borne 

noise, but when contamination occurs it usually affects all recording electrodes. 

01 Electrode 'pop' This artifact is caused by a sudden change of electrode 

contact causing deflections in the EEG recording which rise or fall abruptly and 

may mimick fast abnormal EEG activity (Figure 2.5d). 

fp2-f4 

fp1-f3 f4-fz 

(a) (b) 

02-01 

o 

a2-t4 

01-t5 

(c) (d) 

Figure 2.5 Common artifacts that appear in the EEG recording: (a) Eyeblinks, (b) Mnscle artifact, 
(c) ECG and (d) electrode artifact. 

2.6 ABNORMAL EEG 

An EEG is usually called abnormal not because it completely lacks normal patterns 

but because it contains: (a) slow waves, (b) abnormalities of amplitude, (c) deviations 
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from normal patterns and/or (d) epileptiform activity. In most abnormal EEGs, the 

abnormal patterns do not entirely replace normal activity, but appear, sometimes in­

termittently, only in some channels, or only superimposed on a normal background. 

The four categories can be further subdivided thus: 

1. Slow waves 

(a) Localized slow waves 

(b) Generalized asynchronous slow waves 

(c) Bilaterally synchronous slow waves 

2. Amplitude abnormalities 

(a) Localized amplitude changes: Asymmetries 

(b) Generalized amplitude changes 

3. Deviation from normal patterns 

4. Epileptiform activity 

(a) Localized epileptiform activity 

(b) Generalized epileptiform activity 

(c) Special epileptiform patterns 

Each of the basic abnormal EEG patterns listed above can be caused by one or a 

few types of cerebral abnormalities. The abnormalities are characterised by their irri­

tative or destructive character and by their cortical, subcortical or epicorticallocation. 

There is a correlation between EEG patterns, cerebral pathology and specific diseases. 

However, the correlation between abnormal EEG patterns and diseases is weakened 

by several facts: (a) Many diseases cause more than one type of cerebral lesion and, 

therefore, more than one pattern; (b) Not all cases of a neurological disease cause an 

observable EEG abnormality - the EEG may appear normal especially if the cerebral 

lesion is small, chronic or located deeply in the brain. A disease may also produce EEG 

abnormalities which are intermittent and so rare that they do not appear during the 

period of a routine EEG recording; (c) The EEG may be abnormal in some people who 

show no other evidence for a disease. 

2.6.1 The EEG and epilepsy 

The term paroxysmal activity is used in describing EEG records with fast transient 

abnormalities. Seizure disorders can manifest themselves in an EEG by several types 
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of paroxysmal activity. Seizures, in neurological terms, are episodes of sudden dis­

turbances of consciousness, mental functions, motor, sensory and autonomic activity, 

caused by a paroxysmal malfunction of cerebral nerve cells. Epilepsy is the term used 

to describe the condition of patients who have recurring seizures due to some lasting 

cerebral abnormality. Epileptic seizures are divided by their clinical manifestations into 

(a) partial (or focal), (b) generalized, (c) unilateral and (d) unclassified seizures. Partial 

seizures involve only part of the cerebral hemisphere and produce symptoms in corre­

sponding parts of the body or in some related mental functions. Generalized seizures 

involve the entire brain and produce bilateral motor symptoms usually with loss of 

consciousness. Both types of seizures can occur at all ages. Generalized seizures can 

be subdivided into absence (petit mal) seizures and tonic-clonic (grand mal) seizures. 

Paroxysmal activity of this type usually consists of transients. A transient is con­

sidered to be a waveform which clearly stands out against the background. A sharp 

transient is a wave of any duration which has a pointed peak, and a sharp transient with 

a duration of 70 200ms is called a sharp, wave. A sharp transient with a duration of 20 

70 ms is called a spike [Chatrian et al. 1974]. Spikes and sharp waves may be followed 

by a slow wave and form a spike-and-wave complex and a sharp-and-slow-wave complex 

respectively. Figure 2.6 depicts a spike and a sharp wave found in an epileptiform EEG. 

Spikes and sharp waves are often jointly referred to as spikes, spikes-and-sharp-waves 

(SSW s ), epileptiform transients or epileptiform discharges (EDs). 

£;p2-£4 

(a) 

04-p4 

(b) 

Figure 2.6 Epileptiform transients: (a) Spike and (b) Sharp wave. 

Spikes and sharp waves which occur in the EEG and last for more than a few 
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seconds are called seizure patterns or ictal patterns. Although seizure patterns are 

often associated with clinical seizure manifestations, they may occur without such 

correlates and are then called subclinical seizure patterns. Spikes and sharp waves 

which last for less than a few seconds are called interictal epileptiform activity. 

The presence of spikes and sharp waves in the EEG is often indicative of epilepsy 

and, in interictal periods (Le., periods when there is no clinical manifestation) the 

detection and proper diagnosis of such abnormal patterns becomes all the more impor­

tant. 

As mentioned above, epileptiform activity can be either localised or generalized. 

Local epileptiform activity is usually due to a focal irritative lesion of the cerebral 

cortex. Generalized epileptiform activity is either not associated with demonstrable le­

sions (i.e., idiopathic epilepsy) or associated with a variety of conditions which increase 

the excitability of subcortical centres, of wide parts of the cerebral cortex or of both. 

Both types of epileptiform activity can be identified through the use of various bipolar 

and referential montages. As expla;ined in Section 2.3.2, epileptiform transients (which 

are associated with regions of relatively negative potential) recorded using a referential 

montage will be characterised by upward going (in the EEG, negative is upwards by 

convention) spikes on a number of channels in the multichannel EEG. 

Epileptiform transient refers to the paroxysmal activity seen on one channel in the 

EEG, however, as epileptiform transients often arise simultaneously on several EEG 

channels, they are collectively termed an epileptiform event. 

Local epileptiform activity generally gives rise to focal epileptiform events (Fig­

ure 2.7a) where the localised centre of negativity is known as the focus. Generalized 

epileptiform activity gives rise to non-focal epileptiform events (Figure 2. 7b), where the 

individual epileptiform transients do not change in polarity, amplitude and sharpness 

and hence do not indicate any focus. 

2.7 SUMMARY 

The EEG is a recording of the electrical activity in the brain, which is generally recorded 

at the scalp. It provides information pertinent to the diagnosis of a number of brain 

disorders, in particular the diagnosis of epilepsy. Whilst the presence of epilepsy can 

be clinically shown through the many types of clinical manifestations or seizures, the 

interictal EEG may contain epileptiform transients which are indicative of a diagnosis 

of epilepsy, without the clinical manifestations. 

The EEG, which is recorded in both referential and bipolar montages, is routinely 

recorded for the electroencephalographer (EEGer) to visually inspect for abnormal 

EEG patterns. The EEGer looks for focal or non-focal epileptiform events, depending 
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t4-t6 

t6-o2 

(a) 

£8-£4, 

£4-£2 

(b) 

Figure 2.7 (a) A focal event on a bipolar montage showing phase reversal separated by a null channel. 
(b) A non-focal event. 
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on the spatial relationships between individual epileptiform transients on each channel 

which make up the epileptiform event. 

The process is made more difficult by the fact that the EEG is invariably conta­

minated with artifacts which can mimic or obscure abnormal EEG activity, making 

the detection of epileptiform events in particular, more dependant on the individual 

EEGer's skill in observing various spatial and temporal dues. 





Chapter 3 

ARTIFICIAL NEURAL NETWORKS 

3.1 INTRODUCTION 

As we all go about our daily life, we perform many complex tasks which we all seem to 

take for granted, tasks such as listening to music, experiencing the awe of a sunset and 

enjoying the smell of fragrant flowers. We also take for granted tasks such as reading, 

writing, and walking, not to mention all the mundane tasks such as breathing, and 

controlling all our other bodily functions. All of these tasks have one thing in common, 

they all need the use of the complex biological neural network that we call the brain. 

This biological neural network consists of an estimated 100 billion neurons [Shep­

herd and Koch 1990j. Although each neuron is 5 or 6 orders of magnitude slower than 

silicon logic gates, each has the complexity of a microprocessor. It is the complexity 

of each neuron coupled with their staggering numbers and their immensely high level 

of connectivity (it is estimated that there are some 60 trillion connections between 

neurons [Shepherd and Koch 1990]) which makes the human brain the marvel that it 

is. 

Terms such as highly complex, nonlinear and parallel computer are all terms that 

are used to describe the brain, and rightly so. For example, the brain can routinely 

perform perceptual tasks, such as recognising a familiar face against an unfamiliar 

background, in somewhere around 100-200 ms, whereas much less complex tasks would 

take days on huge conventional computers. 

Although just how biological neural networks operate is only just beginning to 

be understood, it is generally accepted that all biological neural functions, including 

memory, are stored in the neurons and their interconnections. Learning is viewed as 

the establishment of new connections between neurons or the modification of existing 

connections. At birth, our brain has great structure and the ability to build up its 

own rules through what we call experience. In the first two years from birth the most 

dramatic development of the human brain takes place in which it is estimated that 

1 million synapses or connections are formed per second [Shepherd and Koch 1990j. 
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Development and learning do not stop there, of course, and in fact continue throughout 

life. 

Although we only have a rudimentary understanding of biological neural networks, 

it is possible to construct a small network of artificial neurons and train them to 

perform some "simple" task. Such artificial neurons are usually realized as elements in 

a program or as circuits made of silicon. These artificial neural networks are based on 

extremely simple abstractions of their biological counterpart and do not have a fraction 

of the power of the human brain. This notwithstanding, they can be trained to perform 

useful functions. 

This chapter first gives a brief historical summary of the development of the field 

of artificial neural networks followed by a detailed explanation of biological neural 

networks and their artificial counterparts. It then covers the various ways in which ar­

tificial neurons can be interconnected to give various architectures, followed by a look 

at the learning process in artificial neural networks and the various ways learning can 

be achieved. Finally the chapter ends w~th a summary of the more common artificial 

neural networks and how they are related according to architecture and learning para­

digm. Unless otherwise specified, the major sources of information for this chapter are 

Zurada [1992]' Haykin [1994] and Hagan et al. [1996]. 

3.2 A BRIEF HISTORICAL OVERVIEW 

The short historical summary which follows is by no means a complete historical ac­

count and is intended only to highlight the most important milestones in the colourful 

history of the development of the artificial neural network as we know it today. 

The origin of the neural network field is often attributed to Warren McCulloch and 

Walter Pitts who in 1943 [McCulloch and Pitts 1943] showed that, in principle, networks 

of artificial neurons could compute any arithmetic or logical function. However, their 

model's implementation simply was not technologically feasible through the use of the 

bulky vacuum tubes of that era. 

Hebb [1949] first proposed a learning scheme for updating neuron's connection 

strengths in 1949. He maintained that information can be stored in the connections of 

interconnecting neurons and further postulated the learning scheme known as Hebbian 

learning today. 

A great deal of interest was generated late in the 1950's when Frank Rosenblatt 

and his colleagues put together a neural network using their neuron-like element called 

a perceptron [Rosenblatt 1958] and demonstrated their network's ability to perform 

pattern recognition. Although it was later shown that the perceptron network could 

only solve a limited class of problems this laid the groundwork for the basic learning 

algorithms still in use today in training neural networks. 
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At around the same time, Widrow and Hoff [1960] produced their ADALINE or 

ADAptive LINEar combiner with a new learning rule capable of performing as well 

as Rosenblatt's perceptron network. Their learning rule is known as the Widrow-Hoff 

learning rule and is still in use today. Early applications of the ADALINE included 

pattern recognition, adaptive control and weather forecasting. 

Books by Nilsson [1965] and Minsky and Papert [1969] both clearly summarised 

the developments of that time but also formulated the inherent limitations of both 

the perceptron and ADALINE networks. Both Rosenblatt and Widrow knew of those 

limitations and proposed network architectures that would overcome them, but could 

not successfully alter their training algorithms to train the new, modified, networks. 

These limitations, coupled with the relatively modest computational resources of the 

time, convinced many researchers that neural networks research was a dead end and 

resulted in neural networks research being suspended for more than a decade. 

A handful of researchers did, however, pursue research in the field of neural net­

works during the period from 1965 to 1984. Kohonen [1972] and Anderson [1972] 

continued to work in associative memory research. Stephen Grossberg and Gail Car­

penter also introduced a number of neural architectures and theories [Grossberg 1976], 

[Carpenter and Grossberg 1991]. 

Neural networks were reborn in the early 1980's following the introduction of two 

new significant concepts. The first was by Hopfield [1982] who introduced a recurrent 

neural network architecture for associative memories. The second development was 

that of the backpropagation algorithm introduced to train multilayer perceptrons, a 

feat which had eluded most researchers for the preceding decade. Foremost in this 

work were Rumelhart and McClelland [1986]. 

After the introduction of these development~ there was no turning back and the field 

of artificial neural networks has taken off over the last ten years with more and more 

applications being found. Applications range from aerospace, banking and insurance 

to medical, defense and entertainment. 

3.3 WHAT IS A NEURAL NETWORK? 

A neuron in the brain can be broken down into three major components: the dendrites, 

the cell body (or soma) and the axon. Electrical signals are carried into the cell body 

by the dendritic tree, which forms a very fine bush of thin fibres around the cell body. 

The cell body effectively sums and thresholds these incoming signals. Impulses are then 

carried away from the cell body along the axons which are long cylindrical connections. 

Axons branch out at the tip and terminate in a small end-bulb which almost touch the 

dendrites of neighbouring neurons. The axon-dendrite contact is called a synapse. It 

is the arrangement of the neurons and the strengths of the individual synapses that 
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establishes the function of the neural network that is the brain. Figure 3.1 is a simplified 

schematic diagram showing two biological neurons. 

--Dendrites 

Cell body 

Figure 3.1 A simplified sC,hematic of two biological neurons. 

At birth some of the neural structures are already formed but most of the other 

parts are developed through the learning process of growing up as new connections are 

made and others waste away. The major developments take place in the early stages of 

life although the neural structures continue to change throughout life. Later changes 

are, however, more of strengthening or weakening synaptic functions. The process that 

developing neurons and interconnections go through can be termed plasticity. 

Just as plasticity is essential to the functioning of neurons in the human brain, so is 

it in neural networks made up of artificial neurons. In its most general form an artificial 

neural network is a machine that is designed to roughly model the way in which the 

brain perforrns a particular task. Artificial neural networks are usually simulated in 

software on a digital computer or implemented using electronic components. Artificial 

neural networks are realised through the massive interconnections of simpler neural 

models ("neurons") which are made to perform useful computations after following a 

process of learning. The following definition of a neural network is given by Aleksander 

and Morton [1990]: 

"A neural network is a massively parallel distributed processor that has a 

natural propensity for storing experiential knowledge and making it avail­

able for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network through a learning process. 

2. Interneuron connection strengths known as synaptic weights are used 

to store the knowledge." 
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The learning process is controlled by a learning algorithm whose function it is to 

alter the synaptic weights in such a way as to make the output of the neural network 

approach the desired outcome. 

3.3.1 A mathematical model of a neuron 

The simple model of a neuron shown in Figure 3.2 can be seen to be of the same basic 

form as its simplified biological counterpart in that it has a number of inputs which 

are weighted, summed and thresholded at the "cell-body" which in turn produces an 

output. Three basic elements can be identified in the model: 

1. The neuron has a set of synaptic weights which are multiplied with each input as 

they are presented to the neuron. Specifically, an input Pj at the input of synapse 

j connected to neuron k is multiplied by synaptic weight Wkj. 

2. A summing junction sums the weighted values of the inputs, such that the net 

input for neuron k is given by 

R 

nk = 2: WkjPj + bk 
j=l 

(3.1) 

where PbP2, ... ,PR are the input signals, Wkl, Wk2, ... ,WkR are the synaptic 

weights of neuron k, and bk is an offset term known as the bias. 

3. The output of the summing junction is passed through an activation function 

which is typically a nonlinear function which tends to limit the amplitude of the 

output of the neuron, such that 

or 

R 

ak = 1(2: WkjPj + bk ) 

j=l 

where ak is the output of neuron k. 

(3.2) 

(3.3) 
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The bias term bk is sometimes included in the model as an extra synaptic weight 

with an input of +1, such that 

where WkO bk and Po 

R 

ak = f(~ WkjPj) 

j=O 

10 

Figure 3.2 A simplified mathematical model of an artificial neuron, 

3.3.2 Types of activation functions 

(3.4) 

The activation function, given by f('), may be a linear or nonlinear function of nk the 

net input to neuron k. An activation function is chosen to satisfy some specification of 

the problem that the neuron is attempting to solve. Of the many activation functions 

that can be implemented (see sample in Table 3.1) three of the most commonly used 

activation functions are described below. 

1. The hard-limiting activation function (Figure 3.3a) sets the neuron output to 0 

if the function argument is less than 0, or 1 if the argument is greater than or 

equal to 0 i.e. 

if nk ~ 0 

if nk < O. 
(3.5) 

Such a neuron is referred to in the literature as the McCulloch-Pitts model in 

recognition of the pioneering work done by McCulloch and Pitts. 
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f(fl} 

2. The linear activation function described in Figure 3.3b sets the neuron output 

equal to the input, i.e. 

(3.6) 

3. The log-sigmoid activation function described in Figure 3.3c takes the input 

(which may have any value which may range between plus and minus infinity) 

and "squashes" the output into the range 0 to 1 according to the expression 

(3.7) 

where c is the slope parameter of the log-sigmoid function. By varying c we 

can obtain log-sigmoid functions of varying slopes. In the limit, as the slope 

parameter approaches infinity, the log-sigmoid function becomes simply a hard­

limit activation function. The log-sigmoid activation function is by far the most 

common form of activation function used in artificial neural networks which is 

used (a) because of its continuous range of output values from 0 to 1 and (b) the 

fact that it is continuously differentiable (whereas the hard limit function is not). 

When it is desirable to have the activation function range from -1 to +1, the log­

sigmoid function is usually replaced by the hyperbolic tangent function defined 

by 

lin) 

(a) (b) 

1- exp(-nk) 
1 + exp( -nk) . 

ffn) 

(3.8) 

(c) 

3.3 The most commonly used activation functions. (a) hard-limiting, (b) linear and (c) 
log-sigmoid. 



36 CHAPTER 3 ARTIFICIAL NEURAL NETWORKS 

Name Activation function 

Hard limit f(n) = 0 n<O 
f(n) 1 n;:::O 

Symmetrical hard limit 
f(n) = -1 n<O 
f(n) +1 n;:::O 

Linear f(n) n 
f(n) 0 n<O 

Saturating linear f(n) = n O~n~l 
f(n) = 1 n>l 

f(n) = -1 n <-1 
Symmetric saturating linear f(n) = n -1 ~ n ~ 1 

f{n) = +1 n>l 
Log-sigmoid f(n) = !+exp-n 

Hyperbolic tangent f( ) - expn -exp-n 
n - exp:· +exp-n 

Positive linear 
f(n) = 0 n<O 
f(n) = n n;:::O 

Table 3.1 A summary of some of the various activation functions implemented in artificial neural 
networks. 

3.4 NETWORK ARCHITECTURES 

The manner in which neurons of a neural network are structured is often closely linked 

to the learning algorithms being used to train a particular neural network. Neural 

network architectures (or structures), in general, fall into four different classes: 

III Single-layer feedforward networks. 

Gil Multi-layer feedforward networks. 

• Recurrent networks. 

((I Lattice structured networks. 

The basic building block of most of the single-layer and multi-layer feedforward net­

works in the literature is the perceptron, developed by Rosenblatt [1958]. Both the 

perceptIOn and the networks formed out of it are discussed in more detail in the next 

chapter. 

3.4.1 Single-layer feedforward network 

Neurons are generally organised in the form of layers. The simplest is a single-layered 

network consisting of an output layer of neurons and a number of input nodes. Note 

that some sources in the literature count the 'layer' of input nodes as part of the layers 

making up an ANN (in this way the above mentioned network would become a 2-layered 
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ANN). In this text only layers consisting entirely of neurons are counted when describ­

ing an ANN. This is a leedlorward type neural network because the input progresses 

forward through the layer to the output without feedback. Figure 3.4 depicts the case 

for R inputs and 8 output nodes (neurons). For the neural network of Figure 3.4 the 

output of neuron k is given by 

R 

ak 1 (I: WkjPj + bk) for k = 1,2, ... ,8. (3.9) 
j=l 

In matrix notation this can be written as 

a=f(Wp+b) (3.10) 

where the input vector is defined as p = [PIP2'" PR]T and the output vector as 

a = [alaz··· as]T. The synaptic. weight matrix connecting each input node to each 

neuron in the output layer is given by the weight matrix 

W= (3.11) 

WSl WS2 WSR 

and the bias terms are given by 

(3.12) 

It can be seen that the row indices of the elements of matrix W indicate the destination 

neuron associated with that weight, while the column indices indicate the source of the 

input for that weight. 

The matrix operator f of activation functions 1 is given by 

f[·] = 

10 0 

o 10 

o o 

o 
o 

10 

(3.13) 

w here each activation function 1 (-) on the diagonal of the matrix operates component­

wise on the net inputs of each neuron (nk). 
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Output layer 

Figure 3.4 A single-layer feedforward neural network. (This can also be termed a two layer ANN if 
the input nodes are counted as a layer). 

3.4.2 Multi-layer feedforward network 

The more commonly used feedforward neural network structure is that of the multi­

layer feedforward neural network. This arrangement has a number of hidden layers 

composed of hidden neurons or hidden nodes. One or more hidden layers can be added 

between the external input and the network output and each hidden layer can have 

different numbers of neurons. The presence of the hidden layer (or layers) enables the 

network to extract higher-order statistics. 

In the multilayer feedforward network, the outputs of each layer are the inputs to 

the next. 

III Fully connected 

Figure 3.5 depicts a three layer feedforward network with R input nodes, 81 

neurons in the 1st layer (lst hidden layer), 82 neurons in the 2nd layer (2nd 

hidden layer) and 83 neurons in the output layer. For brevity the network in 

Figure 3.5 is referred to as a R-81-82-83 network. The network depicted is said 

to be fully connected in the sense that every node in each layer of the network is 

connected to every node in the next. 

The output of neuron l in the output layer of the neural network depicted in 

Figure 3.5 is given by 

af = f3 (f Wfkf2 (~W~jf1 (t W}iPi + b}) + b~) + bf) for l = 1,2, ... ,83 
k=1 J=1 t=1 

(3.14) 
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1st Hidden layer 2nd Hidden layer Output layer 

Figure 3.5 A fully connected (R-Sl-S2-S3) feedforward neural network. 

where superscripts have been used to identify the layers to which each weight 

matrix and bias vector belongs, such that the weight matrix for the 1st hidden 

layer is given by WI and for the 2nd hidden layer is W 2 and so on. In matrix 

notation the output of the neural network is given by 

(3.15) 

Note that it is not necessary to keep the same activation function through the 

entire neural network. The activation functions can be different for different 

layers as denoted by fl, f2 and f3. 

II Partially connected 

If some synaptic links are missing, then the network is said to be partially con­

nected, as shown in Figure 3.6. The network depicted is said to be locally con­

nected where each neuron in the hidden layer is connected to a local set of source 

nodes that lies in the immediate neighbourhood. The neurons in the output layer 

are likewise connected to a local set of hidden neurons. Such a specialised struc­

ture in a neural network normally arises when some a priori information is known 

about the nature of the input signal to the network. 

3.4.3 Recurrent networks 

A recurrent neural network is different to a feedforward neural network in that it 

possesses at least one feedback loop. A simple example of a recurrent neural network 

is given by Figure 3.7. The figure depicts a network with both hidden neurons and 
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Output layer 

Hidden layer 
Input layer 

Figure 3.6 A partially connected feedforward neural network. 

output neurons, both of which have feedback connections to some of the input nodes. 

The type of feedback depicted here is ter!lled self-feedback as the output of a neuron is 

being fed back into its own input: The feedback loops involve the use of the unit-delay 

elements given by Z-l. 

Outputs 

Figure 3.7 A recurrent neural network. 

3.4.4 Lattice structured networks 

Lattice strnctnred networks consist of neurons arranged in one-, two- or higher-dimensio­

nal arrays. In each case the input nodes supply the input to every neuron in the array. 

The dimension of the array refers to the dimensions of space in which the arrangement 

of neurons exists. Figure 3.8a depicts a one-dimensional lattice of neurons whereas Fig­

ure 3.8b depicts a two-dimensional lattice. In each case the input vector is presented 

to each neuron in the lattice. 
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A lattice network is really a single-layer feedforward network. The only difference 

is that the spatial location of each neuron in the single-layer network now has a signif­

icance. The spatial organisation of neurons and their response is an important feature 

of certain ANNs; an example is the self-organising feature map which is discussed in 

more detail in Chapters 5 and 6. 

(a) 

(b) 

Figure 3.8 Lattice structured networks. (a) A one-dimensional lattice and (b) a two-dimensional 
lattice. 

3.5 THE LEARNING PROCESS 

Fundamental to a neural network is the ability to learn from its environment and to 

improve performance through the process of learning. Learning in neural networks takes 

place iteratively through adjustments to the synaptic weights and biases and ideally 

the network becomes more knowledgeable about its environment after each iteration 

of the learning process. The learning process can be broken down into a sequence of 

three steps: 

1. Stimulation. The network is stimulated by inputs from its operating environment. 

2. Response. The network alters its response to inputs from the operating environ­

ment due to the changes in its synaptic weights and biases. 

3. Change. The network undergoes change as a result of its stimulation. 
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If we let Wkj(n) denote the value of synaptic weight Wkj at time n, applying an ad­

justment b..wkj(n) at time n to synaptic weight Wkj yields an updated value for the 

synaptic weight given by Wkj(n + 1) such that 

(3.16) 

A learning algorithm is a prescribed set of well-defined rules for the solution of 

a learning problem. There is no unique learning rule which encompasses the training 

of all neural networks; there are rather a diverse number of learning algorithms all of 

which have their own advantages and disadvantages, and which differ in the way in 

which the adjustment b..wkj is formulated. The description of learning algorithms, is 

split in the remainder of this section into learning paradigms and learning rules. 

3.5.1 Learning paradigms 

3.5.1.1 Supervised learning 

Consider an environment which is unknown to a neural network but which is shared 

by a teacher who has knowledge of the environment represented by a set of input­

output examples. If both the neural network and the teacher are exposed to a training 

vector (example) drawn from the environment, the teacher, by virtue of knowledge of 

the environment, is able to provide a desired response to the neural network for that 

particular input vector. It is then the responsibility of the learning algorithm to ad­

just the network parameters using the information both in the input vector and in the 

difference between the desired response and the actual response of the network, the 

error signal. By carrying out these adjustments in an iterative fashion the neural net­

work comes to emulate the teacher (or expert); this constitutes the supervised learning 

paradigm (see Figure 3.9). In other words, the neural network comes to have as much 

knowledge of the environment as the teacher (or at least knowledge which is optimal 

in some statistical sense). Once this condition is reached, the network is sufficiently 

trained and so supervised learning is stopped and the neural network is left to respond 

to the environment on its own (i.e., unsupervised) without any further synaptic weight 

adj ustments. 

Supervised learning can take place off-line or on-line. For off-line learning, the 

neural network is trained until the desired performance is accomplished and then 

learning is stopped and the network used without any further changes to the synaptic 

weights. In on-line learning, learning is accomplished in real time, meaning that the 

network parameters are constantly changing. 

A disadvantage of supervised learning is that, without a teacher or expert, no new 
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Figure 3.9 Block diagram of supervised learning. 
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strategies can be learned if they are not covered by the set of examples used to train 

the network in the first place. 

3.5.1.2 Reinforcement learning 

Reinforcement learning is the on-line learning of an input-output mapping through a 

process of trial-and-error designed to maximize a scalar performance index called a 

reinforcement signal. Early studies in artificial intelligence by Minsky [1961] seem to 

have coined the term "reinforcement learning" , although the basic idea of reinforcement 

has its origins in experimental studies of animal learning in psychology. The following 

is Thorndike's classical law of effect [Thorndike 1911] which is particularly illuminating 

in this context: 

"Of several responses made to the same situation, those which are accom­

panied or closely followed by satisfaction to the animal will, other things 

being equal, be more firmly connectod with the situation, so that, when it 

recurs, they will be more likely to recur; those which are accompanied or 

closely followed by discomfort to the animal will, other things being equal, 

have their connections with that situation weakened, so that, when it recurs, 

they will be less likely to occur. The greater the satisfaction or discomfort, 

the greater the strengthening or weakening of the bond." 

The paradigm of reinforcement learning can be of a nonassociative type, in which 

the reinforcement signal is the only input that the learning system receives from its 

environment, or an associative type where the environment provides additional forms 

of information other than the reinforcement signaL 
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3.5.1.3 Unsupervised (self-organised) learning 

In unsupervised, or self-organised, learning there is no external teacher with knowledge 

of the environment to oversee the learning process, as can be seen in Figure 3.10. This 

means that there are no specific examples of the input-output relationships to be drawn 

from the environment. In this case the parameters of the network are altered in order 

to optimise a task-independent measure, this being a measure of the quality of repre­

sentation that the network is required to learn. Once the network has become tuned 

to the statistical regularities of the input data, it develops the ability to form inter­

nal representations for encoding features of the input. By rights, calling unsupervised 

learning 'learning without a teacher' is not the most appropriate terminology, because 

learning without a teacher is not possible at all. Although the teacher does not have 

to be involved in every training step, they have to set goals even in an unsupervised 

learning mode. 

Environment !-1IiiIIIiIIi __ .... ~ 
P"" 

V~"" d,~,ibing I 
state of environment 

Network 

Figure 3.10 Block diagram of unsupervised learning. 

3.5.2 Learning rules 

3.5.2.1 Hebbian learning 

The oldest and most famous of all learning rules is Hebb's postulate of learning named 

after neuropsychologist Hebb [Hebb 1949]. The rule implements the interpretation of 

the classic statement: 

"When an axon of cell A is near enough to excite a cell B and repeatedly 

or persistently takes part in firing it, some growth process or metabolic 

changes take place in one or both cells such that A's efficiency as one of the 

cells firing B, is increased." 

The above statement is made in a neurobiological context. It essentially says that if 

two neurons on either side of a synapse are activated near simultaneously then the 

strength of that synapse is selectively increased, whereas for a synapse where the above 

does not happen, the synapse is selectively weakened. Such a synapse can be called a 

H ebbian synapse. 
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In mathematical terms, Hebb's postulate of learning can be formulated as follows 

(3.17) 

where Wkj(n) represents the synaptic weight connecting neuron j to neuron k at time 

n, L.).wkj(n) the adjustment applied to the synaptic weight at time n, ak(n) and pj(n) 

the output of, and input to, neuron k, respectively, at time n and Fh') is a function 

of both the presynaptic and postsynaptic activities. 

One mathematical interpretation ofthe postulate (Le., equation 3.17) is 

(3.18) 

where a is a positive constant that determines the rate of learning. Note that the 

expression given by Equation 3.18 actually extends Hebb's postulate beyond its strict 

interpretation. As the change in the weight is proportional to a product of the activity 

on either side of the synapse, not only is the weight increased when both ak and Pj are 

positive but it is increased when both are negative too. 

Since its inception, the Hebbian rule has evolved in a number of directions. In 

some cases the Hebbian rule needs to be modified to counteract unconstrained growth 

of synaptic weight values, which takes place when presynaptic and postsynaptic activ­

ities consistently agree in sign. Note that the Hebbian learning rule represents purely 

feedforward, unsupervised learning. However, by replacing the actual output ak in 

Equation 3.18 above with the desired output dk the Hebbian rule represents supervised 

learning. 

3.5.2.2 Error-correction learning 

When an input p(n) is applied at time n to a network in which neuron k is embedded, 

a response ak(n) is produced. If dk(n) denotes some desired response for neuron k at 

time n, then both p(n) and dk(n) constitute a particular example presented to the 

network at time n. Typically, the actual response ak (n) of neuron k is different from 

the desired response dk(n). Hence, we may define an error signal as the difference 

between the desired response dk(n) and the actual response ak(n), as shown by 

(3.19) 

The ultimate purpose of error-correction learning is to minimize a cost function based 

on the error signal ek(n), such that the actual response of each neuron approaches 
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the desired response for that neuron is some statistical sense. Once a cost function 

is selected, error-correction learning becomes strictly an optimization problem. A cri­

terion commonly used for the cost function is the mean-squared-error criterion (MSE 

criterion), defined as the mean squared value of the sum of squared errors 

(3.20) 

where E is the statistical expectation operator and the summation takes place over all 

neurons in the output layer of the network. Equation 3.20 assumes that the underlying 

processes are wide-sense stationary. 

Attempting to minimize the cost function J with respect to the network parameters 

leads to the method of gradient descent (Haykin [1991], Widrow and Stearns [1985]). 

However, since this optimization procedure requires knowledge of the statistical charac­

teristics of the underlying processes, which are generally not known, an approximation 

is made to the optimization problem by using the instantaneous value of the sum of 

squared errors afl the criterion of interest, 

(3.21) 

The network is then optimized by minimizing c(n) with respect to the network synaptic 

weights. This forms the basis of the error-correction learning rule, or the delta rule as 

it is also called, which states that the adjustment LlWkj(n) made to synaptic weight 

Wkj at time n is given by (Widrow and Hoff [1960]) 

(3.22) 

where a is a positive constant that determines the rate of learning. Note that the delta 

rule is covered in more detail in Chapter 4. 

To ensure stability of the learning process, care has to be exercised in the choice of 

the value assigned to the learning-rate parameter a. If a is small, the learning proceeds 

steadily but it may take a long time for the system to converge to a stable solution. 

a is large, then the rate of learning is accelerated but the danger that the learning 

process may diverge and of the system becoming unstable is increased. 

The error-performance surface, or the error surface, is a plot of the cost function 

versus the synaptic weights characterising the neural network. The error surface can 

be bowl-shaped with a unique minimum point (as is the case with a neural network 

consisting entirely of neurons with linear activation functions) as can be seen in Fig-
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ure 3.11a for a two-dimensional (two-weight) case, or else the error surface can have 

a global minimum as well as local minima (as is the case when the neural network 

consists of neurons with nonlinear activation functions) as in Figure 3.11b. For both 

cases, error-correction learning starts from an arbitrary point on the error surface (de­

termined by the initial values of the synaptic weights) and then proceeds to move in 

the direction of a minimum in an iterative fashion. 
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Figure 3.11 Performance error surfaces (two synaptic weights only) depicting (a) a unique global 
minimum and (b) both local and global minima. 

Many methods of minimizing the cost function exist such as the method of steepest 

descent, Newton's method and the conjugate gradient method. Error-correction learn­

ing also takes many forms such as the delta rule (mentioned above), the Widrow-Hoff 

learning rule (also known as the least-mean-square rule, and can be considered as a 

special case of the delta rule) and the perceptron learning rule [Haykin 1994]. Error­

correction learning along with methods of cost function minimization are discussed in 

more detail in Chapter 4. 
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3.5.2.3 Competitive learning 

As the name implies, in competitive learning the output neurons of a network compete 

amongst themselves to be the active neuron. So, whereas in a neural network based 

on Hebbian learning several output neurons may be active simultaneously, in the case 

of competitive learning only one output neuron may be active at anyone time. There 

is substantial evidence for competitive learning playing an important role in the for­

mation of topographic maps in the brain [Durbin et al. 1989] and recent experimental 

work by Ambros Ingerso et al. [1990] provides further neurobiological justification for 

competitive learning. 

There are three basic elements to a competitive learning rule, namely: 

1. A neural network based on competitive learning contains a set of neurons that 

are all the same except for some randomly distributed synaptic weights which 

respond differently to a given set of input patterns. 

2. A limit is imposed on the "strength" of each neuron. 

3. A mechanism that allows neurons to compete for the right to respond to a given 

subset of inputs, such that only one output neuron is active at a time (winner­

takes-all) . 

Figure 3.12 Inhibitory lateral connections in a neural network. 

In the simplest form of competitive learning, the neural network consists of a single 

layer of neurons each of which is fully cOIlllected to the input nodes. There may also 

be lateral connections amongst the neurons as shown in Figure 3.12. These lateral 

connectiOIh"l tend to be of an inhibitory nature, with each neuron tending to inhibit 

the neuron to which it is laterally cOIlllected. The lateral connections thus form lateral 

inhibition whilst the feedforward synaptic connections are excitatory. 
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For neuron k, say, to be the winner, its net internal activity nk for a specified 

input vector (or pattern) p, must be the largest amongst all the output neurons in 

the network. The output signal ak of the winning neuron is set to 1 while the output 

signals of all others (the losers) are set to zero. 

The change b..wkj applied to synaptic weight Wkj according to the standard com­

petitive learning rule is defined by 

if neuron k wins the competition 

if neuron k loses the competition 
(3.23) 

where a is the learning rate parameter. This rule has the overall effect of moving the 

synaptic weight vector Wk of winning neuron k towards the input pattern p. 

The competitive learning rule is also known as the winner-take-all learning rule 

which is essentially an unsupervised learning rule. 

Table 3.2 provides a summary of learning rules and their properties including the 

particular learning paradigm as well as the requisite activation function for the neurons 

in each particular network. 

! Learning rule Weight adjustment Paradigm Act. fcn. 
Hebbian learning 
-+ Hebbian rule D.wkj = aakPj Unsupervised Any 
Error correction learning 
-+ delta rule D.Wkj a(dk - ak)pj Supervised Continuous 
-+ LMS rule D.wkj = 2a(d" - (WkP))Pj Supervised Continuous 
-+ Perceptron rule D.wkj a(d" - sgn(wkP»pJ Supervised Hardlimiting 
Competitive learning 

-+ winner-takes-all rule { a(p· - wk') k winner 
Unsupervised Continuous D.wkj = 0 J J 

otherwise 

Table 3.2 A summary of the learning rules and their properties. 

3.6 SUMMARY 

This chapter consists mainly of an introduction to the concept of artificial neural net­

works, their various possible architectures and the means of learning or acquiring knowl­

edge. In order to conclude the chapter a chart is shown in Figure 3.13 indicating the 

classification of the most common neural network architectures. The chart is by no 

means exhaustive and is intended simply to show the great diversity of the neural 

architectures and their associated learning algorithms. 

There can be numerous ways of grouping neural network architectures together. 

One meaningful basis for classification is to differentiate neural networks by their learn-
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ing paradigm, the main forms of learning being supervised, unsupervised and reinforce­

ment learning. Another way of grouping can be to group networks in terms of their 

input and output values as discrete (binary) or continuous. 

Hopfleld 

Hamming 

ANN Architecture 

Adaptive resonance 
theory 1 

ADALINE 

Perceptron 

Multilayer perceptron 

RlIdial basis functions 

Learning Vector QuantisatiDn 

Figure 3.13 A summary of artificial neural networks. 

Self-organising feature map 

Adaptive resonance theory 2 

Although the many neural network architectures that are around provide different 

tools in the solution of different problems, neural networks are not able to perform all 

tasks. For example, they are particularly poor in formal logic and arithmetic and they 

are not good in storing and retrieving large amounts of information with a high degree 

of accuracy [Haykin 1994], [Hagan et al. 1996]. 

While neural networks can in some cases effectively provide a 'black box' solution to 

a problem, it is difficult to determine what a network has learnt because the knowledge 

of the network is embodied in a large number of synaptic weights and biases. As a 

result the theoretical and practical limitations of neural networks are not that well 

understood at this time. For example, it is unclear as to what architecture is best 

suited for a given problem. In the case of the multilayer perceptron, it is known that 

a two-layer network (input nodes, 1 hidden layer and an output layer) can separate 

arbitrary c1a..<>ses of input patterns, however it is not known how many neurons should 

be used in each layer, and what activation functions should be used to guarantee good 

performance of the network [Hagan et al. 1996]. 
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PERCEPTRON NETWORKS 

4.1 INTRODUCTION 

Whereas in the previous chapter artificial neural networks were introduced as a concept 

along with methods of training neural networks in general, attention in this chapter 

turns to some specific architectures 'and the particular learning algorithms used to train 

each. The chapter introduces neural network architectures evolving from Rosenblatt's 

single-layer perceptron [Rosenblatt 1958] and the learning algorithms associated with 

each network architecture. The similarities between the single-layer perceptron and the 

adaptive linear combiner are shown along with the major limitations of each. Finally 

the multi-layer percept ron is introduced along with the now ubiquitous backpropagation 

algorithm which can be used to train it. Methods of making the algorithm faster and 

making sure of convergence are also discussed. 

4.2 THE SINGLE-LAYER PERCEPTRON 

Frank Rosenblatt and several other researchers developed the single-Iayerperceptron 

(SLP then known simply as "perceptron") in the late 1950s. Rosenblatt's key con­

tribution was the introduction of a learning rule for training perceptron networks to 

solve pattern recognition problems [Rosenblatt 1958]. The SLP is inherently limited, 

however, as was widely publicized by Minsky and Papert [1969]. The limitations of the 

SLP and its learning rule were not overcome until the 1980s with the introduction of 

a learning rule capable of training multi-layer perceptron networks. Nonetheless, the 

SLP is still considered a fast and reliable network for a specific class of problems. 

4.2.1 SLP architecture 

The SLP is shown in Figure 4.1, with an arbitrary number of neurons S in the output 

layer, each with a hardlimiting activation function. The output of the network is given 
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by 

R 

ak ICI:J WkjPj + bk), k = 1,2, ... , S, (4.1) 
j=l 

where 10 represents the hardlimiting activation function of Equation 3.5 and p the 

input vector of order R presented to the network. 

Figure 4.1 Single-layer perceptron (SLP) architecture. 

Let us consider first the case of a two-input SLP with a single output neuron 

(R = 2, S = 1). The output of this network is determined by 

2 

a = 1('2:, WjPj + b) 
j=l 

- I(WIPI + W2P2 + b). 

(4.2) 

(4.3) 

The decision boundary produced by the neuron is determined by the input vectors for 

which the net input n is zero, that is, 

n WIPI + W2P2 + b = O. (4.4) 

Figure 4.2 depicts the two input, single neuron SLP and its corresponding decision 

boundary when 

WI 1,W2 = 1,b =-1. (4.5) 
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The shaded region of Figure 4.2 represents an output of 1 for any input vector within 

the shaded region and an output of zero otherwise. 

b 

(a) 

a 

PI 

(b) 

Figure 4.2 A two input single neuron perceptron and the decision boundary corresponding to w1 = 1, 
w2 = 1 and b = -1. 

For multiple neuron SLPs, there will be one decision boundary for each neuron. 

The decision boundary for neuron k will be defined by 

R 

L 'WkjPj + bk = O. 
j=l 

(4.6) 

For S neurons in the network, input vectors can be classified into a total of 28 possible 

categories. 

4.2.2 Percept ron learning rule 

The perceptron learning rule is a supervised learning rule and so requires a training set 

of input vectors along with a corresponding set of desired outcomes, such as 

(4.7) 

where Pq is an input vector to the network and d q is the corresponding desired output 

in a training set of Q vector pairs. 

The perceptron learning rule is a form of error-correction learning, so for a multiple 

neuron perceptron and with an error vector defined by 

e=d-a (4.8) 
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the perceptron rule is given by 

W(k + 1) = W(k) + epT (4.9) 

and 

b(k + 1) = b(k) + e, (4.10) 

where W(k + 1) is the updated weight matrix and b(k + 1) the updated bias vector 

for discrete time step k + 1. 

The activation function used in the study here has been the hardlimiting activation 

function as used by the McCulloch-Pitts model of a neuron [McCulloch and Pitts 1943]. 

It is possible to use other 'soft-limiting' activation functions, such as the log-sigmoid 

activation function, and it is tempting to think that that the network might do better 

in such a case. It turns out, however, that regardless of the type of nonlinearity 

used, an SLP can perform pattern classification only on linearly separable patterns 

[Lippmann 1987]. 

4.3 THE ADAPTIVE LINEAR COMBINER 

In 1960 Bernard Widrow and graduate student Marcian Hoff, inspired by the SLP 

network, introduced the ADALINE (ADAptive LInear NEuron) network, and a learning 

rule which they called the LMS (Least Mean Square) algorithm [Widrow and Hoff 1960]. 

The LMS algorithm is also known as the Widrow-Hofflearning algorithm or as a special 

case of the Delta rule. 

The ADALINE is very similar to the SLP, except that its activation function is 

linear instead of the hard-limiter of the SLP. They both also suffer from the same 

inherent limitation, in that they both can only solve linearly separable problems. The 

LMS algorithm is, however, more powerful than the percept ron learning rule. While 

both algorithms are guaranteed to converge to a solution that correctly categorizes the 

training patterns (assuming linear separability), the resulting network for the SLP can 

be sensitive to noise as the patterns often lie close to the decision boundaries. The 

LMS algorithm is less susceptible to noise as it tries to move the decision boundaries 

as far from the training patterns as possible by minimizing the mean square error. 
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4.3.1 The ADALINE architecture 

The ADALINE network shown in Figure 4.3 has the same bask structure as the per­

ceptron network, the only difference being the linear activation function. 

The output of the network is given by 

R 

ak = f(2: WkjPj + bk) 
j=1 

R 

2: WkjPj + bk 
j=1 

(4.11) 

where f denotes the linear activation function f(n) = 1 and p is an input vector of 

order R. 

Considering the case of a single ADALINE with two inputs (R 2, S = 1). The 

output of the network is given by 

2 

a 2: WjPj + b 
j=1 

= WIPI + W2P2 + b. 

So, as for the SLP, the ADALINE has a decision boundary at 

WIPI + W2P2 + b = 0 

(4.12) 

(4.13) 

(4.14) 

and so the ADALINE can be used to classify objects into two categories if the objects 

are linearly separable. 

Figure 4.3 Adaptive linear combiner architecture. 
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4.3.2 LMS algorithm 

The LMS algorithm is a supervised learning rule and so requires a training set consisting 

of input patterns and corresponding desired outcomes as in Equation 4.7. Consider first 

the case of a single neuron. To simplify the development of the LMS algorithm the 

weights and bias will be lumped into one vector, w, thus 

(4.15) 

Similarly the input vector p will be re-written as 

(4.16) 

In this way the output of the network can be given by 

(4.17) 

The mean square error (MSE) for the ADALINE is then given by 

(4.18) 

where E[·] is used to denote expected value and the expectation is taken over all sets 

of input/output pairs. 

Equation 4.18 can be expanded to give: 

F(w) E[d2 - 2dwT P + wT ppTw] 

E[d2] 2wTE[dp] +wTE[ppT]w. 

which can be re-written in the following convenient form 

(4.19) 

(4.20) 

(4.21) 

where c E[~], h = E[dp] and R = E[ppT]. Here the vector h gives the cross­

correlation between the input vector and the desired outcome, while R is the input 

correlation matrix. 

The stationary point of the performance index can be located by finding the gra-
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dient of Equation 4.21 and equating it to zero 

\IF(w) = \I (c 2wTh + wTRw) -2h + 2Rw O. (4.22) 

Therefore, if the correlation matrix is positive definite there will be a unique stationary 

point, which will be a strong minimum at: 

( 4.23) 

The existence of a unique solution depends only on the correlation matrix Rand 

therefore the characteristics of the input vectors. If we could calculate the statistical 

quantities hand R, we could find the minimum point directly from Equation 4.23. 

Generally speaking, however, it is not desirable to calculate hand R and even less so 

to calculate R -1. Widrow and Hoff had the key insight to estimate the mean squared 

error F(w) by 

(4.24) 

where the expectation of the squared error has been replaced by the squared error at 

iteration k. Using the gradient of the estimate, 

( 4.25) 

allows an approximate steepest descent algorithm to be generated as follows. 

2e(k) for j = 1,2, ... R, ( 4.26) 

and 

8e2(k) 
--

8b 

2e(k) 8~~) . (4.27) 
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The partial derivative of e(k) with respect to the weight Wj is given by 

This simplifies to 

In a similar way 

8e(k) 8[d(k) - a(k)] 
8w' J 8Wj 

a:j [d(k) - (t, WiPi(k) +b) ]. 

88
e(k) = -pj(k). 
W· 

J 

8e(k) = -1 
8b . 

So the gradient of the squared error at iteration k can be written 

VF(w) = Ve2 (k) = -2e(k)p(k). 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

This approximation to V' F(w) can now be used in the steepest algorithm which is of 

the form 

(4.32) 

where 0: is a constant which represents the learning rate. So, substituting V F( w) from 

Equation 4.31, for V'F(w) gives 

Wk+l = Wk + 20:e(k)p(k) (4.33) 

or 

w(k + 1) = w(k) + 20:e(k)p(k), (4.34) 

and 

b(k + 1) b(k) + 20:e(k). (4.35) 
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These last two equations specify the LMS algorithm for the case of a single neuronj for 

multiple output neurons the LMS algorithm can be conveniently expressed as follows: 

W{k + 1) = W{k) + 2o:e{k)pT{k), ( 4.36) 

and 

b{k + 1) = b{k) + 2o:e{k). (4.37) 

The LMS algorithm has established itself as an important functional block of adap­

tive signal processing. It offers some highly desirable features: 

" Simplicity of implementation (in software or hardware form) . 

• Ability to perform satisfactorily in an unknown environment. 

" Ablity to track time variations of input statistics. 

While the LMS algorithm has been presented thus far as a filter operating on a number 

of input channels at time instant k, it can be applied to temporal filtering equally well 

following the introduction of a tapped-delay-line to give a tapped-delay-line filter. In 

such a case, the input vector p{ k) is then defined 

p(k) = [P(k),p(k - 1), ... ,p(k - T + 1), l]T (4.38) 

for a tapped-delay-line with T taps. 

4.4 THE MULTI-LAYER PERCEPTRON 

Both the perceptron learning rule and the LMS algorithm are designed to train single­

layer (perceptron-like) neural networks. These have the drawback that they can only 

solve linearly separable classification problems. Both Rosenblatt and Widrow knew 

about this and knew that going to multiple layers could overcome this, but they were 

not able to generalize their algorithms to train these more powerful networks. In 

the mid-1980's the backpropagation algorithm was advanced [Rumelhart and McClel­

land 1986] and soon became the most widely used algorithm for training the multi-layer 

perceptronj it still is today. 

Multi-layer perceptrons (MLPs) have a set of input nodes, one or more hidden 

layers of computation nodes and an output layer of computation nodes. The input 

vector propagates through the network in a forward direction on a layer-by-layer basis. 
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The backpropagation algorithm (or error backpropagation algorithm) is based on 

error correction learning and supervised training. The algorithm consists of two princi­

pal actions: a forward pass through the layers of the MLP followed by a backward pass 

through the MLP. During the forward pass an input vector is applied to the network 

input layer and it propagates through the network in a forward direction layer-by-Iayer 

until it produces a set of outputs at the output layer; these constitute the actual re­

sponse of the network. This is then compared with the desired response to generate an 

error signal and this is propagated back through the network layer-by-Iayer. During 

the forward propagation, the network parameters are fixed, but during the backpropa­

gation of the error, the synaptic weights of the network are adjusted so as to minimize 

the error. 

A MLP has three distinctive characteristics: 

l. Each neuron in the network is generally modelled with a nonlinear activation 

function. What is more, the nonlinear activation function must be smooth (i.e., 

it is differentiable everywhere) as opposed to the hardlimiter of the SLP. The 

sigmoid activation function is by far the most popular in use. If the layers of 

the MLP did not have nonlinear activation functions, the whole MLP could be 

reduced to an equivalent SLP. 

2. There are one or more hidden layers in the MLP which enable the network to 

learn complex tasks by extracting progressively more meaningful features from 

the input vectors. 

3. There is a high degree of connectivity in the network. A change in the connectivity 

of the network requires a change in the population of synaptic connections or a 

change in their weights. 

4.4.1 The multi-layer perceptron architecture 

Figure 4.4 depicts a 3-layer perceptron (1 output layer and 2 hidden layers). Each layer 

can have a different number of neurons and even a different activation function. The 

MLP depicted may therefore be denoted a R-S1-S2-S3 network. As before, superscripts 

are used to denote the layer to which each vector/matrix belongs, so the overall output 

of the MLP is given by 

(4.39) 
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Figure 4.4 A three layer (R-Sl-S2-S3) perceptron. 

4.4.2 Backpropagation algorithm 

The backpropagation algorithm is a generalization of the LMS algorithm and uses the 

same performance measure, i.e., the mean square error. The network needs to be 

presented with a set of examples of proper network behavior as given in Equation 4.7, 

where Pq represents an input vector to the system of order Rand d q is the corresponding 

desired response vector of order 83. The performance measure is given by: 

F(w) = E[eT e] = E[(d - af(d - a)], ( 4.40) 

where w is the vector of network weights and bias as defined by Equation 4.15. As 

with the LMS algorithm, the performance measure is approximated by replacing the 

expectation of the squared error by the squared error at iteration k, so that 

F(w) = eT(k)e(k) = (d(k) - a(k)f(d(k) - a(k)). (4.41) 

Using the steepest descent algorithm for the approximate mean square error gives 

wij(k + 1) (4.42) 

bi(k + 1) (4.43) 

where wij and bi represent the synaptic weight and bias, respectively, of layer m, 

connected to neuron i, and a is the learning rate. 

Because the error is not an explicit function of the weights in the hidden layer, the 
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chain rule must be used to calculate the derivatives; this is where the backpropagation 

algorithm begins to differ from the LMS algorithm. The derivatives in Equation 4.42 

and Equation 4.43 can be rewritten as 

aF 
aw1!~ 

ZJ 

aF 
ab'Tft z 

where the input to neuron i at layer m is given by 

Therefore 

sm-l 

m L m m-l +bm n· = w··a· . Z ZJ J Z • 

j=l 

an'Tft 
_2_ 

aw'fJ?-
ZJ 

a TTL 

..!!L 
ab'Tft 

2 

1. 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

If we now define the sensitivity of F to changes of the input to the ith neuron in layer 

mas 

then Equation 4.44 and Equation 4.45 can be simplified to 

aF s'Tfta"!l-l = 
awi] 2 J ' 

aF siT!· 

The approximate steepest descent algorithm can now be expressed as 

wi](k + 1) -

bi(k+1) -

wi](k) as'Tfta"!l-l 
Z J ' 

( 4.49) 

( 4.50) 

(4.51) 

( 4.52) 

( 4.53) 
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In matrix form this becomes 

where 

Wm(k) - asm(am-1)T, 

bm(k) - asm, 

8P 
8nm 

aft 
anr' 
aF 
anr 
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(4.54) 

(4.55) 

( 4.56) 

We now have to calculate the sensitivities sm, and in order to do so we must use the 

following Jacobian matrix: 

an;n+l anm +1 
an~' ~ 2 

8nm+1 
an~+l an2n+1 
an"!' an'[{' 

8nm 

a m+l 
n.s:m+l anm +1 

.s:m+l 
an"!' anr 

Considering the i, lh element of the matrix, we have 

where 

8n'f!1 
J 

8n'f!1 
J 

8fm(nm) 
f'm( 'f!1) = j nJ 8 m . n· 

J 

(4.57) 

(4.58) 

(4.59) 
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So the Jacobian matrix can be expressed as 

(4.60) 

Using the chain rule, the sensitivity can be rewritten in the form 

8ft 

8nm 

(
8nm+l) 8ft 
8nm 8nm+1 

Fm(nm)(Wm+!)T 8ft 
8nm+1 

Fm (nm) (Wm+! )T sm+!. (4.61) 

It is this recurrence relation which give~ the backpropagation algorithm its name, as 

the sensitivities are propagated backward through the network from the last layer to 

the first layer: 

(4.62) 

The starting point, sM, for the recurrence relation of Equation 4.62 is obtained as 

follows: 

sJ:! 
8ft 

Z 8n J:! 
Z 

8(d -a)T(d-a) 
8n J:! z 

8 M 2 8~j=1(dj - aj) 

8n J:! 
Z 

8a' 
(4.63) -2(d. - a·)_Z 

Z Z 8n J:!' 
Z 

Since 

8a 8aJ:! 
Z 

8n J:! 
Z 

8n J:! 
Z 

8fM(nr) 

8n J:! 
Z 

jM(nr), (4.64) 
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we can write 

or 

(4.65) 

M 'M M 
S -2F (n )(d - a). (4.66) 

The complete backpropagation algorithm then consists of the following steps: 

1. Present the input vector to the network, and propagate forward through the 

network: 

p, 

fm+1(Wm+lam + b m+1) for m 0,1, ... , M - 1, 
( 4.67) 

2. Now propagate the sensitivities backward through the network using Equation 4.66 

and Equation 4.61. 

3. Finally, update the weights and biases of the network using the approximate 

steepest descent rule, Equation 4.54 and Equation 4.55. 

4.4.3 Using the backpropagation algorithm 

4.4.3.1 The nonlinear activation function 

The computation of the sensitivity sr for each neuron i in each layer m requires 

knowledge of the derivative of the activation function f(-) associated with that neuron. 

this derivative to exist, the activation function must be continuous. For the case 

of the sigmoid nonlinearity, the nonlinearity is of the form 

1 
f (nj) = -l-+-e-xp-(---n

J
-')' (4.68) 

where nj is the net internal activity of neuron j. The derivative is then given by: 

[1 + exp( -nj) J2 

( 
1 

1 + ex~( -nj)) (1 + ex~( -nj) ) 
(1- f(nj))f(nj). ( 4.69) 
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Any other nonlinear (or linear) function can be used as long as it is differentiable. 

4.4.3.2 Rate of learning 

The backpropagation algorithm uses the method of approximate steepest descent to 

minimize the squared error of the network. The synaptic weights and biases are changed 

in such a way as to minimize this error, the amount of change is governed by the 

learning rate CY. The smaller the learning rate, the smaller the changes will be to the 

synaptic weights and biases from one iteration to the next and the smoother will be 

the trajectory in 'weight space'. This will be coupled, however, with a slower rate of 

learning. Making the learning rate too large, although speeding up the learning process, 

results in large changes in synaptic weights and biases which may cause the network to 

become unstable. So a learning rate must be found which results in adequate training 

speed while keeping the network stable. 

4.4.3.3 Choice of network architecture 

As stated earlier, multi-layer networks can be used to approximate almost any function, 

if they contain enough neurons in the hidden layers. The problem is that we cannot say, 

in general, how many layers or how many neurons are necessary for adequate perfor­

mance. It is safe to say, however, that as the complexity of the system to be modelled 

increases, the number of hidden neurons required will be greater. Note however that 

having too many neurons can result in overfitting of the data [Hagan et al. 1996]. 

Figure 4.5 illustrates the network response of a 1-81-1 MLP with sigmoid activation 

functions in the hidden layer and a linear neuron in the output layer. The network is 

set the task of representing the function g(p) given by 

9 (p) = 1 + sin (6; p), for - 2 So p So 2. (4.70) 

The figure illustrates the network response as the number of neurons in the hidden layer 

is increased. Unless there are at least 5 neurons in the hidden layer the network cannot 

adequately represent g(p). It is clear that for the 1-81-1 network with sigmoid type 

activation functions and a linear output neuron, a response can be produced which is 

a superposition of 81 sigmoid functions. For functions which have a greater number of 

inflection points, more neurons will be required in the network. 
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Figure 4.5 The effect of increasing the number of hidden neurons in a 1-Sl-1 network. As the 
number of hidden neurons is increased, the network output approximates the input data better. 
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4.4.3.4 Convergence 

In the previous subsection, we have seen how the backpropagation algorithm is capable 

of producing network parameters that minimize the mean squared error, although the 

network response did not give an accurate approximation to the desired function. This 

occurred because the performance of the network was inherently limited by the number 

of hidden neurons it contained. It is also possible to have networks which, although 

capable of approximating the desired functions, do not produce network parameters 

that accurately approximate the function, Le., they do not converge. 

Figure 4.6 illustrates two solutions to a particular example where a MLP network 

is to approximate a function, g(p), given by: 

g(P) = 1 + sin{1fp) for -2 ~ p ~ 2. (4.71) 

To approximate this function a 1-3-1 network was used with sigmoid activation func­

tions in the neurons of the hidden layer and a linear activation function for the single 

output neuron. Figure 4.6a represents a case where the algorithm converged to a so­

lution that minimizes the mean square error and the final solution results in a good 

approximation of the desired signaL Figure 4.6b represents a case where minimizing the 

mean square error does not result in a good approximation of the desired signal, this 

using the same network architecture as before. The only difference between the two so­

lutions is the initial condition. From one initial condition the algorithm converged to a 

global minimum, while from another initial condition the algorithm converged to a local 

minimum, which consequently meant that the actual response is a poor representation 

of the desired response of the network. 

3------~------~----~----__, 

-0.5 ·0.5 

·1L-----~------~-----~----~ -1~----~-·························~----~----~ 

·2 ·1 o 2 ·2 ·1 o 2 

(a) (b) 

Figure 4.6 Convergence to different minima with a 1-3-1 MLP. (a) Global minimum and (b) local 
minimum. 

It is important to note that such a problem could not have occurred with the LMS 
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algorithm. The mean square error performance index for the ADALINE network is a 

quadratic error surface with a single minimum point, so the LMS algorithm is guaran­

teed to converge to the global minimum point, provided a small enough learning rate is 

used [Hagan et al. 1996]' [Widrow and Stearns 1985]. As the mean square error perfor­

mance index for the multi-layer perceptron is generally much more convoluted, often 

with many local minima, the convergence of the backpropagation algorithm is not an 

absolute guarantee that the optimum solution has been reached (i.e., the global mini­

mum has been reached). It is always best to try different initial conditions in order to 

ensure that an optimum solution has been obtained [Hagan et al. 1996], [Haykin 1994]. 

4.4.3.5 Generalization 

In most cases the multi-layer perceptron is trained with a finite set of input vec­

tor/desired response pairs. The training set is usually representative of a much larger 

population of possible input vector/desired response pairs. An important requirement 

for the network is therefore that it can generalize well what it has learned to the total 

population. 

Consider the following example training set which is obtained by sampling the 

following function at discrete points between -2 and 2: 

(4.72) 

Figure 4.7a shows the response of a 1-2-1 network that has been trained on this data 

(11 input/output sets). The '+' symbols represent the training data and the dotted line 

depicts the response of the network to novel input data. We can see that the network 

response is an accurate description of g(P) using training set alone and that the network 

generalizes well to novel data. Figure 4.7b shows the response of a 1-9-1 network that 

has been trained on the same data set. Once more the network response is an accurate 

description of the training set data, however, the network does not generalize well at 

all to novel data. 

In the case of Figure 4.7b; as we have a 1-9-1 network we have a total of 28 

adjustable parameters (18 weights and 10 biases) whilst we have only 11 data points 

in the training set - so the 1-9-1 network has too much flexibility. The 1-2-1 network 

has only 7 parameters and therefore is much more restricted in the types of functions 

it can implement. 

This leads us to say that: For a network to be able to generalize, it should have 

fewer parameters than there are data points in the training set [Hagan et al. 1996]. 
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Figure 4.7 Network approximation of g(p) with (a) a 1-2-1 network and (b) a 1-9-1 network. 

4.4.3.6 Initial conditions 

It has already been stated that the conve~gence to a global minimum in the multi-layer 

perceptron network relies heavily on the initial conditions of the network. The choice 

of different initial conditions can lead to wildly varying outcomes for a given network. 

Ideally the initial conditions of the network, i.e., the initial values for the synaptic 

weights and biases, should be uniformly distributed inside a small range. The reason 

for making the range small is to reduce the likelihood of any neuron in the network 

becoming saturated. A saturated neuron is one whose response is constant for variations 

in net input (for the log-sigmoid type activation function, the output saturates at -1 

and + 1). If the neurons are in saturation, the backpropagation algorithm will produce 

small error gradients and hence little change will be made to the synaptic weights 

and biases, resulting in the network becoming 'stuck' at a particular error level. This 

corresponds to a "saddle-point" on the mean square error surface. However, it is not 

desirable to make the range of initial conditions too small, as it may in turn cause the 

error gradients to be small and result in slow initial learning. The best values to use to 

initialise the network, are those that place the net input of each neuron in the linear 

portion of the activation function, away from saturation [Nguyen and Widrow 1990]. 

4.4.4 Improving the backpropagation algorithm 

Although a major breakthrough in neural network research, the basic backpropaga­

tion algorithm is considered too slow for most practical applications. Several varia­

tions of the backpropagation algorithm exist and seldom is the algorithm used with­

out some form of heuristic technique being used in order to speed up the learning 

process ([Vogi et al. 1988], [Jacobs 1988], [Tollenaere 1990] and [Rigler et al. 1990]). 

Another way in which the algorithm is speeded up is to use alternative, numericalopti-
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mization techniques (i.e., techniques other than steepest descent) (e.g., [Shanno 1990], 

[Barnard 1992], [Battiti 1992] and [Charalambous 1992]). 

Heuristic modifications to the standard backpropagation algorithm, whilst often 

providing very fast convergence for some problems, are also coupled with two major 

drawbacks. The first drawback is that all modifications require that several parameters 

be set up, with the more complex modifications requiring quite a few parameters. The 

choice of the parameters is often highly problem dependent and the performance of 

the modified algorithm is quite often highly sensitive to the choice of these parameters. 

The second drawback is that the modified algorithms can sometimes fail to converge 

to a satisfactory solution on problems for which the standard algorithm will eventually 

find a solution. 

Although other numerical optimization techniques (other than steepest descent) 

can be used to alter the performance of the algorithm, it can still be described as 

"backpropagation" as the error is still propagated back through the layers of the net­

work. 

4.4.4.1 Momentum 

Figure 4.8 shows the mean square error performance surface of a 1-2-1 multi-layer 

perceptron with log-sigmoid type activation functions in each neuron. The figure illus­

trates the mean square error whilst only the synaptic weights given by wfI and Wil are 

adjusted, and the remaining network parameters are kept constant. 
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Figure 4.8 Mean square error surface versus wil and wtl for 1-2-1 network. 

Figure 4.9a shows the trajectory of the mean square error as the two parameters 

Wfl and Wil are adjusted. The initial condition is at label "x" and it can be seen 

that the algorithm does eventually converge to the optimal solution (given by the label 

"0") but convergence takes place after many iterations at this particular learning rate. 
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Figure 4.9b shows what happens if we were to increase the learning rate in order for the 

algorithm to converge faster. Whilst the algorithm converges faster whilst traversing 

the initial flat surface, once the algorithm reaches the narrow valley that contains 

the minimum point, the algorithm begins to diverge and hence the system becomes 

unstable. 
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Figure 4.9 Two backpropagation trajectories with (a) small and (b) large learning rates. 

Applying momentum to the algorithm has the effect of smoothing out the oscilla­

tions of the trajectory. Momentum is implemented in the form of a first-order low-pass 

filter, as follows: 

y(k) = ,y(k - 1) + (1 - ,)x(k), (4.73) 

where x(k) is the input to the filter, y(k) is the output and, the momentum coefficient 

which is 

0:::;,:::;1. (4.74) 

At, = 0 no damping (or smoothing) takes place, whilst the closer that, gets to 1 the 

more damped the response gets and hence the slower the response. 

From Equation 4.54 and Equation 4.55 the synaptic weight update step is 

(4.75) 

(4.76) 
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The momentum modified backpropagation algorithm is thus given by 

,!J. Wm(k - 1) - (1 - ,)asm(am-1)T, 

,!J.bm(k - 1) - (1 - ,)asm. 

73 

(4.77) 

(4.78) 

Applying the momentum modification to the example of Figure 4.9b with the 

momentum set at , = 0.8 gives Figure 4.10. We can see here that the algorithm is now 

stable and results in a speedy convergence to the minimum point. In general it can be 

said that momentum allows us to use a larger learning rate (and hence speeding up 

convergence) whilst maintaining the stability of the algorithm. 
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Figure 4.10 Trajectory with momentum. 

4.4.4.2 Variable learning rate 

As has already been stated, the error surface for the multi-layer perceptron is convo­

luted, consisting of many local minima - as well as a global minimum. The error surface 

consists of many 'flat' surfaces (points where the gradient is equal to zero) as well as 

many 'steep' surfaces (points on the error surface which has large gradients). It is easy 

to see that the speed of convergence can be enhanced if the learning rate was allowed 

to increase on 'flat' parts of the error surface, and allowed to decrease on 'steep' parts 

- this could be done whilst still maintaining stability. The trick is to determine when 

to adjust the learning rate and by how much. 

For a very simple variable learning rate adaptive learning algorithm, the learning 

rate is adjusted according to the following rules [Vogi et al. 1988]: 

1. If the mean square error increases by more than some set percentage after a 

weight update, then the weight update is discarded, the learning rate is reduced 
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by some fixed amount and the momentum coefficient 'Y is set to zero (if it is used 

at all). 

2. If the mean square error decreases after a weight update, then the weight update 

is accepted and the learning rate is multiplied by same factor greater than one, 

and 'Y is set to its previous value if it had been set to zero. 

3. If the mean square error increases by less than the set percentage of 1 above, then 

the weight update is accepted but the learning rate and the momentum coefficient 

are left unchanged. 

Of the many variations in this variable learning rate algorithm, there is the delta­

bar-delta learning rule [Jacobs 1988]. In this version of the algorithm each synaptic 

weight or bias has its own learning rate. The learning rate for a particular network 

parameter is increased if the parameter change has been in the same direction for 

several iterations. If there is an alternating change in direction for the parameter, the 

learning rate is reduced. The delta-bar-delta rule is employed in the MRANC system 

described in Chapter 8. Another algorithm similar to the delta-bar-delta algorithm is 

the perSAB algorithm [Tollenaere 1990]. 

4.4.4.3 Pattern vs batch mode training 

In a practical application of the backpropagation algorithm, learning results from the 

many presentations of a prescribed set of training examples to the multi-layer percep­

tron. One complete presentation of the entire training set during the learning process is 

called an epoch. The learning process proceeds, from epoch to epoch, until the synap­

tic weights and biases stabilize and the mean square error over the entire training set 

converges to some minimum value. For a given training set, backpropagation learning 

may proceed in one or two basic ways: 

1. Pattern mode training. In pattern mode training synaptic weights and biases 

are updated after the presentation of each training example. 

2. Batch mode training. In batch mode training, updating of the synaptic weights 

and biases is held off until all input/output pairs forming an epoch have been 

presented to the network. 

Pattern mode training is preferred from an "on-line" training/operation point of 

view because it requires less local storage for each synaptic connection. What is more, if 

the input patterns are presented in a random order, the search in weight space becomes 

stochastic in nature, which makes it less likely for the backpropagation algorithm to 

be trapped in a local minimum. On the other hand, batch mode training does provide 

a more accurate estimate of the gradient vector. The final choice between pattern or 

batch modes of training is highly problem specific [Hertz et al. 1991]. 
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4.4.4.4 Conjugate gradient 

The standard backpropagation algorithm uses the method of steepest descent. While 

the steepest descent is possibly the simplest algorithm in numerical optimization, it is 

often slow in converging. Newton's method is much faster but requires that the Hessian 

matrix and its inverse be calculated [Hagan et al. 1996], [Zurada 1992]. A compromise 

can be found in the conjugate gradient algorithm. 

The conjugate gradient algorithm, as applied to a quadratic performance index, 

can be summarised in the following steps [Hagan et al. 1996]: 

1. Select the first search direction Po to be the negative of the gradient, that is, 

Po = -go, (4.79) 

where 

( 4.80) 

2. Take a step along the first search direction, selecting the learning rate ak to 

minimize the function along the search direction: 

(4.81) 

3. Select the next search direction, Pk, such that it is orthogonal to .0.gk using: 

(4.82) 

where 

( 4.83) 

4. If the algorithm has not converged, continue from step 2. 

So, the conjugate gradient works by carefully selecting the directions in which 

minimization takes place. In this way, for a quadratic error surface with n parameters, 

the exact minimum will be reached in at most n searches. However, the standard 

conjugate gradient algorithm cannot be applied directly to the multi-layer perceptron 

neural network because the performance index is not quadratic. This will affect the 
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standard algorithm in two ways, firstly the calculation of the learning rate at iteration 

k (ak) will have to be done using some iterative procedure for locating the minimum of 

a function in a specified direction, and secondly the exact minimum (global minimum) 

will not normally be reached in finite number of steps. 

In order to calculate optimum learning rate ak the Golden section search algorithm 

is used [Scales 1985]. To avoid the failure of the algorithm to converge to the minimum, 

the simplest method is to reset the search direction to the steepest descent direction 

(negative of the gradient) after n iterations [Scales 1985]. 

The algorithm generally converges in many fewer iterations than the standard 

(steepest descent) backpropagation algorithm, although this is a little deceptive as the 

algorithm requires much computation and iterative calculations for each iteration of 

the backpropagation algorithm. Nevertheless, the conjugate gradient backpropagation 

algorithm has been shown to be one of the fastest batch training algorithms for multi­

layer networks [Charalambous 1992]. 

4.4.4.5 The Levenberg-Marquardt algorithm 

Once more the backpropagation algorithm can be modified by choosing a numerical op­

timization technique other than steepest descent. The Levenberg-Marquart algorithm 

is a variation on Newton's method. The principle behind Newton's method is to locate 

the stationary point of the quadratic approximation of the performance index and step 

to that point in order to minimize the performance index. (If the performance index 

is quadratic by nature, as for the ADALINE, then Newton's method will converge in a 

single step). While Newton's method usually produces faster convergence than steepest 

descent, it is possible for the algorithm to oscillate or diverge, or to converge to a saddle 

point. Steepest descent, in contrast, is guaranteed to converge provided the learning 

rate is not too large. Another problem with Newton's method is that it requires the 

computation and storage of the Hessian matrix (\72 F(x)) as well as its inverse. The 

Levenberg-Marquardt algorithm uses the principle of Newton's method, i.e., approxi­

mates the performance as quadratic, but tackles the divergence problem possible with 

Newton's method by reducing to steepest-descent steps whenever divergence begins to 

occur. 

The algorithm works by starting off with a step calculated by an approximate 

Newton's method (Gauss-Newton), if this step does not yield a smaller value for the 

performance index another, smaller, step is taken and so on until eventually a decrease 

in the performance index should be seen. In the limit the algorithm resembles the 

steepest-descent algorithm. The algorithm provides a compromise between the speed 

of Newton's method and the guaranteed convergence of steepest descent. 

As for the conjugate gradient method, the Levenberg-Marquardt algorithm applied 
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to the multi-layer perceptron can be seen to converge in much fewer iterations than 

standard (steepest descent) backpropagation. This is, however, coupled with much 

more computation per iteration than any of the other algorithms as it involves the 

calculation, storage and inversion of an approximation to the Hessian matrix. This 

notwithstanding, the Levenberg-Marquardt backpropagation algorithm can be said to 

be the fastest neural network training algorithm around for moderate numbers of net­

work parameters [Hagan and Menhaj 1994J. 





Chapter 5 

THE SELF-ORGANISING FEATURE MAP 

5.1 INTRODUCTION 

This chapter considers the special class of artificial neural networks known as the 

self-organising feature map (SOFM). These are unsupervised (hence "self-organising") 

neural networks and, in particular, are based on the competitive learning rule described 

in Chapter 3. The SOFM is an artificial neural network (ANN) developed by Teuvo 

Kohonen at the Helsinki University of Technology [Kohonen 1982] and consists of a 

single layer feed-forward network or lattice, the neurons of which become specifically 

tuned to various input patterns through a self-organising process. The spatial location 

of a neuron in the lattice then corresponds to a particular feature, or group of features, 

of the input patterns. The SOFM roughly resembles the way similar computational 

maps are formed in the cortex of the brain. The learning results achieved seem very 

natural, indicating that the adaptive processes at work in the SOFM may be similar 

to those at work in the brain [Kohonen 1990]. 

First the biological motivation for such a network is briefly discussed, followed by 

the introduction of the SOFM model and training algorithm as developed by Kohonen. 

The importance of the proper choice of parameters for good training of the SOFM 

is then discussed. Kohonen also developed a supervised learning scheme, known as 

Learning Vector Quantization (LVQ), which is introduced as a means of "fine-tuning" 

the trained SOFM and allows the SOFM to be used as a pattern classifier. In the 

following chapter a number of computer simulations are carried out on SOFMs used 

as pattern classifiers. The simulations are carried out in order to obtain the optimum 

working values of the parameters needed to train and "fine-tune" the SOFM well. 

5.2 BIOLOGICAL MOTIVATION FOR THE SOFM MODEL 

As has already been discussed briefly in earlier chapters, many regions of the brain 

are organised in such a way that the different sensory inputs are represented by topo­

logically ordered computational maps. Different sensory inputs, such as tactile, visual 
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and acoustic are mapped onto different areas of the cerebral cortex in a topologically 

ordered manner. Such spatial ordering of the sensory information constitutes a basic 

building block in the information-processing infrastructure of the nervous system. A 

computational map can be defined as an array of neurons that represent slightly differ­

ent filters which operate on the sensory information-bearing signals in parallel. Such 

a map could then be used to transform input signals into a place-coded probability 

distribution that represents the computed values of parameters by sites of maximum 

relative activity within the map [Knudsen et al. 1987]. 

Cytoarchitectural maps of the cerebral cortex have been produced by many re­

searchers [Brodal 1981], [Shepherd 1988], where different areas of the cerebral cortex 

are identified by their thickness and the types of neurons within them. Of the many 

areas on the cortex, some of the most important specific areas are the motor cortex, 

the somatosensory cortex, the visual cortex and auditory cortex. Distinct areas of the 

cortex can be mapped to these functions of the nervous system. These cortical maps 

are not entirely genetically predetermined, but develop along with the early develop­

ment of the nervous system, although exactly how this development takes place is not 

entirely known. Once formed, the cortical maps retain some plasticity, allowing the 

maps to adapt to accommodate changes in the environment or the sensors themselves. 

Different cortical regions have different plasticities [Kaas et al. 1983]. 

5.2.1 Kohonen's basic feature-mapping model 

The basic premise for the formation of topographic maps is that the spatial location 

of an output neuron in the topographic map corresponds to a particular domain or 

feature of the input data [Kohonen 1990]. Output neurons of a topographic map are 

usually arranged such that each neuron has a set of neighbours. One-dimensional (lD), 

two-dimensional (2D) or even three-dimensional (3D) lattices are ideal structures for 

such a setup, although the dimensions of the lattice are usually restricted to 1D or 2D 

simply for ease of visualisation. This is because the original idea behind the SOFM was 

for it map similar input patterns onto contiguous locations in the output space in order 

to visualise the groupings of the inputs based on their similarities [Kohonen 1995]. 

The first demonstration of self-organisation through a computer simulation was by 

von der Malsburg [1973], one of the pioneers of self-organising studies. Willshaw and 

von der Malsburg [1976] proposed a model on biological grounds, to explain the prob­

lem of retinotopic mapping from the retina to the visual cortex in higher vertebrates. 

Topologically ordered mapping was made possible through self-organising, although the 

Willshaw-von der Malsburg model is restricted to mappings where the input dimension 

is the same as the output dimension. 

A second model was introduced by Kohonen [1982] which was not intended to 

explain any neurobiological details. This model tries to capture the essential features 
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of the computational maps in the brain while remaining computationally feasible. It is 

this model which forms the basic building block for the SOFM. 

5.2.2 The mechanism of lateral feedback 

In neural networks, lateral feedback describes the special form of feedback that IS 

dependent on lateral distance from the point of its application. Figure 5.1 depicts a 

1D lattice of neurons with both feedforward connections and lateral connections. The 

input signals are applied in parallel to the neurons via the feedforward connections. 

Each neuron responds according to the weighted sum of the input signals. The lateral 

feedback at each neuroIl, OIl the other hand, can produce both excitatory and inhibitory 

effects, depending on the distance from each neuron. The form of the lateral feedback is 

usually depicted by a function as shown in Figure 5.2 (following biological motivation). 

Three distinct areas of lateral interaction between neurons can be distinguished from 

this figure: 

1. A local, short-range area of lateral excitation. 

2. A penumbra of inhibitory action. 

3. A third area of weaker excitation surrounding the inhibitory penumbra; this third 

area of interaction is usually ignored. 

Figure 5.1 A one dimensional lattice of neurons incorporating both feedforward connections and 
lateral connections. 

Kohonen showed that for such a network, the activity of the network will be concen­

trated into local clusters called activity bubbles [Kohonen 1989a] and that the location 

of each activity bubble will be determined by the nature of the input signals. 
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Input 

Inhibitory action 

Figure 5.2 Lateral feedbacl< as a function of distance from the most active output neuron. 

For the network given in Figure 5.1, let Xl, x2,'" ,XR denote the inputs to the net­

wor k for an input of order R . . Let the synaptic weights in the feedforward part of the net­

work be denoted by Wjl, Wj2, ... ,WjR for neuronj. Let Cj,-K, ... ,Cj,-l, Cj,O, Cj,l, ..• ,Cj,K 

represent the lateral feedback weights connected to neuron j for a "radius" of K. Fi­

nally, for N neurons in the network, let Yl, Y2, ... ,YN denote the output signals of the 

network. The response of neuron j can now be given as 

(5.1) 

where <jJ(.) is some nonlinear limiting function. 

The solution to the nonlinear equation Equation 5.1 is found iteratively, using a 

relaxation technique. Equation 5.1 can be reformulated as 

Yj{n + 1) <jJ (t WjlXI + f3 t CjkYHk(n)) , for j = 1,2, ... ,N (5.2) 
1=1 k=-K 

at discrete time interval n. A parameter f3 is introduced in Equation 5.2 in order to 

control the rate of convergence in the relaxation process. 

What tends to happen is that if f3 is large enough, in the final state of the system 

(corresponding to n -+ 00) the values of Yj tend to concentrate inside a spatially 

bounded cluster, or activity bubble. What is more, the activity bubble is centred 

at a point where the initial response Yj(O) was at a maximum due to the stimulus 
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Wj/Xl. The width of the activity bubble depends on the ratio of the excitatory 

and inhibitory lateral connections. 

If (3 is too small, then the formation of activity bubbles will be prevented by too 

much negative feedback. 

Figure 5.3a and Figure 5.3b represent computer simulations ofthe bubble formation 

on a lD array of 50 neurons (N = 50). The inputs (Xl) and weights (Wjl) are assumed 

to have fixed values which produce a net stimuh.L.,> 

given by 

WjlxL) acting on neuron j 

Ij 2sin ( ;~), 0 ~ j ~ 50. (5.3) 

This results in a half sinusoid with a peak value of 2 at the middle neuron and zero at 

either end of the lattice. The feedback factor (3 is varied in order to see the formation of 

an activity bubble centered at the point of maximum excitation due to the feedforward 

weights alone. For these experiments the nonlinear function ¢(.) is taken to be a 

piecewise-linear function as shown in Figure 5.3c, whereas the "Mexican-hat" function 

of Cjk is approximated by the values given in Figure 5.3d. Figure 5.3a shows the 

formation of an activity bubble after 10 steps of the iteration process. The large value 

assigned to (3 ((3 = 2) results in the gradual formation of an activity bubble centred 

around the maximally responsive neuron. Figure 5.3b shows the activity after 10 

iterations for small (3 ((3 0.75), in this case the formation of an activity bubble is 

prevented by too much negative feedback. 

So, given that activity bubbles are formed due to lateral feedback in such arrays, 

Kohonen extracted the following points: 

1. The output at neuron j can be idealized such that 

Yj {
a, neuron j is inside the bubble 

0, neuron j is outside the bubble 

where a is the limiting value of the nonlinear function ¢(.). 

(5.4) 

2. The formation of activity bubbles centred around the maximally responsive neu­

ron due to the feedforward synaptic weights alone, allows for a computational 

"shortcut" so as to emulate the effect of having lateral feedback. In short, lateral 

feedback may be done away with altogether by introducing a topological neigh­

bourhood oj active neurons that corresponds to the activity bubble. 

3. Adjusting the size of the neighbourhood described in the previous point can simu­

late the adjustment of lateral connections. Making the neighbourhood size larger 
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Figure 5.3 Computer simulation of bubble formation for a ID array of 50 neurons for (a) large (3 and 
(b) small (3. The piece-wise linear activation function cj>(.) is described in (c) and the lateral interaction 
function is approximated by the function of (d). 

simulates making the lateral excitatory feedback stronger, whereas making the 

neighbourhood narrower corresponds to making the lateral inhibitory feedback 

stronger. 

These points, made by Kohonen, can be used on maps of any dimensionality in 

developing the SOFM learning algorithm, but will be explained in the next section in 

the context of ID and 2D SOFMs. 

5.3 THE SELF-ORGANISING FEATURE MAP ALGORITHM 

The SOFM as developed by Kohonen consists of a ID or 2D lattice of neurons fully 

connected to a set of inputs of arbitrary dimensions. As described in Section 3.4.4 

these lattice networks are simply single-layer, fully-connected, feed-forward networks 

for which the spatial arrangement of the neurons has significant meaning. Once trained, 

the spatial location of a neuron in the network corresponds to a particular domain of 

input patterns. The self-organising process is an iterative process, where many input 
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patterns are presented to the network, one at a time. Each input pattern presented to 

the SOFM causes a corresponding localized group of neurons in the lattice to be active. 

Consider the 2D lattice of neurons shown in Figure 5.4. Each neuron in the lattice 

is accompanied by a synaptic weight vector mi such that 

(5.5) 

The input vector is given by x such that 

(5.6) 

Xl~----~--------------~------------------~ 
X2~--~~------------~~----------------~ 

Figure 5.4 A 2D lattice of neurons depicting the synaptic weight vectors mi at each neuron i (for 
i=l,2, ... ,N). 

Once the input vector is presented to the SOFM, the localized area of response of 

the network to the input must be found. This is done by comparing the input vector 

x to each mi and using a matching criterion to find the "best" matching mi. Many 

matching criteria may be used as described by Kohonen [1995], although the two most 

widely used criteria are: 

1. inner product: find me such that 

(5.7) 

2. Euclidean distance: find me such that 

II x - me 11= milli {II x - me II}· (5.8) 
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In each case, the neuron of index c is called the "winner" or "winner-takes-all" neuron. 

Kohonen suggests that the matching criterion best suited for a given problem 

depends on the problem at hand. However, if the SOFM algorithm is to be used for 

natural signal patterns relating to metric vector spaces, the Euclidean norm is the 

better of the two to use [Kohonen 1990]. 

The actual magnitude of the response is of no great importance but, depending on 

the application of interest, the outcome of the network could be either the index of the 

winning neuron (c) or its synaptic weight vector (me). 

The simplest approach to training could be as follows: 

Once the best matching weight vector me is found, it is updated to match even 

more closely the current x. If the matching criterion used is the Euclidean distance 

then the distance between x and me is decreased, and all the other weight vectors mi 

with i i= c, are left intact. In this way the weight vectors tend to become specifically 

"tuned" to different domains of the input variable x. 

Thus following the imposition of the' input at time step t, 

mi(t + 1) 

mi(t + 1) 

mi(t) + a(t)[x(t) - mi(t)], for i = c, 

mi(t), for i i= c, 

where a(t) is the gain term or learning rate (0 < a(t) < 1). 

(5.9) 

However, since the aim of the SOFM is to form ordered maps, it is essential that 

the weight vectors mi do not learn independently of each other, but as topologically 

related subsets where a similar correction is applied to topologically close weight vec­

tors. During the training process these subsets will change depending on the winning 

neuron; in this way the net change applied to the weight vector of any neuron will tend 

to be smoothed out in the long run. One way to achieve these subsets is to use lateral 

connections between neighbouring neurons and use the method described in the previ­

ous section to form activity bubbles which encompass the winning neuron as well as a 

number of its neighbours. However, using Kohonen's computational "short-cut", it is 

possible to define a topological neighbourhood function, N e , that is centred around the 

winning neuron c and encompasses a number of the surrounding neurons. So at each 

learning step, the weight vectors of neurons within the neighbourhood function defined 

by Ne are updated whereas those of neurons outside of the neighbourhood function are 

left intact. 

The actual width (or radius) of Ne can be time-variable and it has been experimen­

tally shown that it is advantageous to let Ne be very wide in the beginning and shrink 

monotonically with time. The idea is that the initially large Ne first induces global 

ordering in the mi of the SOFM and as the Ne shrinks, then the spatial resolution of 

the map improves without losing the acquired global ordering [Kohonen 1990]. This 
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corresponds to initially using a strong positive lateral feedback and then enhancing the 

negative lateral feedback. If the Nc were to shrink to Nc { c}, then only the winning 

neuron's weights would be adjusted which leads to simple competitive learning without 

spatial ordering. 

So, once spatial ordering is introduced, the weight update equations of Equation 5.9 

become 

mi(t + 1) = mi(t) + a(t)[x(t) 

mi(t + 1) = mi(t), 

mi(t)], if i E Nc(t), 

if i ¢ Nc(t). 
(5.10) 

The scalar learning rate a{t) should also decrease monotonically with time such that 

initially, when the Nc is large, the changes applied to the mi are greater than the 

changes made during the stage where Nc is small, and only local spatial ordering is 

taking place around the winning neuron c. 

So the algorithm therefore leads to a topological ordering of the SOFM in the 

sense that neurons that are adjacent in the lattice will tend to have similar synaptic 

weight vectors mi. Figure 5.5 summarizes the SOM algorithm, breaking it up into 

its major components (after initialization) which are: sampling, similarity matching, 

and updating. These steps are repeated until the training is complete and the SOFM 

weights have settled to their final values [Kohonen 1990], [Haykin 1994]. 

Initialize 
weights 

"winner" 

Decr;~~ 
neighbourhood 

size 

Decrease 
learning-rate 

Figure 5.5 The SOFM training algorithm broken up into its major components. 

5.4 CHOOSING THE SOFM PARAMETERS 

The success of SOFM formation is critically dependent on how the two main parameters 

in the algorithm, the learning rate a(t) and the neighbourhood function Nc(t), are 

selected. The accuracy of the map also depends on the number of iterations in the 

training cycle, as the learning process is stochastic in nature. Unfortunately, there is 
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no theoretical basis for the selection of these parameters other than by means of trial 

and error. However, Kohonen puts forward a number of "rules-of-thumb" to be used 

when selecting the values of the various parameters, based on observations made during 

computer simulations. In the following chapter a number of computer simulations are 

described that were performed in order to obtain realistic measures on the learning 

algorithm parameters with differing SOFM architectures and input dimensions. 

The following are the the primary guidelines to selection of parameters as given by 

Kohonen [Kohonen 1988], [Kohonen 1990], [Kohonen 1995]. 

5.4.1 Initialization 

The initial values for the mi (0) can be arbitrary, including random, values. The only 

restriction is that they are different. 

5.4.2 Number of training steps 

Due to the stochastic nature of the learning process, the final accuracy of the trained 

system depends on the number of iterations or training steps, which must be reasonably 

large. The rule-of-thumb is that, for good statistical accuracy, the number of steps 

should be 500 times the number of neurons in the lattice. The dimension of the input 

vector x has no effect on the number of training steps and hence high input dimensions 

can be accommodated by the SOFM with relative ease. Anywhere from 10,000 to 

100,000 training steps have been used by Kohonen but the actual number depends 

on the application and the nature and quantity of the input vectors. If only a small 

number of input vectors are available for training then they must be recycled in a 

random manner for the desired number of steps. Unfortunately, the large number of 

steps required for training is important for system accuracy and means that training 

is computationally expensive. Note, however, that the learning algorithm for each step 

is relatively inexpensive. 

5.4.3 Learning rate 

The monotonic decrease in a(t) (0 < a(t) < 1) can be linear, exponential, or inversely 

proportional to t. That is, the exact profile of a(t) is not important. What is important 

is that a(t) is large initially during the so called ordering phase of the map (of tuhe 

order of 1000steps). Towards the end of the training a(t) should take on small values 

(e.g., a(t) ~ 0.01) over a fairly long period of time (typically thousands of iterations). 

This final longer period is known as the fine-adjustment phase. 
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5.4.4 Neighbourhood functions 

Special care is required in choosing the values of Nc Nc(t). Starting with a neigh­

bourhood which is too small results in a map which will not be globally ordered and 

consists of small pockets of local ordering between which the ordering direction changes 

discontinuously. So, by starting with a large Nc = Nc(O) and letting it shrink with time, 

global ordering is achieved during the crucial first stage of training. The radius can be 

more than half the radius of the network initially. The rule of thumb is, that during 

the first 1000 steps or so, when a = a(t) is relatively large (the ordering phase), the 

radius of Nc can shrink to encompass the winning neuron and its immediate neighbours 

only. After that, during the fine-adjustment phase, Nc can remain as just the winning 

neuron and its immediate neighbours (Nc = 1). 

The actual shape of the neighbourhood function Nc can consist of a square topolog­

ical neighbourhood of varying size around the winning neuron c, as seen in Figure 5.6a 

or can also take other forms such as hexagonal as shown in Figure 5.6b. 

The monotonic decrease of Nc ~ Nc(t) can be achieved either through some piece­

wise linear or exponential function. 

(a) 

N,=3 

N,=2 

N,=1 

Nc=O 

"\oE---~Nc=3 

'g'-~-- N,=2 

\\~.~~\\--~ Nc =1 

~~~~rr- Nc=O 

(b) 

Figure 5.6 Different neighbourhood topographies (a) square and (b) hexagonal. 

5.5 CALIBRATING THE SOFM 

Once the input vectors have been repeatedly applied to the SOFM and the algorithm 

has converged, the feature map computed by the SOFM algorithm displays the im­

portant statistical characteristics of the input data. The aim of the SOFM is to store 

a large number of input vectors (x) by finding a smaller set of prototypes (Wi) in an 

attempt to provide a "good" approximation of the input space. The theoretical basis 

for this process can be found in vector quantization theory [Gray 1984]. 
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The technique of vector quantization exploits the underlying structure of input 

vectors for the purpose of data compression. With vector quantization the input space 

is divided into regions and for each region a reproduction vector is defined. When a new 

input vector is presented to the quantizer, the region in which the vector lies is first 

determined and then the input vector is represented by the reproduction vector assigned 

to that region. Using the reproduction vector for storage or transmission in place 

of the original input vector results in considerable savings in storage or transmission 

bandwidth (albeit with some distortion). The collection of such reproduction vectors 

is called a code book of the quantizer. In particular, a Voronoi quantizer is a vector 

quantizer with minimum encoding distortion. Each vector partitions the input space 

into Voronoi cells which contain all those points in the input space that are closest to 

each particular Voronoi vector (according to the nearest-neighbour rule based on the 

Euclidean metric [Gersho 1982]). The SOFM provides an "approximate" method of 

computing the Voronoi vectors (in a self-organising manner), which are represented by 

the weights IDi [Kohonen 1995] after training. 

If the SOFM is to be used as a classifier, each weight vector must be assigned a 

"class label" based on the type of input vector it comes to represent after SOFM train­

ing. The assigning of class labels to all IDi of the trained SOFM is termed calibration. 

This is a supervised operation where input vectors of known class membership are pre­

sented to the map after training is complete and the "winning" neuron (best matching 

weight vector, IDe) is said to be representative of that input class. In a form of majority 

voting, the final label assigned to each weight vector is that of the input class which 

most frequently causes the neuron to win. The input vectors used for calibration, the 

so-called calibration vectors, are usually a small subset of the input vectors which have 

been labelled according to the class they represent [Kohonen 1990]. 

5.6 USING THE SOFM FOR PATTERN CLASSIFICATION 

As the SOFM is primarily intended to visualise the topological relationship of input 

vectors, it is not particularly suited to be used by itself for pattern classification. This 

is because the placement of the codebook vectors is based on an approximate technique 

as explained in the previous section. For pattern classification the requirement is to 

classify input vectors into a finite number of classes such that the average probability 

of misclassification is minimized [Haykin 1994]. The trained and calibrated SOFM thus 

should be followed by a supervised optimizing technique which attempts to minimize 

misclassification, in effect "fine-tuning" the weights of the SOFM. 

Methods for "fine-tuning" the codebook vectors in order to minimize misclassifica­

tion are described in the next sections. 
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5.6.1 Adding auxiliary class information 

It is possible to 'embed' discrete symbolic information available on the identity of the 

input signal (e.g., class information) by making the input to the SOFM out of several 

parts [Kohonen 1989a] such as 

(5.11) 

where x is the input vector composed of the input signal information held in the 

vector Xs and the class information held in xc. The "class component" in the in­

put vectors then causes a bias to the reproduction vectors whilst the SOFM is train­

ing. The simplest form of "class componene' would be to introduce a unit vector 

[0,0, . .. ,0,1,0"" ,0JT where the 1 is in the same position for input signals of the 

same class. The idea is to have the class-component weighted such that it does not 

dominate the training but influences the clustering. Then, if during recognition of in­

put information the class information is missing, the closest matching co de book vector 

is selected solely on the basis of the input signal part. 

The same reasoning has been used by Kohonen when constructing semantic maps 

[Kohonen 1989b], [Kohonen 1990]. In forming semantic maps for linguistic representa­

tions, linguistic symbols are assigned vectorial representations and the mutual distances 

between vectors of different symbols cannot be said to have any relationship with the 

observable characteristics of the corresponding items. This makes it difficult to display 

'logical similarity' between items and to display them topographically. By presenting 

the symbols in context during learning, the inherent similarities and differences can be 

made apparent. In this way, the input vector for the SOFM is made up of two parts 

as in the previous section; a vector Xs representing the symbolic item and a vector Xc 

representing contextual information relevant to the symbol part. Both parts are then 

presented during training and topographic maps of the symbolic items can be formed, 

helped along by the contextual information. Then during recognition, if the contextual 

part is weak or missing altogether, the codebook vector selected will be selected due 

to the symbolic part of the vector alone. In this way contextual information has been 

used to further "coax" the map along when forming clusters with input vectors. 

5.6.2 Using learning vector quantization 

The second method to achieve improved classification performance is to follow the 

training and calibration of the SOFM with a supervised learning technique. Learning 

vector quantization (LVQ) is one such technique, developed by Kohonen to "fine-tune" 

the weights of the trained SOFM in a supervised manner [Kohonen 1988], [Kohonen 
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et ai. 1988] and the one employed in the system described in Chapters 6 and 9. LVQ is 

a supervised technique that uses class information to move the Voronoi vectors slightly, 

in such a way as to improve the quality of the classifier decision regions. Kohonen put 

forward three versions of the LVQ algorithm: LVQ1, LVQ2 and LVQ3, each of which 

is described below. 

5.6.2.1 L~~1 

The initial values of the mi before the fine-tuning with LVQ can start must be such 

that the mi represent the overall statistical density function p(x) of the input. The 

SOFM is suited to achieve this. The weight vectors mi of the trained SOFM are then 

assigned a class label following the calibration process. Once an input x is applied to 

the SOFM, the classification of x is based on the class label of the nearest mi in a 

Euclidean sense. 

The LVQ algorithm works by "pulling" the weight vectors (or the Voronoi vec­

tors) away from the decision surfaces to demarcate the class borders more accurately 

[Kohonen 1988],[Kohonen 1989a],[Kohonen et ai. 1988]. 

For each input vector for which the classification is already known, the mi = mi(t) 

are updated as follows 

mi(t + 1) 
mi(t + 1) 

mi(t + 1) 

mi(t) + a(t)[x(t) - mi(t)], if i = c and x is classified correctly, 

mi(t) - a(t)[x(t) ~ mi(t)], if i = cand x is classified incorrectly, 

mi(t), for i i= c, 

(5.12) 

where a(t) is the usual learning rate factor (0 < a(t) < 1), which decreases monotoni­

cally with time as for the previous algorithm. Being a fine-tuning algorithm the learning 

rate should not be too large to begin with (suggested values are of a(O) = 0.0101' 0.02) 

and should decrease to zero after around 100,000 iterations of the algorithm [Koho­

nen 1990]. The algorithm described here is known as type one LVQ, or LVQ1, and a 

rigorous mathematical discussion of the algorithm can be found in LaVigna [1989]. 

5.6.2.2 L~~2 

LVQ2 involves a slight modification to the LVQl algorithm. We can consider two 

weight vectors, mi and mj, which belong to different classes (Gi and Gj ) and are closest 

neighbours in vector space. Initially these vectors are placed in the wrong position in 

vector space. The discrimination surface is always defined as the mid-plane between 

mi and mj (if x is closest to mi then mi is the nearest neighbour and so on), this 
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is in most cases incorrectly defined. Kohonen suggests defining a symmetric window 

of non-zero width around the midplane and making corrections to both mi and mj if 

x falls into the window on the wrong side of the midplane. Using this criterion, the 

changes to the weight vectors are made as follows 

mi(t + 1) 
mj(t + 1) 

- mi(t) - a(t)[x(t) mi(t)], 

mj(t) + a(t)[x(t) - mj(t)], 
(5.13) 

where Ci is the nearest class, but x belongs to Cj =1= Ci and x falls into the window, 

and 

mk(t), fork¢{i,j}. (5.14) 

With corrections taking place as described in Equation 5.13 and Equation 5.14 to both 

mi and mj it can be seen that, on ,average, the corrections will result in the midplane 

between the two codebook vectors shifting towards the point where membership of the 

two classes is equally likely [Kohonen 1990]. Figure 5.7 depicts one such example. 

mid-plane 

Figure 5.7 The operation of the window in LVQ2. x belongs to class OJ but mi is the nearest 
code-book vector (belonging to class 0;). LVQ2 works by moving m; away from x and mj towards Xj 

hence moving the mid-plane closer to the point where membership of the two classes is equally likely. 

The window width is defined by the relative window width w and is expressed as 

a fraction of the total distance between mi and mj (i.e., di + dj). The optimal w must 

be determined experimentally, although a width of 10 to 20% of the distance between 

mi and mj is put forward as a good value for a relatively small number of training 

samples. For high-dimensional input space, a reasonable definition of the window is in 
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terms of a constant ratio between the distances (di and dj) respectively of x from mi 

and mj [Kohonen et ai. 1988]. The input x is then said to fall within the window if 

. (d i dj ) h _ l-w 
mm dj' di > S, were S - l+w' (5.15) 

Once more, this algorithm should be applied with a small learning rate a(t) which 

decreases monotonically with time as the training progresses. 

5.6.2.3 L1{~3 

The problem with LVQ2 is that the algorithm is based on the idea of differentially 

shifting the decision borders towards the boundary between the two class types, with 

no attention being paid to what might happen to the eventual location of the mi as the 

process continues. In LVQ2, the correction made to the correct class codebook vector 

mj is of a larger magnitude to that on the wrong class codebook vector mi, resulting 

in monotonically decreasing distances between mi and mj. 

The improved algorithm which takes these drawbacks into account is called the 

LVQ3 algorithm and consists of Equation 5.13 where mi and mj are the two closest 

codebook vectors to x; x and mj belong to the same class, while x and mi belong to 

different classes; at the same time x must fall into the window. Furthermore if x, mi 

and mj belong to the same class then 

mk(t) + w(t)[x(t) - mk(t)], for k E {i,j}. (5.16) 

The value of E must be experimentally obtained; the optimal value seems to depend 

on the size ofthe window, being smaller for narrower windows. This algorithm does not 

alter the optimal placement of the mi with continued learning [Kohonen et ai. 1988]. 

Notice that in the progression from LVQ1 to LVQ2 and LVQ3, the number of 

codebook vectors being altered at anyone time was one for LVQ1 and became two for 

LVQ2 and LVQ3. 

5.7 SUMMARY 

The SOFM developed by Teuvo Kohonen is a self-organising single-layer ANN whose 

weight vectors become specifically tuned to the various features in the input patterns 

presented to it. It is primarily developed as a means of visualising similarities in 

certain features of the inputs through the 1D or 2D arrangement of the neurons in the 
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ANN. However, the SOFM becomes a useful first stage in the development of a pattern 

recognition system when followed by LVQ techniques such as LVQl, LVQ2 or LVQ3. 

Two factors which make the SOFM particularly desirable are the following. Firstly, 

the fact that the SOFM is self-organising means that large quantities of unlabelled data 

can be used in the training of the ANN. This is particularly valuable if labelled data is 

not readily available or available only in small quantities. Following the SOFM training 

with calibration and LVQ does require a labelled data set, however this set can be 

small when compared to the SOFM training data set. Secondly, although training the 

SOFM requires the data to be cycled a large number of times through the algorithm 

making the process rather lengthy initially, the computational 'short-cut' developed by 

Kohonen makes the process very 'light' computationally. Once the SOFM is trained 

and calibrated, it becomes fast to implement operationally as it consists of a single 

layer of neurons (and weight vectors) and requires only distance computations. 





Chapter 6 

THE SELF-ORGANISING FEATURE MAP: 
COMPUTER SIMULATIONS 

6.1 INTRODUCTION 

From Chapter 5 it can be seen that there are a number of parameters important to 

the training of a SOFM. The purpose of the work presented in this chapter was to 

obtain an understanding of the effect of the various parameters on the training of a 

SOFM and on its eventual performance. To this end, a number of computer simulations 

were carried out for various SOFM architectures and input characteristics. The major 

parameters considered are (a) the learning rate a and how it decreases with time and 

(b) the neighbourhood size Nc and how it decreases with time during training, (c) 

the weighting applied to the weight vectors within the neighbourhood of the winning 

neuron, (d) the number of times the data set must be presented to the SOFM for 

adequate training and (e) the optimum size of the SOFM. For each simulation, a 

number of these parameters are varied whilst observing the performance of the trained 

SOFM on novel input data. Each simulation utilises a different input data set with 

different characteristics. In all of the simulations, the initial weight values in each case 

are small random numbers and are not changed between tests for a given simulation. 

In summary, these simulations were carried out in order to (a) confirm some rules­

of-thumb as suggested by Kohonen [1990] and Kohonen [1995], (b) obtain working 

values for the most important parameters needed for training the SOFM and fine­

tuning with LVQ and (c) to assess the robustness of the above-mentioned parameters 

on different network sizes, input quantities and input dimensions. 

6.2 PRELIMINARIES TO COMPUTER SIMULATIONS 

The parameters to be varied in the computer simulations are described next, where in 

each case the values to be used are discussed. 
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6.2.1 Learning rate and neighbourhood size decay 

As stated in Section 5.4, both the learning rate and the neighbourhood size should 

start off with large values and decrease gradually with time. It is important that 

they are both reasonably large during the ordering phase and that both reach their 

minimum, and maintain it, during the longer fine-adjustment phase. In particular, 

the learning rate a = a(t) should start off with a value at or near unity and decrease 

monotonically during the ordering phase, finally reaching a minimum value am in which 

must be maintained during the fine-adjustment phase. Kohonen suggests a value for 

amin of the order of 0.001 [Kohonen 1990]. The neighbourhood size Nc = Nc(t) should 

start with a large radius which can be as large as half the widest dimension of the 

SOFM (or larger). This too should decrease monotonically until some minimum radius 

Nmin is reached towards the end of the ordering phase. During the fine-adjustment 

phase, Nc should stay at Nmin. Nmin is typically set to '1' so that only the winning 

neuron and its immediate nearest neighbouring neurons are influenced. 

An important point during training'is where the ordering phase finishes and the 

fine-adjustment phase starts. Kohonen suggests that the ordering phase should take 

place within the first thousand or so iterations of the input data [Kohonen 1990]. If 

each iteration of the data is represented by the discrete time variable k, then the total 

number of iterations of the input data during the training process can be represented 

by kmax . If the training process is set up such that the total number of iterations of the 

data to be undertaken is known (as is generally the case), then the change-over between 

ordering and fine-adjustment phases can be defined to occur at a given fraction w of 

the total number of iterations. 

Two types of monotonically decreasing functions are considered here, a piecewise 

linear decreasing function and a piecewise exponential decreasing function. 

The piecewise linear function is given by: 

a(k) 

a(k) 
a o(l - wk

k 
) + amin(wk

k 
), if k :S wkmax , 

max max 

amin, if k > wkmax , 

N o(l - wk:aJ + NminCk:aJ, if k :S wkmax , 

Nmin, if k > wkmax . 

The piecewise exponential decay function is given by: 

a(k) 

a(k) 

(1 k) k 
a o - wkmax a;~~ax, if k :S wkmax , 

amin, if k > wkmax , 

(6.1) 

(6.2) 

(6.3) 
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(1 k) k N - wkmax Nw~max 
o mIn , 

Nmin, 

if k ~ wkmax , 

if k > wkmax . 

99 

(6.4) 

where, in both cases, ao and No give the initial learning rate and neighbourhood ra­

dius respectively, whereas amin and Nmin give the respective minimum values. Since 

the neighbourhood radius is defined by a positive real integer, Equation 6.2 and Equa­

tion 6.4 are implemented so the next greater integer than Ne(k) is used. 

6.2.2 Neighbourhood taper 

So far, the updates performed on the weight vectors of the winning neuron and its 

neighbours have been assumed to be uniform within the neighbourhood. However, it 

is also possible to apply the updates in a non-uniform manner described henceforth 

as the neighbourhood taper. This means that it is possible to alter the update of each 

weight vector within the winning neighbourhood by a different amount depending on 

the Euclidean distance di between the weight vector mi and the winning weight vector 

me, given by 

di II mi - mc II, for i E N c· (6.5) 

Figure 6.1 depicts the three tapering schemes used in the computer simulations to 

follow. 

1. Uniform taper: Figure 6.1a shows a uniform weighting of the updates across the 

neighbourhood. The taper function here is simply 

(6.6) 

and is the standard for the SOFM algorithm as described by Kohonen [1990]. 

2. Gaussian taper: Figure 6.1b shows Gaussian tapering of the neurons based on 

the distance of each neuron in the neighbourhood from the winning neuron c. 

The taper function is given by 

(6.7) 

3. Quadratic taper: Figure 6.1c shows a scheme where the taper is inversely re­

lated to the square of the distance between the winning neuron and each of its 
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Figure 6.1 Different neighbourhood tapering functions for a neighbourhood of Nc = 5. (a) Uniform 
taper, (b) Gaussian taper and (c) quadratic taper of the neighbourhood. 
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neighbours, given by 

dJ 
1.05 (N

c 
~ 1)2' for i E Nc • (6.8) 

This tapering scheme was proposed by Roberts and Tarassenko [1992] and is de­

vised such that it has points at the extremities of the neighbourhood where slight 

inhibitory action is performed on the weight vectors. This effectively "pushes 

away" those weight vectors by a small amount in the direction opposite to that 

of the winning neuron. 

The taper function hi for each of the schemes is then used to modify the weight 

updating step of the SOFM training algorithm, given by Equation 5.10. The updated 

equations then become 

mi(t + 1) = mi(t).+ a(t)hi[X(t) - mi(t)], if i E Nc(t) , 

mi(t + 1) = mi(t), if i ¢ Nc(t). 

6.2.3 A measure of network stability during training 

(6.9) 

As the SOFM training algorithm requires a large number of iterations (often hundreds 

of thousands) of the input data, a useful measure for the map is that of stability 

during training. A measure of how "settled" the weights become during training can 

be obtained by measuring the mean Euclidean distance 6(k) between the weight vectors, 

from one step to the next, of the SOFM at discrete epochs during the training period, 

that is, 

1 N 
6(k) = N II mi(k) - mi(k -1) II, 

i=l 

(6.10) 

where mi(O) gives the initial weight settings. The effect of the various parameters of 

the SOFM such as the learning rate, neighbourhood taper and SOFM size, for example, 

can be observing by observing the "stability" measure for the SOFM at various points 

during the training process. In this context, an "unstable" map is taken to be a map 

that has large 6(k) values during the training process and does not settle to a minimum 

value during the fine-adjustment phase (Le., 6(k) continues to oscillate about some 

mean value). This can be interpreted as being a result of one or more of the SOFM 

parameters causing the SOFM to train poorly, the net result being that when the 

training process is complete, the SOFM weights might not be optimally placed in the 

input space. In this way, they may not best represent the underlying characteristics 

of the input patterns (e.g., this may reflect an insufficient number of neurons). In 
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contrast, a "stable" map is taken to be a map that has a mean Euclidean distance that 

converges to a minimum during the fine-adjustment phase in a "stable manner". This 

is interpreted as resulting in weights which are optimally placed to represent the input 

characteristics once training is complete. 

The change in Euclidean distance o(k) converges to some non-zero minimum due 

to the fact that C¥min is non-zero and Nmin is such that more than one weight vector 

will be altered with each presentation of the data. The actual value of the minimum 

about which o(k) 'oscillates' is determined in part by the SOFM size. 

6.2.4 Measures of performance 

As stated in Section 5.6, the SOFM on its own is not necessarily suitable as a pattern 

classifier but, when followed by a 'fine-tuning' mechanism such as LVQ, it can become 

an important first phase in a pattern classification system . 

. A performance measure gives an indication of how good (or bad) a system performs. 

Once a SOFM is trained, calibrated and followed by LVQ, a measure of the system's 

performance is required. The two measures adopted to assess performance in this case 

are system sensitivity and selectivity and are defined [Wilson et al. 1991] [Webber 

et al. 1994] as 

Sensitivity = TP ~ FN x 100% (6.11) 

and 

S I 
.. TP ()7 

e ectIvlty = TP + FP X 10070, (6.12) 

where TP (true positives) is the number of true events correctly detected, FP (false pos­

itives) the number of false events incorrectly classified as true, and FN (false negatives) 

the number of true events which were missed. These measures can also be written as 

Sensitivity 
correct detections 1 ()7 

---::----:----:~---- X 0070 
total true events 

(6.13) 

and 

Selectivity correct detections x 100%. 
number of detections 

(6.14) 

ideally, both sensitivity and selectivity would be 100% but, in practice, this is 

often not possible, in which case both must be as close as possible to 100%. It is, 

however, always possible to improve the performance of one measure at the cost of 



() 'l ('O\ll'l 1 Ell Sl\J II \l1(),\S lll : ~ 

de('n'a.'iill~ t ilt' p t'rfOrtllalll'!' of I.Iw ot.lH'r. ' [ Ill' choir( ' 0 which i~ tb<' lIl()rt' im portrtnt 

of tilt' two a.nd h<'tln' should be improv<'Ct Ilv('r t.ht' ot h 1'. d{'lH'n(h; Oil tILl' a.pp li cat ion 

of til(' patl(' J'll dass ifipr. fn g<'llpral a i>alau('t> hetw(,(,ll Sl'l1sitiviLY awl set eti ity is the 

lllOSt. apprupriat(· and liS! ftll g a1 wIU'u a.",S(·SSillg the p rfonnrlu('(' of t ite SOFMs ill tit!' 

sitrlu latinm: to follow . 

6.3 CO IPUTER SIMULATIONS 

6.3.1 Simulation 1: Pattern classification I 

This simllLrl.tion d!'als wit h the probleIll t dassifying rt pa.ir of ov .rlapp illg 2 Gallss iau 

proCt'SS('S lal)('\C'd ' (I and 'h . Cla...,s en ha.s a III au uf ( - 1 - 1) and a. var ia L1 tp of 1.0 a.lId 

C\.Cl."iS nJ hru; a. lllCal! of 0.5 . 0.5) and a V'clricULC<' of 0.5 Figll.rp 6.2 s1l ws it seal f ' r-plol 

c f t.LL!' tmiuillg set, which cOllsisteci o f LOOO poilLts in t.hp 2D iHr"l spac(', Both C'irL'iS('S 

Wf'rc equa.lly rcp r s nL d in I.h t.ra.ining sd 

~ 

3 

, 

2 

0 

- 2 

- 3 

Class a 

Classb 

t 

t 

+ 

t .. 

Itt 

1 .. 
+ 
+ 
++ 

• t 

t .. 

0 

+ 

+ 

+ 

-4~ ____ ~ ____ ~ ______ ~ ____ ~ ______ L-____ -L ____ ~ ____ ~ 

- 5 -4 -3 -2 -1 
x1 

o 2 3 

Figure 6.2 . :;cattC'r plol of two du.<;ten, of 2D Gaussian pro('('SS('s, Cn an d Ch . B t h (,\, sse:,; ar 
('(Iual ly r pres nted 

The train ing set was usd to repeated l ra in a 2D laLt ic of ncar ns f fixed s iz(' 

x 8) but with varyin g SO M training paramet('r includ ing: 

U:ing linear decay ,lfid expoll('nt ial decay for the learuin ratc~ a nd lLf'ighbourh 0 I 

S IZt". 



1O--l CHAPTER 6 THE SELF-ORGANISING FEATURE ;\IAP CO:\IPCTER SIMCLATIONS 

2. Setting the maximum number of iterations of the input data to 200 and 500 times 

the number of neurons. 

3. Setting the minimum learning rate Qmin to 0.01 and 0.001. 

4. Setting the neighbourhood taper functions to uniform, Gaussian and quadratic. 

5: Performing straight SOFM training, SOFM training followed by LVQl and SOFM 

training followed by LVQ2. 

For this simulatioll and the simulations to follow an SOFM of fixed size was t.rained 

using all the above-mentioned cOlllbinat,ions of training parameters. For every SOF1vI 

trained, the measures of sensitivity and selectivity (as defined in Section 6.2.4) were 

calcula.t.ed for each class after straight SOFM and after finc·tuning with LVQ 1 auel 

LVQ2. Once all the tpsts were performed each parameter was identified in turn a.nd 

the mea.n performance was calculated (i.e" the mean of sensitivity and selectivity) 

over all cla.sses and for all combinat.ions of parameters excepting the parameter being 

scrutinized. In this way a single measure of perf(Jl'mance is available for each particular 

setting of the parameter under scrutiny and is given in tabular form for each simulation. 

The actual performance measures calculated for each test for this and the following 

simulations can be found in Appendix B. The performance was measured in each case 

using novel dat.a drawn from the same distributions as the training data. 

As the input space is 20, it is possible to plot the trajectory of the weight vectors in 

the input space. Figure 6.3a depicts a 20 [8 x 8] SOFM after training. The input data 

was presented to the SOFM 12,800 times with Cl!min = 0.01, a quadratic neighbourhood 

taper function and using exponential decay for the learning rate and neighbourhood 

size. The weights of the trained SOFM have become positioned in the input space 

snch that they represent the underlying densities of the inputs. The lines connecting 

the weight vectors in Figure 6.3a indicate neighbouring neurons in the 20 lattice that 

makes up the SOFM. Figure 6.3b depicts the calibrated SOFM where a class label has 

been assigned to each neuron according to the maximum voting criteria explained in 

Section 5.5. Each neuron is also assigned a value which gives the confidence level with 

which each neuron represents that class, based on the maximum voting principle. In 

this way, a 100% confidence level means that a neuron responded in all cases to a 

particular class during calibration, whereas a 50% confidence level means that a neuron 

responded equally to both classes during calibration. This confidence level cannot be 

taken to be a probability as it stands, as it takes no account of the frequency with which 

each neuron wins during calibration. This can be done using Bayesian probabilities and 

is explained in further detail in Chapter 9. 

It is important to note that topological ordering is observed, both in the plots of the 

weight vectors in the input space and ill the assigning of labels during calibration. La­

bels form 'neat' cllIsters wit.h easily dist.inguishable boundaries. It is at. the boundaries 
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that the confidence levels assigned to neurons are at their weakest, due to overlapping 

of the input distributions. Another important point is that the SOFM has assigned 

equal numbers of neurons for each class since both classes were equally represented in 

the training set. When a particular class is under-represented in the input set, it will 

also be under-represented in the SOFM (Le., fewer weight vectors will be assigned to 

represent that class of input data) [Kohonen 1990]. 

A map trained with just the SOFM algorithm cannot be reliably used as a classifier 

because the placement of the weight vectors during training has not be performed in 

such a way as to minimize misclassification in any way. The trained (and calibrated) 

SOFM should be followed by LVQ in order to be used as a pattern classifier. Figure 6.4a 

depicts the same SOFM as in Figure 6.3 which has been re-calibrated following the 

operation of the LVQ1 algorithm on it. Figure 6.4b shows the same SOFM after LVQ2. 

During the process of LVQ, the position of the weight vectors in the input space have 

been 'fine-tuned' and this is reflected in the changed confidence levels of neurons in 

. the SOFM, especially around the boundary between the two clusters of data. As the 

weight vectors are 'pulled away' from the boundaries, the confidence levels of neurons 

at the boundaries strengthen towards one class or the other. For example, this can be 

seen in the changed confidence levels of the two neurons in the second and third rows, 

first column, of Figure 6.3b and Figure 6.4b, before and after LVQ2 respectively. 

Parameter Mean performance (%) 
Exponential Linear 

Decay 90.8 90.6 -
200 x 500 x 

Iterations 90.8 90.6 -
0.001 0.01 

amin 90.7 90.6 -
Gaussian Un' Quadratic 

Nc taper 90.7 89.9 89.7 
LVQ2 SOFM LVQ1 

Algorithm 90.8 90.7 90.6 

Table 6.1 The mean performance (Le., mean of sensitivity and selectivity) of the (8 x 8] SOFM for 
simulation 1 for each value assigned to the SOFM parameters. 

The values given in Table 6.1 show that there is very little variation in the average 

performance over the range of parameters used. Exponential decay offers a very slight 

advantage over linear decay (0.2%), as does amin 0.001 over amin = 0.01 (0.1%). 

Of more significance is the fact that iterating 200x the size of the SOFM results in 

almost identical performance as iterating 500x the size of the SOFM (0.2% better in 

fact). Fine-tuning using LVQ2 results in a slight advantage over straight SOFM training 

(0.1%) - LVQ1 performing slightly worse than both other methods. The largest change 

in performance for this simulation was due to using the different neighbourhood taper 
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functions. Using the Gaussian taper results in a 0.8% increase in performance over 

using the uniform taper and a 1% increase over quadratic taper. 

Overall, there is little difference in performance between using one parameter over 

another for this simulation. The fact that fine-tuning with LVQ after straight SOFM 

training results in little or no increase in performance could be due to the already 

well defined nature of the input classes, meaning that LVQ could offer no additional 

'sharpening' of the class boundaries. Iterating only 200x the size of the SOFM offers 

a distinct advantage when compared to iterating 500x in the form of reduced training 

time. For this simulation 12,800 inputs, drawn from the 1000 data points, were pre­

sented to the SOFM (for 200x) meaning that during the crucial first 10% or so of the 

training (i.e., the ordering phase) the entire training set had been presented at least 

once. The original data for each test performed can be found in Appendix B. 

On the basis of the results presented above (Table 6.1), the best parameters to use 

for this simulation would be those shown in Table 6.2. Using these parameters results 

in the performance shown in Table 6.3. 'However, at least in this case, it is clear that 

the performance is not critically dependent on any of the parameters. 

Parameters Value 
Decay exponential 

Iterations 200 x 

amin 0.001 
Nc taper Gaussian 

Algorithm SOFM followed by LVQ2 

Table 6.2 The best performing parameters to use for training the [8 x 8] SOFM of simulation 1. 

Sensitivity (%) Selectivity (%) Average (%) 
SOFM 90.9 90.9 90.9 
LVQ1 90.9 90.9 90.9 
LVQ2 91.5 91.5 91.5 

Table 6.3 The performance of the [8 x 8] SOFM for simulation 1 after iterating 12,800 times, using 
exponential decay, O!min = 0.001 and Gaussian neighbourhood taper. 

Figure 6.5 shows the mean change in Euclidean distance o(k) between the weight 

vectors of the SOFM calculated at successive epochs during the training process for 

simulation 1. This is repeated for SOFMs of varying sizes. The ordering phase and 

fine-adjustment phase can be clearly distinguished in the curves, where during the 

ordering phase the weights are more 'unsettled' and during the fine-adjustment phase 

they become more 'settled'. As the number of neurons in the SOFM decreases (and 

hence so do the number of weight vectors) the ordering phase becomes more 'unsettled'. 
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results for each SOFM are given in Table 6A. 

Parameter Mean performance (%) 
Linear Exponential 

Decay 70.5 70.2 -
200 x 500 x 

Iterations 70.5 70.3 -
0.01 0.001 

<lmin 70A 70.3 -
I 

Quadratic Gaussian uniform 
Nc taper 70.5 70.3 70.1 

I LVQ1 LVQ2 SOFM 
Algorithm 70.4 70.3 70.3 

Table 6.4 The mean performance of the [10 x 10] SOFM for simulation 2 for each value assigned to 
the SOFM parameters. 

Again, there is very little variation in the average performance over the range 

of parameters used, as can be seen in Table 6.4. Linear decay offers a very slight 

advantage over exponential decay (0.3%), as does <lmin = 0.01 over <lmin 0.001 

(0.1 %). As in simulation 1, iterating 200x the size of the SOFM results in almost 

identical performance as iterating 500 x the size of the SOFM. Fine-tuning using LVQ1 

results in a slight advantage over straight SOFM training ,(0.1%) and LVQ2 - which 

performs equal to straight SOFM training. Once more a non-uniform taper scheme 

proves marginally better than uniform taper. For this simulation the quadratic taper 

results in a 0.4% increase in performance over the uniform taper and a 0.2% increase 

over the Gaussian taper. 

As in simulation 1, on average there is little, if any, difference between using one 

parameter over the other for this simulation. The fact that LVQ performs only mar­

ginally better than straight SOFM training could be attributed to the fact that, as in 

the previous case, the class boundaries are well defined. For simulation 2 the data was 

presented to the SOFM 20,000 times (for 200x) which means that during the crucial 

first 10% or so of the training (Le., the ordering phase) the entire training set had been 

presented at least twice. 

From the results presented above (Table 6.4), the best parameters to use for this 

simulation would be those shown in Table 6.5. Using these particular parameters gives 

the performance shown in Table 6.6. 

Plots of 6(k) for simulation 2 are shown in Figure 6.9 for various sizes of SOFM. 

The large changes in Euclidean distance can be seen during the ordering phase until 

the fine-adjustment phase where the weight changes become less pronounced. As the 

SOFM size is reduced, the weights become more 'unsettled'. 

Once more, topological ordering can be observed when observing the map weights 
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in the input space in relation to neighbouring weights. Topological ordering can also 

be seen when viewing the calibrated SOFMs. The proportion of representation of each 

class in the input set is also reflected well by the number of weight vectors assigned by 

the SOFM to represent each distribution. As the classes are represented in the input 

data according to the ratio 2 : 7: 1 for Ca : Cb : Ce , the SOFM reflects this by mapping 

more neurons to Ca and less neurons to Ce during calibration. 

6.3.3 Simulation 3: Pattern classification III 

In this simulation, 41-dimensional input vectors are considered. Each input represents 

a simulated digitized waveform with a sampling frequency of 200 Hz, so that the 41-

dimensional vector represents a 205 ms intervaL The 41-dimensional inputs were drawn 

from six classes, each representing a simulated waveshape. Three classes represent 

positive going (i.e., upwards) waveshapes: Ca represents a triangular waveshape, Cb 

a square and Ce a half-sinusoid w~veshape. Cd, Ce and C f represent the equivalent 

negative going (downwards) waveshapes. In each case each waveform is centred about 

the centre sample and has a variable height a and width b, as shown in Figure 6.10. 

As the input data is 41-dimensional it is no longer possible to track the trajectory of 

the 41-dimensional weight vectors as easily as it was for the 2D case. 

a 

h 

(a) (b) (c) 

b 

a 

(d) (e) (f) 

Figure 6.10 Simulated waveshapes used for training the SOFMs of simulation 3. (a) & (d) Trian­
gular, (b) & (e) square and (c) & (f) half-sinusoid. 

Simulated data was produced by randomly varying the amplitude a between the 

values of 0.1 and 1.0 and randomly varying the width between 10 and 30 samples. The 
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600 input vectors produced, which equally represented each class, were used to train 

a 2D lattice (10 x 10 neurons) SOFM. As each weight vector is of the same order as 

the input data (41-dimensions), after training each weight vector comes to represent 

some form of basis waveform. Figure 6.lla gives a representation of the weight vectors 

according to their position in the 2D lattice of the SOFM. Once more, the topological 

ordering of the waveshapes is quite evident. 

The trained SOFM is then calibrated and followed by LVQ1 and LVQ2 as shown 

in Figure 6.llb, Figure 6.12a and Figure 6.12b. 

The average performance of the trained SOFM at each stage of the training is 

assessed in Table 6.7 using a novel data set generated using the same criteria as used 

for the training set. The average performance is evaluated for each parameter value. 

Parameter Mean performance (%) 
Linear Exponential 

Decay 66.6 63.4 -
200 x 500 x 

Iterations 66.5 65.8 -
0.01 0.001 

amin 66.3 66.0 -
Quadratic Gaussian Uniform i 

Nc taper 66.5 66.1 65.6 
LVQ2 LVQl SOFM 

I Algorithm 74.9 68.4 55.0 

Table 6.7 The mean performance of the [10 x 10] SOFM for simulation 3 for each value assigned to 
the SOFM parameters. 

For simulation 3 there is a more pronounced variation in the average performances 

over the range of parameters used than in the previous two simulations. Linear decay 

offers an advantage of 3.2% over exponential decay, whilst amin = 0.01 offers a minimal 

advantage of 0.3% over amin = 0.001. As in the previous two simulations, iterating 

200x the size of the SOFM results in a slight increase in performance (0.7%) when 

compared to that of iterating 500x the size of the SOFM. Fine-tuning using LVQ 

techniques results in a substantial advantage over straight SOFM training, an increase 

of 19.9% for LVQ2 and an increase of 13.4% for LVQl. Non-uniform taper provides 

a marginally better performance than uniform taper. The quadratic taper results in 

a 0.9% increase in performance over the uniform taper and a 0.4% increase over the 

Gaussian taper. 

For this simulation the differences in performance are more noticeable than for the 

previous two cases, this may be due to the fact that the problem in this simulation 

is a more complex one with more complicated boundaries between each class than 

the previous two cases. LVQ techniques resulted in a considerable improvement over 
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straight SOFM training, further strengthening the argument that the class boundaries 

are less readily defined that in the previous simulations. 

From the results presented above (Table 6.7) the best parameters to use for this 

simulation would be those shown in Table 6.8. Using these pCl:rameters results in the 

average performance given in Table 6.9. 

I Parameters Value 

i Decay linear 
Iterations 200 x 

amin 0.01 

I 

Nc taper Quadratic 
Algorithm SOFM followed by LVQ2 

Table 6.8 The best performing parameters to use for training the [10 x 10] SOFM of simulation 3. 

Sensitivity (%) I Selectivity (%) Average (%) 
SOFM 54.2 I 54.7 54.5 
LVQl 71.0 

I 
74.2 72.6 

LVQ2 75.3 77.2 76.3 

Table 6.9 The mean performance of the [10 x 10] SOFM for simulation 3 after iterating 20,000 times, 
using linear decay, Ctmin == 0.01 and quadratic neighbourhood taper. 

The average Euclidean distance between the weight vectors during training is shown 

in Figure 6.13 for various sizes of SOFM. Once more the SOFM weights become more 

'unsettled' during the fine-adjustment phase as the SOFM size is reduced. 

6.4 CONCL USIONS 

The computer simulations described in the previous sections were undertaken in order 

to gain a better understanding of the crucial SOFM training parameters. From the 

results obtained the following conclusions can be made. 

The effect of LVQ on the SOFM: Both LVQl and LVQ2 were tested on the simu­

lated data. For simulation 1 and 2, the increase in performance due to LVQ was 

negligible. This may be due to the fact that the input clusters were reasonably 

well defined and with minimal overlap. As the input data increases in complexity 

with the introduction of simulation 3, the effect of LVQ after the initial SOFM 

training becomes more apparent resulting in significant improvements in perfor­

mance in terms of both sensitivity and selectivity. The increase due to LVQ2 was 

greater than that due to LVQ1 in simulation 3 and no significant improvements 

occurred in simulations 1 and 2 through the use of LVQ2 as opposed to LVQl. 
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For the simpler simulations (simulations 1 and 2) the effect of LVQ sometimes 

resulted in a slight worsening of the system performance, although this probably 

reflects experimental/random variations in the training. 

The total number of iterations of the data: Iterating the data 500 x the size of 

the SOFM, as opposed to 200 x, resulted in no significant improvement in per­

formance in all simulations. The rule-of-thumb suggested by Kohonen [Koho­

nen 1990] of 500 x the size of the SOFM thus seems unnecessary for small data 

sets. Another way to determine the number of iterations required would be to 

base the number on the amount of data to be used for training. In this way the 

number of iterations could be such that the entire data set is presented to the 

SOFM at least twice during the ordering phase. As the ordering phase is usually 

around loth of the entire training cycle, this allows the total number of iterations 

to be calculated. 

Neighbourhood taper: In general, a non-uniform taper ofthe "winning" neighbour­

hood results in a slightly better performance than a uniform taper, with the 

quadratic taper marginally better than the Gaussian taper. The difference was 

more noticeable for simulation 3 than for the other simulations. 

Method of decreasing a(t) and Nc(t): Using linear decay, as opposed to exponen­

tial decay, for the learning rate and neighbourhood size resulted in marginally 

better performance over all simulations. 

Minimum learning rate amin: Using amin = 0.01 as opposed to amin = 0.001 re­

sulted in a slight improvement in most simulations. 

The conclusions drawn above lead to the following recommendations for the ade­

quate training of a SOFM in similar applications to those presented here: 

1. Start with a large learning rate; suggested value: ao = 1. 

2. Let the minimum learning rate be a small non-zero value; suggested value: amin = 
0.01. 

3. Start with a large neighbourhood size, that is, at least with a radius greater than 

half the size of the SOFMj suggested value: a radius of one less than the widest 

dimension of the SOFM. 

4. Let the minimum neighbourhood size be Nmin = 1. That is, the winning neuron 

and its nearest neighbours. 

5. Decrease the learning rate and neighbourhood size monotonically, making sure 

that both have reached a minimum by around th of the total number of itera­

tions of the input data to the SOFMj linear decay is recommended. 

6. Use the quadratic neighbourhood taper during weight updates. 



122 CHAPTER 6 THE SELF-ORGANISING FEATURE MAP: COMPUTER SIMULATIONS 

7. Iterate the data for at least 200 times the size of the SOFM during the training 

process. Alternatively, for a large input data set, iterate the data such that all 

the data has been presented at least twice during the crucial ordering phase of 

training (which should be set at around loth of the total number of iterations). 

8. Observe the performance of the SOFM with novel data as the SOFM size varies in 

order to determine the "best" SOFM size for the problem at hand. It may prove 

useful to monitor the mean change in Euclidean distance (8(k)) for a number of 

SOFM sizes. The measure of the mean change in Euclidean distance provides 

a useful visualization of the smallest SOFM size that remains "stable" during 

training, hence providing a lower limit to the SOFM size. 

9. For pattern classification purposes, perform LVQ1 and/or LVQ2 on the trained 

SOFM. For reasonably well defined input clusters in the input data, both LVQ 

algorithms should result in similar performance measures. For more complex 

divisions in the classes of the input data set, LVQ2 is recommended. 

6.5 SUMMARY 

In order to train a SOFM as a pattern classifier the various training parameters need 

to be identified and suitable values found for each. In this chapter the most important 

training parameters for the SOFM are examined through three simulations. The values 

assigned to the parameters are obtained from "rule-of-thumb" values obtained mainly 

from Kohonen [1990]. In particular the use of non-uniform neighbourhood weighting 

over uniform weighting results in marginally improved performance. The values for 

neighbourhood and learning rate size and decay seem to be quite adequate as long 

as they both begin "large" and decay monotonically to some "small" value. Of more 

importance is the fact that there seems to be no gain to be had from iterating the 

data 500 x the of the SOFM, with 200 x working equally well in each case. This 

makes for faster training times. For relatively large data sets a useful "rule-of-thumb" 

developed is to set the maximum iterations such that the entire data set has been 

presented at least twice 10% of the way through the training. Observing the mean 

change in Euclidean distance, as well as performance on novel data, should provide a 

good indication of the "best" SOFM size necessary for the task at hand. 

As training a SOFM may involve considerable computation time (especially when 

large data-sets are involved) it may prove useful to preclude complicated computations, 

such as Gaussians, when calculating the neighbourhood taper in order to lower the total 

training time. In such a situation uniform taper would be better suited. 

The next chapter introduces the spike detection problem and the proposed spike 

detection system. As the SOFM forms part of this multistage system, the parameters 

and measures discussed in this chapter will be utilised in Chapter 9 which discusses 

the SOFM applied to the spike detection problem. 



Chapter 7 

THE SPIKE DETECTION PROBLEM 

7.1 INTRODUCTION 

As stated previously in Chapter 2, the EEG provides an excellent tool in the diagnosis 

of many brain disorders, in particular, epilepsy. If a subject has exhibited definite 

or suspected clinical manifestations of epilepsy, routine recordings of the interictal 

EEG are taken and closely scrutinised by an EEGer in order to detect the presence of 

epileptiform activity in the form of epileptiform discharges (EDs). 

Although a seemingly simple task, the scrutiny requires the EEGer to closely ex­

amine a number of channels of EEG recording of around 20 minutes duration (or 200 

lO-second pages of recording) and detect the presence of EDs manifest as spikes in one 

or more channels. The presence of artifacts in the EEG makes the job considerably 

more difficult and the outcome is highly dependent on the EEGer's skill. 

It is clear that there are substantial benefits to be gained by automating the spike 

detection process including reduced time spent reading EEGs, increased consistency, 

and the detection of EDs (cf. seizures) occurring during long-term EEG monitoring. 

This chapter first defines the spike detection problem and then proceeds to list 

various spike detection methods reported in the literature. Next, the underlying tech­

niques are scrutinised and a proposal for a new multi-stage spike detection system is 

put forward. 

7.2 THE SPIKE DETECTION PROBLEM· 

Some confusion arises from the use of the terms spike and ED in the literature, the 

convention adopted throughout this thesis is to use spike and ED interchangeably to 

refer to epileptiform activity on a single channel, and to refer to activity which is in 

evidence across 2 or more channels as an epileptiform event (EV). 

The spike detection problem can be simply put: detect the presence of EDs in 

the multichannel EEG recording with high sensitivity and selectivity. That is, a high 
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proportion of true events must be detected with a minimum number of false detections. 

Although desirable, it is not realistic to expect sensitivities and selectivities of 100% 

if for no other reason than the imprecise definition of what constitutes a spike varies 

among EEGers. 

The lack of a proper definition of the 'ideal' spike, other than "transients clearly 

distinguished from background activity with pointed peaks at conventional paper speeds 

and a duration from 20 to under 70 ms approximately" (for sharp-waves the duration 

is of 70-200 ms) [Chatrian et al. 1974]' has rightly caused many researchers to ask: 

What does the EEGer look for when visually detecting EDs in the EEG ? 

Many researchers have attempted to answer this question by extracting certain 

features from the raw EEG which, in their opinion, best describe the ED morphology -

i.e., mimetic approaches. Alternatively, others have opted to use ANNs as a means of 

utilising the raw EEG without having to make any decision as to what parameters are 

more important than others in detecting 'EDs. Ozdamar et al. [1991] state that the use 

of preprocessing to extract parameters biases the system and defeats the very purpose 

of a totally trainable system when utilising ANNs. Paradoxically, Webber et al. [1994] 

report better results (in terms of accuracy and speed of spike detection) through the 

use of parameterized EEG (as opposed to raw EEG) but then go on to suggest that 

the network may need more raw test data to abstract identifying features from EDs. 

Whatever the method used, the spike detection problem seems to be broken down 

into two major components: feature extraction and classification (Figure 7.1). This 

can be viewed as mapping the N-dimensional EEG space (or pattern space) to a 

P-dimensional feature space (which is usually of a lesser order than N) and then 

performing classification in the feature space. In the case of the use of raw EEG data 

without feature extraction (as is the case in some ANN-based classifiers), this can be 

seen as the case where the N-dimensional EEG space is mapped onto an identical 

N-dimensional feature space, where classification then takes place. 

EEG DATA ------. 
FEATURE 

EXTRACTION 
------. CLASSIFICATION ------. SPIKE 

DETECTION 

Figure 7.1 The spike detection problem can be broken down into two major components: feature 
extraction and classification. 

If there are a set of features which adequately describe the ED morphology, the 

next obvious question is: 

Which features should ideally be extracted from the raw EEG data ? 
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Almost all researchers answer this question by extracting those parameters which 

relate to the "sharpness') of the ED. In mimetic approaches) values for peak amplitude, 

pre-peak slope and post-peak slope, durations, 2nd derivatives, etc., are extracted. In 

the parametric approach, the sharpness of the ED is used in a statistical setting where 

the transient or non-stationary nature of the ED is used as a criterion for detection 

when compared to the (assumed) stationary background. The sharpness of the spike, 

compared to the background, should also result in a differing spectral content, with 

more energy being found in the 'higher' frequencies, and, to this end, the FFT is also 

used. The problem with the FFT is that as the window of EEG being analysed is made 

wider the temporal information content of the EEG segment being windowed is lost; in 

addition, the high frequency energy content contributed by the ED is lost by the high 

frequency energies of the background EEG as the window is widened. The Wavelet 

transform (WT) can be utilised as a means of providing time-frequency signal analysis 

capabilities. With the WT it is possible to analyse a relatively large window of EEG 

in the frequency domain without the loss of temporal features. 

Without going into the pro's and con's of each feature set at this stage, it can be 

said that the mimetic approach does seem to rather limit the information content of 

the data when compared to, say, the WT approach which provides information in both 

the time and frequency domain. 

Apart from the optimal choice of features to be used for classification, it is well es- . 

tablished that, apart from the ED itself, other contextual information is also vital to the 

EEGer when classifying events as ED jnon-ED. These are mainly spatial information, 

such as 

What is happening in other channels at the same time as a candidate ED ? 

and temporal information such as 

Are there similar events with similar distribution elsewhere in the EEG ? 

It is, therefore, somewhat surprising that most of the spike detection systems reviewed 

work on a channel-by-channel basis (i.e., no spatial and limited temporal information is 

utilised) and only Glover et al. [1989] and Dingle et al. [1993] have made any real use of 

spatial and contextual information, with a high degree of success, through their use of 

expert systems. Ozdamar et at. [1991] make use of spatial information by integrating 

the outputs of individual channel spike detection ANNs (from four channels) into a 

single ANN module trained to recognise the common spatial distributions of EDs. 

Webber et al. [1994] use four channels simultaneously, while including spatial contextual 

information of a 1.0 s long window around the ED, in the training of their ANN. 

Based on the foregoing, the spike detection problem depicted in Figure 7.1 can 

now be modified, as shown in Figure 7.2, to incorporate the use of spatio-temporal 

information in helping detect EDs in the multi-channel EEG. 
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-----. 
-----. 

MULTI-CHANNEL -----. 
FEATURE 

EXTRACTION 
CLASSIFICATION ~ EV 

DETECTION EEG DATA -----. 

/
----. -----. lL 

~----------~ ~--------------~ 

spatial information temporal information / 
(memory) 

Figure 7.2 Spatio-temporal information is important in the spike detection problem. 

The 'ideal' spike detection approach may now be loosely defined as: 

The N-dimensional EEG pattern space is mapped onto a P-dimensional 

feature space for each channel in the EEG recording. The multichannel 

features introduce spatial information into the system. Classification of 

candidate EDs (CEDs) then takes place using features extracted from the 

pattern space. Temporal information can then be introduced to the classi­

fication process by considering the presence of previous (and, if available, 

future) EDs in the EEG throughout the multi-channel recording and allow­

ing this to strengthen or weaken the outcome due to spatial information 

alone. 

The following provides a short summary of the most common approaches to the 

spike detection problem in the literature. The systems have been grouped according 

to their spike detection criterion. 

Mimetic: A number of parameters are extracted from the EEG and are thresholded 

to indicate whether or not an ED has been detected. The parameters used vary 

amongst researchers. These include: the 2nd derivative of the EEG signal - Wal­

ter et al. [1973]; the amplitude and duration of EEG halfwaves - Ma et al. [1976]; 

multiple parameters - Gotman and Gloor [1976]; 10 parameters (4 durations, 

3 amplitudes, 2 slopes and sharpness) quantifying the morphology of an EEG 

spike - Ktonas et al. [1981]; amplitude and duration parameters including con­

textual information, patient state and ECG, EMG and EOG information Glover 

et al. [1989]; multiple parameters and a wide temporal context with state of 

patient recorded as well- Gotman and Wang [1991], Gotman and Wang [1992]. 

Parametric: The background EEG is assumed to be stationary and is modelled by 

a number of parameters to make up an autoregressive (AR) filter. When the 

EEG is then passed through the inverse AR-filter the result should be statistically 



7.2 THE SPIKE DETECTION PROBLEM 127 

stationary and any deviation from stationarity will indicate the presence of a non­

stationarity (Le., an ED or artifact) - Lopes da Silva et at. [1974]. Birkemeier 

et at. [1978] use the method of double differentiation followed by linear prediction. 

Template: Segments of EEG are correlated with templates of true EDs. A high degree 

of correlation between template and EEG sample indicates a probable match and 

hence a detection Saltzberg et al. [1971J. 

Wavelet transform: Schiff et al. [1994] examine the Fast wavelet transform (FWT) 

as a means of extracting features from the EEG for detecting EDs. The use of 

the FWT allows temporal features to be retained whilst examining the spectral 

content of a signal. 

ANN (Raw EEG): An ANN is trained with a number of segments of EEG repre­

senting ED/non-ED. A 2-layer MLP feed-forward ANN trained in a supervised 

manner with the backpropagation algorithm Eberhart et at. [1989]' Webber 

et al. [1994J. Pradhan et al. [1996] use an LVQ ANN (supervised training) trained 

using a number of labelled epochs of EEG. 

Mimetic + Expert system: A number of candidate EDs are selected by the mimetic 

stage and forwarded to the expert system which then classifies the candidate 

EDs as true or false. In addition to spatial information, the expert system 

utilises previous temporal information to make the ED/non-ED decision - Glover 

et al. [1989], or previous and future temporal information Davey et al. [1989J, 

Dingle et al. [1993]. 

Parametric Template: A non-stationarity is first detected by the parametric stage 

in a similar manner to the system of Lopes da Silva et al. [1974]. The non­

stationary waveform is then forwarded to the next stage which compares it to a 

set of ED templates Pfurtscheller and Fischer [1978]. 

Mimetic + ANN: A number of parameters are extracted from the 'raw' EEG and 

the ANN is trained on those parameters representing ED/non-ED, rather than 

the 'raw' EEG data itself. Eberhart et al. [1989] extract 9 parameters from the 

EEG and forward them to the ANN. Webber et al. [1994] extract 15 parame­

ters/channel across 4 channels. Gabor and Seyal [1992] utilise two ANNs, ANN 1 

having the pre-peak slope as input and ANN2 having the post-peak slope as in­

put. Wilson et al. [1991] utilise 18 parameters/channel across 4 channels of EEG 

as inputs to the ANN. 

Wavelet transform + ANN: Wavelet transform coefficients are extracted from cen­

tred segments of EEG (5 seconds long) containing ED / non-ED. The WT is used 

to obtain both time and frequency domain information. The parameters are 
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used singly, or in different combinations, to train feed-forward neural networks -

Kalayci and Ozdamar [1995]. 

ANN (Raw EEG) + ANN: Candidate EDs are extracted from the raw EEG by 16 

identical ANNs previously trained on ED/non-ED data; the outputs of which are 

integrated by a further ANN to provide spatial information to help in the spike 

detection problem - Ozdamar et al. [1991]. 

7.3 FEATURE EXTRACTION AND CLASSIFICATION 

The previous section noted that feature extraction is an important preprocessing stage 

(i.e., before classification) in the ED detection process. Transforming data from the 

high-dimensional pattern space to the low-dimensional feature space usually results in 

improved performance of the classifier stage. Even from a human perception point of 

view, it is easier to observe patterns in data if certain features are extracted and the 

data mapped according to these features' [Zurada 1992]. 

Since their inception, ANNs have been ideal candidates for classifiers, especially 

when little is known about the underlying statistics of the input data and there is a need 

to generalize to novel data. The following section deals with the use of ANNs in feature 

extraction as well as discussing the most ideal architectures and learning paradigms for 

use as classifiers. More detail can be found regarding the ANNs in Chapters 3, 4 and 

5. 

7.3.1 Artificial neural network feature extractors 

As explained in Chapters 3 and 5, there is a form of unsupervised classification learning 

where no a priori knowledge is assumed to be available regarding an input's member­

ship in a particular class. Rather, gradually detected characteristics and a history of 

training will be used to assist the network in defining classes and possible boundaries 

between them. Such unsupervised classification is called clustering and the ANN is 

known as a self-organizing ANN. Clustering is the grouping of similar objects and 

separation of dissimilar ones. As there is no information available from the teacher 

on the desired classifier's responses, the similarity of incoming patterns is used as the 

criterion for clustering. 

In effect, the act of clustering input patterns can be seen as a form of feature 

extraction, as each self-organised cluster is based on some similarities between the 

constituents of each cluster. Hence, each cluster can be said to contain patterns of 

similar features. 

The most popular ofthe self-organising ANNs is the SOFM (as described in Chap­

ters 5 and 6). The principal goal of Kohonen's SOFM algorithm is to transform an 
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incoming pattern of arbitrary dimensions into a one or two-dimensional discrete map. 

The SOFM performs this transformation adaptively in a topologically ordered fashion. 

A further refinement to the SOFM is learning vector quantization (LVQ) (Chap­

ters 5 and 6). Kohonen implements LVQ as a means of 'fine-tuning' the SOFM when 

it is to be used as a pattern classifier. In this way, the trained SOFM is now being 

adjusted in a supervised manner. 

7.3.2 Artificial neural network classifiers 

ANN classifiers can perform three different tasks. Firstly, they can identify which 

class best represents an input pattern, where the input may be corrupted by noise or 

some other process. Secondly, the classifiers can be used as content-addressable (or 

associative) memory, where the class exemplar is desired and the input pattern is used 

to determine which exemplar to produce. Thirdly, they can vector quantise or cluster 

the N inputs into M clusters. The number of clusters in the latter can be pre-specified 

or may be allowed to grow up to a limit determined by the number of nodes in the 

ANN itself. 

The following are just a few of the more popular ANN architectures used as classi­

fiers in the literature. For the most part, ANNs are chosen by their ease of implemen­

tation, speed of training, capability to generalize to novel data and resistance to 'noisy' 

data. More detailed explanations can be found in [Lippmann 1987), [Zurada 1992), 

[Hush and Horne 1993] and [Haykin 1994]. 

The single layer percept ron ~ In Chapter 3 it was shown that if the inputs pre­

sented from two classes fallon opposite sides of some hyperplane, then the train­

ing algorithm will converge and position the decision hyperplane between those 

classes. However, when classes cannot be separated by a hyperplane (such as 

the case of two classes with meshed regions), the single layer perceptron is not 

capable of accurately predicting the respective class of input patterns. 

The multilayer perceptron ~ It can be seen that a 2-layer perceptron (input nodes, 

a single hidden layer and the output layer) can form any, possibly unbounded, 

convex region in the space spanned by the inputs [Lippmann 1987), [Hush and 

Horne 1993]. Here the term convex means that any line joining points on the bor­

der of a region goes only through points within that region. However, this does 

not mean that there is no benefit to having more than two layers. For some prob­

lems, a small3-layer network can be used where a 2-layer network would require 

an 'infinite' number (a large number) of nodes [Hagan et al. 1996]. A 3-layer 

perceptron can form arbitrarily complex decision regions and separate meshed 

classes. It then follows that no more than 3 layers are required in percept ron-like 

feed-forward ANNs. 
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Of the number of practical concerns in implementing the multilayer perceptron 

with backpropagation learning (see Chapter 4) for classification, of most concern 

is the choice of the network size. For the MLP in general, it is not known what 

(finite) size network works best for a given problem. With little or no prior 

knowledge of the problem at hand, one must determine the network size by trial 

and error. For a fully connected MLP network no more than three layers are 

generally used and in most cases only 2. For the number of neurons needed in 

the hidden layer (of a 3-layer MLP), it has been shown that an upper-bound to 

implement the training data exactly is of the order of the number of training 

samples [Hagan et al. 1996]. However, in order to achieve generalisation, the 

number of hidden layer neurons should almost always be substantially less than 

the number of training samples. For a 3-layer ANN, the number of neurons in 

the second layer must be greater than one when decision regions are disconnected 

or meshed and cannot be formed from one convex area. In the worst case the 

number of second-layer neurons required is equal to the number of disconnected 

regions in input distributions [Hopfleld and Tank 1985], [Zurada 1992]. 

Radial basis function ANN - A radial basis function (RBF) ANN is a 2-layer 

ANN whose output nodes form a linear combination of the basis (or kernel) 

functions computed by the hidden layer neurons. The basis functions in the 

hidden layer produce a localised response to input stimulus. That is, they produce 

a significant nonzero response only when the input falls within a small localised 

region of input (or pattern) space. For this reason this ANN is sometimes referred 

to as the localised receptive field ANN [Haykin 1994]. 

Of interest here is that the RBF ANN can be used for classification just like the 

MLP, only in this case a single hidden layer is all that is required to implement 

the RBF ANN whatever the input dimension whereas for the MLP the question 

arises as to how many layers are required to solve a given problem (although in 

many cases a 2-layer MLP seems to be enough). In many cases, however, it has 

been shown that in order to represent a mapping to some degree of smoothness, 

the number of RBFs required to span the input space adequately may have to be 

large [Haykin 1994]. 

Adaptive resonance theory (1&2) ANN - Adaptive resonance theory (ART) 

ANNs are unsupervised (self-organized) self-stable types of ANN architecture. 

An ART ANN will remain responsive (Le., will adapt) when presented with new 

inputs and yet preserve its previous learned patterns [Haykin 1994]' it does this 

through possessing a dynamic architecture. The ART ANNs function as follows: 

First an input pattern is presented to the input on a feed-forward basis which 

produces a feed-backward pattern of activation of one of the existing node clas­

sifiers. The feed-forward and feed-backward patterns are then compared. If a 
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match occurs (resonance) with specified limits (vigilance), then this pattern is 

classified as a member of that winning node. If not, the remaining nodes are 

searched; failure to find an appropriate node results in the opening of a new node 

for this new pattern. So by the network "growing" in size the ART ANN has the 

ability to learn new patterns without forgetting the old ones. 

ART1 and ART2 differ essentially in the nature of their input patterns. ART1 

deals with binary inputs, whereas ART2 can deal with continuous valued inputs 

as well as binary valued inputs [Hagan et at. 1996]. 

7.4 ARTIFICIAL NEURAL NETWORKS AND THE SPIKE 

DETECTION PROBLEM 

The ANN has already featured in various spike detection systems (as shown in Sec­

tion 7.2). In most cases, the ANN used has been a MLP ANN trained in a supervised 

manner by repetitively applying known classes of EEG segments to the ANN until it 

is considered as being adequately trained. Usually this by way of a 2-layer MLP ANN 

utilized working on EEG samples of a single channel of EEG. This applies to systems 

that use raw EEG data as input as well as features extracted from the raw EEG. The 

action performed by these ANNs could be termed supervised classification learning. 

Firstly, this may be due to the large amount of applications and documentation 

of the use of the MLP. Secondly, the ability of the MLP to generalise when novel data 

is presented is of significant importance for spike detection, as it is almost impossible 

to present the ANN with a complete training set showing all ED/non-ED patterns (or 

features). 

Although, the MLP has been the favoured ANN for the spike detection problem, 

the need to determine parameters such as the number of hidden-layers, the number 

of neurons in each hidden-layer, activation types, etc. can make training the MLP a 

problem. The long training times of the MLP may be an issue, although that can 

be reduced by using the Levenberg-Marquart algorithm (see Section 4.4.4.5). Variable 

learning can also be used in order to increase the speed and probability of convergence. 

No application of RBF ANNs for EEG spike detection has been reported. The 

RBF certainly has the advantage over the MLP in that only a single hidden layer is 

required and as a consequence training time is shorter. However, Haykin [1994] states 

that the generalisation capabilities of the RBF are poor when compared to a similar 

MLP ANN implementation and that either a larger, more extensive, input pattern set 

is needed and/or more neurons (basis functions) are required in the hidden layer for 

the RBF ANN to perform on a level with that of the MLP ANN. The use of RBF 

ANNs with adaptive basis functions is reported [Haykin 1994] and is said to alleviate 
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the need to increase the pattern set size or increase the number of hidden neurons, 

but this introduces further parameters for which adequate parameter values need to be 

chosen. 

The use of the ART2 ANN applied to the long-term monitoring of the EEG is 

reported by Ozdamar et al. [1992]. The ANN was trained on samples of ED/non-ED 

obtained as 20 data points of raw EEG. The quick training time for the ART2 ANN 

is definitely an advantage (a few iterations as opposed to the thousands of iterations 

required by, say, an MLP ANN), and the ability of the ANN to recognise novel spike 

features in the incoming EEG and form new classes is also a desirable characteristic. 

However, a large number of parameters have to be fine-tuned to suit the application 

(up to seven). Also, the new 'classes' formed by the ANN on its recognising novel 

EEG data have to be verified and classified by a human operator. Likewise, a few of 

the parameters need to be adjusted by the human operator to balance the precision 

and level of vigilance (how alert the system is to novel EEG data). For long-term 

analysis this is ideal a..'l adjustmen~s can be made over the long period of EEG 

monitoring time available, but for standard EEG recordings this approach is unsuitable 

in its current form. Elsewhere, another group of researchers have compared the ART2 

ANN with Kohonen's SOFM in detecting brain diseases from the contingent negative 

variation response in the EEG [Jervis et al. 1994]. Their findings show that the SOFM 

was always more accurate than the ART2 ANN with no false detections taking place, 

whereas the ART2 ANN misclassified events and proved to be far inferior in accuracy. 

The inaccuracies were attributed to the sensitivity of ART networks to their parameters 

and to noise. 

Researchers' opinions differ as to whether or not the feature extraction stage is a 

necessary step in the spike detection problem. A feature extractor stage (generally) 

reduces the pattern space to smaller feature space, hence ANN architecture would be 

smaller after feature extraction than it would be without. A smaller ANN usually means 

an increased learning speed and increased probability of convergence. This applies to 

both MLP and RBF ANNs. In the case ofOzdamar et al. [1991], fa..'lt wavelet transform 

coefficients were extracted from the EEG and are used as features to train MLP ANNs. 

The use of the fast wavelet transform coefficients resulted in no increase in performance 

(when compared to the raw data case) other than the ease and speed of convergence in 

the training of the ANN. In contrast, Webber et al. [1994] found that parameterized 

data resulted in improved performance of the 'raw' EEG approach. 

From the preceding discussion, it is apparent that in deciding on a system capable 

of the detection of EDs in the EEG, a small number of important questions need to 

be answered. Figure 7.3 depicts the questions and some of the possible answers. To 

summarise, these are: 

1. Should the 'raw' EEG be used for classification or should features be extracted 
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first and the classification performed in the new feature space? 

2. If features are to be extracted, what features adequately describe the EDs for 

classification purposes? 

3. Once the decision regarding 'raw' vs features has been made, which ANN classi­

fiers (if any) should be used? 

Features 

SOFM 

Parametric 

ED/non-ED 

Raw 

Other 
(non-ANN) 

Figure 7.3 Important questions to be asked in choosing the best spike detection criterion. 

The next section attempts to answer these questions through the use of the spike 

detection system which is introduced and elaborated upon further in later chapters. 

Once the approach for spike detection has been established, it is important to 

keep in mind the need to incorporate spatial and temporal information, as described 

in Section 7.2. At this stage no more mention will be made of spatial and temporal 

contextual information other than to recognise its importance and to include it in 
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the overall block diagram of the spike detection system. Utilization of contextual 

information will be discussed in detail in Chapter 10. 

7.5 A NEW SPIKE DETECTION SYSTEM 

This section presents a novel approach to the use of ANNs in the spike detection 

problem. This approach formed the basis of a new spike detection system explained in 

the following subsections. Furthermore, each stage of the system is discussed in detail 

in the coming chapters. 
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Figure 7.4 The proposed spike detection system. 

EV/ 
non-EV 

The spike detection system consists of a mUlti-stage system at the heart of which is a 

feature extractor/classifier (Figure 7.4). One stage is made up of two sub-components: 

a mimetic stage followed by a trained SOFM (see Chapters 5 and 6). The mimetic 

part extracts and thresholds parameters of the EEG and presents CEDs to the trained 

SOFM. The SOFM is previously trained on a large training set in a self-organised 

fashion and results in an ordered set of weight vectors based on the features extracted 

from the training data, in effect, performing feature extraction on the CEDs. Once the 

trained SOFM is calibrated and fine-tuned by one of the LVQ algorithms described in 

Chapters 5 and 6, it then becomes a classifier, assigning class labels to inputs based on 
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Figure 7.5 The single channel ED detector consisting of the calibrated SOFM followed by 'fine­
tuning' with LVQ. 

the labels of the closest matching weight vector (Figure 7.5). 

Both sub-components form a single channel ED detector and are repeated for each 

channel in the multichannel EEG. The final stage incorporates the multichannel outputs 

ofthe previous stages (i.e., spatial information) along with temporal information to give 

the final EV /non-EV output of the spike detection system. 

Through the use of Kohonen's SOFM, the extraction offeatures from the raw EEG 

can be performed without bias, since the SOFM operates in an unsupervised manner 

representing similar input patterns as topological features mapped out onto a one or 

two-dimensional feature space. 

7.5.1 The inputs to the system 

As EDs are said to vary in duration from 20 200 ms [Chatrian et ai. 1974], the 

ideal inputs to the system would consist of a window of at least 200 ms of 'raw' EEG. 

The system thus uses an input waveform 200 ms wide with the maximum negative or 

positive peak rd 
of the way across the window. 

For a 16 channel system, each input consists of a 200 ms wide waveform obtained 

from a sliding window across each channel. The reason for going for 'raw' EEG versus 

parameters extracted from the 'raw' EEG is that the 'raw' EEG contains all the infor­

mation there is to know about the given waveform. Classification based on extracted 

parameters depends on choosing those parameters that best represent an ED but these 

are unlikely to contain all of the features defining a spike. 

The use of 'raw' EEG would, however, have made the system very computationally 

intensive and hence slow. As one ofthe aims ofthe system is to have the system operate 
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in real-time, an additional stage - i.e., mimetic - was introduced in order to reduce 

computational time without compromising the system performance. 

1.5.2 The mimetic stage 

The amount of data presented to the classifier can be significantly reduced by introduc­

ing a mimetic stage before the classifier stage. The mimetic stage works by extracting 

a number of parameters from the 'raw' EEG waveforms and passing them through a 

set of thresholds. Once all thresholds are exceeded it is considered a CED. The raw 

EEG is then passed onto the classifier stage. In this way, the incoming EEG can be 

screened by the mimetic stage through the use of the parameters, whilst the classifier 

is still given all the information in the form of the 'raw' EEG. By setting the values 

of the thresholds in the mimetic stage such that the system has a high sensitivity to 

true EDs (albeit with a poor selectivity) it is hoped that no (or few) EDs are missed 

at the mimetic stage. In effect the mimetic stage could be called both a 'detector' 

or a 'classifier' in its own right. The action of forwarding only CEDs which pass the 

thresholds to the SOFM makes the mimetic stage a 'spike detector', but a detector 

with an unacceptably large number of false detections due to the low thresholds in use. 

Once a CED is found, a number of parameters are calculated which describe the 

background EEG surrounding the CED. For a 200 ms CED the background EEG 

of 1.0 s duration is included in the calculations. The parameters measured included 

values of average amplitude, sharpness and duration of the background EEG. These 

are calculated in order to place the CED in context as a spike should be "... clearly 

visible from the surrounding background EEG." [Chatrian et al. 1974]. 

These parameters, along with the 'raw' EEG comprising the CED, form the inputs 

to the next stage in the system. The exact parameters calculated for the mimetic stage 

are described in more detail in Chapter 9. 

1.5.3 The feature extractor/classifier stage 

Once a CED is detected it is presented to the next stage which is a combined fea­

ture extractor/classifier stage. This stage, along with the mimetic stage, is repeated 

identically for each channel in the multichannel recording. 

7.5.3.1 Feature extractor 

A trained SOFM makes up the feature extractor part of the classifier stage. The 

SOFM, consisting of a square 2D lattice of neurons, was trained using Kohonen's 

learning rule as described in Chapters 5 and 6. For an N x N SOFM, N 2 weight 
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vectors mi(for i = 1,2, ... ,N2) are contained in the SOFM which are of the same 

order as the input vectors. 

A CED is presented to the trained SOFM (along with the contextual information 

as described in Section 5.6.1) in the form of an input vector. The CED is compared 

with each weight vector until the closest matching vector is found according to some 

similarity measure. The closest matching vector me (the 'winning vector') is considered 

to be best representative of the input data. 

As such, the uncalibrated SOFM performs no classification, only feature extraction. 

However, if the SOFM is calibrated as described next, class labels can be assigned to 

each weight vector mi making the SOFM a classifier. 

7.5.3.2 Classifier 

Calibration of the SOFM is a standard procedure developed by Kohonen (as described 

in Chapter 5) which assigns a class label to each neuron in the SOFM (and hence to each 

weight vector mi). However, in this case the class label assigned to each neuron takes 

the form of a probability which corresponds to the probability of the input waveform 

being a true ED if that neuron is declared the 'winner'. So a class label of '0.9' implies 

a probability of 0.9 that the corresponding weight vector describes a true ED whereas 

a label of '0.1' implies a probability of 0.9 that the weight vector describes a non-ED. 

The method of assigning probabilities to each neuron during the calibration phase is 

based on Bayesian statistics and is described in full in Chapter 9. 

7.5.4 Enhancing the feature extractor/classifier stage 

Once the SOFM is trained and calibrated, it is possible to enhance the performance 

of the system by 'fine-tuning' the weights of the SOFM through performing LVQ on 

the trained SOFM as described in Chapter 5. This then becomes supervised training 

where data (CEDs) with known class labels are used to further adjust the weights of 

the SOFM such that strong probabilities to true EDs are strengthened. 

7.5.5 The multichannel EV detector 

So far the system has been developed upon a single channel approach in which the 

mimetic stage and the feature extractor/classifier stage have been duplicated across 

all sixteen channels and have all acted on single chaIlIlel information. The system as 

described so far would result in sixteen probabilities, each representing the probability 

of there being a true ED at the input of each channel of EEG. The final stage of the 

system integrates this multichannel information to give the final output ofEV /non-EV. 
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At this stage, spatial information is used to upgrade or downgrade the probability of 

there being an EV across all sixteen channels. The system makes use of the probabilities 

at each channel of the multichannel recording as well as the polarity of each input 

waveform (CED) to detect the EV as a whole, i.e., across 16 channels of EEG. As 

the EEG is recorded using many different montages, information regarding the current 

montage must be also supplied. 

Finally, temporal information will be used to upgrade the classification based on the 

past history of the EEG under review. The actual components of the spatio-temporal 

stage are explained in greater detail in Chapter 10. 

7.6 ENHANCING SPIKES BEFORE SPIKE DETECTION 

In the spike detection problem a balance must be obtained between having a high sensi­

tivity and a high selectivity. It is relatively easy to adjust system parameters to obtain 

performances where all EDs are found in a given patient but this would usually be ac­

companied by an unacceptably large number of false detections. Conversely, it is also 

relatively easy to achieve a system with very few false detections but then this would 

usually be accompanied by an unacceptably large number of missed events. Exactly 

where the balance should be made between sensitivity and selectivity is debatable as 

well as being dependent on the area of application for automated spike detection. 

Many researchers argue that it is better to have a high sensitivity (minimize missed 

events) and suffer more false detections which can be checked by the EEGer, rather 

than missing events altogether. Conversely, if we look at the system from the point of 

view of minimizing the number of false detections then the number of missed events will 

increase. However, if possible EDs can be enhanced prior to the spike detector it should 

be possible to increase the sensitivity (minimize missed events) while maintaining the 

selectivity at a satisfactory level. 

A spike enhancer would not be a detector but would simply aim to enhance any­

thing vaguely spike-like. In reality this means that real EDs as well as ED-like artifacts 

and background will be enhanced, i.e., a large number of unwanted waveforms will be 

enhanced along with real EDs. This is quite acceptable as long as the spike detection 

system has a high selectivity (i.e., the number offalse detections is minimized). Such a 

spike enhancer is described in the next chapter. It uses the technique of multireference 

adaptive noise cancelling to enhance spikes in the EEG. 

The overall spike detection system can now be expanded so as to incorporate a 

spike enhancer before the spike detector stage (Figure 7.6). 
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Figure 7.6 The spike detection system, including a spike enhancer. 
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The conceptual framework for a new spike detection system has been developed which 

makes as much use of information in the EEG as possible whilst attempting to emulate 

the EEGer's approach to the spike detection problem as much as possible. The system 

makes particular use of the attributes inherent in ANNs (Le., nonlinear, adaptive, etc.). 

The key factors during the system development which led to the system architecture 

depicted in Figure 7.6 were: 

.. Although the mimetic stage extracts parameters for thresholding, once aCED 

is found the 'raw' EEG is input to the feature extractor/classifier stage in order 

not to lose important information by basing classification on arbitrarily extracted 

parameters only. 

€I Contextual information on the surrounding background EEG is also forwarded 

to the feature extractor/classifier stage to increase accuracy of classification by 

the SOFM. 

III Since the SOFM is initially formed following a self-organising process, a large 

amount of training data can be supplied for training purposes which does not 

have to be seen or graded by expert EEGers. This is a major advantage over 
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other ANN based systems which use supervised ANNs for classification and hence 

need large amounts of graded EEG data to form an adequate training set. 

• Spatial and temporal cues are incorporated in the system in order to gain the 

benefits obtainable from this information in a means very similar to that used by 

an expert EEGer. 

It Grading of the overall system output is possible not only through using the spatial 

and temporal cues present in the EEG but by assigning probabilities to CEDs 

at the output of each single-channel EEG module rather than straight binary 

ED/non-ED class outputs. 

• A spike enhancer is included in an effort to increase the sensitivity, whilst main­

taining a high selectivity, of the overall spike detection system. 

Each stage of the spike detection is described in more detail in the following chap-

ters. 



Chapter 8 

SPIKE ENHANCEMENT 

8.1 INTRODUCTION 

This chapter introduces a system - called the 'spike enhancer' designed to enhance 

the presence of EDs in the EEG. It is the first stage of a multistage system to detect 

the presence of EDs in the BEG, as described in Chapter 7 (see Figure 8.1). 

The EEG can be considered as consisting of an underlying background process 

which is assumed to be stationary and ergodic, onto which are superimposed transient 

non-stationarities such as EDs, electrode 'pop', eye-blinks, and muscle artifacts. Of 

the many methods described in Chapter 7 for the detection of EDs in the EEG, the 

method of Lopes da Silva et ai. [1974] best represents this superposition model and 

has received much attention by workers in the field. The method involves modelling 

the (stationary) background EEG with an autoregressive prediction filter and detecting 

transients by examining the prediction error. This must then be followed by a further 

stage to classify the transients detected as being EDs or artifacts. In the Lopes da Silva 

et ai. method the autoregressive filter is calculated from a segment of the background 

EEG which is assumed to be stationary. Its major drawback is that the stationarity 

assumption may not always hold true, leading to an unacceptably large number of 

transients being detected. 

Essentially, the spike enhancer processes the EEG by attenuating the background 

EEG, thus primarily leaving only transients - which are then classified as ED or non­

ED by following stages which are described in the next chapters. The ultimate aim 

of the spike enhancer is to increase the sensitivity of the overall system to candidate 

EDs (CEDs), while maximizing selectivity (Le., minimizing the number of CEDs which 

are not epileptiform passed onto the next stage). The spike enhancer makes use of 

rnultirejerence adaptive noise cancelling (MRANC) in which the background EEG on 

nearby channels in the multichannel EEG recording is used to adaptively cancel the 

background EEG on the channel under investigation. The use of multilayer ANNs to 

implement the MRANC filters allows the relationship of EEG source to EEG signal to 

be nonlinear and exhibits improved performance over the linear case. The fact that 
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the system utilizes filters which are continuously adapting means that any variations 

in characteristics of the background EEG, such as baseline drift, or changes in level of 

a-activity, will not affect detection, and the different characteristics of the EEG of dif­

ferent patients will automatically be compensated for within the first few seconds of the 

detection process (the time taken by the ANN to train to an acceptable level). Adap­

tive noise cancelling has been applied to enhancing somatosensory evoked potentials 

[Parsa and Parker 1994] and to cancelling the presence of EOG in the EEG [Sadasivan 

and Narayana Dutt 1996], although both methods use a linear implementation of the 

noise cancelling technique. 

The first part of this chapter introduces a model which describes the generation of 

the EEG as recorded at the scalp electrodes. The technique of adaptive noise cancelling 

is then introduced followed by MRANC which is applied to the model. The MRANC 

process is implemented by means of a multilayer perceptron ANN. The method has been 

applied to recorded EEG segments and the performance of the system on predetermined 

EDs recorded. A comparison is made to the performance of MRANC utilizing a linear 

model. The advantage of the spatial filtering aspect of MRANC is highlighted when the 

performance of MRANC is compared to that of the inverse auto-regressive filtering of 

the EEG, a purely temporal filter. Finally, the effectiveness of the method at enhancing 

such activity in the EEG is discussed. 
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Figure 8.1 The complete spike detection system. 

8.2 THE EEG MODEL 

EV 

There is considerable discussion in the literature on the origin of the EEG. Chapter 2 

introduces a number of ideas put forward by various researchers in the field. All 

researchers agree, however, that the EEG recorded at the scalp represents an averaged 
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_________ ~Scalp 

Figure 8.2 A model of the generation of the EEG at the scalp. 

picture of the activity of many individual neurons or groups of neurons. The scalp 

EEG can therefore be modelled as shown in Figure 8.2, where a (large) number of 

signal generators, ni(t) (for i 1,2, ... ,M), are shown to be generating electrical 

activity in the brain which is picked up by scalp electrodes after passing through brain 

tissue, cerebrospinal fluid and the skull. In engineering terms, the signals recorded at 

each electrode can be defined as the weighted sum of all the generating signals. 

Since the number of signal generators, along with the signals they generate, is not 

known, a simpler model is assumed here. That is, each of the above signal generators 

can be combined in a certain way to produce a single underlying signal. However, 

since we are interested in detecting EDs in the EEG, and bearing in mind that the 

interictal EEG can be considered as consisting of a background process onto which are 

superimposed EDs, we consider that the individual signal generators can be lumped 

into two composite generators: the background signal N(t) and the ED signal S(t). 

The resulting model is shown in Figure 8.3. Thus, the signal recorded at each scalp 

electrode, Ej(t), (for j = 1,2, ... ,L), becomes the weighted sum of N(t) and S(t). 

The filtering action of the brain can be described in terms of a mathematical model 

describing the tissue transfer functions. These can be represented by means of input­

state-output differential equations [Narendra and Parthasarathy 1990], which take the 

form 

x(t) = F [ :i:~ 1 (8.1) 

E(t) = G [x(t)] , 
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where 

x(t) [Xl(t),X2(t), ... ,xr(t)f, 
u(t) [N(t), S(t)]T , 

E(t) [El(t),E2(t), ... ,EL(t)f, 

with Ui(t) representing the inputs to the tissue transfer functions, Xi(t) the state vari­

ables and Ei(t) the outputs from the tissue transfer functions recorded at the scalp 

electrodes. F and G represent unknown functions. These equations describe a system 

of order r with 2 inputs and L outputs. Equation 8.1 can be re-written as a set of cor­

responding difference equations, since here we are dealing with discrete-time systems, 

thus 

x(k + 1) 

E(k) 

q> [ x(k) 1 
u(k) 

w [x(k}]. 

___ --_ ~ Scalp 

Figure 8.3 The simpler model of the generation of the EEG. 

(8.2) 

It is not known whether the tissue transfer functions perform a linear or nonlinear 

operation on the underlying signal generators. For generality, therefore, they are hence­

forth assumed to be nonlinear (and unknown). Even if they were known, solving the 

nonlinear equations of Equation 8.2 results in nonlinear algebraic equations for which 

no simple solution exists. By expanding Equation 8.2 we get an expression for E(k) 
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the signals recorded at the scalp electrodes, 

E(O) W [x(O)] 

E(l) W [9) [ :~~~ II 
(8.3) 

E(k) 

u(k 1) 

From Equation 8.3 it can be seen that E(k) is a nonlinear function of previous values of 

u(k). In essence, the model described here shows that the signal recorded at the 

scalp can be con~idered as being due to two separate sources consisting of the ED and 

contaminating background EEG. The tissue transfer functions giving rise to signals as 

measured at the scalp are unknown and are assumed to be nonlinear. It is the EEG 

model described by Equation 8.3 which will be used by the noise cancelling procedures 

(using ANNs) described in the next sections. 

8.3 ADAPTIVE NOISE CANCELLING THEORY 

When it is required to estimate a signal which is contaminated with additive noise, it is 

usual to pass the contaminated signal through some fixed filter to attenuate the noise 

while leaving the signal relatively unchanged. To construct such a fixed filter one must 

have a priori knowledge of the characteristics of the signal and noise. With adaptive 

filters, however, no a priori knowledge of the signal or noise is necessary as the filter 

'learns' and adapts its parameters as time progresses. 

The concept of adaptive noise cancelling is shown in Figure 8.4. A signal So is 

received at a sensor along with some (uncorrelated) noise no. This noise is unwanted 

and is contaminating the signal So. The noise cancelling scheme requires a separate 

input which yields a version of the noise nl which is correlated to no The combined 

signal So + no forms the primary input to the noise canceller and the noise nl forms 

the reference input. The reference signal is filtered in such a way as to produce a signal 

y which is as close as possible to no. The overall output of the system is given by 

z = So + no - y. The output power can be found by squaring z and taking expectations 
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such that 

E[Z2] E[sa] + E[(no - y)2] + 2E[so(no y)] 
= E[sa] + E[(no - y)2]. 

The minimum output power is given by 

Noise 
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input\ 

! ___ Agil~tiV~!l!Jj§~.ilnc~]lf!.r.:._·1 
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Figure 8.4 Adaptive noise cancelling without crosstalk 

System 
output 

z 

(8.4) 

(8.5) 

The signal power E[sa] is unaffected as the adaptive filter is adjusted to minimize 

E[z2]. The above equations imply that minimizing the total output power has the effect 

of causing the output z to be a best least squared estimate of the signal So [Widrow 

et al. 1975], [Widrow and Stearns 1985]. 

It is possible that the reference input may be contaminated with some signal 81 

(correlated with so), as shown in Figure 8.5. This signal cross-talk will result in some 

cancellation of the primary input signal but, if the levels of cross-talk are low, the 

adaptive noise canceller will still work well, reducing the SNR at the output with 

minimal distortion of the primary signal 80 [Widrow and Stearns 1985]. 

Figure 8.6a shows an adaptive noise cancelling scheme where the signal source and 

noise source are both uncorrelated white noise sources (each signal is 2000 samples 

long). The amount of noise contaminating the primary input is governed by the at­

tenuator J and the amount of signal crosstalk by H. For the sake of simplicity all 

the other paths are directly connected (i.e., no attenuation) and both J and Hare 

zero order filters (i.e., attenuators). The noise cancelling system consists of a single 

weight and bias initialised to zero. As both J and H are varied, the noise canceller is 

operated and the adaptive filter characteristics are changed using the LMS algorithm 

as described by Widrow and Stearns [1985]. Pattern mode training was used with the 
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Figure 8.5 Adaptive noise cancelling 'With crosstalk 

LMS algorithm meaning that the adaptive filter weight and bias were changed after 

each consecutive sample was presented. The algorithm used a fixed learning rate of 

a = 0.01. The mean-squared-error (MSE) between the output of the noise canceller 

and the signal applied at the prima,ry input, is measured after equilibrium (i.e., after 

the first 1000 samples) and plotted for each case, as shown in Figure 8.6b. It can be 

seen that for no (or little) signal cross-talk, the noise canceller works well, resulting in 

a minimal MSE. As the level of signal cross-talk increases appreciably then so does the 

MSE indicating that the signal is being distorted as well as the noise being cancelled. 

8.4 MRANC FOR THE EEG 

The adaptive noise cancelling theory is applied to the spike detection problem in the 

EEG in the following way. The desired signal S(k) represents the EDs, while the noise 

source N(k) represents the background EEG. This process is shown in Figure 8.7. 

As can be seen in Figure 8.7, the primary input Epri(k) contains a signal s con­

taminated by noise no from the noise source; no is assumed to be uncorrelated with 

the signal s. The reference input Eref(k) contains a noise signal nl which is uncorre­

lated with s but correlated with no. The adaptive filter adapts its parameters so as 

to produce an output signal y which is as close as possible to no. This output is then 

subtracted from the primary input, cancelling the noise content no but leaving signal 

s intact. The filter adaptation is controlled by the error which is the overall system 

output z. The adaptive filter continuously adjusts so as to minimize the error signal 

given by z. Any suitable adaptive algorithm which minimizes this error can be used; in 

particular, the LMS adaptive algorithm [Widrow and Stearns 1985] can be used if the 

system is assumed to be linear. The LMS algorithm minimizes E[z2] and in principle 

the filter converges to the optimal solution and the noise canceller has at its output the 

signal itself, free of contaminating noise. This corresponds to a filtered version of the 

ED as recorded at the primary input scalp electrode, free of contaminating background 
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Figure 8.6 Computer simulations of adaptive noise cancelling: (a) A single reference adaptive noise 
canceller and (b) the MSE given by E[(S - S?l after noise cancelling using the LMS algorithm for 
various values of J and H. Both noise and signal source are represented by uncorrelated, white noise 
signals. 
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Figure 8.7 Adaptive noise cancelling applied to the EEG. 
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y(k) 

EEG. The LMS algorithm is employed in the work reported here for comparison with 

the nonlinear ANN described next. 

The example in the previous section (related to Figure 8.5) indicated that some 

cancellation of the signal in the primary input occurs if signal cross-talk is present. If 

the signal components present in the reference input are small, then the noise canceller 

can be shown to work nearly as well as ifthere were no cross-talk. If the noise canceller is 

extended to the multichannel case - i.e., MRANC - it can be shown that as the number 

of reference channels is increased, as in Figure 8.8, the performance is improved, even 

in the presence of a limited amount of cross-talk on some of the channels [Ferrara and 

Widrow 1981]. So with MRANC each reference input Ere jl(k), Ere j2(k), ... ,ErejN(k) 

contains a version of the noise correlated with the noise-source N (k) and some reference 

inputs may contain some cross-talk of the signal S(k) itself. 

+ 

so+no 

y(k) 

/-E=r""ef2"",(,-"k)'----1 Adaptive f---------' 
s2-t:n2 Filter 

'" Scalp 

Figure 8.8 Multireference adaptive noise canceller. 
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As the adaptive filter is attempting to model the unknown and possibly nonlinear 

transmission of S(k) and N(k) through the tissue transfer functions to the scalp, it 

must itself exhibit nonlinear behaviour. Equation 8.3 indicates that each reference in­

put Erefl(k), Eref2(k), . .. ErefN(k) is a function of both past and present signal values. 

This implies that the adaptive filter needs access to past as well as present reference 

inputs. For practicality, only a finite number p of past values are considered (and im­

plemented by way oftapped delay lines for each reference input as shown in Figure 8.9). 
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Figure 8.9 The tapped-delay-line in the adaptive filter. 
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8.4.1 ANN implementation of MRANC 

As stated in Chapter 4, a 2-layer perceptron ANN (one hidden layer and one output 

layer of neurons) can implement any arbitrary nonlinear function, so it is well suited 

to implement the nonlinear adaptive filter described here. Such an ANN has N(p + 1) 

inputs (where N is the number ofreference channels), an arbitrary number H of neurons 

in the hidden layer and a single neuron in the output layer (refer to Figure 8.9). For 

this ANN each neuron in the hidden layer contains a log-sigmoidal nonlinear activation 

function given by 

(8.6) 

and the single output neuron has a linear activation function. The action of the 2-layer 

ANN is described in the following equations. 

For the hidden layer, the net internal activity level n;h)(k) for neuron j at sample 

time k is 

N(p+l) 

n;h) (k) = L w;7) (k)a~in) (k) for j = 1,2, ... ,H, (8.7) 
i=O 

where a~in)(k) = Ereji(k) is the input signal of neuron i and at time k , and w;7)(k) is 

the weight of neuron j in the hidden layer for the ith input signal. For i = 0, we have 

a~in)(k) = +1 and w)~)(k) = bt)(k), where b;h)(k) is the bias applied to neuron j in 

the hidden layer. The output of the hidden layer is then 

(h) ((h)) . aj (k)=, nj (k) for)=1,2, ... ,H, (8.8) 

assuming the log-sigmoid nonlinear activation function given by Equation 8.6. In the 

same way, the output of the final (output) layer is 

H 

y(k) = L w~out)(k)a~h)(k), (8.9) 
i=O 

w here w~ out) (k) is the weight of the single linear neuron in the output layer fed by 

neuron i in the hidden layer. For i = 0, we have a~)(k) = +1 and w~out)(k) = b(out) (k), 

where b(out)(k) is the bias applied to the neuron in the output layer. The output of the 
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MRANC then becomes 

z(k) = Epri(k) - y(k). (8.10) 

Through the error backpropagation algorithm the weights and biases of the 2-layer 

perceptron ANN may be adjusted so as to minimize the squared error J given by 

(8.11) 

In this case the equations derived in Chapter 4 for a 2-layer perceptron, using er­

ror backpropagation with steepest-descent are used. Equation 8.7, Equation 8.8 and 

Equation 8.9 along with 

c5(out)(k) = -z(k) (8.12) 

and 

(8.13) 

are used to give the weight update equations. 

Equations 8.7, 8.8 and 8.9 represent the forward computation and Equations 8.12 

and 8.13 the backward computation, where c5(out)(k) and c5~h\k) are the local gradients 

for the output layer and neuron j in the hidden layer, respectively. The weights and 

offsets are changed according to 

(8.14) 

and 

{
for i. :. 0, 1, . .. ,N (p + 1) 

for J - 1, 2, . .. ,H 
(8.15) 

where a~out) (k) and a~7) (k) are the learning rate parameters assigned to weights w~out) (k) 

and w~7)(k) respectively. To further optimise the performance ofthe ANN, an adaptive 

learning rate is used, the learning rate update rule being defined as follows [Haykin 1994] 
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(§6.15). For the output layer learning rates 

l)D}out)(k) > 0 

l)D}out)(k) < 0 , 

where D}outl(k) and S}out)(k) are defined respectively as 

and 
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(8.16) 

(8.17) 

(8.18) 

where "', fJ and e are control parameters. Likewise, for the learning rates of the hidden 

layer 

{ '" if S;7)(k 1)D,}7)(k) > 0 

6.a;7)(k + 1) -fJa;~)(k) if S;7)(k -l)D)~)(k) < 0 (8.19) 

0 otherwise 

where 

D)7)(k) = o;h\k)a;~n)(k) (8.20) 

and 

S;7)(k) (1 - e)D)7) (k - 1) + es)7) (k - 1). (8.21) 

The learning rate adaptation procedure described in Equations 8.16 to 8.21 is 

known as the "deIta-bar-deIta" learning rule, described in Section 4.4.4.2 [Jacobs 1988], 

[Haykin 1994]. 

8.5 METHODS 

A study was performed with EEGs recorded from a selection of patients to test the 

effectiveness of MRAN C for spike enhancement. 
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8.5.1 Data collection 

The EEG was recorded by scalp electrodes placed according to the International 10-20 

system [Jasper 1958]. Sixteen channels of EEG were recorded simultaneously both for 

referential and bipolar montages. The amplified EEG was bandpass filtered between 0.5 

and 70 Hz using a five-pole analog Butterworth filter, sampled at 200 Hz and digitized 

to 12 bits. All data were stored for later off-line processing. 

8.5.2 Performance index 

For the sake of providing a means of measuring the performance of the system, III 

the following the EDs are termed the signal and the background EEG is termed the 

unwanted noise contaminating the signal. The signal-to-noise ratio (SNR) is then 

defined as the ratio of the peak-to-peak value of the ED to the root-mean-square value 

of the background EEG for a number of samples on either side of the ED, excluding 

the ED itself (see Figure 8.10). 

background 

150ms 135ms 150ms 

Figure 8.10 The SNR is defined as the ratio of the peak-to-peak amplitude of the ED to the RMS 
value of 30 samples on either side of the ED. 

The ED is initially identified by the location of its maximum negative peak (the 

negative direction, by convention, is upwards in the EEG). The expected duration of 

-ED's is 70-200 ms [Chatrian et al. 1974]; a typical duration of 135 ms is assumed, 

which corresponds to 27 samples at 200 samples per second. The minimum sample 

within the range ±14 samples from the negative peak is chosen to be the positive peak 

of the ED and the peak-to-peak value Spp calculated accordingly. The sample midway 

between the negative and positive peaks is assumed to be the centre of the ED. Finally, 
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30 samples (150 ms) on either side of the 27-sample wide ED are chosen to describe 

the background EEG in the vicinity and its RMS value BRMS calculated. The SNR is 

calculated by 

SNR = Spp • 

BRMS 
(8.22) 

U sing this SNR calculation the primary performance index used is the percentage 

increase in SNR defined as 

ASNR = SNRnew - SNRold 10001 
i...l. . SNR x 10, 

old 
(8.23) 

where subscripts "old" and "new" refer to before and after filtering respectively. 

8.5.3 Selection of reference 'channels 

The channel containing the highest amplitude EDs, generally being closest to the 

epileptogenic focus, was made the primary channeL The reference channels were then 

grouped, as shown in Figure 8.11, as follows: group A comprised ofthe 3 channels clos­

est to the primary channel, group B the 4 channels furthest from the primary channel 

and group C aU channels other than the primary channel. 

MRANC was then performed on each segment using each reference group singly, 

or (in one case) a combination of 2 reference groups. The SNR of the ED at the output 

of the MRANC filter was recorded and the percentage increase in SNR calculated. 

8.5.4 The ANN parameters 

8.5.4.1 Nonlinear implementation 

The MRANC system was implemented by means of a 2-layer perceptron ANN as de­

scribed in Section 8.3. Experiments were performed to determine the number of refer­

ence channels N, the number of delays to be considered for each reference channel p, 

and the number of neurons H in the hidden layer of the ANN. 

To determine N it was necessary to determine which channels were to be used as 

reference channels for the MRANC process. In order to reduce the cross-talk between 

the primary input channel and the reference channels, it is preferable to choose reference 

channels as far as possible from the primary input channel. Conversely, the more 

distant a reference channel lies from the primary input channel, the less correlated the 

background EEG (or noise) becomes with the primary channel and hence the more 
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Channel 

Group A 

(a) Patient # 1 REFERENCE (b) Patient #2 

(c) Patient #3 (d) Patient #4 

(e) Patient #5 (f) Patient #6 

Figure 8.11 The reference groups used for each of the 6 test patients. 
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MRANC performance deteriorates. To determine the optimal combination of reference 

channels, the reference channels were put into 3 groups, N was varied for each group, 

and a number of tests carried out for each case. In the same manner, a number of 

tests were carried out with H set first at 2 and then at 5, 10 and 20. Preliminary 

testing indicated that system performance was optimal for p = 2 (i.e., no significant 

improvements in performance for p > 2) and, hence, this was used for all subsequent 

tests. 

8.5.4.2 Linear implementation 

For comparison, the percentage increase in SNR of MRANC performed on the same 

samples utilizing an adaptive linear combiner filter adapted by means of the LMS 

algorithm (as described in Section 4.3) was included. The filter consisted of a weighted 

linear combination of the inputs sampled at time k and the p consecutive past samples 

. for a pth order filter. The filter conSisted of a single layer (i.e., H = 0). 

8.5.5 SUbjects 

The system was tested ou the EEGs of six patients recorded usiug the procedure in­

dicated iu Sectiou 8.5.1. Although the data recorded iuc1uded referential montages, 

all refereutial moutages were converted to longitudinal bipolar moutage before being 

stored and subsequeutly used for testiug. Segmeuts of EEG were choseu from each 

patieut, coutainiug 10 EDs identified by au electroencephalographer (G.Carroll) who 

had access to the full multichannel EEG (Le., could rate EDs based on spatial and 

temporal contextual information). To ensure that the ANN had adequately converged, 

care was taken that the first ED did not occur within the first 4 s of the recorded 

segment. The SNR of each ED was calculated iu the original recording. So as to test 

the system on a rauge of differeut EDs, the EEGs choseu iucluded both focal EDs and 

geueralized EDs. Table 8.1 summarises the EEG characteristics of each patient. 

Patient Montage Dur. (s) ED distribution ED classification 
Def. Prob. Poss. 

Patient #1 Longitudinal 24 Focal (t5) 3 2 5 
Patient #2 'Il'ansverse 20 Focal (t4) 0 4 6 
Patient #3 Circumferential 20 Focal (01) 8 1 1 
Patient #4 Longitudinal 20 Focal (c4-p4) 0 3 7 
Patient #5 Longitudinal 20 Multifocal (t4, c4-p4, c3) 0 0 10 
Patient #6 Longitudinal 20 Generalized 0 0 10 

Table 8.1 The characteristics of the EEG segments used to test MRANC performance. 
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8.5.6 Autoregressive prediction 

As mentioned in the introduction to this chapter, the autoregressive (AR) prediction 

method as described by Lopes da Silva et al. [1974] and Lopes da Silva et al. [1977] has 

received much attention in the literature. That method was therefore applied to the 

EEGs of the same six patients for comparison with MRANC. 

The Lopes da Silva method is based on the assumption that an EEG segment can 

be described by means of a linear difference equation with constant coefficients. Thus 

the EEG is considered as being the output of an AR-filter having an input of white 

noise (normally distributed). Passing the EEG through the inverse of the estimated 

AR-filter should therefore result in normally distributed (white) noise, the output of 

the inverse AR-filter being called the prediction error. By examining the statistical 

properties of the prediction error, it can be said that at any point in time at which the 

estimated noise deviates from a normal distribution (at a certain probability level), a 

non-stationarity is present at the input. In this case, such a non-stationarity is taken 

to be an ED (although it could well be artifact, as discussed later). 

This single channel approach was applied to the primary channel of each patient, 

after having first estimated the coefficients of the AR model by applying Durbin's 

algorithm (see Makhoul [1975]) to the first 800 samples (4 seconds). The order of the 

estimated AR-filter was set at p = 15, corresponding to the optimum value calculated 

by Lopes da Silva et al. (1974]. The SNR of the known EDs was measured at the output 

of the inverse AR-filter in the manner described in Section 8.5.2 and the percentage 

increase in performance calculated. Also, a detection function d(k) was calculated 

following Lopes da Silva et al. [1974] 

k+2 [A( J 2 
d(k) = I: e :) , 

m=k-2 

(8.24) 

where e(k) is the prediction error of the inverse AR-filter and 0-2 is the variance of 

the prediction error. For a normally distributed e(k), d(k) would have a chi-squared 

distribution with 5 degrees offreedom [Lopes da Silva et ai. 1974]. A threshold D was 

set for d(k) on the basis that P(d(k) > D) < 0.001; from tabulated values of chi-squared 

distribution, D 20.5. 

8.5.7 Transfer function analysis 

In order to estimate the transfer function of the MRANC filter, a number of MATLAB 

Signal Identification toolbox functions were used on the segments of EEG. Segments of 

EEG 200 samples wide were obtained at various points throughout the EEG recording 

for both the unfiltered (pre-MRANC) and the MRANC filtered EEG. 
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In addition, the result of simple high-pass filtering each primary channel was ob­

tained by presenting the primary EEG channel of each patient in Table 8.1 to both 

Butterworth and Bessel high-pass filters (HPFs). The filter order was varied between 

o and 15, whilst the cut-off frequency was varied between 1 and 40 Hz. The perfor­

mance in terms of SNR improvement was recorded in each case. 

8.6 RESULTS 

Table 8.2 lists the average performance (measured by the percentage increase in SNR) 

of the MRANC for each patient and group of reference channels, with the number of 

. neurons in the hidden layer varying from 2 to 20. Results for both linear and nonlinear 

implementations of MRANC are listed. Table 8.3 shows the average performance over 

all six patients with each group of reference channels. 

crease in SNR 
Patient Filter type Group s A+B Group C 

Linear 90.7 76.1 60.9 
Nonlinear (H 2) 155.0 104.1 114.6 

Patient #1 Nonlinear (H 5) 93.0 108.9 114.7 
Nonlinear (H = 10) 129.0 102.0 119.7 
Nonlinear (H 20) 147.0 76.1 78.8 117.6 
Linear 61.8 107.4 66.0 93.6 
Nonlinear (H 2) 101.4 115.4 121.2 127.1 

Patient #2 Nonlinear (H 5) 114.3 116.0 114.9 118.6 
Nonlinear (H = 10) 129.7 82.2 121.5 120.8 
Nonlinear (H = 20) 105.6 114.0 108.3 129.8 
Linear 9.9 39.9 10.2 13.1 
Nonlinear (H = 2) 62.9 44.3 49.1 52.6 

Patient #3 Nonlinear (H = 5) 52.8 40.7 42.8 54.1 
Nonlinear (H = 10) 33.4 51.3 46.0 55.6 
Nonlinear (H = 20) 33.0 41.1 30.7 48.3 
Linear 71.9 134.1 86.4 114.4 
Nonlinear (H 2) 158.9 195.2 212.7 214.2 

Patient #4 Nonlinear (H = 5) 221.1 197.4 195.3 208.6 
Nonlinear (H = 10) 207.3 209.2 198.9 201.9 
Nonlinear (H = 20) 165.1 181.1 165.1 160.1 
Linear 113.5 98.9 22.8 95.5 
Nonlinear (H = 2) 134.0 138.5 133.0 125.2 

Patient #5 Nonlinear (H 5) 134.2 125.3 131.6 125.6 
Nonlinear (H = 10) 115.6 128.3 150.1 162.4 
Nonlinear (H 20) 153.5 136.4 114.8 175.9 
Linear 52.4 16.7 28.5 49.6 
Nonlinear (H 2) 52.5 81.1 76.8 61.5 

Patient #6 Nonlinear (H = 5) 78.3 73.3 64.3 74.4 
Nonlinear (H 10) 86.1 141.2 84.6 67.8 
Nonlinear (H = 20) 39.7 92.0 71.7 98.5 

Table 8.2 Performance of linear and nonlinear MRANC (p = 2). The average was taken over all 
EDs identified in the EEG segment from each patient (at least 10). 

On average, MRANC achieved an increase is SNR on all patients and for both 
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Filter type Group A Group B Groups A+B Group C 
Linear 66.6 78.3 65.5 75.5 
Nonlinear (H = 2) 110.9 114.9 115.9 113.0 
Nonlinear (H = 5) 115.7 108.5 109.7 116.4 
Nonlinear (H = 10) 117.2 114.4 116.8 121.2 
Nonlinear (H 20) 119.8 106.3 106.5 120.8 

Table 8.3 Average % increase in SNR over the six patients. 

linear and nonlinear configurations. In virtually every ED tested over the 6 patients, the 

nonlinear MRANC configuration resulted in a significant improvement in performance 

ov~r the lineal' configuration. On average, increasing the number of neurons in the 

hidden layer above 10 resulted in no real improvement in performance. These results 

also show that on average as more channels are included in the reference groups, the 

performance increases slightly. 

Of particular interest are the results for patient #6; the EDs of this patient were 

of a generalized nature, meaning that EDs were evident on· all channels and did not 

have any primary focus. This means that the level of cross-talk of the signal on the 

primary channel to the reference channels was particularly high, and yet the system 

still managed to enhance the performance, albeit at a lower level than the others. 

Figure 8.12 depicts a particular example of three EDs in the EEG segment of patient 

#1. Figure 8.12a shows the original signal with the SNR for each ED as indicated. 

Figure 8.12b shows the signal obtained after MRANC for a linear filter adapted by 

means of the LMS algorithm, whereas Figure 8.12c shows the signal obtained after 

MRANC for the nonlinear case. The increase in SNR achieved by both the linear and 

the nonlinear MRANC is indicated by the values in brackets. 

Figure 8.13 shows a plot of the original SNR versus the new SNR due to nonlinear 

MRANC filtering (refs. group C, H 10, p = 2) for 91 EDs drawn from the six 

patients with a further 11 'ED-like' background EEG artifacts also included. The EDs 

were classified as possibles, probables and definites by an EEGer who had access to 

the full EEG recordings and was thus able to use spatial and temporal contextual 

information to help in grading each ED. The line indicates equality between new SNR 

and original. From the graph it can be seen that only 5 EDs resulted in a filtered signal 

with SNR reduced, while over 40% resulted in an increase of SNR of greater than 100%. 

Those EDs marked as 'definites' by the EEGer all had a large SNR to begin with and 

hence are concentrated in the upper RH portion of the graph. Conversely, those EDs 

marked as 'possibles' are mostly concentrated in the lower LH portion of the graph. 

The few EDs marked as 'probables' seem to be evenly distributed over the graph. 

On average there was an increase in the SNR for 'possibles' whereas the background 

artifacts, which had a low initial SNR to begin with, resulted in a decrease in the SNR. 
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Figure 8.12 Results of processing an 800 sample (4 sec) interval of signal for Patient #1 with three 
EDs. Recorded with bipolar montage, primary signal recorded at t5-o1 and references at c3-p3, p3-o1 
and t3-t5. (a) The primary input to the MRANC filter ~ the SNRs of EDs are indicated. (b) The 
output of the linear MRANC filter and (c) the nonlinear MRANC filter (p 2,H = 2). The percentage 
increase in SNR is indicated by the values in brackets. 
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Figure 8.13 A plot of the % increase in SNR after nonlinear MRANC filtering (refs. group C, 
H = 10, p = 2) vs the original SNR for 91 EDs recorded from the six patients (31 in addition to those 
in Table 8.1). A further 11 'ED-like' background EEG artifacts are also included, 
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Table 8.4 compares the performance obtained for each patient utilizing nonlinear 

MRANC (using reference group C, H = 10 and p = 2) with the performance obtained 

by the inverse AR-filtering technique. MRANC was superior to the inverse AR-filter 

output by 18%. 

Patient 
Nonlinear MRANC Inverse AR-Filter 

(Ref. group C, H = 10,p = 2) (p = 15) 
Patient #1 119.7 57.5 
Patient #2 120.8 83.4 
Patient #3 55.6 46.2 
Patient #4 201.9 220.8 
Patient #5 162.4 106.6 
Patient #6 67.8 105.4 

Average 121.4 103.3 

Table 8.4 Comparison of average % increase in SNR between nonlinear MRANC and inverse AR 
filtering. 

Figure 8.14 depicts an EEG segment on which the following tests were performed: 

first, an AR-predictor model was fitted for the signal in Figure 8.14a (p 15) yielding 

the prediction error of Figure 8.14b. Next a detection function is calculated from 

the prediction error with 5 degrees of freedom yielding the trace in Figure 8.14c. A 

threshold is set at a probability level of 0.001 for detecting the presence of transients 

in the original EEG segment. Next, MRANC is applied to the original (raw) EEG 

segment (refs. group C, H 10, p = 2) to give the trace in Figure 8.14d. Then the 

whole process of estimating an AR-predictor model is repeated for the MRANC filtered 

EEG (p 15), which then produces the prediction error given in Figure 8.14e and the 

detection function of Figure 8.14f. The SNR ofthe known ED is marked and recorded 

both for the inverse AR-filtered EEG and the MRANC filtered EEG, along with the 

percentage increase in SNR in each case. 

When looking at the detection function of Figure 8.14c due to inverse AR-filtering 

of the 'raw' EEG, there are 5 points where the detection function exceeds the threshold 

leading to 4 false detections. The detection function derived from the MRANC filtered 

EEG shows a less 'noisy' waveform with the threshold being exceeded at only on point 

which coincides with the presence of the known ED leading to no false detections. 

The MRANC filtered EEG of Figure 8.14d leads to a 48.9% increase in SNR for the 

marked ED, with increases seen for both instances of the prediction error as seen in 

Figure 8.14b and Figure 8.14e. 

The MRANC filter can be considered to converge to a HPF whose characteristics 

vary both at different times within the same and between EEGs of different 

patients. Figure 8.15 shows the frequency response ofthe MRANC filter (with H = 10 

and utilizing reference group C) at different instances in time through the segment 
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Figure 8.14 The application of nonlinear MRANO and inverse AR-filtering to a 600 sample (3 sec) 
segment of EEG. (a) The original EEG segment. (b) The prediction error resulting from inverse AR­
filtering the 'raw' EEG (p = 15) and (c)the detection function calculated from the prediction error with 
5 of freedom. (d) The MRANO filtered version (nonlinear) of the EEG (ref. grp. 0, H 10, 
p 2) and (e) the corresponding prediction error due to inverse AR-filtering the MRANO filtered EEG 
(p 15). (f) The detection function, with 5 degrees of freedom, formed from the prediction error of 
(e). 

of Figure 8.12. The figure highlights the HPF nature and the variability with time of 

the filter characteristics. 

On passing the EEG segments through a Butterworth filter, an average cut-off 

frequency of 26 Hz was optimum for a filter of order 2. This optimum was, however, 

accompanied by moderate distortion of the ED shape in addition to the desired atten­

uation of the background EEG. Increasing the order of the filter grossly increased the 

distortion at almost all cut-off frequencies. At order 1, the distortion was considerably 

less but performance was then less than that of MRANC. Employing a Bessel filter 

resulted in only minimal increase in performance at lower cut-off frequencies and with 

marked distortion of the ED as the cut-off frequency was increased and the filter order 

increased above 2. 

8.7 DISCUSSION 

The system presented here is based on the assumption that the EEG consists of an un­

derlying background process onto which transients are superimposed. MRANC allows 

these two processes to be separated without the need of prior information about the 

background process or the transients. An additional stage is then required to classify 

the enhanced transients into EDs and other events but it is considered that the class i-
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Figure 8.15 Amplitude response of nonlinear MRANC filter (reference group C, H 10, p = 2) at 
times t1=500 ms after ED #1, t2=900 illS after ED #2 & t3=200 illS after ED #3 (see Figure 8.12). 

fication process will be more accurate by the previous attenuation of the background 

EEG. Implementing MRANC by means of an ANN has been shown to yield consider­

ably better results than a comparable linear implementation (LMS). This lends weight 

to the suggestion that the relationship between the signal source and recorded signals 

may be nonlinear (cf. Section 8.1). The adaptive nature of the MRANC filter also 

allows for variations in the background EEGs of different patients, as well as variations 

within an EEG, to be accommodated. 

The presence of signal cross-talk between the primary and reference channels is a 

significant factor affecting the performance of MRANC. In the EEG case, maximum 

cross-talk occurs in the case of generalized ED distribution as, for example, in the case 

of patient #6. Nevertheless, although MRANC did not perform as well for patient 

#6 as for the other patients, a substantial improvement in SNR was still achieved. 

Signal cross-talk does, however, introduce distortion in the primary signal reSUlting 

in EDs with changed morphologies. In the tests described here no measure of distor­

tion was calculated although conceptually this could be tackled by calculating a value 

for the normalized mean squared difference between the portion of the original signal 

representing the ED and the corresponding MRANC filtered signal. 

Initially, it was thought that the choice of reference channels would prove the 

most important factor in the application of MRANC to the EEG. For the most part, 

this turned out not to be the case. Although increases in performance were seen as 
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more reference channels were added, these were slight. Tests conducted using the 

different reference groupings indicate no clear justification for choosing one grouping 

over another. The performance was marginally, but not consistently, better when the 

reference channels consist of a balance of channels neighbouring the primary channel 

and the channels furthest away from the primary channel (groups A+B). Presumably 

this works due to the balance obtained by the neighbouring reference channels, which 

have background EEG highly correlated with the primary but a high level of cross-talk, 

and the remote reference channel"l, which have a less correlated background EEG but 

even less cross-talk. However, designating all channels other than the primary channel 

as reference channels (Le., reference group C) confers a practical advantage in that it 

eliminates the need of arbitrary selection of reference groups dependent on primary 

channel and montage for a particular EEG segment. 

The performance of the ANN implemented MRANC was particularly impressive 

on those EDs with a small initial SNR (d. Figure 8.13), meaning that their presence 

in the background EEG was not. that well defined. It is believed that this enhancement 

of the EDs with small initial SNR will contribute in increasing the selectivity of the 

overall spike detection system. 

Overall, MRANC (with H 10, utilizing reference group C) performs better 

than the inverse AR-filtering method. The fundamental difference between the two 

methods is that the inverse AR-filtering method utilises purely temporal information 

and relies on the non-stationary properties of EDs to enhance their presence in the 

otherwise stationary background EEG. In contrast, MRANC utilises spatial as well as 

temporal information (but particularly the former) to enhance the EDs at the primary 

channel, with no prior knowledge of 'signal' or 'noise' characteristics required. Also, 

only MRANC (as implemented) is adaptive, allowing the filter characteristics to change 

with time as the background EEG is not strictly stationary. 

Having established the essential differences between the MRAN C and AR meth­

ods, it is reasonable to conjecture whether there may be an advantage in combining 

the two. The results presented in Figure 8.14 suggest that the combination may be 

useful. MRANC has the ability to improve the SNR of EDs in the EEG resulting pri­

marily from their spatial distribution. AR filtering, on the other hand, is successful at 

detecting purely temporal variations in a single signal, provided it has an estimate of 

the underlying stationary process. The improvement due to MRANC can also be seen 

when forming the detection function mentioned earlier, both for the 'raw' EEG segment 

and for the MRANC filtered EEG segment. The enhancing of EDs by MRANC means 

that the detection functions result in more 'clear-cut' decisions as to the detection of 

an ED at a given probability level and thus reducing the possibilities of numerous false 

detections. 

Examination of the MRANC's spectral characteristics and of the performance of 
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'equivalent' fixed HPFs has confirmed that MRANC comes to represent a HPF. The 

HPF is, however, one which has been optimized for a specific patient or EEG and, due to 

its adaptive nature, one whose characteristics change in time to optimally accommodate 

changes within an EEG. 

8.8 SUMMARY 

In this chapter the possibility of enhancing the sensitivity of a spike detection system 

through the use of MRANC has been discussed. This is done by enhancing the pres­

ence of spikes in the EEG by adaptively cancelling the surrounding background EEG. 

MRANC has been implemented for both linear and nonlinear ANN s in order to measure 

the effect of the noise cancelling process in each case. Nonlinear MRANC always per­

formed much better than its linear counterpart. Comparing MRANC to AR-modeling 

techniques shows that MRANC results in improved performance. Although MRANC 

also enhances artifacts, it does so to a lesser extent than for EDs. The MRANC tech­

nique results in a HPF which is capable of changing its characteristics with time, thus 

following any changes in the EEG characteristics in a given patient and will adapt to 

the 'optimum' filter settings for each new EEG analysed. Although the data of only 

six patients have been analyzed, it is evident that MRANC does indeed enhance the 

presence of focal activity in the EEG and the use of nonlinear ANNs in the application 

of MRANC further enhances the process. 





Chapter 9 

SPIKE DETECTION WITH THE SELF-ORGANISING 
FEATURE MAP 

9.1 INTRODUCTION 

The self-organising feature map has already been discussed in detail in Chapters 5 

and 6. This chapter deals with applying the SOFM to the spike detection problem. 

After first introducing the proposed scheme, the chapter provides further insight into 

the two stages that make up this part of the spike detection system. The mimetic stage 

screens the incoming EEG before presenting candidate waveforms to a trained SOFM 

stage. The methods used for training and testing the system are then discussed along 

with results obtained after the testing process. 

The unsupervised learning methods used by the SOFM for training are used ex­

tensively to form a realistic representation of the problem. This is done by using 

large numbers of unlabelled inputs followed by calibration using a small quantity of 

labelled inputs. However, spikes in the interictal EEG are nearly always considerably 

less abundant than non-epileptiform counterparts in the background EEG. Also spike 

characteristics vary from one patient to the next and within the same EEG recording. 

Further compounding the problem is the fact that spikes can be very easily confused 

with artifact in many cases. This all means that putting together a subset of spike 

'exemplars' is no easy task. The fact that the SOFM classifier only needs a small 

subset of the training data to be labelled means that only those spikes which EEGers 

label with a high level of confidence can be used for calibration, any others are used 

for training only without any need for a class label. 

9.2 THE PROPOSED SYSTEM 

The proposed system is depicted in Figure 9.1. The outputs from this stage are positive 

real numbers within the range 0 to 1 giving the probability that there is an ED on each 

particular channel (16 channels total). The final stage uses these values to indicate the 
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presence of an epileptiform event (EV) across all 16 channels of EEG. The final stage 

uses spatial clues obtained from the outputs of the first stage and is described in more 

detail in the next chapter. 

Ch 1 

Ch2 

EEG 

Ch3 

Ch 16 

ChI 

SOFM 

Single channel ED detector 

Ch2 
Single channel ED detector 

Ch3 
Single channel ED detector 

ChI6 
Single channel ED detector 

Spatia-temporal 
combiner 

Montage 

Figure 9.1 The proposed multi-stage spike detection system. 

9.3 DATA COLLECTION 

BVI 
non-EV 

The EEG was recorded by scalp electrodes placed according to the International 10-

20 system [Jasper 1958]. Sixteen channels of EEG were recorded simultaneously for 

bipolar montages only. The amplified EEG was bandpass filtered between 0.5 and 70 

Hz using a five-pole analogue Butterworth filter, sampled at 200 Hz and digitized to 

12 bits. All data were stored for later off-line processing. 

Four types of bipolar montages were used which were: longitudinal, transverse, 

longitudinal-transverse and circumferential (more information on these montages can 

be obtained in Appendix A). All EEG recordings were made while the patient was 

awake but resting and included periods of eyes-open, eyes-closed, photic stimulation 

and hyperventilation. Three recording protocols were used, depending on the age of 

patients which were: (a) BABY, (b) UNDER5 and (c) OVER5 (more information on 

the recording protocols can be found in Appendix A). Although some of the record-
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ing protocols include referential montages, all referential montages were converted to 

bipolar longitudinal before recordings were stored. 

9.4 MIMETIC STAGE 

The purpose of the mimetic stage is to screen the incoming EEG across all channels and 

perform a data reduction exercise by presenting the SOFM with candidate epileptiform 

discharges (CEDs) which have passed the screening process. As the purpose of this 

stage is for data reduction, it is imperative that the mimetic stage detect as many of 

the EDs as possible whilst rejecting most 'obvious' non-ED waveforms. The design is 

based on the mimetic system derived by Dingle [1992], Gotman and Gloor [1976] and 

Gotman et at. [1978]. 

Since it is generally accepted that EDs are defined due to their being " ... clearly 

visible from the surrounding background EEG ... " [Chatrian et at. 1974], the parame­

ters that must be examined for a CED in the incoming EEG must include parameters 

which describe the state of adjacent background activity. A CED is obtained by first 

detecting a vertex in the EEG followed by calculations of a number of parameters 

around this vertex and measures of adjacent background activity (i.e., contextual para­

meters). All parameters are then thresholded and all waves (a wave is centred around 

each vertex) which exceed the thresholds are considered. The mimetic process can be 

broken down into a number of steps as described in the following subsections. 

9.4.1 Scaling the incoming EEG 

The EEG amplitude varies greatly between individuals and is particularly related to 

the individual's age. For example, the EEGs of babies are of a higher amplitude than 

adults. The amplitude of the recorded EEG can be adjusted by varying amplifier gain 

settings at record time by the recording technician but this makes for a very subjective 

process. For the mimetic stage to work well it is imperative that the incoming EEG 

be objectively normalized. In this system the global EEG amplitude is estimated from 

the first 60 s of multichannel EEG recording. Care is taken to automatically eliminate 

artifacts (EMG mostly) which would otherwise result in a poor estimate of the global 

amplitude. This global amplitude is used to scale the RMS amplitude of the EEG 

to an amplitude of 8.4 fJV (the average RMS amplitude calculated for 10 EEGs by 

Dingle [1992]). Artifacts (such as EMG) are automatically detected when the average 

amplitude over 1.0 s on any channel is more than 2.5 times the 60 s average on that 

channel. If an artifact is detected in such a manner on one channel, then all the data 

across all channels is removed and the global amplitude recalculated. 
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9.4.2 Locating the primary vertex 

Once a gain value is calculated and the incoming EEG is normalized, all channels are 

scanned for a positive or negative vertex using a simple peak detection algorithm. Once 

a vertex is found, a number of parameters are extracted from around the vertex. The 

parameters extracted relate to the amplitude, duration, slope and sharpness of the 

waveform under consideration (see Figure 9.2). These parameters are considered to 

be the most important parameters to consider when distinguishing between EDs and 

non-EDs ([Ktonas and Smith 1974]' [Gotman and Gloor 1976], [Gotman et al. 1978], 

[Got man 1980]' [Dingle 1992]' [Webber et al. 1994]). 

Sharpness 

Slopes 2:J---:-"--Al+--AmPlitude 

Average 
duration 

W 
CDurations 

Figure 9.2 The parameters extracted by the mimetic stage. 

Amplitude (Ap): This is defined as the difference between the peak value and the 

floating mean, where the floating mean is calculated as the average value of the 

EEG over 75 ms centred on the peak. The reason for the floating mean, as 

opposed to a fixed baseline, is so that the amplitude measured is due to the CED 

alone and not due to the CED being superimposed on, say, a large amplitude 

slow wave. 

Durations (DIl D2, D3): These are measured such that DI and D2 represent the du­

rations of each half-wave before and after the vertex. D3 represents the sum of 

DI and D2. The half-wave durations are measured from the vertex to the point 

where either slope changes rapidly. This means that the duration is measured at 

the point where there is more than a 60% drop in slope or a change in direction 

of the slope. 

Slopes (8b 82): Slope mea.'mrements are obtained from the pre-vertex and post-vertex 

slopes. For waveforms of short durations (Le., DI < 20 ms or D2 < 20 ms) the 
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peak-to-peak slope is calculated, otherwise a least-squared estimate is obtained 

based on 4 samples (excluding the peak sample). 

Sharpness (Sp): The sharpness of a wave is defined as the sum of the magnitudes of 

the pre-vertex and post-vertex slopes. 

Once the parameters are extracted they are passed through a set of thresholds 

and once a waveform is found which exceeds all the thresholds it is flagged as passed 

thresholds (all others being flagged failed thresholds). The values used for the thresholds 

are given in Table 9.1 and are based on values determined by discriminant analysis by 

Dingle [1992]. In this case only one set of thresholds are used (as opposed to the two 

sets defined by Dingle [1992]) this is because here the thresholds have been "loosened" 

in order for the mimetic stage to be more sensitive to EDs. 

Thresholds 
Parameter: Min Max 

Ap 16.8 fLV -
Dl,D2 10 ms 150 ms 

Da 20 ms 250 ms 
Sp 1.26 fL V Ims -

Table 9.1 The thresholds used by the mimetic stage for screening the incoming EEG (after the EEG 
has been scaled to an RMS amplitude of 8.4 p,V). 

The mimetic stage acts on all channels independently, however, once a waveform 

is found which exceeds all thresholds the vertex of that waveform is called the primary 

vertex. At that point all CEDs on the remaining channels (within 50 ms of the primary 

vertex) are grouped so that together they make up a candidate epileptiform event 

(CEV) which is passed on to the next stage. 

In keeping with the definition that an ED must be clearly distinguishable from 

surrounding background EEG, a number of contextual parameters are extracted from 

the 1.0 s segment of EEG about the vertex of each CED. The values extracted are as 

follows: 

A verage amplitude (A.): This is calculated as the RMS difference between the actual 

EEG and a floating mean calculated over a 15 sample (75 ms) window. 

Average duration (D): The average peak-to-peak duration of the half-waves (half­

waves with a peak ampitude of less than 4.2 fLV are ignored). 

Average slope (S): The average magnitude of the slope between consecutive sam­

ples. 
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The measure of precisely 1.0 s of background EEG was chosen such that the pres­

ence of an ED does not dominate the measurements. On the other hand, a segment of 

a longer duration would possibly allow bursts of EMG or a-waves to dominate. 

Once the primary vertex has been found, and the contextual information extracted 

for each OED, the following information is put forward to the next stage for each channel 

ofEEG: 

1. CED: The OED for each channel is made up of a window of 'raw' EEG. As EDs 

are said to vary in duration from 70 - 200 ms, the ideal inputs to the system 

would consist of a window of at least 200 ms of 'raw' EEG with data sampled 

at 200 Hz this translates to 40 samples of EEG. An important characteristic of an 

ED is the slow wave that generally follows the vertex, for a 200 ms waveform the 

vertex occurs roughly during the first third of the waveform and the slow wave 

(if present) in the remaining two thirds. 

Thus, a 41 sample window of EEG is used leading to a 205 ms window such 

that the maximum vertex is placed at the 14th sample across the window (at 

approximately one third the way across) as shown in Figure 9.3. 

H .... ·--I>-l~ 
65ms 140ms 

Figure 9.3 Windowing the ED. The maximum positive (or negative) vertex is placed one third of 
the way across the 205 illS window. 

2. Contextual information: The three contextual parameters (A., band S) for 

each OED. 

3. Passed/Failed thresholds flag: A flag is set for a OED which passes the 

thresholds and reset otherwise. 
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9.5 THE SOFM STAGE 

This stage consists of a SOFM which is trained, calibrated and then further fine-tuned 

using LVQ techniques as described in Chapters 5 and 6. The input to the SOFM is a 

vector made up of the 'raw' EEG CED, contextual parameters and the passed/failed 

thresholds flag output by the mimetic stage. The trained and calibrated SOFM in turn 

outputs a single value between 0 and 1 which represents the probability of there being 

an ED at that channel. The SOFM is duplicated for all channels of the EEG such that 

the overall output of the SOFM stage is a set of 16 probabilities to this point there 

is no interaction between channels (other than in mimetic stage where are all channels 

are forwarded on finding a primary vertex/CED). 

The SOFM was trained using a large set of epileptiform EEG data. A subset of the 

EEG data was used for calibration of the SOFM where the probability value of being 

a true ED was assigned to each neuron according to a novel system involving Bayesian 

statistics. LVQ2 was performed on the trained SOFM for 'fine-tuning' purposes. 

9.5.1 EEG data 

The EEGs of 35 patients were obtained. All EEGs had been previously seen indepen­

dently by at least two EEGers (in some cases 3) and been graded as containing definite 

epileptiform events. The average EEG length was 24.4 minutes and the ages of the 

patients varied from 7 months to 71 years old (average age of 19). Table 9.2 shows the 

characteristics of the data used which totals over 14 hours of 16-elIannel EEG data. 

More than 2,585 definite EVs and 511 questionable EVs were identified by the EEGers. 

The data also included a variety of background activities (e.g., alpha, delta, etc.) 

and most EEGs contained significant amounts of artifact, particularly: eye-blinks, 

electrode movement, and muscle artifact. Artifacts were especially prominent during 

the periods of hyperventilation and photic stimulation. All the data recorded was for 

routine clinical use and no segments of EEG were rejected because of excessive artifact 

or 'noisy' background activity. 

The data was then passed through the mimetic stage and a large number of cor­

responding CEDs were collected. Considerably more CEDs failed the thresholds than 

passed (75% vs 25% respectively). Assuming that the values of the thresholds were 

optimally set such that no EDs were missed, then the CEDs which passed the thresh­

olds contained the true EDs and well as many more false EDs. This means that of the 

large number of CEDs available for training the SOFM only a small minority had the 

potential of being true ED waveforms. If this was the case then only a small portion of 

the SOFM would be representative of true EDs after training was complete - the actual 

size of the corresponding portion of SOFM would depend on the relevant proportions 

of ED to non-ED in the CED data. In an effort to balance the data in favour of ED 
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Epileptiform Events (EV s) 
EEG Age* Duration EEGers Definite Quest. Total 

1 9 27m 78 2 102 11 113 
2 30 25m 28 2 >200 0 >200 
3 49 25m 218 2 1 7 8 
4 2 15m 42s 2 >200 0 >200 
5 4 15m 26s 2 49 0 49 
6 58 25m 468 2 0 4 4 
7 16 26m 27s 2 57 41 98 
8 20 33m 20s 2 1 4 5 
9 67 27m 50s 2 >200 0 >200 

10 6 26m 88 2 2 7 9 
11 5 26m 248 2 201 0 201 
12 25 26m 348 2 0 9 9 
13 6 28m 408 2 2 0 2 
14 11 34m 28 2 230 0 230 
15 7m 14m 8s 3 0 17 17 
16 15 29m 12s 2 246 24 270 
17 15 22m 248 2 28 159 187 
18 7 21m 4s 2 3 12 15 
19 7 20m 25s 2 >200 0 >200 
20 18 25m 518 2 52 3 55 
21 13 23m 528 2 >200 0 >200 
22 29 27m lOs 2 0 10 10 
23 9 23m 52s 2 0 11 11 
24 16 25m 57s 2 1 4 5 
25 46 26m 15s 2 333 4 337 
26 17 25m 42s 2 95 0 95 
27 71 18m 498 2 17 40 57 
28 12 31m 258 2 8 5 13 
29 8 26m 43s 3 3 32 35 
30 7 25m 11s 2 7 41 48 
31 4 14m 588 2 12 17 29 
32 10m 12m 128 2 13 32 45 
33 32 24m 558 2 6 4 10 
34 12 26m 19s 3 61 9 70 
35 17 25m 26s 2 55 4 59 

I Totals 14h 15m 398 I >2,585 I 511 II >3,096 I 
Table 9.2 The training set comprising 35 EEGs with in excess of 2,585 definite EVs and 511 Ques­
tionable EVs. EEGs which contained '>200 EVs' had excessive amounts of EVs which were not 
individually graded by the EEGers. (*m=month). 
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Epileptiform Events (EVs) 
EEG Age Duration EEGers Definite Quest. Total 

27 71 18m 49s 2 17 40 57 
28 12 31m 25s 2 8 5 13 
29 8 26m 43s 3 3 32 35 
30 7 25m 11s 2 7 41 48 
31 4 14m 58s 2 12 17 29 
32 10m 12m 12s 2 13 32 45 
33 32 24m 55s 2 6 4 10 
34 12 26m 19s 3 61 9 70 
35 17 25m 26s 2 55 

i 
4 59 I 

I Totals 3h 25m 58s 182 184 II 366 

Table 9.3 The calibration set comprising 9 EEGs with a total of 182 definite EVs and 184 question­
able EVs. 

data, a number of failed threshold CEDs were removed from the training set such that 

the number of passed threshold CEDs was twice that of the failed thresholds CEDs. 

Another method of obtaining equal representation in the SOFM output for data 

which is under-represented in the training set is to use the so-called conscience method. 

This method involves keeping track of the frequency with which each neuron wins 

during training. Once the number of 'wins' of a neuron exceeds a certain threshold 

that neuron is taken out of the competition, allowing other neurons to win instead 

hence giving the neurons a 'conscience'. The conscience method is described in more 

detail in DeSieno [1988], and was used successfully by Roberts and Tarassenko [1992] 

in analysing sleep EEG. However preliminary testing on the spike detection problem 

indicated that the conscience method is only partially successful when the imbalance 

between classes is relatively small (say, 4:1) and has no effect when the imbalance is 

greater as is the case for the CED data in the training set. The conscience method 

was not used further in this study. 

From the training set, 9 EEGs were chosen for calibrating the SOFM. These EEGs 

had an average length of 22.9 minutes and were recorded from both children and adults 

(Table 9.3 shows the calibration data). The EEGers graded 182 definite EVs and 184 

questionable EVs. In this case EEGers graded individual events (Le., spanning at least 

2 channels or more) as epileptiform or not. Where a graded event coincided with any 

CED (as found on any channel by the mimetic stage) which passed all the thresholds, 

the CED was labelled epileptiform, otherwise it was labelled non-epileptiform. 

As the calibration data was graded by more than one EEGer, the final grading 

assigned to each waveform was based upon a consensus amongst the 2 (sometimes 3) 

EEGers. Table 9.4 shows the final label assigned to waveforms after considering the 

various possible combinations of labels assigned by different EEGers. Waveforms which 

had widely varying labels amongst the EEGers were removed from the calibration set 

(but still remained part of the training set). This resulted in a calibration set made up 
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of 5,846 CEDs, 4,574 of which passed the thresholds and 1,272 of which failed. 1,333 

CEDs were assigned true-ED labels (based on the consensus discussed above) and 

4,513 were assigned non-ED (200 were rejected from the calibration set due to large 

disagreement amongst EEGers). The calibration set data was then used to calibrate 

the SOFM after training was complete. The same data was also used for fine-tuning 

using the LVQ2 algorithm. 

Final grading 
D Q N 

DDD DQQ NNN 
DDQ DQN* NN 
DDN* DNN* 

DD QQQ 
QQN 
QNN* 

DQ 
DN* 

- QQ 
QN* 

Table 9.4 The final grading of events after grading by 2 or 3 EEGers. D represents definite EDs, 
Q questionable EDs and N non-EDs. The combinations marked with an asterisk are rejected when 
setting up the calibration set. 

9.5.2 Training the SOFM 

The SOFM was trained by presenting the training set data in random order to the 

SOFM whilst adapting according to the SOFM training algorithm as described in 

Chapter 5. The SOFM training parameters were set as shown in Table 9.5 (for further 

explanation see Chapter 6). The SOFM size was varied from a [10 x 10] to a [20 x 20] 

SOFM in order to assess the performance of the system as a function of the SOFM 

size. 

Parameter Value 
SOFM size SxS S= 10,12,14,16,18,20 
Initial learning rate a o 1.00 
Final learning rate amin 0.01 
Initial neighbourhood size No S 1 
Final neighbourhood size Nmin 1 
Neighbourhood taper - Quadratic taper 

Learning rate } . Linear N . hb h d SIze decay -
eig our 00 

Table 9.5 The parameters used to train the SOFMs. Multiple values of SOFM size are used in order 
to assess the performance of the system as a function of the SOFM size. 
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The training data was presented randomly to the SOFM during training in such a 

way that all the data had been presented at least twice during the crucial ordering stage. 

The ordering stage was set at ~ th of the complete training period (i.e., w = 0.125), which 

means that the entire training set was presented 16 times to the SOFM during training. 

9.5.3 Calibrating the SOFM 

Once training was complete, the trained SOFM needed to be calibrated. During cali­

bration a label was assigned to each neuron in the SOFM according to which category 

or class that neuron (or rather its corresponding weight vector mi) best represented. 

A requirement is that once aCED (along with contextual information and a 

pass/fail flag) is presented to the SOFM after training is complete, the SOFM re­

sponds with a value indicating the probability to true ED. This meant that, as a result 

of calibration, a probability level needed to be assigned to each neuron. In operation, 

once a CED is presented to the SOFM, the probability assigned to the 'winning' neuron 

(Le., the neuron with the closest matching IDi) is taken to be the probability of the 

input CED being a true ED. 

9.5.3.1 Labelling by maximum voting 

The method suggested by [Kohonen 1990] for labelling the neurons during calibration 

is based upon a majority voting scheme and is not intended to be used to indicate 

probabilities, as was required in this case. Kohonen's maximum voting scheme of 

assigning labels is described next. 

If, for a two class system, me is the weight vector of the winning neuron, then c is 

the index of the winning neuron. If the class of the input happened to be class 'a' then 

the count for class 'a' is incremented for neuron c. This is repeated for all the neurons 

in the SOFM while all the data in the calibration set is presented to the SOFM. Once 

the entire calibration set has been presented to the SOFM, the final class label assigned 

to each neuron is simply based upon the class count with the greatest number of 'hits', 

that is, for neuron i 

assign class 'a' if si > s~, 

assign class 'b' if si < s~, 

(9.1) 

(9.2) 

where si represents the number of times neuron i identified class label 'a'. If si = s~ 
then neuron i is considered 'undecided' about which class to represent. Depending 

on the particular application, it might be enough to default to a given class label or 
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else it might be worth assigning no label to such a neuron and removing it (and its 

corresponding weight vector) from the competition entirely. 

9.5.3.2 The Bayesian approach to labelling 

The drawback with the majority voting scheme is that the class labels are not assigned 

in a probabilistic manner. It is possible to assign confidence levels to each neuron (as 

seen in Chapter 6) based on the success rate for each neuron, given by 

(9.3) 

where Of is the success rate of neuron i for class a, sf is the number of times neuron i 

identified class label 'a' and ni is the total number of times neuron i was the 'winner'. 

However, this is not a true probabilty value. 

For the EEG case, each neuton is required to represent a probability value ranging 

from 0.0 (non-ED) to 1.0 (ED). In this case the success rate for neuron i is given by 

(9.4) 

where the number of successes (Si) here implies the number of times input waveforms 

were labelled ED (as opposed to non-ED) by the EEGers. 

Using the Bayesian statistical approach, it is possible to assign a probability to 

each neuron. The probability obtained for each neuron using this approach results 

from a weighted mix of prior probabilities and the data itself, the so-called posterior 

probability [Schmitt 1969], [Bernardo and Smith 1994]. 

The prior distribution represents our uncertain knowledge of the success rate Oi 

for an individual neuron. As no a priori knowledge of the success rate is assumed, the 

prior distribution is 'flat', meaning that any success rate can be applied to each neuron. 

This lack of prior knowledge can be represented by a Beta probability density function 

which is described by 

(9.5) 

where the prior distribution of the success rate 0 is given by 1r(O), r represents the 

gamma function and for a uniform prior distribution the parameters a & {3 = 1. Next, 

a likelihood function is needed which describes the probability of an input CED being 

'successfully' graded ED by an EEGer given the success rate over n trials. The data 

is Binomial so the likelihood function for the data (conditional on the success rate and 
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the number of trials) is given by the Binomial probability density function 

(9.6) 

Bayes' Theorem states that the posterior probability distribution of the success rate 

given the data is given by 

(BI ) = f(sIB)7r(B) 
1f s f(s)' (9.7) 

This means that the posterior probability is proportional to a weighted mix of the 

likelihood function for the data and the prior probabilities. Applying Bayes' Theorem 

(equation 9.7) to the prior (Beta) distribution given by Equation 9.5 and the Binomial 

likelihood function of Equation 9.6 and simplifying, results in the following posterior 

distribution 

(9.8) 

which is a Beta posterior distribution given by 

1f(Bls) '" Be(Bla + s,,8 + n + s). (9.9) 

For a uniform prior distribution (assumed) a =,8 = 1 and so the Beta prior distribution 

is reduced to 

1f(Bls) '" Be(Bls + 1, n + s + 1). (9.10) 

Taking the mean value of the distribution given by Equation 9.10 gives an estimate of 

the success rate B. The mean for a Beta distribution, (with uniform prior distribution) 

is given by 

E[Bls] 
s+l 
n+2' 

(9.11) 

for s successes in n trials. This means that using the Bayesian approach a better 

estimate of the probability of a CED being a true ED for neuron i can be found by 

(9.12) 
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Consider, for example, two neurons i and j. If neuron i was declared the 'winner' 5 

times, 4 of which were for true ED waveforms, then this gives a success rate of 0.8 but 

a probability of 0.71 using the Bayesian probabilities described above. If neuron j was 

declared the 'winner' 50 times, 40 times out of which for true ED waveforms, then the 

success rate is 0.8 (as for neuron i) but the probability now becomes 0.79, reflecting the 

larger number 'wins' for neuron j. In a similar manner, if neuron i was declared winner 

for true EDs all 5 times and neuron j declared winner for true EDs all 50 times, both 

would have a success rate of 1.0. However, with the Bayesian probabilities, neuron i 

would be assigned a probability of 0.86 whereas neuron j a probability of 0.98. 

9.6 PERFORMANCE INDICES 

The ultimate measure of success in the spike detection system is how many EV s the 

system detects. There is however always the possibility of false detections of EV s, as 

well as missed EVs. The performance measures adopted in the spike detector case 

are the sensitivity and selectivity of the system to EVs. The sensitivity is essentially 

a measure of how many events are missed by the system. Whereas the selectivity 

is a measure of how many 'extra' events were picked up (Le., how many events were 

detected which were not marked epileptiform by the EEGer(s)). As in Chapter 6, the 

sensitivity and selectivity are given by 

sensitivity correct detections x 100%, 
total number of true events 

(9.13) 

and 

I .. correct detections 1000-1 se ectlvlty = . X /0. 
total number of detectlOns 

(9.14) 

9.7 MULTICHANNEL ANALYSIS 

As described in Section 9.5 the SOFM stage consists of 16 identically trained SOFMs 

each which assign a probability of being a true ED to each waveform as presented to 

it by the mimetic stage. This means that the probabilities assigned by the SOFMs 

are related to single channel data. In contrast, when an EEGer 'grades' an EEG the 

EEGer invariably marks events which may appear across more than one channel- as 

opposed to marking each individual discharge that appears on each channel. For the 

sake of analysing the performance of the SOFM stage without the final stage (which is 

described in the next chapter), an epileptiform event (EV) is considered to be detected 

if the probability on any channel exceeds a certain threshold level dt . 
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This means that the performance measures now become dependent on the threshold 

d t , such that 

and 

. .. (d) correct detections( dt ) 10001' sensltlvlty t = X 10, 
total number of true events 

selectivity( dd correct detections( dd 
---:------:--:---"----'-''---:--..,.. X 100%. 
total number of detections(d t ) 

where dt describes a threshold level between 0 and 1. 

(9.15) 

(9.16) 

The most desirable performance is to have 100% sensitivity and 100% selectivity, 

Le., no missed events and no false detections. What generally happens, however, is 

that one measure performs well but only at the cost of poor performance on the other. 

A balance between the two measures is a good compromise. For the SOFM stage 

described here, three threshold levels were tried to examine the performance over the 

range of probabilities at the outputs. The three thresholds were; dt = 0.1 (low dd, 

dt = 0.50 (mid d t ) and dt = 0.85 (high dd. 

9.8 RESULTS 

The SOFM was trained using the parameters and training data set described in Sec­

tion 9.5.1. The trained SOFM was then calibrated using the Bayesian technique de­

scribed in Section 9.5.3.2. This was followed by 'fine-tuning' using the LVQ2 technique. 

The whole process was repeated for varying SOFM sizes (5 = 10,12,14,16,18,20 for 

a [5 x 5] SOFM). A separate test set consisting of 6 EEGs was used to assess the per­

formance of the combined mimetic/SOFM stage (see Table 9.6) at the three threshold 

levels. 

Epileptiform Events (EVs) 
EEG Age Duration EEGers Definite Quest. Total 

1 71 25m 8s 2 17 17 34 
2 3 16m 3s 2 8 17 25 
3 31 24m 59s 2 2 19 21 
4 11 23m 24s 2 2 1 3 
5 5 27m 24s 3 9 

I 

0 9 
6 24 26m 17s 2 25 16 41 

I Totals 
~ 2h 23m Ins 63 70 133 

Table 9.6 The test set comprising 6 EEGs with a total of 63 definite EVs and 70 questionable EVs. 
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Figure 9.6a shows the probabilities assigned to each neuron in the trained [20 x 20] 

SOFM after straight SOFM training. A probability of 1.0 is shown in red and a 

probability of 0.0 in blue, all other shades represent probabilities in between. Note 

that with the Bayesian based estimate of the probabilities, the probabilities of 1.0 and 

0.0 can never actually be achieved. From Figure 9.6a it can be seen that there are a 

number of 'clusters' of neurons assigned high probabilities; these correspond to those 

weight vectors most representative ofthe EDs in the training set. Figure 9.6b shows the 

probabilities assigned to the SOFM after fine-tuning with LVQ2. When compared to 

Figure 9.6a it can be seen than in this case the clusters have been 'tightened' resulting 

in greater probability levels for neurons within those clusters representative of EDs. At 

the same tirrie, the probabilities assigned to neurons less representative of EDs have 

been weakened as a result of the fine-tuning process. 

Table 9.7 shows the performance of the SOFM stage for the '[10 x 10] SOFM on 

the novel test data described earlier. The sensitivity and the selectivity are calculated 

. as described in Equations 9.15 and 9,.16 for various values of dt . The values in brackets 

indicate the total number of events (i.e., definite + questionable) found by the EEGer 

and the system respectively. From the table it can be seen that at low dt the system 

has a relatively high sensitivity (76%) but an extremely low selectivity (2%) overall. At 

mid dt the selectivity improves noticeably (15%) but is accompanied by a substantial 

drop in sensitivity (34%). At high dt the selectivity is at its best (22%) and sensitivity 

at its worst (17%). 

Sensitivity /Selectivity (%) 
low dt (dt = 0.10) mid dt (dt = 0.50) high dt (dt = 0.85) 

Patient EEGer Sen/Sel System Sen/Sel System Sen/Sel System 
1 (34) 68/2 (1185) 32/26 ( 43) 6/100 (2) 
2 (25) 76/3 (590) 16/7 (54) 4/4 (25) 
3 (21) 86/3 (601) 43/27 (33) 10/33 (6) 
4 (3) 100/0 (682) 100/3 (92) 67/7 (28) 
5 (9) 89/1 (1173) 78/13 (54) 56/25 (20) 
6 ( 41) 73/4 (799) 27/33 (33) 27/50 (22) 

I Total (133) I 76/2 (5030) I 34/15 (309) I 17/22 (103) 

Table 9.7 The sensistivities and selectivities of the [10 x 10] SOFM to definite & questionable EVs 
for each patient after fine-tuning with LVQ2. The performance is measured based on the criterion 
where the probability of at least one channel must exceed the threshold dt for a detection to take place. 
Values in brackets indicate the number of events marked by the EEGer or detected by the system. 

The effect on the performance due to varying the size of the SOFM can be seen in 

Table 9.8. In this table the overall performance across all the 6 patients (for definite + 
questionable events) is assessed as the SOFM size varies. Once more, the trend seen in 

Table 9.7 for the [10 x 10] SOFM is repeated for the various SOFM sizes in Table 9.8. 

A low dt results in a relatively high sensitivity and a low selectivity whilst a high dt 
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results in a low sensitivity and a slightly raised level of selectivity. At mid dt a balance 

between both extremes is obtained. As the SOFM size is increased, the performance in 

general increases slightly at the lower threshold levels, although no clear trend can be 

seen. In particular the performances at high dt for the SOFM sizes [12 x 12], [14 x 14:] 

and [16 x 16J are quite low. 

Sensitivity jSelectivity (%) 
I low dt (dt = 0.10) mid dt (dt 0.50) high dt (dt = 0.85) 

SOFM EEGer Sen/Sel System Sen/Sel System Sen/Sel System 
lOx 10 (133) 76/2 (5030) 34/15 (309) 17/22 (103) 
12 x 12 (133) 70/2 (3834) 37/13 (365) 6/7 (108) 
14 x 14 (133) '. 74/2 (4196) 35/13 (348) 5/5 (129) 
16 x 16 (133) 77/3 (4039) 41/13 (422) 3/4 (114) 
18 x 18 (133) 81/3 (3631) 41/14 (387) 22/18 (159) 

I 20 x 20 (133) 77/3 (3374) 45/15 (412) 24/20 (158) 

Table 9.8 The sensitivities and selectivities of the SOFMs across the whole test set (after fine-tuning 
with LVQ2), at different SOFM sizes from [19 x 10J to [20 x 20]. 

9.9 DISCUSSION 

The overall SOFM stage of the spike detection system has been designed to extract 

waveforms from single channel EEG (following the screening action of the mimetic 

stage) and assign to these waveforms (along with their contextual parameters) a prob­

ability value corresponding to their being a true ED. This is carried out across all 16 

channels of the multichannel recording so that the SOFM stage outputs 16 probabilities 

to true ED for the waveforms (CEDs) centred within a 50 ms window across all the 

channels. 

The SOFM was trained using a large data set consisting of a mix of waveforms 

representing true EDs, artifact, etc. Once the SOFM had been trained, a small subset 

of the data was used to calibrate the SOFM and further fine-tune it using LVQ2 (as 

described in Chapters 5 and 6). The calibration and fine-tuning processes are by 

their very nature a form of supervised training. This means that the calibration set 

needs to have labels assigned to each waveform with a high degree of confidence. The 

method of assigning a label based on a consensus of 2 or more EEGers, as described in 

Section 9.5.1, was devised such that only waveforms with a strong agreement between 

the EEGers were used for the calibration/fine-tuning process. 

When observing the mean change in Euclidean distance between the weights of the 

SOFM (Figure 9.4) it can be seen that during the fine-adjustment phase the weights 

of the SOFM appear 'settled' with not much change between the [20 x 20J SOFM and 

the [10 x 10] SOFM. Table 9.8 suggests there is little to be gained by using one SOFM 
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size over another. On average, the [20 x 20J SOFM performed slightly better for each 

dt value, but is not much better than, say, the [10 x 10J SOFM. The reason for the 

decrease in sensitivity and selectivity for the maps of size 8=12, 14 and 16 in particular, 

is unclear. 

When assessing the performance of this SOFM stage, it is not surprising that the 

selectivity will be very low (Le., there are many false detections). As has already been 

stated, the EEGer relies on spatial (as well as temporal) clues to reliably detect an 

EV. Waveforms on a single channel may be assigned high probabilities (due to their 

'spike-like' nature) but then be rejected at a later stage because there are no spatial 

clues indicating the presence of an EV. Figure 9.7 depicts two examples of waveforms 

assigned probabilities based on single channel information only. Figure 9.7a depicts a 

CED assigned a high probability (0.9) which was later seen to form part of an EV (by 

the final stage of the spike detector), whilst Figure 9.7b shows a 'spike-like' waveform 

assigned a high probability (0.81) but was rejected as artifact (electrode artifact) by 

the later stage. 

(a) 

(b) 

Figure 9.7 High probabilities assigned to two CEDs based on single channel analysis. (a) A proba.­
bility of 0.9 was assigned to this CED which later turned out to form part of all EV (following spatial 
analysis). (b) A probability of 0.81 assigned to a CED which was later rejected as electrode artifact. 

What may seem surprising is that the sensitivity is relatively low, even for low dt . 

Sometimes individual EDs which make up EV s may be rather poorly defined (being 

buried in noisy background EEG, for example) when viewed singly. However, such cases 

could, when viewed spatially, exhibit all the characteristics of an EV with a given focus, 

albeit with small probabilities. This means that such occurrences have the possibility 

of being picked up spatially when they would otherwise be missed on a single channel 
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basis. Figure 9.8 depicts examples of waveforms assigned relatively low probabilities 

on a single channel basis but later detected as part of an EV through spatial analysis. 

(a) 

(b) 

Figure 9.8 Low probabilities were assigned to these two CEDs based on single channel analysis 
alone. Both later turned out to form part of an EV (following spatial analysis). (a) probability: 0.10 
(b) probability: 0.20. 

9.10 SUMMARY 

The self-organising ability of the SOFM to form an unbiased representation of the 

underlying features in the training data is drawn upon heavily in this stage of the spike 

detection system. Once the feature map is formed a small subset of the training set (the 

calibration set) is used to fine-tune the SOFM weights using the LVQ2 technique. The 

calibration set is made up of CEDs which are well labelled according to a concensus 

based on 2 (sometimes 3) EEGers. A probability (of it describing an ED) is assigned 

to each weight vector according to a modified calibration technique using Bayesian 

probabilities. 

The mimetic stage performs a screening of the incoming EEG reducing the amount 

of data forwarded to the SOFM to just 'spike-like' data. The 'raw' EEG waveform is 

used as input rather than the parameters extracted by the mimetic stage. In addition 

three items of contextual information are appended to the waveform. 

The mean change in Euclidean distances for the various SOFM sizes has been 

used to investigate what size of SOFM is required. The mean change in the Euclidean 

distance for each SOFM size tried shows only a slightly more 'settled' map as the SOFM 

size is increased. The performance varies only slightly, on average, with the larger of 
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the SOFMs, i.e., the [20 x 20] SOFM, performing only marginally better than for the 

other SOFM sizes. These findings indicate that there is no particular preference for 

one SOFM size over another at this stage. 

The mimetic and SOFM stages combined in essence perform two main tasks. The 

first is to perform data reduction on the EEG with a high sensistivity (mimetic stage) 

and increase the selectivity somewhat (SOFM stage). The second task is to assign 

probability values to CEDs in each channel. 

Relatively low sensitivity and selectivity was obtained on test data. This is a strong 

indication that multichannel (spatial) analysis is required for performing spike detection 

on the EEG. In the next chapter the test data described here is further analysed with 

spatial variation taken into account. 





Chapter 10 

SPATIO-TEMPORAL ASPECTS 

10.1 INTRODUCTION 

Throughout this thesis it has been repeatedly emphasized that EEGers use both spatial 

. and temporal cues when looking for EDs in the EEG. The system proposed in Chapter 7 

describes a final stage which utilises spatial and temporal clues in order to make the 

final EV /non-EV decision based on information received from the previous stage. This 

chapter presents this final stage which involves the use of fuzzy logic to implement 

spatial reasoning in the spike detection system. 

Alternatives to the use of fuzzy logic exist. It would be possible to implement 

the spatial analysis of this final stage by means of an ANN (a multi-layer perceptron 

ANN for example). Using such an ANN would require a training data-set which is 

representative of the many different spatial distributions of EVs in the EEG. The 

training set would need to be labelled accurately and be truly representative of all 

the various spatial distributions possible. Such a data-set may be difficult to assemble 

and may suffer from biases on the part of the EEGers. The use of fuzzy logic as 

described in this chapter, however, allows the capture of the essence of the reasoning of 

an EEGer when performing spatial analysis, whilst retaining the ability to generalize 

to novel situations as they arise. Section 12.2 makes further comment on alternative 

implementations of the spatial analysis. 

The performance of the overall, spike detection system, including the final stage, is 

assessed using the test patients introduced in the previous chapter. Finally, the concept 

of utilising temporal information to further enhance system performance is introduced. 

10.2 THE SPATIAL-COMBINER 

The final stage of the spike detection system combines the outputs of the SOFM stage 

in such a way as to confirm the presence of an EV across two or more channels of 

the EEG and, hence, report the detection of an EV. If the spatial pattern across the 
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outputs of the previous stage is inconsistent with the presence of an EV, it is rejected. 

This stage is dubbed the spatial-combiner. 

In essence, the spatial-combiner uses a number of rules which specify allowable com­

binations of individual (Le., single-channel) EDs across channels to detect the presence 

of an EV. The spatial-combiner works on a 4 channel bipolar electrode chain basis (see 

Section 2.3.2.2), where the incoming (bipolar) EEG is examined based on identical sub­

systems which group 4 channel bipolar chains together according to the current bipolar 

montage in use. Electrode chains with more than 4 channels (at most 6 channels) are 

split into 2 overlapping 4 channel chains, and shorter electrode chains are padded with 

'nulls' to make up a 4 channel chain. The combiner relies on two pieces of information 

for each bipolar chain: (a) the probability assigned to each CED on each channel by the 

SOFM stage and (b) the polarity of each CED within the bipolar chain. Figure 10.1 

depicts the spatial-combiner in relation to the overall spike detection system system, 

showing the 4 channel electrode chain subsystems described above. 

Ch 1 
~ 

~ 
0 

Ch2 0 '<=I -g l'l 
0 ] Q:I 

Ch3 .~ 
~ 

0) 

CI 
Ch4 

EEG EV/ 
non-EV 

Sub-system #2 

Sub-system #3 

Ch16 
Sub-system #n 

montage 

Figure 10.1 The spatial-combiner in relation to the complete spike detection 

The rules mentioned earlier are drawn-up based on pre-defined knowledge of how 

an EV will manifest itself across a bipolar electrode chain and is described in more 

detail in Section 10.5. Each rule covers the possibility of a focal event at points along 

the bipolar electrode chain. As the probabilities assigned to each CED (by the SOFM 

stage) on each channel can take any value from 0 to 1, it would take a great many rules 

to covel' every combination of polarity and probability value for each possible EV focus 

along a 4 channel chain. This problem is simplified by introducing fuzzy logic. Through 

the use of fuzzy logic, the generation of the spatial rules becomes easier as no explicit 
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mathematical models are needed that describe the underlying process. The fuzzy logic 

theory underlying the spatial-combiner and the implementation of the spatial-combiner 

itself is described in greater detail in the following sections. 

10.3 FUZZY LOGIC THEORY 

Fuzzy logic was first developed by Zadeh [1965] and is based on a mathematical theory 

which combines elements of multi-valued logic, probability theory, and artificial intel­

ligence. Much research has taken place since Zadeh's seminal paper and today fuzzy 

logic has found itself in many areas of application, including expert systems, decision 

making, information processing, pattern recognition and process control. 

Fuzzy logic simulates aspects of human thinking by incorporating the imprecision 

inherent in all physical systems [Klir and Folger 1988]. For example, as humans we 

prefer to use terms like "sunny" or "cloudy" to describe the weather rather than in 

exact percentages of cloud cover. In the former, some of the precise information is 

sacrificed in favour of a vague but more robust summary, whereas the latter is more 

accurate but less useful to us. However, even terms like "sunny" and "cloudy" have 

limited scope as, for example, at what point does the weather stop from being "sunny" 

and become "cloudy"? This implies a degree of overlap between the two 'sets', and is 

in fact precisely the concept of fuzzy sets as introduced by Zadeh. The fuzzy set forms, 

in essence, a generalization of the classical or crisp set. 

10.3.1 Crisp sets and fuzzy sets 

In a crisp set a sharp unambiguous distinction exists between the members and non­

members of the class or category represented by the crisp set. Members 'unequivocally 

belong to a set' whereas nonmembers 'unequivocally do not'. However, in many of 

the categories employed in life, the distinctions employed are not so abrupt and their 

boundaries seem vague and the transition from member to nonmember seems rather 

gradual. So a fuzzy set introduces vagueness (with the aim of reducing complexity) 

by eliminating the sharp boundary dividing members of the class from nonmembers. 

Mathematically a fuzzy set can be defined by assigning to each of its members its 

degree of membership in the fuzzy set. Thus, individuals may belong to a particular 

fuzzy set to a greater or lesser degree based on their degree of membership. In the 

following, degrees of membership are assigned the variable /La (for fuzzy set 'a') and 

are represented by real-number values ranging in the interval between 0 and 1. As full 

membership and full nonmembership in the fuzzy set can still be indicated by 1 and 0 

respectively, the crisp set can be considered to be a restricted case of the more general 

fuzzy set for which only these two grades of membership are allowed. 
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As stated above, a fuzzy set is defined by a membership function which usually 

encompass the entire range of input values of a given set, assigning to each a grade of 

membership. The shape of the membership function can be any shape particular to 

the application; in engineering applications it is usually one of trapezoidal, sigmoidal 

or Gaussian (trapezoidal is usually preferred because of its ease of computation). The 

linguistic variables (or fuzzy variables) used to describe fuzzy sets for engineering ap­

plications usually involve terms such as 'hot' or 'cold" 'high' or 'low', etc. Figure 10.2a 

depicts an example of three overlapping fuzzy sets with trapezoidal membership ftmc­

tions which describe body tempemture in terms of fuzzy memberships. Each mem­

bership function describes the sets 'low', 'normal' and 'high'. An input at tl has a 

membership described by f../,n(tt) = 0.55, f../,h(tt) = 0.9, and f../,i(tl) = o. 

10.3.2 Fuzzy logic 

Classical logic (i.e., two-valued logic) is ,based upon the basic assumption that every 

proposition is either true or false. Fuzzy-logic is a generalisation of n-valued logic 

(n 2:: 2) which has a set of Tn truth values - as opposed to the two values for classical 

logic [Klir and Folger 1988]. 

Using Boolean algebra in classical logic, a logical expression can be broken down 

into three main logical operations: AND, OR and NOT. These operations can be 

extended for n-valued logic so that each operation becomes 

aANDb 

aORb 

min(a, b), 

max(a, b), 
a - 1- a. 

(10.1) 

It now becomes possible to perform logical operations on the membership values of a 

number of fuzzy variables. So for the membership functions defined in Figure 1O.2a, 

the operation described in 

reduces to 

tl is 'normal' AND t2 is 'high', 

ftn(tl) AND fth(t2) = min (ftn(tl),fth(t2)), 

= min (0.55,0.4), 

0.4. 

With the fuzzy logic operators described in Equation 10.1 it becomes possible to 

define fuzzy rules which produce an output conditional on some logical operation on 
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Figure 10.2 The fuzzy sets 'low', 'normal' and 'high' used to assign membership values to the inputs; 
(a) 'body temperature' and (b) 'blood pressure'. The fuzzy sets 'low', 'medium' and 'high' are used to 
assign membership values to the output (c) 'alarm level'. 
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the fuzzy variables in use. 

10.3.3 Fuzzy rule-base 

Rules are normally defined in the usual "IF condition THEN outcome" form, where 

the outcome of a rule depends on one or more conditions being met. For classical logic 

the conditions would consist of two-valued (crisp) conditions. Fuzzy logic offers the 

opportunity to perform some function based on a condition (or conditions) which allow 

degrees of membership [Zimmermann 1986]. An example of a fuzzy rule for a patient 

monitoring system, say, could be as follows 

IF body temperature is 'high' OR blood pressure is 'low' THEN alarm level is 'high'. 

Consider the fuzzy sets and fuzzy variables defined in Figure 10.2. If a patient's tem­

perature and pressure were tl and PI respectively, the conditional part of this rule can 

be re-written as 

For the example given this results in an overall membership value of I-l-h(tl) (=0.9). 
The outcome of the above-mentioned rule is that for the output variable "alarm level" 

a certain degree of membership is defined in the fuzzy set "high". The degree of 

membership is given by the outcome of the conditional part (0.9). 

When inputs are applied to the multiple rules of the fuzzy rule-base, all rules will 

respond with different membership values (albeit most may be 0). It then becomes 

necessary to combine the outcomes of all the rules and produce a single 'crisp' outcome 

for the input conditions given, this process is known as defuzzification. Many techniques 

are available for the defuzzification process but, in general, the two most common are 

to use the composite moment (Le., centroid) or the composite maximum. The centroid 

takes the centre of gravity of the final fuzzy space and produces a result that is sensitive 

to all the rules, whereas the composite maximum produces a result that is sensitive to 

the single rule that has the highest outcome. Generally, process control applications use 

the centroid method as the results tend to move smoothly across the control surface, 

while information based applications tend to use the composite maximum. In the 

following the method of composite maximum is used in the defuzzification process. 

The block diagram of Figure 10.3 depicts the fuzzy logic topology. The inputs are 

first fuzzified, inference then takes place on the fuzzy rule base, followed by defuzzifi­

cation where the fuzzy outcome of the rules is converted to a crisp output. 
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Figure 10.3 A block diagram depicting the fuzzy logic topology. 
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In practice, a precise model of a biological system may not be known or it may be 

too difficult to model. In those cases, fuzzy logic may be an appropriate tool for 

modeling and controlling the biological system, since our knowledge and experience are 

directly contained and represented in the fuzzy logic model without the need for explicit 

mathematical models. The application of fuzzy logic in biological systems ranges from 

control of blood pressure during anesthesia [Meier et al. 1992]' the automated delivery 

of muscle relaxants [Mason et al. 1994], the production of medical expert systems 

[Hudson and Cohen 1994] and implementing intelligent alarms [Becker et al. 1994]. 

The spatial-combiner discussed in Section 10.2 makes use of the degree of un­

certainty inherent in a fuzzy logic system by defining a fuzzy rule base to cover the 

possibility of detecting EVs across a 4 channel bipolar chain of electrodes given a set 

of single channel probabilities. 

10.4.1 Fuzzification 

The crisp inputs to the spatial-combiner are the probabilities of true ED as output 

by each SOFM of the previous stage. The crisp inputs for each channel are fuzzified 

by using the fuzzy sets defined in Figure 10.4. For each channel, the crisp inputs can 

range between 0 and 1 with a positive or negative polarity (depending on the polarity 

Ap of the vertex of each CED as detected by the mimetic stage in Section 9.4). A 

waveform with a negative polarity is taken to be a waveform with a peak deflection 

upwards in line with current practice in analysing the EEG. The fuzzy sets are defined 

to be: NB (negative big), NS (negative small), ZE (zero), PS (positive small) and PB 

(positive big). Trapezoidal membership functions are used because of their ease of 

implementation. 

As there are now only 5 fuzzy variables, for a 4 channel electrode chain there are 
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Input membership sets 

NB NS Z,E PS PB 
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being an ED 

Figure 10.4 The fuzzy sets used to define the inputs to the spatial-combiner. 

a maximum of 54 = 625 possible rules which cover all the possible combinations of 

inputs. A large number of these rules are meaningless, however, and are, therefore, not 

used. The rules to be used are determined according to our expectation of the outcome 

given certain input conditions and are described more fully in Section 10.5. 

10.4.2 Inference 

Once the SOFM stage assigns a probability to each CED, the inputs are split into 4 

channel groups according to the current montage in use. For each group, the inputs are 

fuzzified and presented to each rule in the fuzzy rule-base in turn. Each rule performs 

an AND function on the four inputs and results in a single output (Le., a membership 

value and a corresponding fuzzy output variable). Each rule defines a 'possible' EV. 

As there are more than one sub-system the overall output of the spatial-combiner 

is taken to be the subsystem with the largest output, that is, the outputs of each 

sub-system are ORed together as depicted in Figure 10.1. 

10.4.3 Defuzzification 

Each sub-system produces a single output which is defuzzified using the fuzzy sets 

described in Figure 10.5. The 4 fuzzy sets are defined to be: ZE (zero), POS (possible), 

PRO (probable) and DEF (definite) and cover a crisp-valued range between 0 and 1 

inclusive. Once more trapezoidal membership functions are used because of their ease of 

implementation. The method of composite maximum is adopted for the defuzzification 

process in this system. Using this method, the rule most representative of an 'allowable' 

EV distribution across the 4 inputs contributes to the fuzzy output set label and the 

membership value. 
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Figure 10.5 The fuzzy sets used to define the output of each sub-system in the spatial-combiner. 

It is possible for an artifact or some other non-ED waveform to elicit high prob­

abilities on certain channels but which do not exhibit the right spatial characteristics 

to be graded an EV. As the rules only define possible outcomes for true EDs, when 

presented with data which doesn't exhibit valid spatial characteristics each rule will 

result in a low membership value for the output variable. 

In order to obtain a fuzzy output of ZE the systems works on the assumption that 

if the membership value of the best matching rule is less than 0.5 then the outcome 

of the whole fuzzy inference process is assigned an output of fuzzy variable ZE with a 

membership value of one minus the membership value of the best matching rule. In 

effect this represents the one rule which performs a NOT operation on each of the 

previous rules. 

Once the best responding rule is established, the resulting membership value gives 

one or two crisp values at the points where the membership value intersects the corre­

sponding fuzzy membership function. If there are two crisp values, the final crisp value 

output is taken to be the mean of these two values. 

Both the the fuzzy output set label and the crisp value derived thereof are pre­

served at the output of the spatial-combiner, the crisp value or detection level being 

represented by Dsys. With the availability of both the fuzzy label and the crisp output, 

a detection of an EV can be made (a) if the crisp output Dsys exceeds a given threshold 

or (b) if the fuzzy output is either of pas, PRO or DEF. The spike detection system 

implemented uses the latter method, although both values are available on request. 
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10.5 DERIVING FUZZY SPATIAL RULES 

It is possible to calculate the potential that would be generated at each scalp electrode 

by a dipole placed within a realistic head modeL The dipole orientation and loca­

tion could be varied within the model to give different voltage readings at each scalp 

electrode position. In this way it is possible to model the effect of a focal voltage as 

measured at the scalp across a bipolar chain of electrodes. As an EV generally gives 

rise to a region of negative potential mea:mred at the scalp (relative to some indifferent 

reference on the body), it then becomes possible to model the effect of having such a 

focal discharge at various positions on the scalp. This can then be used to map out 

the different voltages (as measured along the bipolar chain of electrodes) due to such 

a focus, and derive a set of rules describing the state of each electrode for a given 

discharge. 

The difficulty with the procedure just described is that it requires precise informa­

tion regarding dipole orientation, location and intensity for each dipole position and 

would require an unacceptably large number of rules to adequately cover all the pos­

sible combinations that can be measured. Also, although an EV must, due to volume 

conduction, appear at all electrodes across the scalp, in many cases is only significant 

on a few of the channels (generally those closest to the focus); that is, on most channels 

the discharge is entirely masked by higher amplitude background EEG or artifact. This 

introduces a factor of uncertainty into the system and it is for this reason that EV s are 

represented by probabilities on each individual channel thus far. 

By introducing fuzzy logic to the spike detection system, rather than having to map 

precise values at each electrode for each particular focus, a number of fuzzy sets can be 

defined which encompass the range of probabilities at each scalp electrode. Through 

the use of the fuzzy sets it then becomes possible to model the effect that an ED would 

have when present at various points along a given bipolar chain of electrodes. The 

fuzzy sets remove the need for measuring precise values at each electrode and allow 

for the creation of a set of rules based on our knowledge of what would constitute an 

"allowable" event along a given bipolar chain. 

The set of rules governing "allowable" events are generated according to the fol­

lowing process: 

1. A radially oriented dipole is modelled at a given depth beneath the surface of a 

4 channel bipolar electrode chain. 

2. The dipole is moved such that its associated peak negative potential is alternately 

just beneath an electrode and mid-way between two electrodes at the same fixed 

depth beneath the surface. This gives rise to 11 possible locations for the peak 

along the bipolar chain. 
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3. At each position of the dipole, the probability of the presence of an ED on each 

channel is assigned, based on the assumption that channels experiencing the 

highest magnitude voltage will have the greatest probability and those experi­

encing the lowest magnitude (commonly those furthest away) will have the least 

probability, with a linear interpolation for the probabilities of the channels in 

between. The probabilities at each channel are calculated in terms of the fuzzy 

input variables NB, NS, ZE, PS and PB. 

4. The process is repeated for several depths of the dipole beneath the surface. The 

maximum depth is assumed to be such that all channels in the bipolar chain are 

affected and the minimum depth such that only the channel closest to the peak 

negative voltage at the surface is affected. 

Figure 1O.6a & Figure 1O.6b depict examples of the effect of having the dipole deep 

. below the surface, while Figure 10.6c & Figure 1O.6d depict the dipole nearer to the 

surface. 

Fuzzy input Weight 
PB/NB 0.25 
PS/NS 0.15 

ZE 0 

Fuzzy output Thresholds (W1') 

DEF W1' ~ 0.80 
PRO 0.5 ::; W1' < 0.80 
POS 0.15 ::; W1' < 0.5 
ZE 'W1' < 0.15 

(a) (b) 

Table 10.1 The weightings (a) and thresholds (b) used in assigning a fuzzy output variable to each 
fuzzy spatial rule derived. 

Each set of probabilities calculated (in terms of the fuzzy variables) for each location 

of the dipole, determines a fuzzy rule for the location of an ED focused at the point of 

maximum negative voltage at the surface. This results in 127 distinct fuzzy rules (out 

of a maximum of 625 rules) describing allowable combinations of fuzzy variables for the 

4 inputs of each sub-system. Each rule derived in this manner is assigned an outcome of 

either DEF, PRO or pas. The actual fuzzy output label assigned to each particular rule 

was arbitrarily based on the number of PB/NB and PS/NS variables assigned to each 

particular rule. For example, a rule involving 4 PB/NB variables was assigned DEF, a 

rule with 4 PS/NS was assigned PRO and a rule with 3 or less PS/NS was assigned the 

label pas. This was done by arbitrarily assigning a weight to each fuzzy input variable 

and adding up the total weights for each fuzzy rule derived. The fuzzy output variable 

assigned to each rule was then based on the sum of these weights exceeding a number of 

thresholds. The weights assigned to the fuzzy input variables are given in Table 1O.1a 

and the thresholds for each fuzzy output variable in Table 10.lb. For example, rule 1 

in the following rules is assigned the fuzzy output variable of PRO based on the sum 
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of the weights of the input variables (0.25+0+0.25+0.25=0.75) exceeding 0.5 but less 

than 0.8. A complete list of the fuzzy rules derived can be found in Appendix C. 

The following gives three examples of rules obtained using the method just de­

scribed: 

1. IF CHI is PB AND 

CH2 is ZE AND 

CH3 isNB AND 

CH4 is NB 

THEN OP is PRO, 

2. IF CHI is ZE AND 

CH2 is PS AND 

CH3 is PB AND 

.CH4 is NB 

THEN OP is PRO, 

3. IF CHI is NB AND 

CH2 is NS AND 

CH3 is ZE AND 

CH4 is ZE 

THEN OP is POS, 

where CHI, CH2, CH3 and CH3 represent the input to channels 1, 2, 3 and 4 respec­

tively and OP the output from each sub-system. For rule 1 a 'strong' focus is assumed 

between electrodes 2 and 3 (Figure 10.6a), in rule 2 a focus at electrode 4 (Figure 10.6b) 

and in rule 3 a 'weak' focus at electrode 1 (Figure 1O.6c). 

The underlying assumption when deriving the fuzzy spatial rules as shown in this 

section is that a focal EV is detected along the bipolar chain of electrodes. Generalized 

EV s show no distinct focus, however, across a number of 4 channel bipolar chains, 

generalized activity will be manifest as a focal event at the end (or beginning) of each 

chain. This means that the rules derived using the above method will also be able to 

detect generalized activity. 

10.6 FURTHER SPATIAL CONSIDERATIONS 

In order to avoid falsely detecting artifacts as EVs, individual outputs from the SOFM 

stage are eliminated if they are due to muscle contraction, eye-blinks or electrode 
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Figure 10.6 The method used to assign fuzzy variables to each channel when defining the fuzzy 
rules for each sub-system of the spatial-combiner. (a) & (b) depict the dipole deep below the surface 
at different positions along the bipolar chain and (c) & (d) depict the dipole nearer to the surface. 
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movement. Elimination takes place by assigning a probability value of 0 on the channel 

to be eliminated. The detection of one of the above-mentioned occurrences is made 

through the use of the contextual information presented with the CED for each channel 

and is based on work by Dingle [1992]. Each artifact is tackled in the following way: 

1. Bursts of muscle activity on any channel are detected when (a) the average back­

ground duration is short « 20 ms, corresponding to the high frequency waveforms 

characteristic of EMG) and (b) the RMS background amplitude is large (>12.6 

/-L V). 

2. Eye-blinks are detected when the floating-mean falls significantly below the base­

line « -80 /-LV) on a frontal channel. 

3. Electrode movement is detected on a channel when the floating mean reaches a 

maximum of at least 100 /-LV above the baseline. 

10.7 METHODS 

An experimental study was performed to assess the performance of the spatial-combiner 

as part of the overall spike detection system. 

10.7.1 Subjects 

The same 6 EEGs used to test the SOFM stage in the previous chapter were used. 

The details of the 6 EEGs are reproduced here in Table 10.2. The EEGs were recorded 

using the method described in Section 9.3 and contained only bipolar montages (all 

referential montages being transformed to longitudinal bipolar montage). 

Epileptiform Events (EV s) 
EEG Age Duration EEGers Definite Quest. Total 

1 71 25m 8s 2 17 17 34 
2 3 16m 3s 2 8 17 25 
3 31 24m 59s 2 2 19 21 
4 11 23m 24s 2 2 1 3 
5 5 27m 24s 3 9 0 9 
6 24 26m 17s 2 25 16 41 

I Totals 2h 23m 15s 63 70 II 133 

Table 10.2 The test set comprising 6 EEGs with a total of 63 definite EVs and 70 questionable EVs. 
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10.7.2 Selecting the CEDs 

During the development of the system, the mimetic stage was initially set up sudl that 

a CED was declared once the first vertex was found which exceeded all thresholds, this 

being called the primary vertex. This was repeated on all channels for vertices within 50 

ms of the primary vertex. However, this approach frequently caused the mimetic stage 

to form CEDs around an inappropriate vertex for a known ED (particularly with a bi­

phasic ED). This caused two problems: (a) the CED was windowed around the wrong 

vertex and so was presented to the SOFM shifted in time, and (b) on most occasions 

the probability resulting from the presentation of the CED to the SOFM was coupled 

to the wrong polarity. The latter was because the polarity assigned to the probability 

value output from the SOFM was that ofthe (incorrect) vertex ofthe CED, Ap. When 

looked at in a spatial context, the resultant probabilities and polarities across channels 

did not conform to any of the derived rules and, consequently, the entire event was 

rejected. A similar problem was reported in the mimetic stage of Webber et al. [1994]. 

To correct this problem a system was devised along similar lines to that of Webber 

et al. [1994]. For each channel, if there was more than one CED present within a 

window of 100 ms, a score was calculated for each CED; one point was assigned to the 

CED with the greatest peak amplitude and one point to the CED with the sharpest 

vertex. This was performed for all mannels of the EEG if more than one CED was 

present. A final score was assigned to each CED based on the distance of the vertex 

from the mean location of the vertices calculated from all of the CEDs for a given 

bipolar chain. First, the mean vertex location was calculated for each channel using 

each CED. The mean for each channel was then used to find the global mean location 

of the vertex across the 4 channels forming a bipolar chain. This was done in order 

to obtain an estimate of the location of a focus across the channels. Once this was 

done, the CED with the closest vertex to the global mean vertex position was assigned 

a further point. The CED with the greatest number of points on each channel was the 

CED chosen to be presented to the SOFMs. 

This ad hoc method helped to alleviate the initial problem through a more informed 

choice of CED for each channel. 

10.7.3 Grouping the inputs to the sub-systems 

The outputs from the SOFM stage needed to be grouped into 4 channel bipolar chains 

(depending on the montage in use). Once grouped each group was presented to a sub­

system which in turn output a fuzzy output value and crisp value. The overall system 

output was taken to be the maximum output of all the sub-systems. Each sub-system 

performed exactly the same operation on the four probability values input to it. 

The 4 channel bipolar chains were grouped according to the montage in use as 
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depicted in Figure 10.7 (see Figure 2.1 for position and labels of electrodes). For 

the longitudinal and longitudinal-transverse montages, the sUb-systems are naturally 

grouped into 4 sub-systems of 4 channels ofEEG each (Figure 1O.7a and Figure lO.7b). 

The transverse montage is divided into 5 sub-systems (Figure 10.7c). The 6 channel 

electrode chain a1-t3-c3-cz-c4-t4-a2 is divided into two overlapping 4 channel chains 

such that a1-t3-c3-cz-c4 are input to one sub-system and c3-cz-c4-t4-a2 are input to 

another sub-system. The 2 channel electrode chain of J z-cz-pz is converted to a 4 

channel chain by padding the last two channels with 0 probabilities for every value 

entered on the two 'real' channels. The circumferential montage is divided into 6 

sub-systems (Figure 1O.7d). Two non-overlapping 4 channel chains were formed with 

Jp2-J8-t4-t6-o2 and Jp1- J7-tl-t5-o1 and two overlapping 4 channel chains with J3-

J4-c4-p4-p3 and J4- J3-c3-p3-p4. Finally two 3 channel bipolar chains were padded 

with 'null' channels (Le., 0 probability channels) for the chains J7- Jp1-Jp2- J8 and 

t5-o1-o2-t6. 

Longitudinal Longitudinal-transverse 
Group 1 Group 2 Group 1 Group 2 

Transverse Circumferential 

Group 2 

Group 5 

Figure 10.7 The grouping into 4 channel bipolar chains for each sub-system in the spatial-combiner 
for (a) longitudinal montage, (b) longitudinal-transverse montage, (c) transverse montage and (d) 
circumferential montage. 
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10.8 RESULTS 

Table 10.3 shows performance of the spike-detection system including the spatial­

combiner for the 6 test patients with a [20 x 20] SOFM in the SOFM stage. The 

table depicts the performance of the system for detecting definite plus questionable 

events. The total sensitivity is given by 59% and the selectivity by 32%. The low selec­

tivity reflects the relatively large number of false detections made by the system. Both 

the missed events and the false detections seem to be evenly distributed throughout 

the test data and cannot be identified as being mainly due to one poorly performing 

EEG. 

Sensitivity & Selectivity (%) 
Detections 

Patient EEGer Correct False Total Sensitivity Selectivity 
1 34 19 9 28 56 68 
2 25 14 43 57 56 25 
3 21 12 43 55 57 22 
4 3 2 20 22 67 9 
5 9 7 35 42 78 17 
6 41 24 17 41 59 59 

I Total 133 78 167 245 I 59 32 

Table 10.3 The sensitivities and selectivities of the spike-detection system to definite & questionable 
EVs combined for each patient in the test set. The [20 x 20] SOFM after fine-tuning with LVQ2 was 
used in the SOFM stage. The performance is measured based on the criterion that a detection takes 
place when the fuzzy output of any sub-system in the spatial-combiner is either POS, PRO or DEF. 

Table lOA shows the performance of the complete system on the 6 test patients 

for different sizes of the SOFM, from a [10 x 10] to a [20 x 20] SOFM. The number of 

correct detections in general increases as the SOFM is increased leading to better 

sensitivities for the larger SOFMs. The total number of detections shows no particular 

trend as the SOFM size is varied and this is reflected in the values for selectivity. On 

the whole the [20 X 20] SOFM resulted in the best selectivity, although all were rather 

low. On average, the trend for the average performance (Le., mean of sensitivity and 

selectivity) is such that increases are seen as the SOFM size is increased, making the 

system using the [20 x 20] SOFM the best performed system. 

Table 10.5 shows the number of missed events over the 6 patients for the [20 x 20] 

SOFM. Overall, there were 55 missed events out of the 133 events found by the EEGers. 

The table breaks these into 3 classes of missed events for each patient. Overall, 5 events 

were completely missed by the system, this being due to the mimetic stage failing to 

pick up the constituent CEDs and hence not forwarding them to the later stages. A 

further 15 events were picked up by the mimetic stage and forwarded to the SOFM 

stage but the constituent CEDs were assigned low probabilities resulting in the event 
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Sensitivity & Selectivity (%) 
Detections 

SOFM EEGer Correct False Total Sensitivity Selectivity 
[10 x 10] 133 64 185 249 48 26 
[12 x 12] 133 49 124 173 37 28 
[14 x 14] 133 58 128 186 44 31 
[16 x 16] 133 66 190 256 50 26 
[18 x 18] 133 71 245 316 53 22 
[20 x 20] 133 78 167 245 59 32 

Table 10.4 The sensitivities and selectivities of the spike-detection system to definite & questionable 
EVs across the whole test set whilst varying the SOFM size (after fine-tuning with LVQ2). The 
performance is measured based on the criterion that a detection takes place when the fuzzy output of 
any sub-system in the spatial-combiner is either POS, PRO or DEF. 

being rejected by the spatial-combiner. These missed events were evenly distributed 

across the 6 test patients. Importantly, 35 events were missed due to 'wrong polarity'. 

That is, the constituent CEDs for these.events were picked up by the mimetic stage, 

assigned strong probabilities by the SOFM stage but were rejected by the spatial­

combiner because spatially they did not conform to any of the 'allowable' rules. On 

closer examination this was found, in every case, to be due to the wrong polarity being 

coupled to the CED probability due to the problems discussed in Section 10.7.2 (despite 

the ad hoc method used to attempt to overcome the problems). Had the individual 

CED polarities of these 35 events been correctly assigned, the overall sensitivity of the 

system would rise to 85% as opposed to the current 59% (for the [20 x 20] SOFM). 

Missed EVs 
Missed Low Wrong 

EEG entirely probabilities polarity Total 
1 0 3 12 15 
2 1 4 6 11 
3 0 4 5 9 
4 0 0 1 1 
5 0 1 1 2 
6 4 3 10 17 

Totals 5 15 35 55 

Table 10.5 The missed EVs for the 6 test patients with the SOFM size at [20 x 20]. 

Table 10.6 shows a breakdown of the false detections made by the system for the 6 

test set patients using the [20 x 20] SOFM. It is these 167 false detections which result 

in the relatively low selectivity (32%) of the system. Five of the false detections were 

due to eye-blink artifact and were all recorded from patient 3. Muscle artifact accounts 

for 26 false detections, most of which were recorded from patients 1 and 2. major 

contributors to the false detections were electrode artifacts (66) and sharp background 
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(70). Electrode artifacts include both electrode movement and electrode 'pop', although 

the majority of the cases were due to electrode 'pop'. In each case, when viewed on 

a single channel basis, the CEDs were remarkably 'spike-like' and thus were assigned 

relatively high probabilities (i.e., 0.6 rv 0.7) by the SOFM stage. The electrode 'pop' 

artifacts, in particular, exhibited strong focal characteristics and this, coupled with the 

relatively high individual CED probabilities, caused the spatial-combiner to accept the 

events as epileptiform. The majority of the electrode artifacts were due to patients 2 

and 5. The sharp background artifacts were mainly due to patient 3 (36 events) and 

consist of 'spike-like' background activity which happened to exhibit acceptable spatial 

characteristics and, hence, be detected as EVs by the spatial-combiner. 

False EV detections 
Eye Muscle Electrode Sharp 

EEG blink artifact artifact background Total 
1 0 7 1 1 9 
2 0 11 25 7 43 
3 5 0 2 36 43 
4 0 1 11 8 20 
5 0 4 25 6 35 
6 0 3 2 12 17 I 

I Totals II 5 26 66 70 II 167 I 
Table 10.6 The falsely detected EVs for the 6 test patients with the SOFM size at [20 x 20). 

10.9 DISCUSSION 

On the whole, the overall spike-detection system had a reasonable sensitivity (59%) but 

a rather poor selectivity (32%). Following closer examination of the missed events and 

false detections which resulted in these measures of performance, a number of points 

can be made. 

Missed events were primarily due to the wrong polarity being assigned to CEDs, 

despite their being assigned strong probabilities by the SOFM stage. This occurred 

despite the measures taken as described in Section 10.7.2. Figure 10.8 depicts three 

instances of a 4 channel sub-system of the spatial-combiner acting on CEDs. Fig­

ure 1O.8a shows a true EV where the CEDs presented to the SOFMs were assigned 

high probabilities and coupled to the appropriate polarity (based on the vertex of each 

CED) resulting in the detection of an EV. Figure 1O.8b and Figure 1O.8c depict other 

examples of true EV s presented to a sub-system. In each case, the CEDs were assigned 

good probabilities by the SOFMs but were coupled to the wrong polarity resulting in 

the EVs being rejected by the spatial-combiner. The figures show that the vertices cho­

sen for each CED resulted in the wrong polarity being coupled to each single channel 
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Figure 10.8 (a) An example of an event correctly detected as DEF following spatial reasoning, in 
contrast to (b) & (c) which depict two events rejected following spatial reasoning due to wrongly 
assigned polarities of the vertex in each case. (The values in brackets indicate the probability value 
assigned to each CED by the SOFM stage and the circle indicates the vertex of each CED in question). 
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Figure 10.9 (a) An example of an artifact (sharp background) correctly rejected by the spatial­
combiner following spatial reasoning. (b) & (c) depict examples of electrode 'pop' and sharp alpha 
artifact respectively accepted following spatial reasoning due to the high individual probabilities as­
signed to the 'spike-like' CEDs. (The values in brackets indicate the probability value assigned to each 
CED by the SOFM stage and the circle indicates the vertex of each CED in question). 
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probability. Although the CED was centered around the 'wrong' vertex, in each case 

the SOFM responded with a reasonable probability value for each CED. This seems 

to indicate that the SOFM stage is relatively insensitive to "jittering" in time of the 

input waveform making up the CED. 

The 5 events missed entirely by the system consisted of both low amplitude CEDs 

that followed too closely to previous CEDs and were ignored by the mimetic stage. The 

15 events assigned low probabilities consisted mainly of CEDs which were 'buried' in 

noise (EMG mainly) and, hence, were assigned low probabilities by the SOFM stage. 

Where one CED on an adjacent channel was assigned a relatively high probability, 

there was no spatial evidence to support a detection and the event was discarded. 

Overall, measures taken to remove gross deviations in the EEG recording due 

to excessive muscle artifact, electrode movement and eye-blink appear to have been 

quite successfuL Only 5 eyeblink artifacts were identified of the many present in the 

test EEGs, especially during hyperventilation segments. The EMG artifacts picked up 

consisted of local 'spiking' of the background EEG most probably due to individual 

motor neurons firing in facial muscles. The detection of electrode 'pop' and sharp 

background provided the greatest problem in false detections. In each case when viewed 

on a single channel basis, each CED was assigned a relatively high probability and, 

when coupled with the correct spatial distribution of the CEDs, resulted in the artifact 

being reported as an EV. Figure 10.9a depicts an artifact correctly rejected by the 

spatial-combiner as artifact. Figure 10.9b and Figure 10.9c depict two examples of 

false detections of artifact due to the 'spike-like' nature of the individual CEDs and 

their correct spatial arrangement. 

The problem of false detections of the type just described is the major contributor 

to the low overall selectivity of the system as a whole. Possible methods of solving this 

problem are proposed next. 

A reasonable question that may be asked is: Why does the SOFM stage attribute 

such high probabilities to some artifactual waveforms? On the whole, this is because 

when looked at on a single channel basis the CEDs are distinctly 'spike-like'. However, 

a number of non-epileptiform CEDs were not distinctly 'spike-like' but still resulted in 

large probabilities on presentation to the SOFM. As the SOFM works on the system 

of the 'closest matching' weight vector to find a 'winner', if an input waveform is under 

represented in the SOFM weights, then the closest matching weight vector for such 

an input may not necessarily be that 'close' (in a Euclidean sense) but still be the 

closest to be assigned the 'winner'. This suggests that there may be a need to re­

calibrate the trained SOFM using a calibration set more representative of the various 

spike morphologies and, even more importantly, more representative of the wide range 

of 'spike-like' artifacts. The calibration set used to calibrate the SOFM in Chapter 9 

was put together with careful attention paid to spike morphology but less so with the 
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various artifactual waveforms. 

Another possible solution may lie in using temporal contextual information to 

influence the spike detection process based on past history of events on each channel 

in the multichannel recording as discussed in Section 10.10. 

One further method of handling such a problem would be to use a more wide-sense 

spatial analysis. The spatial-combiner performs spatial analysis based on a 4-channel 

bipolar chain of electrodes. However, no use is made to corroborate evidence of EVs by 

comparing the outputs of the sub-systems to upgrade or downgrade a detection based 

on the relative locations of each bipolar chain. For example, adjacent bipolar chains 

could be used to confirm strong individual chain probabilities, or chains that share a 

common electrode could be use to confirm the presence of artifacts. EEGers do just 

this in order to help confirm the presence of EV s. 

When observing the spatial-combiner per se, the performance was reasonably good. 

This is especially so considering the somewhat ad hoc placement of the fuzzy input and 

output membership functions and generation of the fuzzy rule base, which are based 

more on our expectations of what should be happening than a precise mathematical 

model of the process. The performance can be altered by changing the shape of the 

constituent membership functions, but examining the results obtained these indicate 

that the current problems are not related to the fuzzy inference process and hence any 

improvements in performance would likely be minimal. 

10.10 PROPOSED TEMPORAL UPDATING 

In addition to the considerable use made of spatial contextual information when per­

forming spike detection, EEGers also make use of wide-sense temporal information. 

The current spike detection system makes considerable use of spatial contextual infor­

mation, as described in this chapter. Short-term te,lnporal contextual information is 

also used in a limited fashion by having the mimetic stage extract the three contextual 

parameters describing the characteristics of the background EEG within a 1.0 s window 

around a CED. This temporal information is used to place the CED in context when 

presenting it to the SOFM for a probability to be assigned to it. 

However, the EEGer also uses temporal information on a much wider scale than 

utilized in the current system. When the EEGer is grading an EEG and marking the 

presence of EV s, the location of the epileptiform activity seen is kept in mind and this 

information is used to influence his decision on EV Inon-EV as he progresses through 

the EEG. The EEGer frequently uses this information on completion of a first viewing 

of the EEG to backtrack through the EEG and upgrade (or downgrade) EV s based 

on the history of activity throughout the EEG. Traditional expert-system based detec­

tors capitalize substantially by incorporating temporal contextual information [Davey 
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et al. 1989], [Glover et al. 1989] and [Dingle et ai. 1993]. 

The spike detection system presented here only makes use of the limited contextual 

temporal information surrounding each CED. The following system is proposed as a 

future addition to the spike detections system in order to include temporal information 

in the spike detection process. 

The proposed temporal system hinges around the use of the Bayesian probability 

method to assign probabilities to each neuron in the SOFM during calibration (see 

Section 9.5.3.2). So far the SOFM has been calibrated "off-line" where the probabilities 

assigned to each neuron have been based on the information held in the calibration set. 

Once calibrated, an identical SOFM is assigned to each channel of the multi-channel 

recording in order to assign probabilities to each CED in a similar fashion. 

The Bayesian system used to calibrate the SOFMs assigns the posterior probability 

to each neuron based on the prior probablity and the likelihood of that neuron being 

declared the 'winner' during calibration. As the calibration process progresses and a 

given neuron 'wins', its posterior probability is altered. 

The system proposed is to provide each channel SOFM with the ability to 

alter the posterior probabilities to each 'winning' neuron of the SOFM based on the 

overall outcome of the spike detection system. However, the probabilities must only be 

altered if the level of detection exceeds a given threshold such that 

1j;~(k + 1) ~ 

1j;~(k + 1) 

s~(k"H)+1 _ (s~(k)+l)+1 
n~(k+1)+2 - (n~(k)+1)+2 

1j;~ (k) 

if threshold exceeded, 

otherwise, 

(10.2) 

(10.3) 

where 1j;~(k+ 1) represents the new value of the posterior probability 1j; (as described in 

Section 9.5.3.2) for 'winning' neuron c in SOFM j (1 ~ j ~ 16) at the discrete epoch of 

time kj s~ and n~ represent the total number of successful 'wins' and the total number 

of 'wins' respectively for neuron c in SOFM j. 

This system is proposed in order to strengthen the probabilities assigned to neurons 

most responsive to true CEDs differently for each channel of the EEG such that each 

SOFM on each channel of the system should become selectively tuned to the particular 

waveforms on each channel that make up an EV for each particular patient. Before 

spike detection commences, the initial probabilities assigned to each SOFM should be 

the probabilities assigned by the calibration process. 

Careful consideration must accompany the choice of the threshold level, it is most 

likely that assigning a value too large will result in minimal updates to the posterior 

probabilities due to the already large probablities assigned to the constituent CEDs 

making up the detected EV. Conversely, it is equally likely that a threshold too low 

will result in the posterior probabilities of too many neurons in the SOFMs being altered 
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resulting in increased false detections due to unwanted strengthening of probabilities 

related to artifactual EEG. Of the two extremes, opting for a threshold value closer to 

the higher threshold seems be the safer choice, hence minimizing the risk of increasing 

false detections. 

It could also be possible to make the system into a two pass system, whereby the 

final probability values assigned to each SOFM at the end of the first pass through the 

data could be used during a second pass of the entire EEG. In this way the SOFMs 

become 'tuned' to the characteristics of the EEG being tested. [Glover et al. 1989] 

implemented an expert-system based detector which involved the concept of 'on-line' 

learning discussed here. 

10.11 SUMMARY 

This chapter introduced the use of spatial contextual information in performing spike 

detection and the concept of using temporal contextual information to aid in that 

process. Through the use of fuzzy logic, an approximation to the spatial reasoning 

used by EEGers in the spatial combination of the single channel EEG was possible. 

This avoids the need for exact mathematical models to represent the distribution of 

EVs across channels, and maximizes the use of the probabilistic nature of the outputs 

from the single channel SOFM stages. 

The fuzzy rules implemented in this chapter were derived on our expectations of 

allowable combinations of single channel CEDs and resulted in the formation of a fuzzy 

rule base consisting of 127 such rules. The rules derived have performed quite well. 

The system implemented in this chapter highlighted several problems when tested, 

the most crucial being the relatively high number of false detections of EV s. These are 

mostly due to 'ED-like' artifacts exhibiting 'allowable' spatial distribution. This seems 

to indicate that the SOFM stage may benefit from re-calibration using a calibration 

set which is more representative of the spectrum of ED and 'ED-like' waveforms. The 

majority of the missed events were primarily due to the wrong polarity being assigned 

to CEDs, despite their being assigned strong probabilities by the SOFM stage (and 

despite the measures taken as described in Section 10.7.2). Furthermore, the possibility 

of using a more wide-sense spatial context could confer improved performance. 





Chapter 11 

SYSTEM PERFORMANCE 

11.1 INTRODUCTION 

This chapter looks at the spike detection system that has been developed and examines 

the performance of the system at each stage. A direct comparison is then made with 

the Christchurch-based spike detection system developed by Dingle et al. [1993] using 

the same test data for both systems. Finally, the overall performance of the spike 

detection system is compared with that of a number of other leading spike detection 

systems reported in the literature. 

11.2 PERFORMANCE AT EACH STAGE 

The experimental spike detection system which has been implemented does not include 

the spike enhancer of Chapter 8 and, hence, the performance of the system is assessed: 

(a) after the mimetic stage, (b) after the SOFM stage and (c) at the output of the 

spatial-combiner. For both (a) and (b) above, no spatial contextual information is 

present, whereas (c) uses spatial information to act on the outputs of (b) making the 

final EV /non-EV decision. 

The system has been developed using the MATLAB (Vers 4.2c1) package (The 

Math Works Inc.) with the Neural Network toolbox (Vers 2.0b) and the Signal Process­

ing toolbox (Vers 3.0b). The final system used to perform the tests described here were 

further developed using the 'C' programming language. The tests were performed 

on a PC system with a Pentium processor running at 90 MHz. Spike-detection was 

performed 'off-line' on data stored on hard disk. On average, the system works in'real­

time', i.e., spike detection for a 20 minute EEG lasts about 20 minutes, but for EEGs 

with 'noisy' backgrounds the spike detection process can take twice as long. This is 

due to the large number of CEDs put forward by the mimetic stage for 'noisy' EEGs. 

In order to view the advantages of each stage of the multistage system, both the 

sensitivity and selectivity are calculated at each stage for the same test data used in 
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Ohapters 9 and 10. In addition, an EEG which contained no epileptiform activity (as 

graded by all 3 EEGers) was added to the previous test set of 6 EEGs as shown in 

Table 11.1. The performance at each stage was calculated as follows: 

1. Mimetic stage: a detection was considered to have taken place if at .least one 

OED on any of the 16 channels of EEG passed the thresholds and, hence, was 

forwarded to the SOFM stage. 

2. SOFM stage: if the probability assigned to at least one OED on any of the 16 

channels of EEG by each SOFM stage exceeded a threshold level of dt = 0.5 then 

the OED was counted as a detection. 

3. Spatial combiner: if an output was assigned anyone of the fuzzy variables POS, 

PRO or DEF, the OED was counted as a detection. 

Epileptiform Events (EV s) 
EEG Age Duration EEGers Definite Quest. Total 

1 71 25m 8s 2 17 17 34 
2 3 16m 3s 2 8 17 25 
3 31 24m 59s 2 2 19 21 
4 11 23m 24s 2 2 1 3 
5 5 27m 24s 3 9 0 9 
6 24 26m 17s 2 25 16 41 
7 28 25m 16s 3 0 0 0 

Totals 2h 48m 31s 63 70 133 

Table 11.1 The test set comprising 6 definite epileptiform EEGs (with a total of 63 definite and 70 
questionable EVs) and 1 normal EEG (Le., no epileptiform activity). 

Table 11.2 gives the performance at each stage of the system for each patient in 

the test set for a [20 x 20] SOFM and Table 11.3 gives the performance across all six 

patients as the SOFM size varies from [10 x 10] to [20 X 20]. 

From Table 11.2 it can be seen that for the EEG of patient 7, 5 false detections 

took place at the overall output of the system which, if taken at face value, would have 

resulted in the EEG being incorrectly reported as containing epileptiform activity. The 

5 false detections were due to sharp background and muscle spikes with low individual 

probabilities but with strong focal characteristics. For each patient, the mimetic stage 

picked up a very large number of OEDs giving high sensitivities and correspondingly 

low selectivities. This is not surprising as the thresholds for the mimetic stage were set 

such that it performed a screening of the incoming EEG with a high sensitivity to true 

EDs. Looking at the output of the SOFMs above a probability threshold of dt = 0.5 

resulted in an increase in selectivity due to a considerable reduction in the number 

of false detections, but also resulted in a reduced sensitivity as OEDs with relatively 
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Sensitivity /Selectivity (%) 
Mimetic SOFM (dt 0.5) Spatial-combiner 

Patient EEGer Sen/Sel System Sen/Sel System Sen/Sel System 
1 (34) 100/2 (2123) 26/28 (32) 56/68 (28) 
2 (25) 96/3 (890) 40/14 (70) 56/25 (57) 
3 (21) 100/2 (887) 38/9 (91) 57/22 (55) 
4 (3) 100/0 (977) 67/3 (74) 67/9 (22) 
5 (9) 100/1 (1624) 89/10 (79) 78/17 (42) 
6 (41) 88/3 (1192) 56/35 (66) 59/59 (41) 
7 (0) -/0 (1632) i -/0 (28) 

• 

--/0 (5) 

I Total (133) I 95/2 (9325) I 45/14 (440) I 59/31 (250) I 

Table 11.2 The sensitivities and selectivities of the system at each stage to definite & questionable 
EVs for each patient. (The SOFM stage values are for a [20 x 20] SOFM followed by fine-tuning with 
LVQ2). . 

Sensitivity /Selectivity (%) 
Mimetic SOFM (dt = 0.5) Spatial-combiner 

SOFM EEGer Sen/Sel System Sen/Sel System Sen/Sel System 
[10 x 10] (133) 95/2 (9325) 34/14 (323) 48/25 (254) 
[12 x 12] (133) 95/2 (9325) 37/13 (381) 37/28 (178) 
[14 x 14] (133) 95/2 (9325) 35/13 (363) 44/31 (187) 
[16 x 16] (133) 95/2 (9325) 41/12 (449) 50/25 (259) 
[18 x 18] (133) 95/2 (9325) 41/13 (413) 53/22 (321) 
[20 x 20] (133) 95/2 (9325) 45/14 (440) 59/31 (250) 

Table 11.3 The sensitivities and selectivities of the system across all test patients at each stage, to 
definite & questionable EVs for the size of the SOFM stage varying between [10 x 10] and [20 x 20]. 
(The SOFM was followed by fine-tuning with LVQ2). 
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low individual probabilities were discarded. The spatial combiner further increased the 

selectivity and increased the sensitivity as the number of false detections was reduced 

when the data was observed using spatial analysis. This trend was repeated for each 

patient in the test set. 

When looking at the overall performance of the test data as a function of the SOFM 

size (Table 11.3), for each SOFM tested the performance is seen to increase at each 

stage and reaches the best balance between sensitivity and selectivity at the spatial 

combiner stage. As discussed in Chapter 10 the relatively low sensitivities are mainly 

due to the assignment of wrong polarities to the CEDs before the spatial-combiner 

stage. A consequence of the low selectivity described in Chapter 10 is that the system 

graded a non-epileptiform EEG as epileptiform, although for all SOFM sizes the number 

of false detections for the normal EEG did not exceed 5. 

11.3 COMPARISON WITH OTHER SYSTEMS 

In order to better assess the performance of the system, a comparison is needed with 

some of the various spike detection systems reported in the literature. However such 

comparisons between systems are made difficult by the wide range of measures used 

for evaluating their performance. 

The greatest differences in assessing the performance occur when obtaining a mea­

sure for false detections and missed detections. Gotman and Wang [1992] define false 

detections as detections which are obviously artifact, whereas other methods include 

defining a false detection as an event not marked by any of the 6 EEGers who graded 

the system [Eberhart et at. 1989] or marked by fewer than 6 of 7 EEGers [Fischer 

et at. 1980]. 

In a similar way Gotman and Wang [1992] states that missed detections are those 

falsely rejected by the system as non-epileptiform, but ignores EVs/EDs missed by the 

system altogether. In contrast, Eberhart et at. [1989] identified missed detections as 

those not detected by the system but marked by at least 4 of 6 EEGers. 

The performance measures used for this system have been adapted from Webber 

et at. [1994] and, where possible, will be used to compare between systems. In addition, 

a direct comparison of the system described herein with that of Dingle et at. [1993] 

is possible using the same 7 test EEGs for both systems. In addition to the same 

performance measures, a further measure of performance is introduced - the number 

of false detections per hour. 

The system of Dingle et at. [1993] uses a mimetic stage followed by an expert system 

and makes considerable use of both spatial and temporal contextual information in the 

spike detection process. Table 11.4 shows the performance of both systems on the 7 test 

EEGs of Table 11.1 (an SOFM size of [20 x 20] was used for SOFM-based spike detection 
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system). From the table it can be seen that the system of Dingle et al. [1993] is the more 

conservative of the two systems resulting in considerably fewer false detections than the 

SOFM-based system and hence a higher overall selectivity (78% vs 31%). Conversely, 

the cost of the higher selectivity is a much lower sensitivity (21% vs 59%). This low 

sensitivity resulted in zero detections achieved for patient 4; the EEG was consequently 

classified as 'normal' in error. Although the EEG of patient 5 was correctly marked 

'epileptiform' by the system of Dingle et al., this was inadvertently due to 3 false 

detections as none of the 9 EV s marked definite were detected! However, for the 

normal patient (patient 7) no detections were made, correctly identifying patient 7 as 

a 'normal' EEG, whereas the SOFM-based system falsely detected 5 artifacts which 

would have led to this EEG being incorrectly regarded as 'epileptiform'. 

Sensitivity /Selectivity (%) 
Dingle et al. James et at. 

Patient EEGer Correct False Total Sens/Sel Correct False Total Sens/Sel 
1 34 7 0 7 (21/100) 19 9 28 (56/68) 
2 25 5 2 7 (20/71) 14 43 57 (56/25) 
3 21 3 2 5 (14/60) 12 43 55 (57/22) 
4 3 0 0 0 (0/-) 2 20 22 (67/9) 
5 9 0 3 3 (0/0) 7 35 42 (78/17) 
6 41 13 1 14 (32/93) 24 17 41 (59/59) 
7 0 0 0 (-j-) 5 5 (-/-) 

Table 11.4 A comparison between the sensitivities and selectivities of the SOFM based spike detec­
tion system and that of Dingle et al. [1993] to definite & questionable EVs for each patient in the test 
set. (The [20 X 20] SOFM after fine-tuning with LVQ2 was used in the SOFM stage.) 

The measure of number of false detections per hour of EEG can be used to place 

the reported performance of the system into context when conJlidering the length of 

EEGs considered in the test sets. For the test set above, the SOFM-based system 

resulted in a false detection rate of 61 false detections/hour whereas that of Dingle 

et al. [1993] resulted in 3 false detections/hour. 

Table 11.5 shows a number of spike detection systems found in the literature listing 

the method used in each case. Table 11.6 compares the performance of the SOFM 

based spike detection system to the performances reported in the literature for the 

spike detection systems shown in Table 11.5. In each case the performance for EVs 

marked either definite or questionable by the EEGer(s) is calculated. 

The results given in Table 11.6 show a great variability in the measures of perfor­

mance, especially false detection rate. For the methods of Gotman and Wang [1992J 

no measures for the sensitivity are given or deducible from the data given although for 

the method involving wide temporal context (state) a reduction of 15% in the total 

number of detections is reported along with the increase in true detections. Of the sys­

tems described, only those of Gotman and Wang [1992]' Dingle et al. (1997) and the 
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System Method 
1 Ozdamar et al. [1991] ANN + ANN 
2 Hostetler et al. [1992] Mimetic 
3 Gotman and Wang [1992] Mimetic 
4 Gotman and Wang [1992] Mimetic + state 
5 Webber et al. [1994] Mimetic + ANN (Parameters) 
6 Webber et al. [1994] Mimetic + ANN (Raw EEG) 
7 Dingle et al. [1993] Mimetic + expert system 
8 Dingle et al. (1997) Mimetic + expert system 
9 James et al. (1997) Mimetic + SOFM + Fuzzy logic 

Table 11.5 The spike detection systems found in the literature (systems 1-7) to be compared with 
the Christchurch based system (#8) and the SOFM-based spike detection system (#9). 

ours Epileptic EEGers Train/ Sen Sel False 
(%) Test (%) (%) /hour 

1 10 0.043 ? 4 6/4 90 69 rv1023 
2 5 2 100 5 Blind 59 89 37 
3 20 33 100 2 Blind - 41 117 
4 20 33 100 2 Blind - 67 47 
5 10 0.3 100 1 Same 74 74 rv804 
6 10 0.3 100 1 Same 46 46 rv5598 
7 11 3 73 1 Same 53 100 0 
8 7 2.8 86 2/3 Blind 21 78 3 
9 7 2.8 86 2/3 Blind 59 31 61 

Table 11.6 A comparison of the sensitivities, selectivities and false detection rates between the SOFM 
based spike detection system and others in the literature. (The [20 X 20] SOFM after fine-tuning with 
LVQ2 was used in the SOFM based system.) Refer to Table 11.5 for the names of the systems. 
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system described herein use a totally new set of test data to validate the performance 

of the system. Gotman and Wang [1992] use the largest number of EEGs giving a 

total of 33 hours of recordings. Of all of the systems, only Dingle et al. [1993] and the 

system described herein have included normal EEGs in their tests. Webber et al. [1994] 

tested their system on the EEGs obtained from 10 patients (the same EEGs were used 

for training), and report satisfactory sensitivity and selectivity for the mimetic+ANN 

(parameters) case (both 74%), but at a cost of around 804 false detections/hour. For 

their performance using 'raw' EEG instead of parameters, both the sensitivity and se­

lectivity were relatively low (both 46%), with an even higher false detection rate (over 

5000 per hour). These extremely high rates oHalse detections may be partly due to the 

short length of EEGs tested (20 minutes total across 10 EEGs). Ozdamar et al. [1991] 

report similarly good results for sensitivity and selectivity but their method resulted in 

a similarly high false detection rate ("-'1023/hour). Hostetler et al. [1992], which per­

form an independent evaluation of Gotman's [1978] system, report a much lower false 

detection rate (37 false detections/hour) but this was achieved at a cost of a relatively 

low sensitivity (59%). Gotman and- Wang [1992] report a similar false detection rate 

for their system (which estimates the sleep stage of a subject during recording to im­

prove performance). In contrast, an impressive false detection rate of zero is reported 

by Dingle et al. [1993], albeit with a reasonably low sensitivity (53%), for a data set 

which included 3 normal EEGs. However, the system used the training data to test 

the system (as Dingle et al. [1993] use an expert system there is no 'training set' as 

such but the system can still be said to be tailored, and hence biased, towards the data 

used). When tested with the novel data set used in this thesis, the false detection rate 

rose to 3/hour with a rather low sensitivity (21%). 

The work of Dingle et al. [1993] has been reassessed with more EEGs by Jones 

et al. [1994] and Jones et al. [1996]. Jones et al. [1994] report on a study involving 

148 EEGs (41 epileptiform and 107 normal) giving 49 hours of EEG. Performance on a 

global EEG level (i.e., performance is measured on the quantities of entire EEGs graded 

epileptiform or normal as opposed to individual events within each EEG) is reported at 

a sensitivity and selectivity of 100% giving zero false detections per hour. The system 

was, however, tested on the same EEGs used for training. Jones et al. [1996] report 

results of a major clinical study involving 521 EEGs (50 epileptiform and 471 normal) 

giving 173 hours of EEG. A sensitivity of 95% and selectivity of 72% are reported at 

the global EEG level, giving an estimated false detection rate of 0.29 per hour. All 521 

EEGs were new to the system. Unfortunately, no values are given for the performance 

at an individual event level maldng a comparison to these studies not possible. 

The data used to test the current system was reasonably long (2.8 hours), involved 

a normal EEG and was novel to the system. The overall values of 59% for sensitivity 

and 31 % for selectivity, with a false detection rate of 61/hour compare reasonably well 

to other systems when one places the values reported by other systems in context. 
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One must also bear in mind that a sensitivity of 85% would be attained by 'simply' 

correcting the recognized CED polarity problem (see Chapter 10). Furthermore, the 

spatial combiner is still (for the most part) experimental. The membership functions 

and fuzzy rules have been derived according to our initial expectations of how they 

should be represented. There has been no 'fine-tuning' of the rules (i.e., adding or 

removing rules) or membership functions (i.e., changing the shape and/or parameters) 

attempted as yet. It is not considered unreasonable to expect increases (especially in 

the selectivity) in performance after fine-tuning the spatial combiner stage. 

The benefits which might be derived from wide-sense temporal information are 

clearly recognized as an important addition to the spike detection system; the same 

applies to the additional spatial cues which are not being taken advantage of at the 

moment (as described in Chapter 10). The method of raising and lowering thresholds 

within the spike detection system dependent on the state of awareness of the subject 

is also noted and has yielded positive results for Gotman and Wang [1992]. 



Chapter 12 

CONCLUSIONS AND FUTURE RESEARCH 

12.1 ARTIFICIAL NEURAL NETWORKS 

Throughout the relatively short history of ANNs, engineers have realised what impor­

tant tools ANNs could be in engineering, especially in the field of signal processing. 

The ability of ANNs to embody knowledge in the relatively few weights of the net­

work is an important feature of ANNs. The ability of the ANN to 'learn' from a set 

of training examples and then to generalize to new examples makes the ANN an ap­

pealing alternative to expert systems which try to embody the knowledge of an expert 

in a given field through the use of many rules. Although there is no real comparison 

between the processing power of the human brain, with its billions of synapses, and 

its 'artificial' counterpart, an ANN with a few hundred 'artificial' neurons still has a 

remarkable ability to perform, for example, pattern recognition. Finally, due to the in­

herent parallel structure of ANNs they are quite fast in operation, an important aspect 

for many engineering applications. 

The two main types of learning in ANNs which dominate in the literature are 

supervised and unsupervised (or self-organised) learning. With supervised learning the 

weights and biases of the ANN are altered with the help of an external 'teacher' (but, 

in contrast to expert systems, without the need to determine precisely what rules/cue 

are used by the teacher). The choice of exemplars used to train the ANN will affect 

the ability of the ANN to generalize to novel input data. The most popular of the 

supervised ANNs in the literature is the multi-layer perceptron (MLP), which can be 

trained through the use of the error-backpropagation algorithm. In order to train an 

MLP well for a given problem, not only must the input data set be representative of 

the inputs to be presented to the MLP in operation, but the parameters which define 

the architecture of the ANN must be chosen with care. As yet, there are no precise 

guidelines/formulae to obtain exact values for these parameters, currently, 'rules-of­

thumb' and 'trial-and-error' are the norm. 

With self-organised learning, no external 'teacher' is required in order to adjust 

the weights of the ANN, but the choice of the input data set will still reflect the 
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generalizing ability of the ANN (as for the supervised case). An important advantage 

of self-organising ANNs over their supervised counterparts is that they can be exposed 

to and make use of vast quantities of input data for training purposes without the 

need for assigning 'labels' to each input forwarded to the ANN. This means that the 

resulting ANN trained with such data can be more representative of the underlying 

structure in the input set than its supervised counterpart trained on a much smaller 

set of 'labelled' inputs. 

One such ANN is the self-organising feature map (SOFM) which presents a method 

of identifying similarities (or features) in a vast (unlabelled) training set. What is 

more, the features are arranged spatially such that there is topological ordering in the 

neurons which make up the ANN. Since the SOFM is made up of a single layer of 

neurons arranged in the form of a lattice (lD or 2D lattices are normally implemented 

for ease of visualisation) the operation of a trained SOFM is remarkably fast and the 

computations involved on presentation of an input to the SOFM are simple distance 

calculations. Training times for such A~Ns tend to be longer than their supervised 

counterparts but this is primarily due to either the large inputs sets used or the large 

number of times a small input set is presented to the network during training. 

On reviewing MLPs as pattern classifiers in particular, the choice of training pa­

rameters falls into two categories. The first is the choice of the MLP architecture (i.e., 

number of hidden layers, number of hidden neurons, type of activation function) and 

the second is the choice of the training parameters (Le., the type of learning algorithm, 

learning rates, momentum factors, etc.). Both in the literature and in this thesis it 

has been shown that the parameters of the MLP require careful choice and require a 

certain amount of ' trial-and-error'. In contrast the SOFM consists of a single layer of 

neurons and requires fewer training parameters. The main parameters required are the 

SOFM size (i.e., the number of neurons) and the decay parameters for the learning rate 

and neighbourhood size. On performing the pattern classification simulations with the 

SOFM in Chapter 6 a number of conclusions can be made. The 'rule-of-thumb' values 

(as suggested by Kohonen) for the major SOFM training parameters result in trained 

SOFMs which, when followed by LVQ techniques, perform pattern classification with 

acceptable performance (when assessing sensitivity and selectivity). More importantly, 

small variations in the training parameters are less likely to affect the performance of 

the trained system; which cannot be guaranteed for the MLP. Another important con­

clusion is that the SOFM training is relatively insensitive to the dimensions of the input 

data, the MLP, on the other hand, requires a change in architecture to accommodate 

different sized inputs and hence a different set of training parameters. Although no 

method exists for accurately determining the 'right' size of the SOFM for the task at 

hand, by observing the measure introduced which gives the mean change in the Euclid­

ean distance as training progresses (o(k)) for different sized SOFMs, in conjunction 

with the performance measures, it is possible to obtain an idea of the minimum sized 
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SOFM for the task at hand. 

The conclusions put forward following the computer simulations of Chapter 6 pro­

vide useful starting values for training an SOFM for pattern classification purposes. 

Overall, the simulations show that the SOFM is relatively insensitive to changes in the 

major training parameters. This, however, has not been shown with any statistical sig­

nificance. A proposal for future research into using the SOFM for pattern classification 

is to perform a full statistical analysis of the results obtained following a similar set 

of simulations. In this way each parameter examined can be assigned a recommended 

value with a corresponding degree of confidence. 

12.2 SPIKE DETECTION IN THE EEG 

The EEG has been proven as a valuable tool in the diagnosis of many brain disorders. 

Such disorders are usually diagnosed through the presence of abnormal EEG waveforms 

in the EEG recording. A normal EEG can be defined as an which exhibits no 

abnormal waveforms. However, there is a wide variety of normal patterns for EEGs 

of persons the same age and an even wider variety over various age groups. The state 

of the person during recording also influences the appearance of the EEG. In short, 

processing the EEG can be divided into two categories: analysing and looking for 

abnormalities in (a) the background EEG and (b) transient/non-stationary activity in 

the EEG. The most frequent clinical use of the EEG is for detection of epileptiform 

activity. 

This thesis deals with the problem of detecting epileptiform activity in the inter­

ictal EEG (Le., abnormal activity occurring between seizures). An automated method 

is sought to detect epileptiform discharges (or spikes) in the EEG. Many attempts 

have been made in the literature to solve this problem but all have achieved only a 

limited success. The main problem lies with the extreme difficulty met in attempting 

to eliminate considerable numbers of false detections due to 'spike-like' artifacts and 

sharp background activity in the EEG. The EEGer makes considerable use of spatial 

and temporal information when visually performing spike detection to influence his 

decision in the process. Surprisingly, few systems incorporate any aspects of such 

reasoning in their spike detection algorithms. 

This thesis approaches the spike detection problem through the use and attributes 

of ANNs. In particular, the ability of ANNs to be trained to solve problems and their 

ability to generalize to novel data once training is complete are drawn upon to the 

advantage of the spike detection system. The spike detection problem is broken down 

into two major components. The first component is the spike-enhancer whose sole 

aim is to enhance the presence of 'spike-like' transients in the EEG by attenuating the 

surrounding background EEG. The second component involves detecting the presence 
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of, and classifying, spikes in the EEG. Both stages have been developed and tested 

independently but, at this stage, have not been tested jointly. 

For both components, the spatial information inherent in the multichannel 

recording is made use of as much as possible and a limited amount of temporal con­

textual information is also used. 

The spike enhancer has been developed through the use of a MLP trained with 

the error backpropagation algorithm utilising variable learning. In effect, the MLP 

forms an adaptive filter which adapts 'on-line', utilising spatial and limited temporal 

information to adaptively cancel the background EEG from a primary channel of EEG 

through a technique known as multi-reference adaptive noise cancelling (MRANC). As 

the correlated background EEG on the primary channel is cancelled, any waveforms 

present on the primary channel which are uncorrelated with the background EEG on 

the other channels are left behind (with some distortion taking place). 

The system has been implemented experimentally and has been tested on the data 

of six patients. The spike enhancer results in a substantial increase in the SNR of 

confirmed spikes but at a cost of slight distortion of the spike itself. Non-linear imple­

mentation of the spike enhancer resulted in superior performance (121% on average) 

when compared to its linear counterpart (76%). In effect, the MRANC system im­

plements a variable HPF which alters its characteristics to follow the slowly changing 

EEG for a given patient and can completely adapt to the characteristics of each new 

patient. 

The system was implemented such that the MLP constantly trains in an 'on-line' 

manner, with variable learning used to increase the speed of convergence. For each 

primary channel the remaining 15 channels (of the 16 channel recording) are used 

as reference channels. This results in the system being slow to process segments of 

EEG and, hence, unable to process EEG in 'real time' as it stands (i.e., '" ! x realtime 

for each channel of EEG). Hardware implementation of MRANC would be possible 

through the use of one of the many DSP ICs available on the market as a means of 

speeding up the process and is a possible avenue for future work in this area. More 

importantly, a study of the correlation of the background EEG as measured at various 

locations on the scalp could be an important area of research. If it were possible to gain 

a better understanding of the background EEG, especially as a function of its location 

on the scalp, it would perhaps be easier to analyse 'abnormal' waveforms superimposed 

on the background EEG. In particular for the spike enhancer, a better know ledge of 

the background EEG characteristics as function of its location would be important in 

choosing the channels to be used as reference for each primary channel in turn. 

The choice of the MLP to represent the adaptive filter carries with it the inherent 

difficulties of choosing the 'right' network and training parameters. Further research 

into MLP ANNs in particular may yield methods of choosing the 'right' parameters for 
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the problem at hand. Alternatively choosing another ANN for the adaptive filter may 

yield similar results with, maybe, less dependence on ANN parameters. 

The spike detector/classifier is based around the SOFM. The capability of the 

SOFM to extract identifying features from large amounts of input data is drawn upon 

heavily in this stage. This is particularly useful in the spike detection problem where 

there is a great difficulty in accurately grading large numbers of candidate epileptiform 

discharges (CEDs) due to the amount of disagreement between EEGers. Using the self­

organising abilities of the SOFM it is possible to train an ANN with a large number 

of EEGs known to contain EDs and then use only a selected sub-set of EDs (which 

have been graded with a high degree of agreement amongst EEGers) to accurately label 

each weight abstracted from the input data by the SOFM. The SOFM stage is preceded 

by a mimetic stage in order to screen the incoming EEG and reduce the number of 

CEDs presented to the SOFM stage. More importantly the mimetic stage gives a time 

reference to each CED such that it is presented to the SOFM stage with its vertex 

positioned at the same point in each case. 

Each mimetic/SOFM stage works independently on each channel of EEG (Le., 

utilising no spatial information). This thesis also introduces the novel use of assigning 

a probability to the output of the SOFM whereby a probability is assigned to each 

CED on each channel indicating the probability that a particular CED is a true ED. 

Finally, a spatial-combiner stage is presented which groups the single-channel prob­

abilities according the (bipolar) montage in use and forms decision on the detection 

of an epileptiform event (EV) based on the spatial distribution of the CEDs. This is 

implemented through the use of fuzzy logic. Fuzzy logic allows a set of rules to be 

drawn up which describe our knowledge of how an EV is manifested spatially across 

the 16 channel EEG recording, without the need for an accurate mathematical model 

describing the process. This allows for a method that incorporates the spatial reasoning 

an EEGer uses in detecting EV s in the multichannel recording. 

A system has been implemented which performs the above in approximately 'real 

time'. To date, the system has been evaluated on 7 novel EEGs. Overall, the system 

has a sensitivity of 59% and a selectivity of 31 %, with an average of 61 false detections 

per hour. As preliminary results, and when compared with the results of other spike 

detection systems in the literature, this performance is very encouraging. Although 

the selectivity is low, the corresponding number offalse detections (61/hour) is far less 

than that of systems in the literature describing higher values of selectivity. Several 

factors have been identified which are known to have resulted in a lower sensitivity 

and selectivity than would otherwise have been the case. In particular the major 

factor contributing to missed detections was due to the mimetic stage picking up the 

con."ltituent CEDs of a given EV and then assigning the wrong polarity to one or more 

of the CEDs resulting in the CEV being rejected on spatial grounds by the spatial-
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combiner. This was despite the ad hoc method employed to correct the problem as 

described in Chapter 10. The false detections were mainly due to artifacts which were 

assigned a relatively high probability value by the SOFM stage and showed particularly 

strong focal characteristics. 

Future research includes finding an alternative method to assign the polarities of 

the constituent CEDs of a given CEV. The problem with the false detections seems 

to indicate that the trained SOFM could benefit from recalibration using a 'revised' 

calibration data set. The revised data set should place more emphasis on 'spike-like' 

artifacts rather than mainly on waveforms representing the various spike morphologies. 

The spatial-combiner stage is intended as a 'proof of principle' study and has indeed 

resulted in confirming the utility of such an approach in the spatial analysis of the EEG. 

The shape and placement of the input and output membership functions have, so far, 

been based on the ea.qe of implementation of the functions and our initial expectations 

of the location of each variable. Future research should involve an analysis of the effect 

on performance of varying the shape and characteristics of the membership functions 

for both the input and output fuzzy variables. Further research should also include a 

closer examination of the derived fuzzy rules with the aim of (a) 'pruning' any rules 

which may be superfluous to the operation of the spatial-combiner and (b) in order to 

see if any allowable spatial combinations are not covered by the fuzzy rules. 

An alternative. approach to determining each of the required characteristics of each 

component of the fuzzy spatial-combiner could be a 'fuzzy' ANN implementation of the 

whole process. Such an ANN would in essence embody the membership functions and 

spatial rules in the weights of the trained ANN without the explicit need of knowing 

each characteristic. 

The use of temporal contextual information to influence the spike detection process 

has already been stressed in Chapter 10 where a proposal has been put forward and is 

a definite avenue of future research. This 'wide-sense' temporal contextual information 

could also benefit from information regarding the state of the subject during the EEG 

recording as used by Gotman and Wang [1992] and should be examined as a possible 

addition to the temporal analysis of the EEG. 

Overall, although still at a preliminary stage, such a system will be an important 

tool in the automatic detection of epileptiform activity in both routine and long-term 

EEG recordings. In particular the system benefits from a number of important features, 

which include: (a) Enhancing the presence of spikes in the background EEG (via 

MRANC) has the potential of increasing the performance of a spike detection system. 

(b) The use of the SOFM as a pattern classifier allows for an accurate description of 

the various spike-morphologies to be derived from a large amount of data in a self­

organised manner. (c) By assigning probabilities to each CED via the Bayesian based 

modified calibration method, the uncertainty inherent in the spike detection process 
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is embodied at the single channel level. ( d) Through the use of a fuzzy rule-base it 

is possible to perform spatial analysis on the single channel data in a manner which 

emulates the EEGer's way of thinking without the need of deriving an accurate model 

which describes the process. 





Appendix A 

EEG RECORDING MONTAGES AND PROTOCOLS 

A.I BIPOLAR AND REFERENTIAL MONTAGES 

The EEG is recorded using either bipolar or referential montages. The electrode place­

ment is based on the international 10-20 electrode placement system as shown in Fig­

ure A.1. 

nasion 

Inion 

Figure A.I The 10-20 system of electrode localisation. 

Four bipolar montages are used in this system and these are: 

1. Longitudinal: fp2- f4-c4-p4-o2, fpl- f3-c3-p3-o1, fp2- f8-t4-t6-o2, 

fpl- f7-t3-t5-o1. 

2. Transverse: f8- f4- f z- f3- f7, a2-t4-c4-cz-c3-t3-al, t6-p4-pz-p3-t5, f z-cz-pz. 

3. Longitudinal-transverse: f8- f 4- f z- f 3- f7, t6-p4-pz-p3-t5, f p2- f 4-c4-p4-o2, 

fpl- f3-c3-p3-o1. 
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4. Circumferential: J4-c4-p4-p3-c3-J3- J4, Jp2-J8-t4-t6-o2-oI-t5-t3-J7-Jpl- Jp2. 

(a) (b) 

(c) (d) 

Figure A.2 The four bipolar montages used in this system. (a) Longitudinal, (b) Transverse, (c) 
Longitudinal-transverse and (d) circumferential. 

Three referential montages are used and are given by: 

1. Average: Jp2-Ave, J4-Ave, c4-Ave, p4-Ave, o2-Ave, JpI-Ave, J3-Ave, c3-Ave, 

p3-Ave, ol-Ave, J8-Ave, t4-Ave, t6-Ave, J7-Ave, t3-Ave, t5-Ave. 

2. Ipsilateral-ears reference: Jp2-a2, J4-a2, c4-a2, p4-a2, o2-a2, JpI-al, J3-al, 

c3-al, p3-al, ol-al, J8-a2, t4-a2, t6-a2, J7-al, t3-al, t5-a1. 

3. Vertex reference: Jp2-cz, J4-cz, c4-cz, p4-cz, o2-cz, Jpl-cz, J3-cz, c3-cz, p3-cz, 

ol-cz, J8-cz, t4-cz, t6-cz, J7-cz, t3-cz, t5-cz. 
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(a) (b) 

(c) 

Figure A.3 The three referential montages used in this system. (a) Average, (b) ipsilateral-ears 
reference and (c) vertex reference. 

A.2 STANDARD RECORDING PROTOCOLS 

The EEG is recorded using a number of standard protocols which are changed according 

to the patient's age. The protocols change for (a) adults (2': 5 years), (b) children (1-5 

years) and (c) babies « 12 months). Each recording protocol is described in the Tables 

A.1, A.2 and A.3 respectively. 

Both the OVER5 and UNDER5 protocols include bipolar and referential montages, 

whereas BABY protocol includes only bipolar longitudinal montage. Each protocol 

includes one run with photic stimulation and the OVER5 protocol includes a run with 

hyperventilation. 

OVER5 recordings tend to be around 22 minutes long, whereas UNDER 5 are 
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around 12 minutes long and BABY around 9 minutes long. 

Adult protocol (OVER5) 
Run Montage Duration 

1 Longitudinal 200 s 
6 Ipsi-ears reference 100 s 
2 Transverse 100 s 
3 Long-tr ansverse 100 s 
4 Circumferential 100 s 
5 Average 100 s 
6 Ipsi-ears reference 100 s 
7 Vertex reference 100 s 
1 Longitudinal- (hyperventilation) 300 s 
1 Longitudinal- (photic stimulation) 100 s 

Table A.I The protocol used for recording adult EEGs (;::: 5 years). 

Child protocol (UNDER5) 
Run Montage Duration 

1 Longitudinal 200 s 
2 Transverse 100 s 
3 Long-transverse 100 s 
4 Circumferential 100 s 
5 Average 100 s 
7 Vertex reference 100 s 
1 Longitudinal - (photic stimulation) 60 s 

Table A.2 The protocol used for recording child EEGs (1-5 years). 

Baby protocol 
Run Montage Duration 

1 Longitudinal 500 s 
1 Longitudinal- (photic stimulation) 60 s 

Table A.3 The protocol used for recording baby EEGs « 12 months). 



Appendix 

SOFM SIMULATION RESULTS 

0.01 
200 

0.001 86.3 
Lin LVQ2 84.7 86.3 

SOFM 88.2 87.8 
0.01 LVQl 88.8 88.4 

500 LVQ2 88.2 86.9 
SOFM 87.6 84.5 95.5 

0.001 LVQl 85.7 86.7 93.5 
LVQ2 87.5 84.3 95.5 

SOFM 87.5 92.2 90.8 87.8 93.7 
0.01 LVQl 89.2 92.7 91.4 88.2 93.5 

200 LVQ2 86.9 93.7 92.9 86.9 94.7 
SOFM 87.8 93.7 87.8 93.3 

0.001 LVQ1 87.1 93.7 87.5 93.5 
Exp 2 87.3 94.3 88,4 93.7 

88.6 87.8 91.8 
88.0 92,7 89.8 91.0 
88.0 93.9 86.3 94.7 
88,4 94.1 86.9 94.5 
87.6 93.9 86.9 94.3 
88.2 95.3 87.6 94.7 

Table B.1 SENSITIVITY of [8 X 8] SOFM for Simulation 1. 
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Uniform taper Gaussian taper Quadratic taper 
Decay x Omin Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

SOFM 92.8 89.0 93.3 87.2 93.5 88.1 
0.01 LVQ1 93.7 88.3 93.8 86.0 93.6 86.3 

200 LVQ2 93.9 87.8 93.1 88.1 93.5 87.6 
SOFM 95.9 87.2 92.7 93.3 92.1 89.0 

0.001 LVQl 95.0 87.0 92.7 87.3 94.7 87.6 
Lin LVQ2 95.8 85.8 95.4 87.0 90.7 86.4 

SOFM 93.4 88.4 94~ 9'~Hr 0.01 LVQ1 93.4 88.9 93.2 . 93.6 88.6 
500 93.8 88.5 94.3 85.9 94 .3 

92.9 87.9 93.5 87.4 95.1 85.6 
0.001 oJoJ ... 86.3 93.1 87.2 93.2 87.1 

93.5 87.8 93.9 88.5 95.1 85.4 

SOFM 92.1 87.6 90.9 88.5 93.5 88.1 
0.01 LVQ1 92.7 89.2 91.6 90.0 93.4 88.4 

200 LVQ2 93.5 87.3 92.7 87.8 94.5 87.4 
SOFM 94.1 88.2 93.5 88.3 93.1 88.1 

0.001 LVQ1 94.9 87.6 93.5 88.3 93.3 87.7 
Exp LVQ2 95.7 87.9 94.2 88.8 93.6 88.6 

SOFM 92.6 88.7 92.8 88.2 91.8 87.9 
0.01 LVQ1 92.6 88.2 94.3 88.4 91.2 89.6 

500 

t!tj 
88.3 93.5 88.3 94.4 86.9 
88.7 92.1 89.0 94.3 87.4 

0.001 88.0 92.0 ~ 87.3 
.6 93.7 

Table B.2 SELECTIVITY of [8 x 8] SOFM for Simulation 1. 

Uniform taper 
Decay x O'min Class 1 Class 2 Class 3 

SOFM 56.3 88.0 60.9 
0.01 LVQ1 54.1 88.3 65.5 

200 LVQ2 57.9 87.8 58.2 
SOFM 59.6 88.0 57.3 

0.001 LVQl 55.7 89.7 56.4 
Lin LVQ2 56.8 89.5 58.2 

SOFM 59.6 87.4 m 0.01 LVQl 58.5 87.8 
500 LVQ2 55.7 87.8 

SOFM 64.5 86.1 60.9 
0.001 LVQ1 62.3 87.0 61.8 

LVQ2 56.3 88.1 56.4 

SOFM 59.0 86.7 60.9 
0.01 61.2 86.7 67.3 

200 LVQ2 55.7 88.3 62.7 
SOFM 55.7 i "" • .L 

57.3 
0.001 LVQ1 59.0 I 87.6 56.4 

Exp LVQ2 54.6 87.6 60.0 
SOFM 59.6 88.7 58.2 

0.01 LVQ1 57.4 88.4 62.7 
500 LVQ2 55.7 87.8 61.8 

SOFM 53.6 87.8 63.6 
0.001 LVQ1 58.5 86.1 65.5 

LVQ2 49.2 90.0 59.1 

Table B.3 SENSITIVITY of [10 x 10] SOFM for Simulation 2 using Uniform taper. 
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Gaussian taper 
Decay x amin Class 1 Class 2 Class 3 

SOFM 51.9 90,9 57,3 
0,01 LVQ1 50,8 90,4 63.6 

200 LVQ2 62,3 88,1 60,9 
SOFM 58,5 87,0 69,1 

0.001 LVQ1 58,5 88.0 63,6 
Lin LVQ2 54,6 89.5 63,6 

SOFM 56,8 85.6 64,5 
0.01 LVQ1 57,9 88.0 59,1 

500 LVQ2 54,6 89,4 62.7 
SOFM 50,8 89.7 61.8 

0.001 LVQ1 52,5 90,1 60,0 
LVQ2 53.6 90.5 55.5 

SOFM 67,2 85,3 

~ 0.01 LVQ1 64,5 85.7 
200 LVQ2 57,4 88.5 58,2 

SOFM 59,0 88.8 58,2 
0,001 LVQ1 60,1 I 85.4 61.8 

Exp LVQ2 54,1 88,4 56,4 
SOFM 55,7 88.1 66.4 

0,01 LVQ1 53.6 69,1 60.0 
500 LVQ2 59,0 88,5 65.5 

SOFM 51.4 90,8 54,5 
0,001 LVQ1 61.2 88,1 59,1 

LVQ2 56,3 88,4 53,6 

Table B.4 SENSITIVITY of [10 x 10] SOFM for Simulation 2 using Gaussian taper, 

SOFM 57.4 87,8 64,5 
0,01 LVQ1 57.4 88,4 61.8 

200 LVQ2 61.2 88,7 59,1 
SOFM 61.7 85,0 64.5 

0,001 LVQ1 86.3 59.1 
Lin LVQ2 86,7 55,5 

SOFM 62,7 
0,01 LVQ1 62.7 

500 LVQ2 66,4 
SOFM 57,3 

0,001 LVQ1 56,4 
LVQ2 52.7 

0.01 
200 

0.001 
Exp 

0.01 
500 

0.001 

Table B.5 SENSITIVITY of [10 x 10] SOFM for Simulation 2 using Quadratic taper. 
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Uniform taper 

n".y tJ am'" Class 1 Class 2 Class 3 

I SOFM 72.0~ 
0.01 LVQ1 72.8 84.0 59.5 

LVQ2 68.8 83.7 61.5 
SOFM 69.9 84.1 60.6 

0.001 LVQ1 73.4 83.5 60.8 
Lin LVQ2 70.7 83.8 64.0 

SOFM 72.2 84.3 58.6 
0.01 I LVQ1 72.3 84.3 60.0 

500 LVQ2 70.8 83.2 57.3 
SOFM 67.4 85.1 61.5 

0.001 LVQ1 69.9 85.2 59.1 
LVQ2 70.5 83.2 59.0 

SOFM 70.6 84.0 57.3 
0.01 LVQ1 70.9 85.4 59.7 

200 LVQ2 71.8 84.0 60.0 
SOFM 70.3 83.2 59.4 

0.001 LVQ1 68.4 83.6 60.8 
Exp LVQ2 67.6 83.3 60.6 

SOFM 75.2 83.9 59.3 
0.01 LVQ1 72.9 84.0 60.5 

500 LVQ2 70.8 83.8 59.1 
SOFM 69.5 83.4 61.4 

0.001 LVQ1 67.3 84.5 60.5 
LVQ2 71.4 82.4 63.7 

Table B.6 SELECTIVITY of [10 x 10) SOFM for Simulation 2 using Uniform taper. 

58.0 
61.4 
63.6 
59.2 
59.6 
61.6 
61.3 

83.3 61.1 
82.9 63.5 

66.5 85.3 57.4 
65.2 85.2 61.1 
69.1 83.9 62.7 
70.1 84.0 65.3 
65.9 84.4 58.1 
64.7 82.8 67.4 
71.3 83.2 62.4 
74.8 83.3 58.4 
72.5 84.9 63.2 
74.0 82.3 64.5 
69.1 84.4 65.0 
66.0 82.9 65.6 

Table B.7 SELECTIVITY of [10 x 10] SOFM for Simulation 2 using Gaussian taper. 
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Quadratic taper 
Decay x O!min Class 1 Class 2 l ;IR~~;~ I 

SOFM 70.9 84.4 61.2 
0.01 LVQ1 72.4 84.3 59.6 

200 LVQ2 71.3 84.7 63.1 
SOFM 68.1 84.8 56.8 

0.001 LVQ1 68.9 84.6 58.0 
Lin LVQ2 68.1 83.7 58.1 

SOFM 73.8 83.2 63.3 
0.01 LVQ1 69.9 83.8 64.5 

500 LVQ2 73.8 83.0 59.3 
SOFM 69.3 83.5 62.4 

0.001 LVQ1 70.0 84.1 62.6 
LVQ2 69.8 83.9 69.9 

SOFM 66.4 82.9 63.6 
0.01 ~ 64.8 200 LVQ2 62.1 

M 7 .5 84.4 
0.001 Q1 69.4 85.0 60.2 

Exp 2 73.7~ 
SOFM 72.9 

0.01 LVQ1 72.1 
500 LVQ2 70.6 83.0 61.5 

SOFM 72.5 83.2 62.5 
0.001 LVQ1 73.7 83.9 57.3 

LVQ2 70.7 84.0 63.8 

Table B.B SELECTIVITY of [10 x HI] SOFM for Simulation 2 using Quadratic taper. 

Uniform taper 
Decay x amin Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

SOFM 49.0 51.0 43.0 48.9 57.6 59.8 
0.01 LVQ1 63.5 71.6 64.0 62.2 75.0 73.2 

200 LVQ2 75.0 78.4 74.0 68.9 8004 84.8 
SOFM 41.3 52.9 55.0 25.6 60.9 59.8 

0.001 LVQ1 62.5 72.5 70.0 53.3 60.9 79.5 
Lin LVQ2 69.2 73.5 79.0 57.8 76.1 85.7 

SOFM 53.8 54.9 41.0 40.0 62.0 46.4 
0.01 LVQ1 75.0 77.5 60.0 62.2 78.3 71.4 

500 LVQ2 78.8 82.4 68.0 61.1 89.1 77.7 
SOFM 48.1 56.9 48.0 33.3 58.7 73.2 

0.001 LVQl 71.2 74.5 60.0 41.1 64.1 78.6 
LVQ2 81.7 .4 76.1 83.9 

0.01~ 60.6 52.0 48.0 41.1 69.6 60.7 75ij 73.5 57.0 62.2 83.7 69.6 
200 LVQ2 81. 80.4 63.0 57.8 81.5 77.7 

SOFM 53. 58.8 53.0 31.1 60.9 66.1 
0.001 LVQ1 71.2 65.7 9 

LVQ2 73.1 71.6 78.3 80.4 
SOFM 57.7 51.0 42.0 38.9 71.7 58.0 

0.01 LVQ1 75.0 72.5 49.0 1\1 .5 
500 LVQ2 82.7 73.5 61.0 73.3 80.4 75.9 

SOFM 43.3 53.9 51.0 43.3 60.9 54.5 
0.001 LVQl 68.3 61.8 58.0 61.1 66.3 63.4 

LVQ2 69.2 75.5 62.0 57.8 75.0 79.5 

Table B.9 SENSITIVITY of [10 x 10] SOFM for Simulation 3 using Uniform taper. 
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x 

0.01 
200 

0.001 67.6 
Lin 89.2 65.0 

61.5 63.7 42.0 
0.01 74.0 77.5 54.0 

72.1 86.3 56.0 
46.2 56.9 47.0 

0.001 68.3 74.5 72.0 
73.1 77.5 70.0 

SOFM 36.5 53.9 58.0 37.8 72.8 58.9 
0.01 LVQl 53.8 59.8 74.0 61.1 85.9 75.9 

200 LVQ2 71.2 75.5 72.0 61.1 84.8 8004 
SOFM 51.9 55.9 57.0 32.2 64.1 55.4 

0.001 LVQ1 54.8 63.7 53.3 68.5 70.5 
Exp LVQ2 75.0 81.4 63.0 56.7 8004 8004 

SOFM 42.3 53.9 66.0 40.0 66.3 56.2 
0.01 LVQ1 63.5 62.7 60.0 48.9 

500 LVQ2 69.2 70.6 65.0 56.7 
SOFM 47.1 56.9 52.0 35 

0.001 LVQ1 70.2 74.5 64.0 47 
LVQ2 79.8 77.5 65.0 54 

Table RIO SENSITIVITY of [10 X 10] SOFM for Simulation 3 using Gaussian taper. 

76.1 
0.01 83.7 

200 76.1 
62.0 

0.001 76.5 70.0 65.2 
Lin 86.3 74.0 78.3 

58.8 52.0 66.3 
0.01 70.6 57.0 

500 74.5 66.0 
49.0 53.0 

0.001 61.8 56.0 
71.6 62.0 

68.6 41.0 
0.01 78.4 64.0 

200 85.3 64.0 
54.9 55.0 

0.001 65.7 61.0 
Exp 82.4 65.0 

55.9 57.0 
0.01 65.7 54.0 

500 70.6 68.0 
51.9 56.9 53.0 45.6 

0.001 68.3 70.6 60.0 52.2 
80.8 69.6 59.0 65.6 85.9 

Table B.ll SENSITIVITY of [10 X 10] SOFM for Simulation 3 using Quadratic taper. 
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Uniform taper 
Decay x O!min Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

~ 
44.7 71.2 37.1 53.0 75.5 46.5 

0.01 65.3 92.4 52.5 61.5 98.6 59.9 
200 75.7 = 97.6 63.2 81.6 96.1 65.5 

48.9 n~_t_i}5 I 35.4 ii' 41.9 
0.001 70.0 91.4 .6 61.5 .0 55.6 

Lin LVQ2 81.8 93.8 57.2 I 76.5 .0 61.5 
SOFM 48.7 62.9 40.2 46.2 58.2 44.1 

am LVQ1 69.0 85.9 59.4 68.3 92.3 59.7 
500 LVQ2 75.9 86.6 67.3 69.6 97.6 66.4 

SOFM 52.1 63.0 40.7 43.5 93.1 49.1 
0.001 LVQ1 65.5 89.4 56.1 55.2 95.2 53.0 

LVQ2 67.5 94.4 64.8 78.1 94.6 63.9 

SOFM 52.1 76.8 41.4 50.7 79.0 48.6 
0.01 LVQ1 62.4 87.2 60.0 63.6 92.8 63.4 

200 LVQ2 72.0 86.3 68.5 69.3 97.4 60.8 
SOFM 53.3 83.3 41.4 45.2 73.7 47.1 

0.001 LVQl 65.5 95.7 53.3 54.1 100.0 55.2 
Exp LVQ2 73.1 90.1 59.5 66.7 97.3 57.3 

SOFM 50.0 68.4 38.2 45.5 81.5 47.8 
0.01 LVQ1 60.9 81.3 ~931 56.0 

500 LVQ2 69.9 85.2 100.0 66.9 
48.9 69.6 77.8 43.6 

0.001 LVQ1 59.2 94.0 50.9 52.9 93.8 54.6 
LVQ2 64.9 98.7 54.4 68.4 100.0 58.6 

Table B.12 SELECTIVITY of [10 x 10] SOFM for Simulation 3 using Uniform taper. 

Gaussian taper 
Decay x amin Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

SOFM 59.2 64.3 44.1 48.6 84.9 49.0 
0.01 LVQl 61.8 85.2 59.6 62.7 100.0 57.5 

200 LVQ2 69.9 86.8 66.3 74.7 100.0 62.3 
SOFM 60.0 64.8 45.9 43.9 85.1 43.6 

0.001 LVQ1~ 

~ 
93.8 58.3 

Lin LVQ2 .0 92.9 100.0 57.3 
SOFM .6 67.7 71.3 43.8 

0.01 LVQl 65.3 84.9 56.8 59.2 84.7 52.6 
500 LVQ2 65.8 91.7 58.3 70.0 100.0 67.2 

SOFM 52.7 61.1 39.2 52.9 84.2 52.6 
0.001 LVQ1 70.3 92.7 58.5 63.5 98.6 60.0 

LVQ2 70.4 96.3 60.3 73.2 98.7 66.4 

SOFM 50.7 80.9 35.6 53.1 69.1 49.6 
0.01 LVQ1 67.5 91.0 48.1 68.8 91.9 65.4 

200 LVQ2 74.0 93.9 58.1 71.4 100.0 64.7 
SOFM 48.2 90.5 43.8 39.7 74.7 43.4 

0.001 LVQl 59.4 98.5 48.6 57.8 88.7 54.9 
Exp LVQ2 67.8 93.3 61.8 70.8 97.4 61.6 

SOFM 53.7 78.6 42.9 50.0 73.5 45.3 
0.01 LVQ1 61.7 97.0 47.6 57.1 98.5 53.2 

500 LVQ2 66.7 90.0 55.1 63.8 98.7 63.0 
SOFM I 53.8 63~ 40.0 87.7 48.3 

0.001 66.4 89. 58.2 55.1 92.4 55.0 
LVQ2 70.9 95. 74.2 96.0 60.1 

Table B.13 SELECTIVITY of [10 x 10] SOFM for Simulation 3 using Gaussian taper. 
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SOFM 65.0 
0.01 LVQ1 100.0 

200 LVQ2 84.0 72.1 
SOFM 51.9 67.4 38.7 47.7 

0.001 LVQ1 71.1 91.8 53.8 62.5 
Lin LVQ2 78.3 95.7 68.5 75.9 66.2 

SOFM 56.0 73.2 46.7 45.6 
0.01 LVQ1 66.7 86.7 50.9 57.6 52.0 

500 LVQ2 97.4 62.3 82.7 63.2 
80.6 38.7 43.8 

0.001 98.4 53.8 57.3 
89.0 62.0 68.5 

60. 
0.01 81.6 54.7 54.7 

88.8 62.1 65.3 
84.8 42.0 47.6 

0.001 88.2 43.9 60.0 
Exp 97.7 57.5 73.8 

80.3 41.3 51.5 
0.01 95.7 50.0 62.7 100.0 

500 85.7 56.2 71.0 100.0 
66.7 44.9 53.9 84.3 

0.001 85.7 53.1 68.1 82.7 58.3 
89.9 56.7 72.8 92.9 65.2 

Table B.14 SELECTIVITY of [10 X 10] SOFM for Simulation 3 using Quadratic taper. 



Appendix C 

THE FUZZY RULES 

The following are the 127 fuzzy rules obtained using the method described in Sec­

tion 10.5. Each rule has 4 input variables (CH1, CH2, CH3 and CH4) representing the 

probability values assigned to each CED and one output variable (OP) representing 

the detection level based on the outcome of each fuzzy rule. The inputs are fuzzified 

using the fuzzy variables PB (positiv.e big), PS (positive small), ZE (zero), NS (negative 

small) and NB (negative big), and defuzzified using the fuzzy variables DEF (definite), 

PRO (probable), POS (possible) and ZE (zero). 

Each rule is of the form 

IF CHI is fvar AND CH2 is fvar AND CH3 is fvar AND CH4 is fvar THEN OP is fvar 

where fvar represents the fuzzy input and fuzzy output variables described above. 

Spatial fuzzy rules 
Rule CHI CH2 CH3 CH4 OP Rule CHI CH2 CH3 CH4 OP 

1 PB PB PB PB DEF 2 PS PB PB PB DEF 
3 PS PS PB PB PRO 4 PS PS PS PB PRO 
5 PS PS PS PS PRO 6 ZE PB PB PB PRO 
7 ZE PS PB PB PRO 8 ZE PS PS PB PRO 
9 ZE PS PS PS POS 10 ZE ZE PB PB PRO 

11 ZE ZE PS PB POS 12 ZE ZE PS PS POS 
13 ZE ZE ZE PB POS 14 ZE ZE ZE PS ZE 
15 PB PB PB NB DEF 16 PB PB PB NS DEF 
17 PS PB PB NB DEF 18 PS PB PB NS PRO 
19 PS PS PB NB PRO 20 PS PS PB NS PRO 
21 PS PS PS NB PRO 22 PS PS PS NS PRO 
23 ZE PB PB NB PRO 24 ZE PB PB NS PRO 
25 ZE PS PB NB PRO 26 ZE PS PB NS PRO 
27 ZE PS PS NB PRO 28 ZE PS PS NS POS 
29 ZE ZE PB NB PRO 30 ZE ZE PB NS POS 

I 31 ZE ZE PS NB POS 32 ZE ZE PS NS POS 
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Spatial fuzzy rules 
Rule CHI CH2 CH3 CH4 OP Rule CHI CH2 CH3 CH4 OP 

33 PB PB NB NB DEF 34 PB PB NB NS DEF 
35 PB PB NB ZE PRO 36 PB PB NS NS PRO 
37 PB PB NS ZE PRO 38 PS PB NB NB DEF 
39 PS PB NB NS PRO 40 PS PB NB ZE PRO 
41 PS PB NS NS PRO 42 PS PB NS ZE PRO 
43 PS PS NB NB PRO 44 PS PS NB NS PRO 
45 PS PS NB ZE PRO 46 PS PS NS NS PRO 
47 PS PS NS ZE POS 48 ZE PB NB NB PRO 
49 ZE PB NB NS PRO 50 ZE PB NB ZE PRO 
51 ZE PB NS NS PRO 52 ZE PB NS ZE POS 
53 ZE PS NB NB PRO 54 ZE PS NB NS PRO 
55 ZE PS NB ZE POS 56 ZE PS NS NS POS 
57 ZE PS NS ZE POS 58 PB NB NB NB DEF 
59 PB NB NB NS DEF 60 PB NB NB ZE PRO 
61 PB NB NS NS PRO 62 PB NB NS ZE PRO 
63 PB NB ZE ZE PRO 64 PB NS NS NS PRO 
65 PB NS NS ZE PRO 66 PB NS ZE ZE POS 
67 PS NB NB NB DEF 68 PS NB NB NS PRO 
69 PS NB NB ZE PRO 70 PS NB NS NS PRO 
71 PS NB NS ZE PRO 72 PS NB ZE ZE POS 
73 PS NS NS NS PRO 74 PS NS NS ZE POS 
75 PS NS ZE ZE POS 76 NB NB NB NB DEF 
77 NB NB NB NS DEF 78 NB NB NB ZE PRO 
79 NB NB NS NS PRO 80 NB NB NS ZE PRO 
81 NB NB ZE ZE PRO 82 NB NS NS NS PRO 
83 NB NS NS ZE PRO 84 NB NS ZE ZE POS 
85 NB ZE ZE ZE POS 86 NS NS NS NS PRO 
87 NS NS NS ZE POS 88 NS NS ZE ZE POS 
89 NS ZE ZE ZE ZE 90 ZE NB NB NB PRO 
91 ZE NB NB NS PRO 92 ZE NB NB ZE PRO 
93 ZE NB NS NS PRO 94 ZE NB NS ZE POS 
95 ZE NB ZE ZE POS 96 ZE NS NS NS POS 
97 ZE NS NS ZE POS 98 ZE NS ZE ZE ZE 
99 PB ZE NB NB PRO 100 PB ZE NB NS PRO 

101 PB ZE NB ZE PRO 102 PB ZE NS NS PRO 
103 PB ZE NS ZE POS 104 PS ZE NB NB PRO 
105 PS ZE NB NS PRO 106 PS ZE NB ZE POS 
107 PS ZE NS NS POS 108 PS ZE NS ZE POS 
109 PB PB ZE NB PRO 110 PB PB ZE NS PRO 
111 PS PB ZE NB PRO 112 PS PB ZE NS PRO 
113 PS PS ZE NB PRO 114 PS PS ZE NS POS 
115 ZE PB ZE NB PRO 116 ZE PB ZE NS POS 
117 ZE PS ZE NB POS 118 ZE PS ZE NS POS 
119 PB PB PB ZE PRO 120 PS PB PB ZE PRO 
121 PS PS PB ZE PRO 122 PS PS PS ZE POS 
123 ZE PB PB ZE PRO 124 ZE PS PB ZE POS 
125 ZE PS PS ZE POS 126 ZE ZE PB ZE POS 
127 ZE ZE PS ZE ZE 

• 
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