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Abstract

Billions of advertisements are displayed to internet users every hour, a market worth approxi-
mately $110 billion in 2013. The process of displaying advertisements to internet users is managed
by advertising exchanges, automated systems which match advertisements to users while balancing
conflicting advertiser, publisher, and user objectives. Real-time bidding is a recent development in
the online advertising industry that allows more than one exchange (or demand-side platform) to
bid for the right to deliver an ad to a specific user while that user is loading a webpage, creating
a liquid market for ad impressions. Real-time bidding accounted for around 10% of the German
online advertising market in late 2013, a figure which is growing at an annual rate of around 40%.
In this competitive market, accurately calculating the expected value of displaying an ad to a user
is essential for profitability.

In this thesis, we develop a system that significantly improves the existing method for estimating
the value of displaying an ad to a user in a German advertising exchange and demand-side platform.
The most significant calculation in this system is estimating the probability of a user interacting
with an ad in a given context. We first implement a hierarchical main-effects and latent factor
model which is similar enough to the existing exchange system to allow a simple and robust upgrade
path, while improving performance substantially. We then use regularized generalized linear models
to estimate the probability of an ad interaction occurring following an individual user impression
event. We build a system capable of training thousands of campaign models daily, handling over 300
million events per day, 18 million recurrent users, and thousands of model dimensions. Together,
these systems improve on the log-likelihood of the existing method by over 10%.

We also provide an overview of the real-time bidding market microstructure in the German real-
time bidding market in September and November 2013, and indicate potential areas for exploiting
competitors’ behaviour, including building user features from real-time bid responses. Finally,
for personal interest, we experiment with scalable k-nearest neighbour search algorithms, nonlinear
dimension reduction, manifold regularization, graph clustering, and stochastic block model inference

using the large datasets from the linear model .
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Chapter 1

Online advertising and real-time bidding

This chapter provides necessary background information on the current online advertising indus-
try, advertising exchanges, and demand-side platforms. We then introduce the industrial problem

motivating this thesis, and briefly outline the chapters of this thesis.

1.1 A brief history

John Wanamaker, a US department store merchant, stated around 1900 that half the money I spend
on advertising is wasted; the trouble is, I don’t know which half. A little over a century since this
statement, billions of dollars of products and services are now purchased annually over the internet,
and most people in developed economies use the internet daily. The size of this market, the breadth
of the audience, and the ability to record information present advertising opportunities that John
Wanamaker could only dream about.

Online display advertising is the process of displaying advertisements to internet users as they
interact with website content, use online applications, or consume media content on a PC or mobile
device. This medium allows marketers to actively target likely customers and measure return on
investment, as well as raising general brand awareness translating to in-store activity [28]. An
opportunity to present an advertisement to a user while they are interacting with online content is
called an ad impression.

Internet display advertising evolved from newspaper and magazine advertising in the early 1990s,
as early website publishers sought to earn revenue from the new medium. Publishers negotiated
contracts directly with advertisers to place advertisements alongside their content on their web
pages, and advertisers paid the publisher a set fee for each time the page was loaded by a user
(called an impression).

Between the early and mid 1990s, the rapid increase in the number of internet users, websites,
and companies desiring to advertise online led to rise of firms providing online advertising services.
One of the first such firms was DoubleClick, founded in 1996. DoubleClick negotiated banner ad
placement with publishers on behalf of the advertisers, measured ad performance, and performed
optimization of ad performance and publisher revenue by manually moving ads from low-performing
websites to higher-performing websites. Coming into 2014, the quantity of display ads on the internet
is orders of magnitude larger than in the 1990s and continues to increase dramatically. The process
of delivering ads and optimizing performance and revenue has become highly automated through
‘platforms’, or technical service providers in the online advertising industry. Online advertising
exchanges are a significant type of platform. Exchanges programmatically match available user
impressions to available advertisements.

Search advertising (such as advertisements shown among the results returned from search en-
gines) and social media advertising (such as content shared on Facebook and twitter) also forms a
significant fraction of the online advertising market today. However, while concepts in this thesis

are applicable to these areas, only display advertising is directly addressed.



1.2 Advertising exchanges

Large publishers sell a guaranteed number of user impressions, called premium inventory, directly to
high-paying advertisers. The remainder, and the long tail of non-premium inventory from smaller
publishers is sold in automated spot markets through brokerages called exchanges. This inventory
is often referred to as non-guaranteed inventory. In order to buy inventory on these spot markets,
advertisers register ad campaigns with exchanges, along with details such as the desired publishers
(if any) and the value they are willing to pay for a user impression. The exchange then matches
the supply of user impressions from the publishers with demand from advertisers and organises
payment, taking a percentage for itself. A medium-sized exchange can manage the placement of

more than tens of thousands of advertisements per second.

1.2.1 Pricing models

Advertisers pay for user impressions using one of two general pricing models. In the first, advertisers
pay a low fee per thousand impressions, called cost per mille (CPM). This pricing model is becoming
less common, as the price of CPM advertising has historically been artificially high due to unjusti-
fied expectations of online advertising’s efficacy, and user engagement with non-guaranteed online
advertising is seen to be decreasing as the market becomes more saturated and user traffic centres
around large platforms such as Facebook. The market is therefore moving to performance-based
pricing models.

In performance-based pricing models, advertisers only pay for an ad impression if the user takes
a subsequent action providing revenue to the advertiser (e.g. purchasing products and services)
that is fully or partially attributable to the ad view - the primary desired outcome of advertising.
This pricing model is termed cost-per-action or CPA. However, it is difficult to perform automated
attribution of both offline and online purchases to ads, due to the problems inherent in continuously
tracking user behaviour in the hours and days following an ad view, and the extremely low rates of
occurrences of these actions (e.g. 107%). Therefore, clicks on ads or engagement with the advertiser’s
own website are often used as a proxy for user purchases, as they are simple to measure and have
higher occurrence rates (e.g. 107* to 1072). This is termed cost-per-click, or CPC pricing. It
is worth noting that clicks on ads in particular are a spectacularly bad proxy for user purchase
intent [42], are easy to game by botnets, and are only used due to their ease of use compared to
alternatives. In this thesis, we use the term interaction for generality while noting that clicks are

the specific interactions considered.

1.2.2 The exchange auction process

When a user loads a publisher’s web page, the publisher requests an advertisement from the exchange
it is integrated with. The exchange selects the ‘best’ advertisement for the user and context from
the campaigns registered by advertisers and serves this ad to the user. As this process occurs while
the page is loading, the user typically does not even realise it has happened. The selection of the
‘best” advertisement is the central issue of computational advertising and is subject to a complex
set of competing objectives. Advertisers wish to maximise their return given a range of advertising
spending. Publishers desire maximum revenue per impression in the short term. Users desire the

most relevant ads. Finally, the exchange itself desires maximal long-term revenue.



This thesis considers a specific exchange in the German market. This exchange meets the
objectives above by selecting an advertisement through an auction process: for each ad request
from a publisher, the exchange retrieves all ads that meet constraints for the publisher and the user,
calculates the per-impression value paid for each ad, and selects the highest-paying advertisement.
For a cost-per-mille (CPM) advertisement, the value paid by the advertisement in the auction is
simply the CPM. For performance-based advertisements, the exchange calculates the expected value
by multiplying the value paid if an interaction occurs with the estimated probability of interaction.
If this probability is consistently over-estimated for any given ad, then the exchange will rank this
ad above other ads paying more per impression. If this probability is consistently under-estimated
for any given ad, then the exchange will rank this ad below other ads paying less per impression.
In both cases there is a loss in revenue that would otherwise have been captured. Estimating this
interaction probability has motivated significant work in industry and academia due to its difficulty
and economic relevance.

In the specific exchange considered, making a more accurate interaction probability estimation
for CPA campaigns will change the outcome of many auctions, assigning different ads to user
impressions, which may result in a higher average value paid per ad impression, higher revenue for
the exchange and publisher, and higher return on investment for the advertiser (if their pricing is
accurate).

As can be expected, the production implementation in the exchange is more complex than
described. Advertisements are organised into multiple tiers according to more criteria than value
paid, such as the advertiser’s importance as a client, the ad category, and the publishers’ preferences.
In addition, publishers may specify a minimum price required for an ad to be shown. Where not

specifically mentioned, these issues are ignored in the context of this thesis without loss of generality.

1.3 Real-time bidding

A recent development in the online advertising marketplace has been the advent of real-time bidding
(RTB). In real-time bidding, each ad impression is auctioned off to the highest bidding advertiser
or buy-side firm acting on an advertiser’s behalf. An extension of the exchange auction above,
this RTB auction process also occurs during the time a single web page loads in response to a user
request (in less than 100 milliseconds). When a publisher requests an ad (through its own integrated
technology platform, from an exchange, or from a supply-side firm), a ‘bid request’ is forwarded
to external advertisers and buy-side firms, who each bid for the right to display an advertisement
to the user concerned. In the context of an exchange, the ad selected from the exchange’s internal
auction is sent to the RTB auction, from which the final ad is selected.

A firm (platform) participating in the RTB market must respond to a bid request in less than
100 milliseconds in order to compete. Including intra-datacenter network latency, this leaves around
50 milliseconds to retrieve any relevant information (such as the user profile) for a bid request from
a datastore, score one or more models, compute a bid, and respond to the request. At the time of
writing, the largest participants may receive up to a million bid requests per second corresponding
to hundreds of millions of users, placing significant throughput and latency requirements on the bid

system. In addition, the largest firms manage Petabytes of data



1.4 Buy-side and sell-side platforms

An advertiser’s goal is to maximise their return on investment by achieving the most user engage-
ment possible for a given budget. The real-time bidding market provides access to millions of
publisher websites and users, many more than the websites and users available through one or more
exchanges. In addition, advertisers and marketing firms have the ability to directly select individual
impressions likely to be more valuable (as they involve receptive users, an ideal time of day, context,
or other reason). Purchasing individual impressions is impractical for most advertisers due to the
complexity of the infrastructure and models required. Buy-side or demand-side platforms (DSPs)
have evolved to purchase user impressions on behalf of advertisers from both premium inventory
or direct-buy markets and non-guaranteed inventory from the real-time bidding market. By us-
ing a DSP, advertisers are only required to make broad decisions about the audience they wish to
advertise to and the price they are willing to pay. The DSP tracks users, campaign performance,
selects users likely to interact with the advertiser’s campaigns, and purchases ad impressions for
these users for the best possible price through the real-time bidding market [89]. The DSP selects
the best impressions for a campaign by tracking and profiling users and considering the context and
time of the impression, while competing with other advertisers and DSPs.

A publisher’s goal is to maximise their return on each page view or impression. Publishers may
contract with sell-side, or supply-side platforms, who work with publishers to sell ad impressions
through the real-time bidding market at the highest prices possible. Sell-side platforms are beginning
to conduct their own user and market profiling in order to gain the best possible revenue from each
user impression.

The RTB market can be seen as a successor to and extension of the function of an exchange,
selecting the ‘best’ ad from all participants in the online advertising market at a given instant rather
than merely the campaigns and publishers managed by one exchange. Exchanges still operate in
the RTB market, although as a participant. Supply-side platforms, DSPs, and exchanges have some
similarities and some differences. A DSP’s objective is to identify the best user impressions from
the market for their client’s marketing campaigns, and decide what to bid for these impressions. A
DSP can watch a stream of bid requests and bid only when their models indicate that it will be
profitable to do so. A supply-side platform desires to maximise the bids for each impression. Finally,
an exchange must provide an advertisement for each integrated publisher request and therefore needs
to accurately calculate the value of every user impression for each managed campaign, rather than
identify and bid on the best impressions alone (often only 1-3% of total impressions). We note that
firms may combine one or all of these functions, and that the complex RTB market has grown and

fragmented between 2010-2014. Very large and small firms now provide a broad range of services.

1.5 Outline and Contributions

For both DSPs and exchanges, predicting the probability of user-ad interaction given a time and
context in order to determine which ad to display or the price to bid for an impression is central to
the companies’ revenue. This project is undertaken within a large European ad exchange, referred
to as ‘the exchange’ hereafter. The desired outcome from this project is to develop and validate a
system for interaction probability prediction that improves on the exchange’s existing estimation

method, is useful in both the exchange and real-time bidding contexts, and is capable of reliably



processing hundreds of millions of events on a daily basis. The work described in this thesis therefore
focuses on the application of existing (although recent) theory to this problem.

In chapter 2 we describe the existing method of estimating interaction probabilities based on
aggregate historical data and provide an overview of the information available. In chapter 3 we
propose using combination of a main effects model and a beta-binomial model which is conceptually
similar to the existing method, can be implemented with little additional computational resources.
In chapter 4 we investigate the effect of adding model parameters describing interactions between
ads and the context in which they are displayed to the main effects model, resulting in a marginal
improvement. Our contribution in these chapters consists of implementing a system which achieves
a negative log-likelihood value over 10% less than the existing method measured over the period of
a week.

In chapter 5, we model the user-ad interaction probability as a function of information specific
to each impression event using a regularised generalised linear model (rather than using aggregate
historical rates). We first develop a data pipeline based on the Hadoop software for processing
the exchange event logs, and then use regularised generalised linear models to estimate the inter-
action probability for each impression event for each campaign. Our contributions in this chapter
are primarily the implementation details such as the data pre-processing, feature engineering and
sub-sampling methods, and the development of a stand-alone, scalable implementation capable of
training thousands of campaign models over hundred of millions of impressions on a daily cycle
using the Hadoop software ecosystem and Amazon Web Services.

At the time of development, the systems described in chapter 5 and chapter 3 provided more
accurate interaction probability estimations than the method used in the exchange/demand-side
platform with which this project was undertaken. We believe that these implementations would
be suitable for commercial use with little modification. However, when this project was nearly
complete, integrating the systems developed in this project into the ad exchange was rendered
unnecessary by unforeseen and unrelated commercial circumstances. Therefore, despite good offline
results these systems were not tested in production.

Consequently, in chapter 6, we investigate a number of common algorithms using the datasets
developed in the previous chapters for personal interest and experience with high-performance com-
putational techniques, not for their relevance to the industrial problem. We investigate generating
additional user features with Laplacian eigenmap embedding, including investigating sub-quadratic
algorithms for k-nearest neighbour calculation. We implement the recently developed FEAST eigen-
solver algorithm [105] in MATLAB, implement a simulated annealing algorithm for graph commu-
nity detection via modularity maximisation, and investigate fitting stochastic block models to the
bipartite user-website network. We also implement a linear manifold regularization method.

Finally, in chapter 7 we investigate the real-time bidding market in Germany between September
and November 2013. We present selected results from this investigation, including how tracking
and responding to market microstructure may provide a commercial advantage to an exchange or
demand-side platform. We also propose using real-time bidding responses from competing firms as
sources of additional information on users tracked by the exchange, improving the internal exchange

models.






Chapter 2

Estimating user-ad interaction probability: the

existing baseline and a road map

This chapter gives a high-level overview of how a medium-sized European ad exchange responds to
publisher ad requests. First, we define some additional terms specific to the exchange considered.
Second, we describe the ad auction which the exchange uses to select the best ad for a request, and
explain the importance of estimating the probabilty that the user will interact with each candidate
advertisement. We then describe the method currently used by the exchange for estimating this

probability and its limitations.

2.1 The exchange auction, a local greedy strategy

Each publisher integrated with the exchange owns a number of websites composed of pages defined
by a unique URL. The publisher may create one or more advertisement containers on each page,
called slots. When a user’s browser begins a request for a page, the publisher sends an ad request to
the exchange for each slot on the page. This ad request contains the user and slot information. Let
U, S, A denote the set of all users, slots, and ads tracked by the exchange, and let u, € U, s; € S,

and a; € A denote elements of these sets. Then an ad request received at time ¢ is of the form
ad request := {up, sj,t} (2.1)

The exchange needs to respond to the ad request with an ad that best satisfies the publisher,
advertiser, and exchange objectives described in subsection 1.2.2. The exchange responds with the
ad ag it expects to have the highest impression revenue, the fee paid by the advertiser if the ad is
displayed to the user. When the exchange responds to the ad request with a specific ad ay, it is

displayed to the user in an impression event
impression = {uy, s, ax,t} (2.2)

The impression revenue for a CPM ad is simply the CPM value. The true impression revenue for a
CPA ad is only determined after one ad had been chosen and displayed to the user in an impression
event. If the user interacts with the ad, an interaction event takes place, and the impression revenue
becomes the CPA value. If the user does not interact with the ad, then the impression revenue is
zero. In order to compare different types of ads during the selection process, the expected impression

revenue (eCPM) is used.



For each impression event an interaction event occurs or does not occur, which can be considered
a Bernoulli trial thk. € {0,1}. The probability of success is dependent on the user, slot, ad, and
time of the impression, denoted by h, j, k,t respectively. Stated formally

thkt ~ Bernoulli(phjkt) (23)

phjrt = Pr(Ynjee = |up, s;, ax, t) (2.4)

The expected impression revenue for a CPA ad is Pr()_fhjkt = 1|up, sj, ax,t) x CPA value(ay).
The selection process for the best ad a* € A for a specific ad request {up,sj,t} can then be

written as

Phjkt X CPA value(ay) if ay is a CPA ad
a” | {up,s;,t} = argmax

axE€A CPM value(ag,), if ay, is a CPM ad

(2.5)

where CPA value(ay) is the value paid if the user interacts with a CPA ad ay and CPM value(ay,) is
the known value paid for displaying the CPM ad aj. The value pp i = Pr(Yp e =1 | up, sj, ag,t) is
the unknown probability of the user interacting with the ad in that context at that time. Estimating

this value is therefore a significant part of selecting the best advertisement.

2.2 The exchange’s existing probability estimation method

The method for estimating Pr(thkt = 1|up, sj,ax,t) currently implemented in the exchange is

described next.

2.2.1 The basic model

The number of interaction events (successes) given a number of impression events (trials) can be
modelled as a Binomial random variable Y}, with parameter pp,r:. The exchange’s existing method
of calculating the interaction probability makes the assumption that the probability is independent

of the user and time, and only dependent on the ad aj and slot s;, written as follows
Pr(Ynjiwe = 1| un, 85, ar,t) = Pr(Yj, = 1|s;, ax) (2.6)

The number of interactions (successes) S occurring for a given number of impression events (trials)

T}, conditioned on the slot s; and ad ay, is then given by the modified Binomial random variable

Yji ~ Binomial(T}, pjk) (2.7)
pjk = Pr(Yje = 1|s;, ax) (2.8)

The estimate of Pr(Yy ke = 1|up, 55, ax, t) used by the exchange is the maximum likelihood estimate
(MLE).

i if Ty, > 0
Djk = I

unknown if Tj, =0



However, for the majority of ad-slot pairs s;, a;, a statistically significant number of impression events
does not exist.! In order to solve this problem, the exchange combines impressions from multiple
ad-slot pairs {sj,ax} in order to create a large enough sample. For any subset of ads X C A and
subset of slots Z C S the number of impression events {up, sj, ai,t}|s; € Z, ar € X is given by
Txz. The number of interaction events is given by Syz. The maximum likelihood estimator pjy
from (2.6) for an ad and slot can then be replaced by the maximum likelihood estimate for the sets
X and Z

Jxz if Tyz >0
Dik = pxz = 2 (2.10)
unknown if Tyz =0

assuming ar € X and s; € Z. For large enough sets X and Z, a statistically significant sample
required for the maximum likelihood estimate to be reliable will exist. We now consider how to
select additional ad-slot pairs to form the sets X and Z given the ad-slot pair {s;, ax} considered

in the estimation of pjj.

2.2.2 Data hierarchies

Ads and slots can be considered to belong to a hierarchical structure. For example, ads can be
considered to belong to advertising campaigns. In turn, campaigns belong to advertisers, the top
level of the ad hierarchy. An example is a graphical or video ad for an airline flight package which
is part of a campaign run by a major airline (the advertiser). Slots are associated with a nominal
(integer) website identifier. Websites in turn belong to publishers, the top level of the slot hierarchy.
For example, a slot may be placed on a news article page, which is part of a newspaper website,
which is owned by a publishing group. There is a global level consisting of all ads and slots. Due
to the hierarchy, if an ad belongs to a campaign, and the campaign to a publisher, then the ad
belongs to the publisher. It is natural to assume that the contribution to pj; from ads within the
same campaign may be correlated due to shared properties, and to a lesser extent for ads within
the same advertiser.

Recall that A is the set of all ads. Let A, be the set of ads associated with a particular campaign,
ie. A. C A. Similarly let A, be the set of ads belonging to a particular advertiser, i.e. ar C A,. On
the slot side, let S, be the set of slots associated with a particular website, i.e. s; C &,,. Similarly
let S, be the set of slots belonging to a particular publisher, i.e. s; C S,. For convenience, let C be
the set of all A., A" be the set of all A,, W be the set of all S, and P be the set of all S,. Then
possible sets X and Z are given by

XCAUCUA (2.11)
ZCSUWUP (2.12)

For an incoming ad request, the exchange first checks if a large enough number of impressions has
been observed for the ad, slot pair. If not, the exchange selects a set X and Z containing more
ad-slot pairs and checks if a large enough number of impressions has been observed for these pairs.

If not, the exchange selects larger sets X and Z and so on.

LA typical interaction rate is around 1 in 1500, which requires thousands of impression events to accurately
estimate pjx.



The specific choices of X and Z at each step are given in the following table from the ad-slot

pair at the most specific level to the most general level of the set of all ads and the set of all slots.

X Z minimum impressions
most specific  ap s; ni
ag S n9
A S n3
A, S ng
most general A S

Table 2.1: Hierarchical aggregation levels used for maximum likelihood interaction rate estimate

The values ni,n9, n3, and n4 used in the exchange are constant and were set heuristically at some
point in the past. The hierarchical entities exist as a result of the entities used in the exchange’s
commercial database. We note that a slot may be displayed on multiple webpages and/or websites
and be shifted between websites, or switched on or off, without notice. This makes the parent-child
relationships between the entities in the slot hierarchy less significant than they otherwise could
be. We also note that it would be natural to define a webpage by a unique URL instead of an

integer website identifier. However, the exchange data collection did not support this until late in
the project, an outcome of this work.

2.2.3 Example of the existing method

Figure 2.1 shows this stepped estimation process. The solid line shows the maximum likelihood
estimate at the ad-slot level of the hierarchy, plotted over time. The dotted line shows the hier-
archical exchange estimation, where the steps shown correspond to the campaign, ad, and finally

ad-slot levels of the hierarchy. The final level is reached on the 7th day after the start of the chart.
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0.00050
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0.00000 /\\/\
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(a) Ad-slot pair example

Figure 2.1: Example of the stepped hierarchical exchange estimation process.
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In Figure 2.1 the hierarchical maximum likelihood estimate process does not reach the ad-slot
level until 7-8 days after the ad is first shown, and before this point, estimates an interaction
rate much larger than the empirical long-term rate for the ad-slot pair. The maximum likelihood
estimate at the ad-slot level alone stabilises at the true interaction rate after 2-3 days. Quick
convergence to a good estimate of the true interaction rate is important for the objectives described

in subsection 1.2.2, as in this example the ad is being mis-priced during the first 7-8 days.

2.3 Drawbacks of the existing exchange method for

interaction probability estimation

While the global average interaction probability for an impression event is around 7x10~%, variations
of an order of magnitude in interaction probability between ad-slot pairs with the same ad or slot
in the pair are common. The distribution of ad-slot interaction probabilities is generally similar to
an exponential distribution but with a heavier tail. If the true interaction probability for an ad-slot
pair is equal to the global mean, the sample size required in order for there to be a 95% probability
that the maximum likelihood estimate of the interaction probability using the ad-slot pair events is
at least 80% of the true value is 9,396. For a true probability of 1 x 10~* the sample size required
rises to 65,789, which is approximately the value of A in Table 2.1.

Therefore, constant values for ni, na, ns, and ny (the number of impressions required to tran-
sition between the global advertiser, campaign, ad, and ad-slot levels in the existing method) are
sub-optimal for a significant fraction of advertisements. To illustrate, the majority of transitions
between these hierarchical estimation methods change the estimated interaction probability by a
factor of 2 or more, and in many transitions it changes by a factor of 10 or more.

In the existing system, the immediate context for an impression event (the slot) is not considered
in the hierarchical group maximum likelihood estimate until the ad-slot level of the stepped process
has been reached, by which time a significant fraction of the advertisement’s budget has typically
been spent. There is also a wide variation in interaction rates between slots for a single website
and publisher, influencing the ad performance. In addition, the Binomial random variable f@k and
maximum likelihood estimate used to model the interaction probability assumes that the interaction
rate does not change with time. However, user impression events correspond to a non-stationary
Bernoulli process with an interaction rate that varies significantly with time. Finally, the existing
method ignores the user component of the interaction probability, as methods that model the user
component require more advanced data pipelines and modelling approaches than the maximum
likelihood estimate discussed above. There is also a large variation in mean interaction probability
between ads (or slots), a statement which is also true for higher-up entities in the ad and slot

hierarchies.

2.4 Online and offline evaluation criteria for proposed models

The ideal evaluation criteria for any interaction probability estimation method developed in this
project is that it generates more revenue than the existing method, all other factors being equal.
The only definitive way of testing for this criteria is to run each system in parallel and direct ad
requests to each system at random. However, in order to evaluate candidate methods offline, a proxy

for this evaluation method is required that can be used in isolation with historical data. Developing

11



an accurate and precise proxy is difficult, as small changes to the predicted interaction probabilities
at time ¢ affect future auction outcomes. We use the the binomial log-likelihood calculated over all
impression events as a proxy. The log-likelihood is defined by
N
W) = (wilog(f(¢s2:)) + (1 —yi) log(1 — f(gp;2:))) (2.13)

i=1

where N is the number of test events, y; € {0, 1} is the ocurrence or non-occurrence of an interaction
for an impression event, and f(¢) is the prediction function for the interaction probability.

We evaluate proposed and existing models by training each model on a historical dataset from the
exchange and then comparing the log-likelihood for the interaction probabilities generated by each
model for held-out test data from after the training period. We note that using the log-likelihood
for evaluating the performance of an interaction probability prediction system in the context of an
exchange or demand-side platform suffers from a number of shortcomings. Most significantly, the
binomial log-likelihood penalises large errors to a greater extent than small errors, on a continuous
scale. However, the outcome of an ad auction is a discrete event, and a small error which changes
the auction ranking has a greater impact than a large error which does not change the ranking and
auction outcome. However, developing a more application-specific method is more time-consuming
than simply testing the new method on a small fraction of live traffic.

We also note that in the situation where a model is used to predict interaction probabilities
for an ad-slot pair the root-mean-square error (RMSE) between predicted and actual interaction
probability is a very poor error metric. It assumes that the errors are all from a normal distribution,
which is a terrible assumption for count data; Poisson is a reasonable assumption. The RMSE also
does not account for the number of impressions for each ad-slot pair, unlike the log-likelihood.
It is dominated by low-confidence outliers in a similar fashion to ordinary linear regression. The
RMSE also heavily penalises large errors while minimally penalizing small errors (although the log
likelihood does this also). Given the distribution of interaction probabilities in the ad auction it
may be more beneficial to overall revenue to place a higher penalty on the large number of smaller

mispredictions near the mean value than the occasional large misprediction.

2.5 Information available to the exchange and demand-side plat-

form

2.5.1 General context

We first consider information that may be available to a demand side platform at the time an ad
request or a real-time bid request is received in general terms. This information is created from the

exchange publisher and ad databases and the historical event log, and is typically related to
e the candidate advertisements
e the webpage, slot, app, or other direct context in which the advertisement is to be displayed
e further contextual information such as the time of day, weather, external events, or device

e the user interacting with the online content
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Information about the specific webpage or slot in the ad request may include the publisher or
brand to which the webpage belongs, the content and spatial layout of the page, and the position of
the advertisement container within the layout. At the time of writing, revenue attribution models
are beginning to take these features into account when deciding whether to attribute a purchase to
online ads previously displayed to a user [102].

Information about candidate advertisements may include the brand, type of product or service,
and semantic features generated from the advertisement itself. Further information can be found
in [77], [37], and [58].

Information about the context of the ad request, or external factors that may affect the proba-
bility of an interaction, include (for example) the time of day, the day of the week, and many other
factors such as the weather conditions. Contextual information can also include the influence of
external events such as the start of the school year, and bank holidays.

Information available about the user may include the user’s IP address and browser version alone,
or demographic information and a detailed history of browsing behvaiour, webpages visited, previous
ad interactions, location through smartphone tracking, and previous purchases. This information

is used to build a profile of the user which provides insight into likely future purchasing behvaiour.

2.5.2 Specific context

Very little of the information described in subsection 2.5.1 is available in the context of this project.
Advertisements, slots, websites, advertisers, and publishers are only identified by unique integer
identifiers, and no semantic, categorical, brand, or other such useful information is avilable. We also
note that the exchange or demand-side platform’s decision engine must run in under 50 milliseconds
and ideally in under 10, including evaluating any mathematical models or sets of decision rules,
which makes collecting this information during the decision-making process infeasible. We note
that actions such as scraping each publisher webpage ahead of time and engineering and validating
semantic features (in German) is of great interest but beyond the scope of this project. This is the
subject of ongoing research at the time of writing.

We now describe the information that is available in the context of this project. The information
is entirely derived from the event logs described in the section above. For every event that occurs
in the exchange or demand-side platform system, a line of text describing the event is written to
one of many server log files. Events include (but are not limited to) an ad being displayed to a user
on a client’s site in response to an ad request, a user interacting with an ad, a bid request being
sent to real-time bidding partners, bid responses being received from real-time bidding partners,

and tracking pixels being viewed. An event log line is similar to the following representation

impression_id timestamp ad_id slot_id user_id event_type price bid

Not all fields are relevant to every event. The ad and slot can be used to identify the corresponding

website, publisher, campagin, and advertiser.
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2.6 Selecting appropriate algorithms to improve the existing method

The machine learning algorithms appropriate to a computational advertising problem depend on the
context, such as sponsored search or ad targeting, the intended outcome such as ranking, probability
estimation, or user segmentation, and the information available, such as historical interaction rates
only or a significant quantity of external features. Another important factor is the size of the
datasets under consideration. Desired outcomes for this project include estimating rates of rare
events, ad interaction probabilities, and user segmentation. We now briefly and non-exhaustively

mention some families of algorithms applicable to computational advertising.

e Historical events and hierarchical entity structure can be used with many canonical and specific
methods in the context of computational advertising. As an example, a sophisticated custom
method for this context is given in [3]. We consider Bayesian hierarchical models and a main

effects model as a way of accomplishing this in chapter 3.

e While descriptive features or external information can be utilised by a number of methods,
regression is among the most significant. We consider regularised generalised linear models in
chapter 5. Linear models of this type are highly scalable, easy to interpret, and can be used
for feature selection. Linear model formulations can be differentiated by the choice of features

and the model target and target distribution.

e Unsupervised learning describes finding patterns in data without using labelled examples. In
chapter 6 we describe clustering internet users using their browser history, and clustering a
bipartite graph formed from user-website interactions, both examples of unsupervised learning.
Dimensionality reduction is often used as a pre-processing step prior to applying a model
such as a linear model, and falls under unsupervised learning. Dimensionality reduction
algorithms include principal component analysis, singular value decomposition, stochastic

neighbour embedding, and locally linear embedding.

e Latent factor models include a class of generative models that explain observed interactions
between entities in terms of latent properties of the entities, also referred to as collaborative
filtering models. Inferring these latent properties using observed interactions allows the pre-
diction of unobserved interactions. No explicit descriptive information on entities is required.

We investigate latent factor models in chapter 4.
e We do not consider using neural networks due to lack of time.

e The Naive Bayes algorithm and algorithms based on decision trees or random forests have
been found to increase the predictive accuracy for this dataset, and are the subject of ongoing
research by others. Therefore, these methods are not considered in this project. In practice,

the results of these models could be combined with the models described in this thesis.

Summary

This chapter gives an overview of the existing exchange functions and describes the ad auction

which is at the heart of the ad delivery process. The method currently used by the exchange
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for estimating the advertisement value and user interaction probability is presented, along with a

discussion of methods for evaluating proposed models intended to superseede the existing method.
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Chapter 3

Extending the existing method with hierarchical

and main effects models

The existing interaction probability estimation method described in chapter 2 suffers from short-
comings described in section 2.3. However, it can be seen as a basic heuristic approximating a
heirachical model which makes a smooth transition from a prior belief based on hierarchical aver-
ages to the observed interaction probability for a specific pair {aj, s;}. In this chapter we implement
a gamma-Poisson model for individual ad-slot pairs that accounts for temporal drift in interaction
probability and compare this model to the existing method. However, this has high computational
cost. We then model the interaction probability for an ad-slot pair as a combination of main effects
from the entities in the ad-slot hierarchies. This main effects model is used to create a beta prior
for a beta-binomial distribution describing each ad-slot pair, which is updated as events for each

specific ad-slot pair are observed. We continue to use the concepts and notation from chapter 2.

3.1 Related work

Bayesian hierarchical models and multi-level regression models are extremely common in many
branches of scientific literature and are well covered in common texts such as [48], [70], and [49].
For the specific problem of predicting interaction probabilities given ads, slots, ad and slot hierar-
chies, and external covariates, a few works have been published by researchers working with online
advertising firms. Two of the best of these are described below.

Lee et al. [75] models aggregate interaction probabilities at chosen levels of the ad and slot
hierarchicies using separate binomial distributions, and forms an estimate of the specific ad-slot
interaction probability by combining the parameters of these distributions with logistic regression
models. The motivation for this work is improving the methods used at Turn.com, a global
demand-side platform. Another notable approach is proposed by Agarwal et al. [3]. The authors
estimate the interaction rate for each ad-slot pair by combining a baseline probability obtained
from covariates and a logistic regression model with a multiplicative factor for each entity in the
(un-ordered) Cartesian cross product of the ad and slot hierarchies. Suitable priors are placed on
these factors, which reduces the number of parameters required and increases the computational
efficiency. The motivation for this work is improving the methods used at Yahoo.com, a global
technology, advertising, and content company.

These works assume that interaction rates for children of the same parent are correlated. For
example, interaction probabilities for ads related to the same campaign, or slots placed on the same

webpage are expected to be correlated.
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3.2 Using Bayesian hierarchical models

3.2.1 Beta-binomial hierarchical models

Recall from section 2.1 that the ad request is of the form of ad request = {uy, s;,t}. For each ad,
we desire to estimate the probability ppjre = Pr(Yp i = 1|up, s, ax,t) of an interaction, should the
ad aj be sent in response to the ad request. In this chapter, we also make the assumption that the

probability is independent of the user as follows
PI‘(thkt =1 ‘ Up, Sj, A, t) ~ Pr(ijt = 1’8]‘, ag, t) (3.1)

This is done as there are up to 10° slots and advertisements at any point in time, but up to 10%
unique users which significantly increases the difficulty of the problem. Note that we remove this
assumption and explicitly consider the user contribution along with other event-specific features in
chapter 5.

The existing exchange method models the number of interaction events, or successes Sj;, for
an ad-slot pair given a number of impression events Tj; as a Binomial random variable and uses
the maximum likelihood esimtate for pj;. As the majority of ad-slot pairs {ay, s;} do not have a
statistically significant number of impression events, the {aj, s;} pair’s maximum likelihood estimate
is replaced with a maximum likelihood estimate calculated using groups of {a, s;} pairs selected
using the entity hierarchy. As discussed in section 2.3, problems with this approach include the
high variation in ad-slot pair interaction probabilities within the hierarchical groups and the longer-
than-necessary period before the individual ad-slot pair’s maximum likelihood estimate is used.

We desire to use the information avaialble in the events for the particular {ay, s;} pair as soon as
they are observed. A useful model in this situation is a Bayesian beta-binomial hierarchical model.
This model blends the estimate for a single ad-slot pair with an estimate obtained using a group of
ad-slot pairs obtained from the hierarchy (differently to the existing method), given by all {ag, s;}
pairs where a; € & and s; € Z. One such model is required for each ad-slot pair.

The interaction probability p;; for each ad-slot pair is assumed to be drawn from a Beta dis-
tribution as pj; ~ Beta(w, M) with mean m = o/(o + ) and shape parameter M = a +  which
results in an ad-slot interaction rate variance of o2 = 7(1 — 7)/(1 4+ M). The maximum likelihood
esimate for an individual {a, s;} pair is given by p;r = Sji/Tjr and the Beta-binomial shrunken

estimate ﬁ;k is given by wjrm + (1-— wjk)]ﬁjk, where the shrinkage factor wjj is defined

a(l—m)/o? -1
(r(1—m)/o® = 1) + Ty

Wik =

A hyper-prior for o and § resulting in a proper posteriors can be constructed using the parameter-
ization (log(a/fB),log(a + B)) as

Pr (log(a/B), log(a + 8)) o« af(a+ B)~°/>

Methods for computing the maximum likelihood estimates of the parameters of this Beta-Binomial
model are well studied in the literature [53] and available in many computational statistics libraries
[104].
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3.2.2 Gamma-Poisson hierarchical models

The model above does not take temporal variation in the {aj,s;} pair interaction probability into
account; this variation is clearly evident in Figure 3.1. In order to account for temporal variation we
choose the basic method of considering more recent events to be more representative of the current
interaction probability than events further in the past. This is formalised by applying exponential
smoothing to the numbers of interactions and impression events for each {a, s;} pair over discrete
time bins according to

SW =84 + (1 —)siY (3.2)

T =Ty + (1 =Ty Y (3.3)

where SJ(Z) and T](,? are the number of interaction and impression events, respectively, for an {ay, s;}
pair at time bin ¢, taken as 24 hours to avoid complications due to intra-day cyclical variation.
However, this does not result in integer counts for the number of interactions and impression events,
which are no longer directly represented by a binomial random variable.

We therefore consider a gamma-Poisson hierarchical model, as the low rate of occurrence of
interaction events allows the expected number of successes ocurring for a given number of impression
events to be approximated by a Poisson distribution. In the gamma-Poisson model, the expected
(Z) given T](l?

number of interaction events S impression events for an {aj,s;} pair at time ¢ is

J
considered to be drawn from a Poisson distribution

g (SJ(Z) \)\§2> = Poisson()\gtk)Tj(,?) (3.4)

From here onwards we assume all calulations are performed with temporally adjusted counts at
time ¢t and drop the annotation ) for notational clarity. The interaction rate Aji for a given pair

{sj,ar}|s; € Z, a, € X is drawn from a Gamma distribution

9(Ajk|o, ) = Gamma <a, Z) (3.5)

Given this choice of parametrization, the mean of the gamma distribution is x4 and the variance is
given by u?/a. The value of a controls the variance in the interaction rate between {ag, s;} pairs:

Var()\) goes to 0 as @ — oco. The priors for @ and p can be specified as the gamma distribution

m(a) = Gamma(so, s1) (3.6)

() = Gamma(sa, s3) (3.7)

where the s; are hyperparameters selected arbitrarily prior to fitting the model. This distribution
has a mode of zero and infinite mean and variance, a minimally informative prior. After solving for
the posterior distribution of o and a/p, the conditional posterior for A;, can be expressed (due to

the choice of prior) as follows

g(Njgldata, o, p) = Gamma(Sji, + o, Tji + /) (3.8)
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The posterior mean for Aj; at time bin ¢ can also be written as a convex combination of the

interaction rate for an {ay, s;} pair and the pooled interaction rate as follows

(t) ()
Sjk Sx
E(\j | data) = E(wjy, | data)W + (1 — E(wjy | data))ﬁ (3.9)
i, 1d
where
a
Wik = —— 5~ (3.10)

The extent to which E(\jj | data) is shrunk towards the prior mean will decrease as Tjj, increases
or as the prior variance increases (an uninformative prior). In the first case this is because a large
sample for an individual pair {a, s;} is more significant than the pooled estimate The shrinkage
moves the interaction rate for {a, s;} pairs with a small number of observations towards the mean
to a greater extent than it does for pairs with a large number of observations, meaning that with
adequate implementation the interaction rate will never be estimated as zero (as it would be using
the maximum likelihood estimate for the individual pair alone).

Posterior distributions for «, p and A, are found using MCMC sampling using the JAGS soft-
ware package and the rjags R package, due to the non-standard posterior for a. The model for a
given ad-slot pair is recalculated once sufficient additional data has been observed. We note that an
exponential distribution Exp(sp, s1) or the Lomax distribution could be used as prior distributions

for o and p, as suggested by Christiansen and Morris [36].

3.2.3 Gamma-Poisson computational experiments

We evaluate the gamma-Poisson model above for three randomly selected ad-slot pairs to illustrate
the performance of different methods. Figure 3.1a, Figure 3.1b, and Figure 3.1c show click-through
rates over time for the existing method and the proposed method for each pair. The proposed
method clearly outperforms the existing method at moving from the prior hierarchical belief towards
the true click-through rate, and adapting to temporal variation.

In Figure 3.1c above, the transitions made by the existing method between the advertiser max-
imum likelihood estimate, the campaign maximum likelihood estimate, and the {aj, s;} maximum
likelihood estimate are clearly seen. In this case the campaign maximum likelihood estimate equals
the ad maximum likelihood estimate as the campaign has one ad. The proposed method approaches
the underlying (variable) ad-slot probability more quickly due to the greater weight placed on ob-
served ad-slot events, eventually transitioning to the {a, s;} maximum likelihood estimate alone
on the same day as the baseline method.

The gamma-Poisson model described above showed excellent performance and improved on the
existing method for every ad-slot pair tested, approximately 100 randomly selected pairs. However,
the computational requirements of this method are too high to make it a viable candidate for
production use (as implemented here), as there may be hundreds of thousands of ad-slot pairs for

which to evaluate a model. We therefore consider a computationally simpler approach.
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Figure 3.1: Ad interaction rate plotted against time for 3 example ad-slot ({a,s;}) pairs with a
non-trivial amount of traffic. The horizontal axis displays the number of days since the ad first
appeared on the slot. The vertical axis displays the ad interaction rate for the slot. The solid line

is the true interaction rate. The dashed line is the exchange’s existing estimation. The dotted line
is the gamma-Poisson model.
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3.3 Combining a main effects model with a

beta-binomal distribution

We now model the interaction probability for each ad-slot pair as an additive combination of a
constant global term and a constant bias term for each of the publisher, advertiser, campaign,

website, ad and slot entities
PI‘(Y}k = 1|Sj, ak) =pjk = U(N + bp + by + be + by + b + bj) (3.11)

where Yj, is the outcome of an impression event for the ad-slot pair {ax,s;}, o(-) is the logistic
function, p is the global mean interaction probability, and by, b, be, by, bi., bj are constant offsets for
the publisher, advertiser, campaign, website, ad, and slot respectively. The bias terms are included
in the model to compensate for the fact that many hierarchical ad and slot entities have vastly
different observed interaction rates. For instance, an ad with a high interaction rate on average
is likely to have a lower interaction rate than this value when displayed on a slot with a very low
average interaction rate. The model parameters can be estimated with respect to the log-likelihood

using the following optimization problem

argmin = Tjrlogpjk — (Tjk — Sji) log(1 — pjr)+
b baberbu by bi 5

A1 Zb§+AQZb2+Agzb§+A4Zbi,+A5Zb§+A6Zbi

Where pjj, is the observed interaction probability for the ad-slot pair {ay,s;} and A; and Ay
are regularization hyperparameters shrinking the bias terms toward zero to avoid overfitting. This
optimization problem could be solved using an L-BFGS implementation such as the FORTRAN
library by Zhu, Byrd, and Nocedal [85], or stochastic or coordinate descent, or other methods. We
demonstrate stochastic gradient descent by way of example. For each training ad-slot pair, we loop
through the model parameters, updating each parameter in the opposite direction to the gradient,

using the following general update rule

a
b e bt (f_T’: - jk) +20h,
where the o, terms are parameter-specific learning rates and the A, terms are parameter-specific
regularization terms. We loop through the training examples multiple times, until the error on a
validation set (held out from the training set) starts increasing due to overfitting.

For each ad-slot pair, the output from this model is used to set the parameters of a Beta prior
distribution for the ad-slot interaction probability. The variance of the Beta prior is set heuristically
and optimised using held-out sets of training data. Every night, the optimization problem above
is re-solved, and as additional impression events are available for the ad-slot pair, the posterior of
each ad-slot Beta distribution is updated. When making predictions for an ad or a slot which does
not appear in the training data, some of the relevant bias factors will not have been trained. In this

situation they are set to zero.
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3.4 Results and discussion

We train the model above on the full exchange dataset for the month of June 2013, only considering
ad-slot pairs with more than 5000 impression events to prevent ad-slot pairs with only a few im-
pression or interaction events from adversely affecting the training information. The model is tested
on the full exchange dataset across all ad-slot pairs (no impression limit) for the first week of July
2013, consisting of tens of thousands of ad-slot pairs and hundreds of millions of impressions. The
impression and interaction events from this test week are aggregated for each ad-slot pair, and the
log-likelihood of the predictions made by each model are compared. The log-likelihoods are shown
in Table 3.1. The proposed model offers a 19% improvement in log-likelihood over the existing
method. An interesting and unexpected result is that the bias term model increases the RMSE over
the existing exchange method while decreasing the log-likelihood, supporting the comments on the

unsuitability of the RMSE as a performance metric in section 2.4.

Model Log-likelihood RMSE AIC
existing exchange method -1,890,565 1.213 3,689,293
main effects/beta model -1,518,400 1.365 3,071,583

Table 3.1: Model performance

We chose not to re-evaluate the models every day of the test week, as would be done in pro-
duction. This would be of greater benefit to the proposed model than the existing model, as the
proposed model moves from the prior prediction to the observed value in a more effective manner
for all slots.

Figure 3.1b illustrates that the proposed method estimates an ad interaction rate than can be a
factor of 2 or more different from the existing method. Implementing a new model which changes
the estimated interaction probability for CPC or CPA campaigns will result in many auctions having
different outcomes than with the existing method. As more auctions take place, different campaigns
wil be served to users than under the existing system. This changes the training data collected by
the system, which has external effects such as changing the timestamps at which campaigns reach
frequency caps. The methods proposed in this chapter will change the behaviour of the system
in ways that are difficult to predict with historical data. Therefore, experimental validation of
the impact of this model on revenue is essential before implementing it across all campaigns. We
note that the production system is impossible to simulate accurately due to the many nonlinear
interactions, most importantly the external influence of campaign managers, who modify constraints
by hand in order to meet performance targets for individual campaigns.

As this method improves on the existing method when evaluated using the log-likelihood proxy,
it is worth considering further evaluation. Further evaluation of the model without risk could be
achieved by running it ‘live’ in parallel with the existing system, record the advertisement auction
rankings for each system and analyse whether the differences are likely to positively or negatively
affect the campaigns generating the highest revenue. This was not possible, as the existing ranking
information for each auction is not exposed by system, and modifying this was considered too risky
a change. Instead, this method was directly implemented in production on a small number of
slots in order to evaluate the impact on revenue. Due to circumstances outside of our control, the

volume of traffic to these slots over the test period was not sufficient to draw statistically significant
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conclusions on the revenue impact.

We note that it would be interesting to re-implement the model described by Agarwal et al.
[3] in the context of this dataset, but this was not considered signifiant enough to include. In the
following section, we consider the variation in ad interaction probability with time of day, expected

to be a significant factor influencing interaction probability.

3.5 Extensions

The results above show that a basic main effects model makes a significant improvement over the
existing exchange method when using a ‘fair’ or comparable formulation and input data. With this
demonstrated, we describe extensions to the model that would improve the practical performance
significantly. Including these extensions from the start would have made direct comparison with

the existing method less meaningful.

3.5.1 Interaction probability variation with time of day

As the model parameters are updated daily, and averaged over 24-hour periods, the interaction
probability predicted by this model does not vary with the time of day. However, actual interaction
probability, and the real-time bidding market varies significantly with time of day (see section 7.2).
In order to account for this cyclical behaviour, the time of day should be directly incorporated in the
model, which could be accomplished in a number of ways. One basic method would be to include
an additional bias parameter in the model representing a time ‘bin’ within each 24-hour period.
This parameter would be optimised in the same way as the other bias terms. We do not implement
this extension, as recalculating the training and test data using a different time window involves
building a distributed computing cluster (subsection 5.3.1). Instead, we choose to spend the time

available on the methods described in the following chapters.

3.5.2 Exploration and exploitation trade-offs

We note that a situation may occur where an ad-slot pair has a high ‘true’ or ‘potential’ interaction
probability, but a low estimated probability. This may result in the ad-slot pair never winning an
auction and being denied the number of impression events required to ‘discover’ the true interaction
probability. The system is then stuck in a local optimum. The problem of whether to deliber-
ately allocate traffic to ad-slot combinations that do not have the highest estimated eCPM to gain
information leading to a better outcome can be called an explore-exploit tradeoff.

As a way of performing this exploration, we wrote code to simulate an interaction probability
for each impression event from the beta distribution held for each ad-slot pair, where the expected
value of the beta distribution is the point estimate, and the variance represents the uncertainty.
The resulting variation would result in ‘less favourable’ ads being displayed in some circumstances,
exploring the possibility that these ads actually have a higher interaction rates than estimated.
However, Google researchers provide an in-depth investigation into this issue [63]. The authors
find that in a similar situation, incorporating exploration based on variance into the auction has no
practical benefit and that a greedy strategy of ranking ads by the eCPM performs as well as any

other possible strategy. This method was therefore not considered further.
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Summary

In this chapter we mitigate many of the drawbacks of the existing method for estimating the
interaction probability for an ad-slot pair discussed in section 2.3. We show how a hierarchical
gamma-Poisson model provides better performance for representative ad-slot pairs, and discuss
exponentially weighting past events to better capture temporal variation. As calculating the gamma-
Poisson model for each ad-slot pair has high computational cost, we then propose a new model and
show that this provides significantly better estimates of interaction probability than the existing
method, as measured by the binomial log-likelihood. We also test this model in production in the ad
exchange for a set of test slots. The proposed method is a combination of a main effects model and
a beta-binomial distribution for each ad-slot pair. We discuss incremental improvements that would
improve the model performance in production, the difficulties involved with evaluating any model
offline in an unpredictable market environment, and the implications of the exploration-exploitation

trade-off in this context.

25



26



Chapter 4

Incorporating ad-slot interaction factors

In this chapter, we investigate adding a term modeling the effect of the interaction between an ad
and a slot to the main effects model described in chapter 3, a technique from the collaborative
filtering field. The interaction term for an {ad, slot} pair is given by the dot product of ‘latent
factor’ vectors corresponding to the ad and slot, which are determined using a form of non-negative
matrix factorization. Matrix factorization models use the observed ad-slot performance data to make
predictions about the performance of unobserved ad-slot pairings. We first describe the motivation
behind non-negative matrix factorization and the basic algorithm. We then describe two models
incorporating both main effects and an interaction term, one optimised with respect to the root
mean square error and the other optimised with respect to the log-likelihood. We describe the
custom stochastic gradient descent implemenations in C used to solve the optimization problems

and demonstrate that the interaction terms marginally improve on the main effects model alone.

4.1 Related work

Non-negative matrix factorization, which in basic terms is a factorization of a matrix V' into two
non-negative matrices W and H such that V = WH?”, describes a family of methods with many
applications. Non-negative matrix factorization optimised using root-mean-square error is related
to the singular value decomposition and is equivalent to a relaxed form of k-means clustering, where
W contains cluster centroids and H contains cluster membership indicators. Some types of non-
negative matrix factorization are instances of the probabilistic model called multinomial principal
component analysis. A factorization that minimises the Kullback-Leibler divergence between W HT
and V is equivalent to probabilistic latent semantic analysis, optimised using maximum likelihood
estimation. These methods are often used for analyzing and clustering textual data. We now
consider non-negative matrix factorization in the context of recommendation systems. There is
a significant body of work dealing with collaborative filtering in general and non-negative matrix
factorization methods for this purpose in particular. Much of this work has been inspired by the
Netflix Prize and the methods developed by leading teams in this competition. Koren et al. [69]
provides a comprehensive overview of a recommendation system centered around this method.

In an industrial context similar to the online advertising context considered, two areas stand out.
Yahoo Labs has published a group of papers on click-through rate and response prediction in the
last several years. Much of this research has centered around click-through rates for content on the
Yahoo main website, sponsored search advertising, and interest modeling for users having a Yahoo
account. This is similar but not equivalent to the context of an exchange or demand-side platform,
where there are many more ads to consider and less information on user properties is available.
Agarwal and Chen [4] describe a method for advertisement response prediction that describes a
combination of generalised linear models and matrix factorization.

The annual Knowledge Discovery in Databases conference, with both industrial and academic-

focused tracks, sponsors an annual data-mining competition called the KDD Cup. The 2012 KDD
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Cup Track 2 competition required participants to predict ad click-through rates using training and
test datsets derived from search session logs from the Tencent proprietary search engine soso.com.
The competition criteria rewarded the ranking of the advertisements rather than the true values, so
some competitors used ranking approaches rather than direct click-through rate estimation. Many
industry and academic teams entered the competition and published their findings, such as Wu
et al. [131].

4.2 Non-negative matrix factorization

Recall from chapter 2 that the probability of an interaction given an impression event for an ad-slot
pair {ay,s;} is notated as pj;. The expected value of this probability for all {ay,s;} pairs can be

R™ ™ swhere n is the number of ads and m is the number of slots. More

visualised as a matrix V €
generally rows in V' may correspond to any entity from the advertisement hierarchy, and columns of
V may correspond to any entity from the slot hierarchy described in subsection 2.2.2. The entries
in the matrix are the expected interaction probabilities of an impression given the ad hierarchical
entity and the slot hierarchical entity for the row and column respectively.

The distributions of interaction probabilities in each row and column of the matrix V have very
high variance. Put another way, the interaction probability for an impression conditional on the
advertisement varies widely depending on the slot (context) on which the ad is displayed, and the
interaction probability of an impression conditional on a slot varies widely with the advertisement.
Possible explanations include variation in the type of user that frequents given sites; the reason
the users are visiting the site (recreation, information, social, etc); the placement of the slot on the
site; and similar reasons. Given these explanations, it may be possible to predict the performance
of an ad on a given slot based on the performance of a similar ad on that slot. The corresponding
qualitative explanation is that advertisements for airline tickets would be expected to perform better
across all travel or finance-related websites than all online gaming websites.

As no descriptive information is readily available for ad and slot hierarchical entities, which
could be used to infer the interaction probability, we consider inferring the matrix V using the
information contained in V itself. We therefore investigate matrix factorization based collaborative
filtering methods which are applicable to this use case [69]. Matrix factorization models use the
observed ad-slot performance data to make predictions about the performance of unobserved ad-slot
pairings. Matrix factorization has been successfully used for predictive modelling in e-commerce,
with an example being the item recommendation system of Ebay which deals with similar sparsity,
scale, and temporal challenges to online advertising [123].

R™ ™ with the n users

The preference of each user for each ad can be visualised as a matrix V €
corresponding to the rows and the m ads corresponding to the columns. Each entry in the matrix
is a real number encoding the user-ad preference, derived from the user’s observed interaction, or
equally, non-interaction with a given ad.

Observed values are available for some user-ad combinations in this matrix. The observed entries
are a set V; ;, 4,7 € 2, where (1 is a subset of the complete set of n x m entries. The probability of a
user interacting with an ad they have not seen is an unobserved entry in this matrix. The observed
entries are a tiny fraction of the unobserved entries as most users have only seen a small subset of
ads.

If the matrix V has full rank, then no model can infer missing entries. However, it is a reasonable
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assumption that users can be accurately described by a number of behavioural and preferential
factors much less than the total number of users. Similarly advertisements may be described by a
comparatively small number of factors such as brand, type of product or service, cost, and similar.
It is likely that these latent (unobserved) factors can be combined to closely estimate the user-ad
preference. If these assumptions hold, then a parametric, generative model for the latent factors
trained on the observed data may be able to infer the missing entries in the matrix. This is equivalent
to stating that the probabilities in the full matrix are generated by a process with degrees of freedom
much smaller than n x m.

Let V' be the user-ad matrix. Then one way of formalizing the intuition above is the statement

that V can be approximated as the rank-r product of two n x r matrices W and HT

VaV=fWHT)

potentially subject to Wj, > 0; Hp; > 0;V i,a,b, j. (4.1)

The columns of V and H represent the user and ad latent factors respectively. Consider the case
where f is the identity function. Each element of V can be obtained by the vector dot product of

the corresponding rows of W and H

A~

— wlh.
Vij = w; h;

If the matrix V is fully observed, it is well known that the most accurate rank-r approximation
with loss function given either by the spectral or by the Frobenius norm is the truncated singular

value decomposition

M = Z Jkukv,{
kelr]

where o1, ...,0, > 0 are the singular values, and the singular vectors u1, ..., u, € R® and vy, ..., v, €
R"™ are orthonormal vectors. For the approximation under consideration W and H are analogous
to the left and right singular vectors with the singular values included into either W and/or H.

We note that Billsus and Pazzani [23] initially proposed using the singular value decomposition
in a collaborative filtering context. There are many variations on the basic factorization principle
presented here, across many domains. Basic variations include the choice of link function f, the
definition of the loss function implied by =, and requirements placed on W and H. Criteria are
such as sparsity in W or H or both are sometimes desired [61]. A common requirement is that
the factors are non-negative, allowing only additive combinations. In this case, solving the specific
problem W H =V exactly for W and H where rank(V) is exactly k, with & > 1, is N P-hard [1],and
in general non-negative factorization algorithms are non-convex with many local optima. Note that
W and H are not unique as for any invertible matrix R we have V =WH=WR'RH.

In the user-ad context considered in this project and collaborative filtering in general, the full
matrix V' is not known and the missing entries cannot be treated as zero, making the standard
SVD algorithm and the many alogrithms for non-negative matrix factorization which assume V' is
known unsuitable. We desire an algorithm that optimises the chosen loss function over only the
observed entries in V' to obtain approximate candidates for W and H. Two common loss functions

are the Euclidean distance (Lg norm), which assumes additive Gaussian noise, and the generalised
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Kullback-Leibler divergence (Lee and Seung, 1999) which assumes a Poisson model where the noise

variance scales linearly with the model. Using the Eucludian norm, W and H are found from

gy IV = WHIP 4 2| [ W2+ Ao [H? (4.2)

subject to Wiq > 0, Hy; > 0,Vi,a,b, j (4.3)

where the terms involving A\; and Ay are regularization parameters penalizing complexity in the
solution (equivalent to a zero-mean normally distributed prior on the factors) which empirically
mitigates overfitting. As these loss functions are non-convex, one class of methods involves alter-
nately fixing W and H and solving the remaining convex optimization problem in H or W at each
step. The alternating least squares algorithm is an example of a method from this class, and is
more suitable for densely filled (but not complete) matrices. Another class of methods involves
cycling through the rows and columns of W and H and modifying individual rows to reduce the
approximation error, and is a form of stochastic gradient descent.

Non-negative matrix factorization can be seen to ‘embed’ the user and ad points into a new
vector space, where the elements of the vectors describing each point are formed by combining the
corresponding elements of the user or ad singular vectors. The coordinates of a point in this new
space often have a real-world interpretation, with the value of each dimension relating to a concept
such as the strength of the user preference for expensive or cheap items. If the columns of W and H
are almost orthogonal it is possible to order the significance of the latent features. It is also possible

to find similar users or ads by selecting other nearby points in the embedded space.

4.3 Latent factor model with the sub-optimal RMSE as the loss

function

In the online advertising context, there are orders of magnitude differences in the mean conversion
rate for each row and column in the input matrix, which will dominate the latent factor vectors
if the algorithm above is applied directly. The factorization algorithm can be improved by the
addition of bias terms similar to those discussed in the previous chapter, leading to the ‘standard’

matrix factorization model for collaborative filtering 68|, where the matrix V' is approximated as
Pr(Yj, = 1|sj,ax) = Vij i= o+ by + b; + w'h,; (4.4)

where p is the global offset and by, and b; are constant offsets or bias terms for the ad and slot
(or advertiser and publisher). We note the reduction in the number of bias terms compared to the
previous chapter. This is done as the model is initially trained on advertiser-publisher data, before
being trained on campaign-website and ad-slot data hierarchically, when the additional bias terms
are added back in. It is trivial to adjust the equations and code to include the bias terms described
in chapter 3. The bias terms allow the latent factors to express the interactions desired rather than
trying to account for variations in ad or slot main effects. The parameters of this model can be

found by minimizing the RMSE loss function

. 2
bau(:gmlrll1 Z (Vij — p— b, — bj — wiThj) + A1b? + Agb? + Asl|wil|? + gl by 2 (4.5)
ks0j,Wi,hj
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Where the A; factors are individual regularization constants. Using individual regularization con-
stants results in empirically better results [69]. As the output values from this model are not

5" percentile value

constrained to the range [0, 1], the output is truncated to lie between 0 and the 9
of the observed advertiser-publisher ad interaction rates.

Recall from section 2.2 that the existing exchange/demand side platform method for interaction
probability estimation does not account for the impression context (the slot) other than at the
most specific level in the hierarchical MLE process. Almost any model that includes the context
contribution to the interaction probability is likely to improve the log-likelihood significantly over
the existing model. The bias-only model is therefore used as the baseline model with which to
evaluate the factorization models involving ad-slot interactions rather than the existing method of

section 2.2.

4.3.1 Temporal variation and low-confidence observed rates

Temporal variation is accounted for by using the exponentially-discounted maximum likelihood
estimate pj;; described in subsection 3.2.2 to form the training data for the model. This is a
different and simpler approach to the standard practice of using time-varying bias and interaction
terms in the main effects/latent factor models. We avoid introducing this complexity while we are
still evaluating the utility of the interaction terms in the first place.

The SVD-based model is trained with the matrix V where the entries in the matrix are the
maximum likelihood estimates of the interaction rate for that row and column. As the average
value of pj;, is on the order of 10~ the maximum likelihood estimate has a wide confidence interval
where few events have been observed for the row and column. In order to deal with this, a number
of events greater than a minimum threshold of 5000 are considered for both training and testing the
model. For an ad-slot pair with an interaction probability equal to the overall mean, the maximum
likelihood estimate of the interaction probability given a sample of 5000 impressions has an 87%
chance of being within 80% of the true value (by a simple application of the binomial distribution),

a threshold which is arbitrarily chosen.

4.3.2 Optimization

Stochastic gradient descent with early stopping was used to solve the convex optimization problem,
learning the offset terms and latent feature vectors. The squared error for an individual term in the

training matrix is
K 2 K K
612]- — <‘/z — - bk — bj — Z wzkhk]> =+ )\15% + )\2[)? + )\3 Z w?k + A4thj
k=1 k=1 k=1

where K is the number of latent factors (the number of columns in matrices W and H) and w
and h are the latent feature vectors. For each training example, we loop through the parameters in

(4.5), updating each parameter in the opposite direction to the gradient, using the following update
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equations

0
b + bk—i—ag—e =br + a9 (ew —)qbk)

8bk
0
b — b + a3 — 8b b + a3 (6” /\gbj)
0 2
Vi € {0,1,....,7} wi < wip + oy e = Wik + 0y (eijhk’j — A3wik)
awik J
0
Vk € {07 1,. 7’} hk] — hkj + a5 — oh hk] + a5 (6”wzk /\4hkj)
kJ

where the «; terms are the learning rates for each parameter, 7 is the number of components in each
latent feature vector, and the \; terms are the regularization terms for each parameter. We loop
through the training examples multiple times, until the error on a validation set (held out from the
training set) starts increasing due to overfitting.

This solver was prototyped in Matlab and Python but was ported to C due to lack of speed
reducing the amount of hyperparameter optimization possible. Hyperparameters include the initial
latent factor values, which are initialised with random vectors drawn from a Gaussian distribution,
the learning rates, regularization constants, and the order with which the training examples are

processed. A basic grid search was conducted for the optimum hyperparameter values.

4.4 Latent factor model with log-likelihood as the loss function

The RMSE has serious drawbacks as a loss function in this context, as discussed in section 2.4 and
section 4.6. We therefore use the logistic loss function as an optimization criteria for the interaction
model. We note that this has previously been proposed in [83]. In this method the probability
Djk = f/ij is given by

Pk = Vij = o(pu+ by + b; + wl h;) (4.6)

where o(+) is the logistic log function. Learning the parameters is done by minimising the log-

likelihood, yielding the following optimization problem

argmin > = Tirlogpjr — (Tjk — Sjk) log(1 — Pik) + Aabi + Aab? + Asl[wil[* + Aa|[hy|[* (4.7)
vEl k::wl7 ] ]k

In this equation, T} is the number of impressions for a given advertiser-publisher pair combi-
nation, and Sj is the number of ad interactions for the combination.

This model has the properties of weighting the loss function by the relative confidence in the
observed value of each entry [1], as the maximum likelihood estimation of the true value of the
assumed generative model becomes more accurate with increasing impressions. Also, the model’s
use of the logistic function bounds the output within [0,1]. The same method for mitigating the

effect of temporal variation in pj; as before is also used with the log-linear factorization method.
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4.4.1 Optimization

A stochastic gradient descent implementation similar to the implementation described in subsec-

tion 4.3.2 was implemented in C++ using the following update rules

a::,u—l—bk—f—bj—l—wlrhj

eaT-k
bk<—bk+a2<1ja - jk) + 2A1bg

ar
bj%bj—l-ag(e K

1 _jea - jk) + 2X2b;

e® jk
1—e2

Wik < Wik + aghjy < - jk> + 2 3w;p,

e“ ik
1—e®

hkj — hkj + Oé5hjk < — jk) + 2)\4hkj

We also experimented with using a FORTRAN implementation of the L-BFGS algorithm [85] to
find a local minimum of this optimization problem. This limited-memory BFGS algorithm is a
quasi-Newton method using Shanno-Phua scaling to compute the step direction and a bracketing
line-search for a point satisfying the strong Wolfe conditions to compute the step length. However,

this produced inferior results to the custom stochastic gradient descent implementation.

4.5 Hierarchical factorization models

If the matrix V is constructed using ads and slots, the number of observed entries is small compared
to the unobserved entries due to the data sparsity - most ads have only been displayed on a small
subset of slots. Beyond a certain sparsity, it is not possible to recover low-rank struture within V'
even if it exists.

There are well researched limits on the fraction of entries required for exact recovery of a low-
rank matrix [29], a similar situation to the matrix factorization algorithm considered here. Clearly
at least (n1 +ng —r)r measurements are required to exactly recover a matrix V' where rank(V) = r,
where n; and ns are the number of ads and slots respectively. Exact recovery is possible using a
number of measurements within a constant of this limit via convex programming. However, the
observed ad-slot interaction matrix data does not meet the minimum recovery requirement above.

Therefore, a hierarchy of factorization models are constructed. The training data is first aggre-
gated to the advertiser-publisher level, and a factorization model is trained on conversion rate data
at this level of the hierarchy. A second factorization model is then constructed at the campaign-
website level, and trained on the residual between the prediction of the first model and the training
data at the campaign-website level. A final factorization model is then constructed at the ad-slot
level, and trained on the residual between the prediction of the second model and the training

data at ad-slot level.

4.6 Results and discussion

We train the models on exchange data from the period of June 2013. The model is tested on its

ability to predict aggregate interaction rates for ad-slot pairs for a ‘future’ dataset from the first
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week of July and also from the entire month of July. The results from the first week are reported, as
the model can readily be trained on a single machine in several hours, making it feasible to re-train
every day. This is a true test in the sense that the prediction of the model is being validated against
unseen future data, in contrast to reporting the ability of the model to fit the training data. There
are 8,330 advertiser-publisher training pairs in the dataset out of 582,000 possible pairs. There are
6,300 pairs in the test set, including 855 pairs (14%) unobserved in the training set.

The log-likelihood is the primary measure of model quality. The model RMSE are reported as it
is the metric the SVD-based factorization model is trained on. We note that the distribution of true
pjk Vvalues over the matrix V' is approximately a gamma distribution with the majority of values
being on the order of 1072 to 10~* with a long tail of much higher values. The RMSE is dominated
by these high click-through rate (CTR) outliers just as the gradient of a linear regression is heavily
influenced by high leverage outliers. In addition, the RMSE does not consider the difference in the
number of events per ad-slot pair. For instance, a pair with 2 impressions and 1 click has the very
high CTR of 0.5 but is unlikely to be as relevant as a pair with 10® impressions and 100 clicks. The
log-likelihood captures this variation. However, both the log likelihood and the RMSE place high
penalties on occasional large mispredictions and small penalties on the much larger volume of small
mispredictions. Given the distribution of interaction probabilities in the ad auction it may be more
beneficial to overall revenue to place more significance on penalizing the large number of smaller
mispredictions near the mean value than the occasional large misprediction. The performance of
each model is given in Table 4.1, Table 4.2, and Table 4.3.

Section Model RMSE LL
bias terms only 0.38151  -1690163
section 4.3 log-linear 0.37274  -1608127
section 4.3,subsection 4.3.1  log-linear time-discounted = 0.37263 -1591549
section 4.4 SVD-based 0.26449  -1678458

section 4.4,subsection 4.3.1 SVD-based time-discounted 0.25196 -1618914

Table 4.1: Factorization model performance at the advertiser-publisher level

Model RMSE LL

bias terms only 1.06162 -1690163
log-linear time-discounted  1.01887 -1547982
SVD-based time-discounted 0.70282 -1574431

Table 4.2: Factorization model performance at the campaign-website level

Model RMSE LL AIC
existing exchange method  1.21346 -1,890,565 3,689,293
bias terms only 1.36578 -1,518,400 3,071,583

log-linear time-discounted  1.20424 -1,491,265 3,589,188
SVD-based time-discounted 1.10742 -1,509,876 3,589,188

Table 4.3: Factorization model performance at the ad-slot level

The SVD-based model decreases RMSE significantly, which is expected as this is directly opti-

mised by the algorithm over the training set. The log-linear factorization method produces the best
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results in terms of the log-likelihood, significantly improving on the baseline model, and making a
minor improvement over the bias term model. The bias terms are responsible for the majority of
the performance of each model with the interaction terms in each factorization method providing
marginal additional benefit. The time-discounting of older events in order to capture variation in
interaction probability over time provides a consistent benefit to the model. Following this investi-
gation, the interaction terms, or latent vectors, are not considered to be useful as the decrease in
log-likelihood is not large enough to offset the additional parameters introduced into the model.
The gradient descent algorithm produced better results than L-BFGS optimization, producing
the best result for each method after multiple runs varying the parameter initializations. This is
attributed to the ability to individually vary the learning rates and regularization for each parameter
with the gradient descent method, as well as the ease of early stopping in order to avoid overfitting.
Other than the event aggregation into the advertiser-publisher training information, which is
also performed for other purposes, this model is not computationally demanding in this context,
being able to be trained on a single machine in hours. It is noted that in the online setting of the
exchange, new information is continually arriving. The matrix factorization model can be updated
efficiently by minimising the objective function considering only constant and latent factors that

affect updated entries in the matrix V;;, and these updates can be performed in parallel.

Summary

In this chapter, we investigate modeling the effect of interactions between hierarchical interaction
between an ad and a slot to the main effects model described in chapter 3, a technique from
the collaborative filtering field. The interaction term for an {ad, slot} pair is given by the dot
product of ‘latent factor’ vectors corresponding to the ad and slot, which are determined using a
form of non-negative matrix factorization. We first describe the motivation behind non-negative
matrix factorization and the basic algorithm. We then describe two models incorporating both
main effects and an interaction term, one optimised with respect to the root mean square error and
the other optimised with respect to the log-likelihood. We describe the custom stochastic gradient
descent implemenations in C used to solve the optimization problems and demonstrate that the
interaction terms marginally improve on the main effects model alone. However, the interaction

models described were not found to be suitable tools for interaction probability estimation.

35



36



Chapter 5

Incorporating user-specific features with

generalised linear models

In this chapter we model the user-ad interaction probability Pr(Y4 ke = 1|un, S5, ax,t) as a function
of advertisement, user, context, and time features using a regularised generalised linear model. We
first develop a production-ready data pipeline based on the Hadoop software for processing impres-
sion handler log files described in subsection 2.5.2 and generating the various processes required
for the model input features. We then use a logit-linked generalised linear model of the interac-
tion probability as a function of these features, constructing a separate model for each campaign.
After experimenting with this model, we develop a scalable implementation that is capable of train-
ing thousands of campaign models over hundred of millions of impressions daily, and evaluate the
predictive performance using an industry dataset containing approximately 9 x 10 events. All
information used in this chapter is anonymised and cannot be used to personally identify any user

when the dataset is taken in isolation.

5.1 Related work

Generalised linear models and gradient descent methods are widely used in computational advertis-
ing by demand-side platforms and exchanges due to their scalability and performance. Researchers
working with industry have contributed significantly to the academic literature due to the commer-
cial advantages from improvements in accuracy and training efficiency. As this thesis seeks to apply
recent research to an industrial problem, the following paragraphs focus on industry contributions
to the academic literature, rather than one or more specific methods for determining the parame-
ters of a generalised linear model (Agarwal et al. [2] and Ross et al. [112] are two good papers on
this topic). The predictive model and infrastructure developed in this chapter is similar to those
described in the papers referenced in the paragraphs below, although significantly less complex. All
of the industrial systems described have access to many more features than are available in this
project, as data collection has not been a focus of the exchange. We also note that many of these
papers were published in the past two years.

A regularised generalised linear model is used for ad interaction prediction in the 2013 paper
[81], describing work done at Google. A second paper from engineers at Google containing practical
and general advice for machine learning in large, complex production systems is [116]. In this paper
the authors suggest incorporating as many features as possible into a generalised linear model and
relying on strong L, regularization to enforce parameter sparsity. The authors also present a map-
reduce based implementation for training models with stochastic gradient descent that inspired the
method developed in subsection 5.4.2 below.

Collective is a New York based company that operates a large demand-side platform in the U.S.
market. In January 2014, Collective released a paper describing some aspects of their advertisement

targeting and value estimation system [64]. To model user-campaign interaction probability, Collec-
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tive uses per-campaign logistic regression models with L; and Lo regularization. After computing
a per-campaign model, Collective groups users by thresholding their model score, and targets each
campaign to the user groups most likely to interact with the campaign. Collective uses hundreds of
thousands of user features, obtained from data vendors as well as cookie-based tracking. We note
that Collective, as a demand-side platform, does not bid on all users available through exchanges
and supply-side platforms, choosing only users that meet model data requirements and a threshold
probability of interacting with a given campaign. We note that this is a different situation to the
exchange setting where it is recalled that a fixed catalogue of ads must be optimally assigned to all
impression inventory.

Distillery (previously Media6Degrees) is an online targeted advertising company based in the US.
Distillery captures an extensive and informative range of data including physical location, device,
and mobile data. Distillery uses this data to build brand-specific user interaction models, and then
displays targeted advertisements to users across multiple internet-connected platforms including
television and mobile devices [103]. Distillery’s process includes segmenting users, and then using
the user segments as features in an unspecific. Distillery user segments for each campaign typically
account for about 1% of all users, and the literature does not provide any details about how this user
segmentation is accomplished. The output of the generalised linear model is then used in further
model layers to determine the bid price for an ad impression. Distillery only bids on around 3% of
available impression inventory. Distillery describes using unique URLs visited by a user as a set of
user features, the same idea we developed in this project.

Microsoft has both display and search advertising operations, and has undertaken a significant
amount of published and unpublished research into estimating ad interaction probability [110].
A notable paper is that by Graepel et al. [52], which describes an extremely scalable probit (not
logistic) regression model for interaction probability prediction, notable by its use at scale in the Bing
search engine. In this Bayesian model, parameters are described by distributions which are updated
in real time as new training examples are observed. Another notable paper by researchers affiliated
with Microsoft research describes the ‘orthant-wise limited-memory quasi-Newton’ algorithm, a
modified L-BFGS method that allows scalable training of an L;-Regularised generalised linear
model [10].

Finally, Criteo is another major competitor in the U.S. and global online advertising industry.
A paper by Chapelle et al. [33] provides some details on a CTR prediction method used by Criteo.

This method is also based on L; and Lo regularised generalised linear models.

5.2 Model evaluation criteria

We repeat section 2.4 here to allow for the situation where this chapter is read independently.

The ideal evaluation criteria for any interaction probability estimation method developed in this
project is that it generates more revenue than the existing method, all other factors being equal.
The only definitive way of testing for this criteria is to run each system in parallel and direct ad
requests to each system at random. However, in order to evaluate candidate methods offline, a proxy
for this evaluation method is required that can be used in isolation with historical data. Developing
an accurate and precise proxy is difficult, as small changes to the predicted interaction probabilities

at time ¢t affect future auction outcomes. We use the the binomial log-likelihood calculated over all
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impression events as a proxy. The log-likelihood is defined by
N
1(¢) = (wilog(f(#)) + (1 — yi) log(1 — f(4))) (5.1)

i=1

where N is the number of test events, y; € {0, 1} is the ocurrence or non-occurrence of an interaction
for an impression event, and f(¢) is the prediction function for the interaction probability.

We evaluate proposed and existing models by training each model on a historical dataset from the
exchange and then comparing the log-likelihood for the interaction probabilities generated by each
model for held-out test data from after the training period. We note that using the log-likelihood
for evaluating the performance of an interaction probability prediction system in the context of an
exchange or demand-side platform suffers from a number of shortcomings. Most significantly, the
binomial log-likelihood penalises large errors to a greater extent than small errors, on a continuous
scale. However, the outcome of an ad auction is a discrete event, and a small error which changes
the auction ranking has a greater impact than a large error which does not change the ranking and
auction outcome. However, developing a more application-specific method is more time-consuming
than simply testing the new method on a small fraction of live traffic.

We also note that in the situation where a model is used to predict interaction probabilities
for an ad-slot pair the root-mean-square error (RMSE) between predicted and actual interaction
probability is a very poor error metric. It assumes that the errors are all from a normal distribution,
which is a terrible assumption for count data; Poisson is a reasonable assumption. The RMSE also
does not account for the number of impressions for each ad-slot pair, unlike the log-likelihood.
It is dominated by low-confidence outliers in a similar fashion to ordinary linear regression. The
RMSE also heavily penalises large errors while minimally penalizing small errors (although the log
likelihood does this also). Given the distribution of interaction probabilities in the ad auction it
may be more beneficial to overall revenue to place a higher penalty on the large number of smaller

mispredictions near the mean value than the occasional large misprediction.

5.3 Feature engineering and data processing

Recall that given an incoming ad request from a publisher or real-time bid request, we require
an estimate of the interaction probability for each advertisement in the exchange or demand-side
platform catalogue in order to select the ‘best’ advertisement as defined in section 2.1. Rather than
using aggregate historical interaction rates as in chapter 3, we now model the probability of an
ad interaction taking place following an impression event as a function of information related to
the event (see Table 5.1). We use logistic regression, a regularised generalised linear model with a
binomially distributed response variable and a logit link function. This model can be trained using
historical impression events which are served directly through the exchange or via the real-time
bidding market. We choose to construct a separate model for each campaign. For a given cam-
paign, this model constitutes a mapping from a real-valued vector representing all the information
describing an event to a probability of an interaction occurring. In order to learn this mapping, we
first require a method for transforming information about the event to a real-valued feature vector
denoted by xj, a process known as feature engineering.

Information, or features, relating to an event can be usefully grouped into information relating

to the advertisement, user, direct context, and external context of an impression event. These
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groups are shown in Table 5.1. We note that all of the information used comes from the event logs
described in subsection 2.5.2. Information not included in these log files, including basic information
such as the semantic content of advertisements and websites, is not available in the context of this

project; obtaining this information is highly desirable and the subject of ongoing work.

Type Features

User Browsing history, device
Direct context  Publisher, website and slot
General context Time of day

Table 5.1: Categories of features used

Information relating to the user includes the user’s available browsing history, defined in this
project as the number of times each user has requested each webpage tracked by the exchange,
including aggregate features such as the total number of websites visited and the total number
of website requests. The motivation for including these features is that the browsing patterns
contained in this information will differentiate users with respect to their ad interaction behaviour
[78]. The user’s computing device, determined by the browser user-agent string, is also included
in the model. The users’ IP address, which can be used to determine physical location, is not
included, although it would be simple to include in a future version. Information relating to the
general context of an impression event includes the time of day. The time of day of an ad impression
event is highly correlated with the interaction probability, and is therefore included in the feature
vector. Information relating to the direct context of an impression event included in the model
includes the slot, website, and publisher.

We note that features can be both categorical or continuous. Categorical features with IV possible
values are represented by a 1-in-IV encoding over multiple dimensions, one dimension for each level
of the categorical variable, with one of these dimensions equal to 1 and the remainder equal to 0,
also known as a ‘one-hot’ binary encoding. We also note that for a proportion of impression events,
the user involved has not been previously identified by the exchange. For these impressions, the
feature vector cannot be generated, as no previous impressions exist. We therefore consider only
impression events where the user has been previously seen in 3 or more events for both training and
testing the model, as we consider that these users also have an acceptable probability of being seen
again in a relevant time period.

Prior to using the event logs to generate the features described above, the logs must be processed
to filter out search engine crawlers, automated agents, and fraudulent clicks. After these events are
filtered out, only events reasonably believed to correspond to people interacting with online content
remain. We used a set of heuristic filters based on exploratory data analysis to identify and remove
these events. While we are reasonably confident our methods eliminate the majority of such traffic

and result in useful training data, we note that this is an active research domain in its own right.

5.3.1 Hadoop and mapreduce

We now consider generating a processed dataset consisting of the features described above from
the textual event logs, with one event per line. As the exchange processes billions of events daily,
these files, even in compressed form, represent a large volume of data: around 270 billion lines, or 3

Terabytes of uncompressed text, were processed to generate the results in this thesis. Processing the
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events to generate features, creating model input matrices, and training models over this volume of
data would be too time-consuming on a single workstation, and we therefore used multiple virtual
machines running the Hadoop and MPI distributed computing frameworks.

Datacenter-based virtual machines were used in place of physical servers. The virtual machine
(VM) instances were rented on a per-hour basis from the Amazon Web Services Elastic Compute
Cloud (EC2). EC2 is a core product of Amazon Web Services (AWS), which offers other more
integrated products such as the distributed database Redshift. It is possible to start, stop, and
terminate these instances when desired, paying by the hour for active machines - hence the term
‘elastic’. VM specifications and costs change on a frequent basis and are available from the AWS
website. A range of servers are available, ranging from single-core instances with 500MB of memory
to 16-core instances with 244GB of memory (at the time of writing). We experimented with different
cloud instance types to find the most cost-effective instance size for the feature engineering, settling
on more instances of the m1.xlarge VM type rather than fewer instances of a larger VM type. This
is expected to be because the workloads do not require large Java Virtual Machine heap sizes and
greater 1O capacity is available with greater numbers of smaller instances. The virtual machines
were hosted in the AWS Ireland datacenter, the closest datacenter to the exchange location. We
note that renting VMs by the hour is more economic than purchasing machines for experimental
work or projects with varying computational requirements. For example, for this project we ran a
100 machine cluster with 400 cores, 1.5 TB of RAM, and 168 TB of disk space with a hardware
cost of around $500,000 for 24 hours for a cost of under $5,000 (one of many configurations).
Further benefits of cloud instances include easy access to different operating systems and compilers,
and ephemeral environments with little system administration overhead. While working on this
project, we developed a library of scripts to automate starting, stopping and configuring different
size clusters for different workloads.

Storing and processing data on a cluster of machines requires a software framework to organize
computational tasks, manage data locality, and manage redundancy to compensate for hardware
failure. Machine failure is nearly certain, as a 24-hour computation depending on the output of 100
machines has a 40% probability of failure if each machine has a 0.5% probability of failure in the
same period. The software framework must therefore silently handle the loss of multiple machines
without losing data or affecting the progress of a program. Two requirements are a distributed
filesystem and a system for managing parallel computation between machines that does not depend
on high-speed networking. One such framework is named Hadoop. In 2006, Google published
solutions to these problems in [31] and [44], and these were replicated in the open-source Hadoop
project in the following years by engineers at Yahoo and elsewhere.

The Hadoop distributed filesystem (HDF'S) allows all machines in a cluster to access files stored
on any other machine, as well as providing configurable data replication for redundancy. The
distributed computation abstraction provided by the first-generation Hadoop framework is called
mapreduce [44]. The mapreduce framework requires the user to write programs which follow the

steps illustrated in Figure 5.1.

1. Split the input data into (key,value) pairs with an arbitrary function - typically by line,
although method of splitting is not required

2. Process the (key, value) pairs with an arbitrary function called the ‘map’ function

3. Sort the (key, value) pairs and write to HDF'S
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4. Fetch the (key, value) pairs from their location in the cluster
5. Merge the (key, value) pairs into one sorted file

6. Read these files sequentially and process them with an arbitrary function called the ‘reduce’

function

7. Write the output of the reduce functions to HDFS

Crucially, writing software using this abstraction allows the map and reduce functions to be
performed by multiple processes in parallel, as there is no communication between functions during
their execution. Therefore, the number of map and reduce processes can be increased arbitrarily,
and the volume of data that can be processed scales almost linearly with the available computing
resources. Multiple iterations of this process allow common data processing operations such as
aggregations, joins, filters, and transformations to be performed in parallel using thousands of

servers if required.

InputFormat Map Sort + Fetch Merge Reduce OutputFormat
Spill
map >
/ <\ \
split 0
reduce
split 1 - Bl unction part0
split2 map < 1
split3 func.twon N 4
split4 —_— — redu.ce _— parti
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map > 1
function [N
HDFS HDFS HDFS

N

Figure 5.1: Conceptual illustration of the Hadoop mapreduce process

Not in memory = slow! See Apache Spark

One example of the many uses of the mapreduce abstraction in this project is calculating the
time that each unique user in the dataset was first observed and last observed. For each event,
the map function outputs the user identifier as the key and the timestamp as the value. The
reduce function processes all events for a given user and selects the smallest and largest timestamps
observed. The time required for this calculation was found to exhibit almost linear scaling with
both the number of events and the cluster size, in line with expectations. A second example is
the calculation of the number of impression and interaction events for the ad and slot entities and
ad-slot pairs in chapter 3 and chapter 4, which is a trivial application of the mapreduce paradigm.
A further example of the use of the mapreduce framework is generating the portions of the event
feature vectors corresponding to the user-website interactions. The map phase of this computation
partitions the lines in the log files into {key, value} pairs where the user identifier is the key and
the website identifier is the value. The reduce phase of the computation aggregates the number of
website identifiers for each user.

Mapreduce is a powerful abstraction, particularly for simple data transformations built from
aggregation, filtering, and similar steps. However, iterative methods for function minimisation and

algorithms that require graph traversal are not a natural fit with the mapreduce system. A further
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limitation of Hadoop and mapreduce is that the time required to load data from the servers’ physical
disks, move data around over the network, and serialize intermediate results to and from disk, is
often more limiting than processing capacity. A framework that is superceding mapreduce for many
workflows due to its ability to cache intermediate results in memory is the Apache Spark framework,

which we do not investigate here due to time limitations.

5.4 The generalised linear model

Following the data pre-processing, information describing each ad request is represented by a sparse
vector x; € R™!, where n is the number of features or dimensions and the extra dimension is a
constant value representing the model intercept. The outcome of each ad request (an interaction
or no interaction) is denoted by y. The pair (x;,y) is an event. We model the occurrence of
an ad interaction occurring as a result of an impression event using a generalised linear model
and the logistic link function. From this point on we denote the occurrence or non-occurrence of an
interaction event for an impression event by y € {—1,+1} for notational convenience. The sampling

distribution of a logistic regression model is then
Pr(y|x, w) == o(wlx) (5.2)

where o is the logistic function and w € R™*! is the model weight vector. We note that the probit
link function is an alternative to the logistic link function in this context. The parameter vector is

found by minimising the negative log likelihood

N
(w) == log(1 +exp(—yw’ xi)) + Ml[wlli + Aolwl[2 (5.3)

i=1
where A1 and )y are the model regularization constants, known as L1 and Lo regularization con-
stants. The linear Ly penalty term corresponds to a Laplacian prior on the model coefficients,

written as
Pr(w) = (A1/2)"exp(—A1[|wl[1) (5.4)

In practice, the L term can reduce coefficients which have little effect on the log-likelihood of
the model to exactly zero, depending on the optimization method and implementation used. L
regularization allows fitting a model where the number of degrees of freedom approaches or ex-
ceeds the number of training examples, as the sample size required grows logarithmically in the
number of irrelevant features [91|. However, the L; regularised objective function is not differen-
tiable everywhere, requiring special treatment by gradient-based solvers. The quadratic Lo penalty,
corresponding to a Gaussian prior on the coefficients, does not result in zero coefficients, and is dif-
ferentiable everywhere. Lo regularization requires a sample size that grows linearly in the number of
irrelevant features. The regularization parameters penalize the size of the coefficients, reducing the
tendency of the model to overfit. Overfitting is when the function learned by the model produces a
low error on the training dataset but does not generalise to new data from the same distribution,
due to the model fitting ‘noise’.

The vast majority of impression events do not result in any user interaction (the average interac-

tion rate is around 10™%), including most impression events where the user is a priori known to have
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a high affinity for the advertisement in question. Therefore, we expect that the positive interaction
events contain more information than negative interaction events, and that increasing the relative
importance of the positive training events may improve the classifier performance. Weighting the
positive training examples more heavily than the negative training examples can be achieved by du-
plicating each positive training example h times, where h is equal to the desired (integer) weighting
factor.

Alternatively, this can be achieved by subsampled negative training examples, a process which
typically has negligible impact on the model error when working with extremely large datasets. A
side effect of this process is reducing the computational complexity due to the order of magnitude
decrease in size in the dataset, which reduces the server costs. We therefore downsample the
training data by using a heuristically chosen ratio r smaller than 1. This technique is common in
the literature and employed in production by many other firms, including the leading demand-side
platform Distillery [103]. We note that this requires adjusting the model by adding log(r) to the
intercept to account for the altered probability distribution after subsampling [66], [96], [32].

A common step in statistical modelling is feature selection. However, standard techniques for
estimating the significance of each feature are difficult to apply in this context, with thousands of
models being simultaneously trained on the same extremely large dataset. One practical approach
would be to build a base model for each of the thousands of campaigns with a set of basic features,
then train a new model for each campaign using a set of additional features, and then evaluate
the candidate feature set using the mutual information criterion with a held-out test set over all
campaigns. However, feature selection using this process has not been performed due to time

constraints, and we include all features in the modelling process by default.

5.4.1 Minimising the logistic regression loss function

The demand-side platform considered in this project can process up to billions of impression events
daily. Due to the volume of training records, a fast and memory-efficient method is required to
minimize the loss function (5.3) for each campaign. Stochastic gradient or coordinate descent
and L-BFGS optimization are two obvious candidates, and we note that these methods can be
modified to account for the non-differentiability of the L, regularization term for some values of the
parameter vector using subgradient methods [10], [73]. We select stochastic gradient descent due
to its conceptual simplicity and the desirable property of only requiring the parameter vector and
one training record to be held in memory at a time.

Stochastic gradient descent considers one randomly selected training record at a time and up-
dates the parameter vector w using the gradient of the loss function with respect to the parameter

vector w at that training example. In general terms, the parameter vector is updated according to

=

W W — 1 Vaug(Xi, Wi, yi) (5.5)

for each training example, where Vo is the gradient operator with respect to w, - is the learning
rate or gain, and ¢ is the logistic loss function (5.3). Gradient descent, unlike stochastic gradient
descent, updates the parameter vector by considering the gradient of the objective function with
respect to all training examples. Coordinate descent, on the other hand, reduces the objective
function by conducting line searches along each coodinate direction in iterative fashion. The con-

vergence properties of the stochastic gradient descent have been studied extensively in stochastic
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approximation literature, and the method converges with high probability under mild conditions
[26]. We note that the optimization error (which is reduced by gradient descent) is distinct from the
approximation error (which is how closely the generalised linear model can approximate the optimal
prediction function) and the estimation error (which is the impact of minimizing the loss over the
training sample, the empirical loss as oppposed to the population or expected loss) [126]. We also
note that for extremely large datasets, stochastic gradient descent can be distributed across multi-
ple machines by updating local parameter vector on each machine and synchronizing with a master
parameter vector at defined intervals [136]. We do not require this approach as we train one model
per campaign, and the training data for each campaign is small enough to process sequentially.

Due to the commercial relevance of scalable linear solvers, a number of companies have developed
highly optimized libraries, and some have been made publicly available. The stochastic gradient
descent implementation in the vowpal wabbit library [65] was used in this project to evaluate the
model and features described above. On current hardware, vowpal wabbit is typically bound by
disk input/output speed rather than CPU speed, and the software has the capability to run in a
distributed environment. Vowpal wabbit also employs many sophisticated methods in pursuit of low
memory demand, computational efficiency, and speed of convergence. These include feature hashing,
automatically evaluating the current solution against a held-out test set from within the training
data to guard against overfitting, and an optimization method which does not require normalizing
of the feature vectors [45] to avoid the regularization terms penalizing some coefficients more than
others. We note that the FORTRAN stochastic gradient descent implementation wrapped by the
glmnet function in R would be an alternative for this purpose.

Hyperparameters for the vowpal wabbit implementation of stochastic gradient descent include
the learning rate, the number of passes over the training data set, the order in which the training
examples are provided to the learner, and the L; and Lo regularization constants. A limited grid

search was conducted to optimize the hyperparameters during experimentation.

5.4.2 Training thousands of models over billions of events

We now describe implementing this method in a way that is sufficiently scalable and robust for
production use. Recall from section 5.3 that a separate generalised linear model is constructed for
each campaign. FEach campaign model requires updating after a given volume of new impression
events have occurred, which is typically every 1-7 days. Updating (or recalculating) a model requires
processing the event logs into the form required for model input, training the model, and storing
the output for each of thousands of campaigns.

Due to the number of models required, the requirement for hardware-fault tolerance and ease
of administration, and the fact that data preprocessing is performed in Hadoop, it makes sense
to use the mapreduce framework to orchestrate the model training process. In order to train the
models, we developed a mapreduce job where the map phase partitions the data by campaignid
and sends all records for each campaign to a single reducer, which performs the online stochastic
gradient descent. We modified an open-source Java implementation of stochastic gradient descent
[11] to run within the reduce functions, as the vowpal wabbit library is written in C++ which is
difficult to integrate into the Java Virtual Machine runtime environment of the Hadoop framework.
We fit models with both regularised and non-regularised feature vectors x, as this implementation

is sensitive to normalization.
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5.5 Combining the hierarchical and generalised linear models

While the model described above is designed to produce an estimate of the interaction probability
which does not require further modification, it is significantly more expensive to compute than the
main effects model developed in chapter 3, and the data pipeline supporting the model has not
been proven to be stable in production. It may not be used for all campaigns initially. Also, the
main effects model is conceptually similar to the existing exchange method and easier to reason
about than the generalised linear model. For these reasons, it is desirable to develop a method for
transitioning smoothly to the generalised linear model that is not a sharp switch-over.

We developed the following principled way to combine the output of the generalised linear model

above with the main effects model. We desire a function g to combine the two models given by

Pr(Ypjxlx, s, ar) = g(f(x),pjk) (5.6)

where f(x) is the output of the logistic regression model and pjj, is the output of the main effects
model. In order to construct g, we choose to break impressions into segments denoted z using the

distribution of the generalised linear model output f(x) over the training data. We then define g as

g(f(x)apjk) = (z)zpjk (5‘7)

where ¢, is a correction factor for the segment 2. Letting E. s, 4, be the expected number of inter-
actions (successes) given T} s. ,, impressions (trials) for ad ay, slot s;, and segment 2 as determined
by the main effects model, and we propose to determine S. s, 4, the expected number of interactions

(successes) for the segment as

Sz 55,0k |EZ,5J.7Q,€7 Gy ~ Poisson(Ez,5j7ak ®2) (5.8)

where the value of ¢, is determined by minimizing the log-likelihood

l(p,) = Z (—E.s;,a,9- + log(¢Z)5z75j7ak) + a constant (5.9)

Z,85,0k

This is computationally achievable as the number of segments z is chosen to be relatively small
(e.g. 20). Also, if the generalised linear model is mis-configured and provides no information, then
¢, = 1 and the combined model is equivalent to the main effects model. Increasing or decreasing
the influence of the generalised linear model is possible by tuning the value of ¢, manually.

To implement the system we propose above, we run another map-reduce job following the job
which trains the generalised linear models, in order to generate a model prediction for each line of
the log file (log line), followed by a mapreduce job to assign a user segment to each line. Finally, a
mapreduce job is run to aggregate the impression log lines over the (ax, sj, z) groups to generate
training input for the correction factor model above. Determining the value of the correction factors

¢, can be performed on a single machine using common optimization libraries in reasonable time.
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5.6 Making predictions in real time

Once the models are trained, we require a method for integrating the interaction probability pre-
dictions made by the stand-alone modeling system into the complex, distributed architecture of
the exchange/demand-side platform system. Computing estimated interaction probabilities in real
time has demanding latency and throughput requirements, on the order of thousands of requests
per second with a maximum response time of approximately 40 milliseconds. Minimal modification
of the existing exchange infrastructure is desirable, in order to facilitate gradual switch-over and
simple rollback.

We propose implementing the method described in this chapter by creating an independent
system similar to a real-time bidding platform. When an ad request is received, the exchange can
request the interaction probability correction factor ¢, for each ad from this independent system
given the adrequest = s;, up, and use these correction factors to modify the auction. The proposed
architecture of the system is shown in Figure 5.2, taken from a project planning document.

The first component of this system is a cluster of servers to handle the modification factor
request, denoted ‘IBID’ in Figure 5.2. These servers would run an API server written in Node.js or
similar, or a modification of full-scale open source real-time bidding client RTBKit, written in C+-+.
The second component is a distributed, in-memory key-value store of the correction factors. The
servers hold the model coefficients for each campaign in memory. As modification factor request
arrives, the servers query a low-latency data store for the information stored against the entities in
the request and form the feature vector x. This vector and the model coeflicient vector are then
used to generate the model output, and the result is returned to the main adservers conducting the
auction. Simultaneously, the user data store is updated with the new user information derived from
the ad request. This process is abstracted behind an API which is queried by the ad impression

handler (ad server), gaining implementation flexibility at the expense of slightly higher latency.
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Figure 5.2: Proposed architecture of the real-time interaction probability estimation system

We experimented with some components of this system, including the low-latency in-memory
key-value store. We set up a two-node installation of the Couchbase database, using c3.xlarge
AWS servers, and achieved a throughput of over 20,000 user documents per second (latency is not

directly comparable as the networking enviornment of any production system would be different
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to this test environment). This was mainly for interest as Couchbase meets these requirements in

many existing installations.

5.7 Results and discussion

5.7.1 Improvement in log-likelihood for individual campaigns

The campaign model method above was evaluated using a dataset of all events for the 96 largest
campaigns by click volume occurring in the exchange for the month of August 2013. While these
campaigns are not a representative sample from all campaigns managed by the exchange at any
point in time, they are deliberately selected as they represent a non-negligible fraction of interaction-
based revenue. Any system considered for implementation is required to produce adequate results
on these campaigns, and even if the system does not give increased performance on other campaigns,
it would still be worth implementing. The event data for each campaign is split into a training set
and a testing set in an 80/20 ratio.

The performance of the generalised linear model is evaluated using the improvement in the log-
likelihood for the test dataset with respect to a baseline consisting of the main effects model developd
in chapter 3. This baseline is chosen as it is the criteria for considering the model for commercial use
- it must deliver enough marginal revenue over the best alternative method to justify the significant
increase in computational expense. Figure 5.3 shows a histogram of the percentage improvement in
log-likelihood for the 96 test campaigns compared to the main effects model. An improvement in

the log-likelihood value over the main effects model is seen for all but one campaign.
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Figure 5.3: Histogram of the percentage increase in log likelihood for the 96 test campaigns (ap-
proximately 50 million impressions). The horizontal axis is the percentage increase and the vertical
axis is the number of campaigns.

We further illustrate the performance of the logistic regression model by separating the events in
the test set into four segments for each campaign and calculating the mean interaction rate for each
segment. We then normalize the mean segment interaction probability with respect to the mean
campaign interaction probability for all events in the test set. These normalized click-through rates

are displayed in Figure 5.4. To illustrate this figure further: if events are assigned to a segment
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at random, the mean interaction probability for the segment would be expected to equal the mean
interaction probability for the campaign as a whole. Alternatively, if the bins correspond to events
with different underlying properties, then the mean interaction probability for each segment is
expected to differ from the mean interaction probability for the campaign as a whole. The figure
below displays the distribution of the normalized click-through rates for all 96 test campaigns for
each of the 4 bins. The segment with the lowest click-through rate has, on average, a maximum
likelihood (mean) interaction rate half that of the campaign mean. The segment with the highest
click-through rate has, on average, a mean interaction rate around 1.3 times that of the campaign

mean interaction rate.
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Figure 5.4: Distribution of segment interaction probabilities for all of the 96 test campaigns, where
the interaction rate of each segment is expressed as a ratio of the campaign average. The vertical
axis is the segment interaction rate expressed as a ratio of the campaign average; therefore, if
Segment 1 for a given campaign has a value of 0.5, it means that the segment has an interaction
rate half that of the campaign average.

We did not find a significant difference in the model performance for normalized or non-
normalized feature vectors. We note that Google researchers also found no improvement in the
performance of a large scale online logistic regression model from normalizing feature vectors as

x/norm(x) for a variety of norms [81], a similar setting to that considered here.

5.7.2 Ability to differentiate user-campaign affinity

It is possible that the campaign-specific models above are merely identifying an overall higher prob-
ability of campaign interaction for a user, rather than identifying specific preferences for individual
campaigns. This is valuable given the presence of both CPA/CPC and CPM campaigns in an
auction, as modifying the interaction probability only affects the eCPM value for CPA and CPC
campaigns. However, if all campaigns were CPA campaigns, inferring an overall higher probability
with no campaign-specific element would affect all ads in the auction equally, and offer no benefit
at all. This is a significant concern, and is not dealt with in the previous section.

Therefore, we selected 10 random pairs of campaigns from the 96 test campaigns and re-trained
the model above on all selected campaigns, using training and test datasets consisting only of events

for which the users in the events had been exposed to both campaigns. We then compared the events
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falling into the bins described above for each campaign in a pair. On average, 15% of events in the
top 50% for one campaign were in the bottom 50% for the other campaign. This indicates that
this modeling system has the ability to differentiate between campaigns to a degree likely to be
significant in a CPA-only environment.

As a further test, we constructed a training and test dataset consisting of only positive user-ad
interaction events. For each campaign in the 96 test campaigns, we trained a logistic regression
model attempting to differentiate users who had interacted with that particular campaign from
users who had interacted with other campaigns. This model was able to achieve approximately
15% higher log-likelihood than random assignment, providing further empirical validation of this

framework.

5.7.3 Improvements

Incorporating more informative features is a significant area to focus on for model improvement.
More and more informative data is typically superior to a more complex model. Useful information
includes user information such as physical location history, e-commerce product view and purchase
data, and advertisement and website semantic properites. The model is also expected to perform
significantly better with more sophisticated data pre-processing than performed in this project, as
the feature distributions used are noisy and highly skewed. Higher performance would be achieved
by conducting feature selection and remvoing unnecessary features, a process we do not perform due
to lack of time to set up the processing jobs required. The model would also benefit from hyperpa-
rameter optimization, including the subsampling ratio and regularization constants. Independent
variable removal may also improve model performance, and could be accomplished by removing

blocks of variables and determining the resulting change in performance.

5.8 Investigating third-party cookie alternatives

We note that user-based features depend on the ability of the exchange to identify individual users
across multiple ad requests or real-time bid requests. On receiving an ad request for a given user, the
exchange /demand-side platform servers attempt to place a unique identifier into the user’s browser.
If the identifier is already present, the user has previously been seen and the exchange server reads
the identifier back. This unique identifier, typically a third-party cookie, has a limited lifespan, as
it is frequently removed when users clear their browser history. Individual users can therefore be
tracked for variable periods of time before the unique identifier is erased from the user’s browser.

The identifier written by the exchange servers into a user’s browser is the best means available
to relate an ad request to am individual person making the request. This identifier is typically a
3rd-party tracking cookie, although more recent methods such as browser fingerprinting or HTML5
local storage are becoming increasingly common in order to circumvent users removing or blocking
cookies. The identifier, rather than the user, is the entity tracked by the exchange. If a person has
more than one computer or browser (e.g. tablets and phones) or multiple people share a computer
(such as in a family home) then a one-to-one mapping will not exist between a person and a browser
identifier.

Cookies have limited lifespans, and are becoming less useful over time as more users clear their
browser history and block 3rd-party tracking cookies. Some browsers prevent 3rd-party cookie

placement entirely (such as Mobile Safari) and others are becoming less open to 3rd-party tracking
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cookies, such as the recent proposal by the developer of the popular Firefox browser to block these
cookies by default.

In order to mitigate this problem, developers at the exchange implemented an alternative unique
identifier called an etag. The difference in lifespan distribution between cookies and etags was
investigated using the infrastructure developed during this project for user targeting. After placing
both identifiers together for approximately a month, the lifetimes of individual identifiers using the
new method were found to not be significantly better than cookies. Generating these lifetime curves

involved processing over a terabyte of log data on a 40-machine cluster.

Total Cookie Persistant Users > 1 Day Duration 42108145
Total Etag Persistant Users > 1 Day Duration 47471223
Comscore March Figures 44500000

Table 5.2: Number of unique users

A survival curve for standard tracking cookies and etags is shown in Figure 5.5. Etags offer

slightly improved performance but do not offer substantial increase in tracking effectiveness.

ETag vs Cookie Persistance over 37 Days

5000000 |
M Cookie M Etag
4500000

3000000

1600000

Total Users Persisting for Day Duration

Duration in Days Between User First and Last Contact

Figure 5.5: Etag vs standard cookie survival analysis for the Chrome browser. The upper line
corresponds to the etags and the lower line corresponds to the standard cookies.

Summary

In this chapter, we develop, validate, and then implement a system which uses regularised gener-
alised linear models to estimate ad interaction probability on a per-event level. We first develop a
distributed data pipeline for processing raw impression logs into a dataset ready for model training
using the Hadoop framework. This process involves filtering automated agents and crawlers from
the logs, selecting persistent users and removing single-session users, creating all required model

features, and normalizing the resulting matrices. We then develop scalable, distributed system for
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training a generalised linear model for each campaign, also using the Hadoop framework. These
systems can process hundreds of millions of impressions on a daily cycle. We then evaluate the
predictive performance offline using an industry dataset containing approximately 9 x 10° events,

and find a small but commercially significant improvement in the predictive performance.
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Chapter 6

Manifold regularization, dimensionailty reduction,

and graph segmentation

The methods and software developed in chapter 3 and chapter 5 generate significantly better re-
sults than the existing ad-interaction probability estimation method used by the exchange and
demand-side platform, and are suitable for production use with minimal modification. As part of
this project, we desired to study high-performance distributed computing, spectral graph theory,
stochastic block models, clustering algorithms, the solution of large eigenproblems, and dimension
reduction techniques. We therefore use the data set and problem from chapter 5 as context for
conducting experiments in these areas. We emphasize that the work in this chapter was focused
on gaining experience with computational methods and large datasets, and was not expected to be
useful in the industrial context. We therefore give less attention to the performance in estimating
user-ad interaction probability than in previous chapters.

We first investigate manifold regularization of a linear least-squares model. We then use the
Laplacian eigenmap method to embedd vectors representing each unique user into a new space, and
use the user vectors from this space as additional features in the generalised linear model considered
in chapter 5. We then investigate clustering unique users using spectral clustering and modularity
maximisation methods, and investigate the difference in aggregate user-campaign interaction prob-
ability between clusters. We also investigate clustering the k-nearest neighbour user graph and the

bipartite user-website graph by fitting degree-corrected stochastic block models.

6.1 Manifold regularization

We now consider calculating a function that maps user vectors to a probability of the user interacting
with a campaign at some point in the future, a different problem statement than that considered in
chapter 5. We select a subset of the user features from the feature engineering process, and create
a data matrix X where each row corresponds to a user, and each column corresponds to a website
from the websites observed by the exchange, described as the user-website feature space. If a user
has visited a website, the number of visits is entered into the appropriate row and column in X.
We normalise X by column for all of the numerical experiments below.

Given a set of users and their outcome for a given campaign — either an interaction or no
interaction — (v;,¥;),? = 1...L, an unknown function mapping the feature space V to a probability

of an interaction can be written as [20]

N
1
f*=argmin— Y V(vi,y;, f) +7allflI% (6.1)
ferx N Z;

where V is a loss function such as the squared loss, K is a Mercer kernel K : VXV — R, Hg is a
Reproducing Kernel Hilbert Space (RKHS) of functions f : X — R with a norm ||.||x, and 4 is

a regularization constant.
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The number of users who have been exposed to a given campaign, noted as L, is small compared
to the overall number of unique users, noted as N. It may be possible to estimate an improved
function for a given campaign by incorporating knowledge of the distribution of all event vectors,
in addition to the event vectors for which a campaign interaction has been observed. In order to
investigate this assumption we assume that events with a higher probability of interaction with
a given campaign are similar to one another and different to events with a lower probability of
interaction, where similarity is defined by a given distance metric.

For a given campaign, user-campaign interactions (xj, v;), x; € X are drawn from the probability
distribution P on X x R, where X is the space spanned by the user vectors. We assume that the
conditional probability distribution P(y;|x;) is a smooth function of the marginal distribution Px,
and that if two points x; and x; are "near" under some distance metric in the user-website space
X, then the conditional distributions of campaign interaction probability P(y;|x;) and P(y;|x;)
are similar. Users for which no campaign interaction has been observed are users drawn from the
marginal distribution Px [20].

Given these assumptions, an additional regularization term ;|| f||? can be added to (6.1) pe-

nalizing lack of smoothness in f with respect to Px, [20] leading to

L
fr=argmins » 0V (wiyi, f) +vallflE + w17 (6.2)
fere = 5

We now further assume that the support of Py is approximately a compact submanifold. This
assumption is intuitively appealing, as it is unlikely that the browsing patterns of large numbers
of users will explore the entire user-website space uniformly. If the additional regularization term
above is chosen to penalize sharp changes in gradient along geodesics of the manifold corresponding
to Px [20], then (6.2) becomes

L
£ =agming Y Vi )+ wallfle o [ (9afPdPx(a) (63)
ferx L zeM

where V is the gradient of f along the manifold M. The manifold is unknown, but can be
approximated by the symmetric, positive semidefinite graph Laplacian constructed from the labelled
and unlabelled data points with exponential weights [55|. The positive, semidefinite graph Laplacian

is defined as
L=D-S (6.4)

where D is the diagonal matrix given by

N

Dii =Y S (6.5)
j=1

and S is the pairwise similarity (or adjacency) Gram matrix. Letting f = [f(x:), ..., f(zn)]T the

optimization problem becomes

L
* 1 2 VI T
= argmin— Y V(z;, i, T g7y, .
f a;gﬂ;nL ;:1 (i, yi, £) +yall fll + CEE frLf (6.6)
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As for the kernel support vector machine, the Representer theorem |[? | can be used to show that

the function f* exists in Hx and has the following form
N
f(x) = Z a; K(zj,x) ="K (6.7)
i=1

where K (z;,x) is a Mercer kernel and K is the N x N Gram matrix corresponding to the data. The
additional regularization term can therefore be described as ‘warping’ the kernel function according
to the geometry of Px. Expressing f as an expansion of kernel functions in Hy (the dual form)
results in the ability to learn a nonlinear function in the original space. This is the basis of the
well-known Support Vector Machine along with kernel ridge regression. Belkin et al. [20] derive the
equations required to solve a Laplacian regularized version of the kernel support vector machine.
Solving this problem is difficult for large n as the naive solution requires the inversion of the dense
Gram matrix [119], [41], whose computational cost is O(n?), although Chen et al. [35] discuss ways
of working around this limitation and Tsang and Kwok [125] develop a sparse manifold regularizer
and apply their method to a dataset of a million examples. An appropriate kernel function and

bandwidth must also be selected. If f is restricted to be a linear function, then (6.6) becomes
L
wh = argminz (yi — wxi)2 + N|wl|2s + Vw! XTLXw (6.8)
w =1

and it is possible to find f* by solving this convex optimization problem, (where a constant has
been included in the vector z similar to the previous chapter) [120]. Setting the gradient to zero

leading to the following linear system
(XEXp +~yaLl + v LXTLX)w = X1y (6.9)

where the L x L matrix Xy, is the matrix of user vectors for which a campaign interaction has been
observed, and is a submatrix of the n x n matrix X. y is the vector of corresponding interactions

(1 for a positive interaction and 0 for a negative interaction).

6.1.1 Linear manifold regularization experiments

As an experiment, we tested this method with a subset of the 96 campaigns considered in the
previous chapter. In this context, X is very sparse (for every event, most features are zero) and L
is also sparse as only the k nearest neighbours are used in the construction of the Laplacian matrix
associated with the data (section 6.2). The conjugate gradient algorithm, a Krylov method for
finding an approximate solution to a linear system Axz = b is therefore appropriate for solving this
system. We used the implemention of this algorithm in the PETSc software [13].

This least squares method does not output a bounded result that can be interpreted as a prob-
ability, unlike the generalised linear model discussed previously. In order to make predictions with
the output of this model, we segment the users by model score as discussed in subsection 5.7.1 and
section 5.5. We evaluate the model for the labelled users in the training set, divide the users into a
number of segments using the score, and calculate the maximum likelihood interaction probability
for each segment. The model can then be evaluated for each event in the test set. The test users are

assigned a appropriate segment and the maximum likelihood probability for that segment is used
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as the model prediction.

This method failed to produce better results than the generalised linear model described in the
previous chapter for any of the subsets of campaigns tested. This was not unexpected, as the model
uses the squared loss rather than maximum likelihood loss as in logistic regression, which is a less

appropriate loss function for binary count data.

6.2 Spectral embedding of the user vectors

Rather than attempting to find (6.1), we now consider calculating a nonlinear projection of the user
vectors into a lower dimensional space using the Laplacian eigenmap method. We select a subset of
the user features from the feature space discussed in chapter 5, and create a matrix X where each
row corresponds to a user, and each column corresponds to a website from the websites observed
by the exchange. If a user has visited a website, the number of visits is entered into the appropriate
row and column in X. We propose to project into a lower-dimensional space that preserves locality
on the manifold M discussed above. If the embedding preserves spatial relationships in the lower-
dimensional projection, then this new feature space may provide additional information that can
be utilized in a generalised linear model alongside the user-website feature space to estimate the
probability of a user interacting with a campaign.

A drawback of the embedding method described in this section is that it does not provide a
means of embedding out-of-sample user vectors, which eliminates the practical utility of this model
for ad interaction probability estimation. In this context, new users continually arrive, accumulate
new features over time, and disappear from the dataset. An embedding calculated at time ¢ does
not provide an embedding for points appearing from ¢ onwards, and embedding these points requires
re-calculating a new embedding. As the intent was to investigate the properties of the embedding
using a static dataset, and not apply it in practice, this limitation was ignored. However, we do
investigate embedding out-of-sample users at the same location as their nearest neighbor in the
original space.

Belkin and Niyogi [18] show that the function f: M — R™ from the smooth, compact manifold
M to R that best preserves locality on average is given by minimizing the squared gradient on the

manifold

argmin / IV M fl)2dPx (z)
feHk TzEM

subject to fllz2om) =1

(6.10)

which is the last term in Equation 6.8. If the manifold is again approximated by the graph Laplacian,
the ‘best’ locality-preserving map of the user vectors to the real line is found by the optimization

problem

argmin y! Ly
y
subject to y! Dy =1, (6.11)

yI'D1=0.
where y is the embedding of the user vectors on the real line, the condition y” Dy = 1 eliminates a
scaling factor in the embedding and the constraint y” D1 = 0 eliminates the trivial solution y = 1.

The vector y which solves the optimization problem is the Fiedler eigenvector of the generalised

eigenvalue problem Ly = ADy. Extending the mapping from the real line to R¥ is done by assigning
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each data point x; to the point in R* defined by the i-th entries in the k eigenvectors corresponding
to the smallest eigenvalues A, A # 0 of the generalised eigenvalue problem Ly = ADy [18], [19].
This technique is sometimes called the Laplacian eigenmap, and has been shown to be equivalent to
kernel Principal Component Analysis, where the Gram matrix is equivalent to the affinity matrix up
to a normalization constant. This technique is closely related to the family of algorithms described
as spectral clustering.

We note that if the graph Laplacian embedding method is performed with the weighted dot
product graph (adjacency matrix) rather than the Laplacian matrix, Sussman et al. [124] show that
a k-nearest neighbours classifier based on the embedding converges to the Bayes optimal classifier.
There is a large body of work on theoretical and practical aspects of spectral embedding and
Laplacian eigenmaps.

We now describe the methods required to conduct this spectral embedding process for the user
vectors generated in chapter 5. First we consider computing the sparse adjacency matrix of the k-
nearest neighbour user graph, from which the graph Laplacian and normalized Laplacian matrices
are found. We then consider solving the large eigenproblem Ly = ADy. We note that other
methods of nonlinear dimension reduction exist, but are not investigated due to time constraints.

These include locally linear embedding and stochastic neighbour embedding.

6.2.1 Constructing the k-nearest-neighbour graph

Computing the graph Laplacian matrix naively requires calculating n x n pairwise similarities
between n user vectors. In the online advertising context, n is larger than 107, making this naive
calculation expensive and almost certainly uneconomic. The dense similarity matrix alone requires
over 2350 TB of storage. Therefore, a fast method for approximating the graph Laplacian is
required. It is possible to approximate the Laplacian using the Nystrom method [47]; however, we
choose to approximate the Laplacian by computing and storing only the top k£ pairwise similarities
in the pairwise similarity matrix S [18], Song et al. [121]. Other methods for selecting a subset of k
pairwise similarities include selecting only those similarities above a threshold, or selecting entries
at random, or variations of these methods. We do not consider these methods as they typically
result in a disconnected graph. The sparse pairwise k-nearest-neighbour method is not symmetric,
as a k nearest neighbour relationship between x; and x; does not imply the converse. The matrices
are made symmetric by setting every entry S;; equal to Sj; where Sj; or S;; # 0. The number of
adjacent nodes for each node in the adjacency matrix does not have more than 2k entries in any
row following the process performed to make the matrix symmetric. We now consider methods for

calculating the similarity matrix, using the normalized user-website feature space.

6.2.1.1 Similarity functions

The Gaussian similarity function (the heat kernel) for two vectors x; and x; is

—[lxi — x;1?

) (6.12)

sij = exp(

where o is the kernel bandwidth. This choice of metric results in the graph Laplacian being asymp-

totically convergent to the Laplace-Beltrami operator, desirable for approximating the manifold as
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described above. Another potential similarity function is the cosine similarity

Xi X4
Sij = Tt 6.13
7 Thall | 013
which calculates the angle between two vectors x; and x;. While this similarity metric completely
changes the geometric interpretation of the similarity matrix S, and throws away much of the
manifold-related justifications above, we consider it as it is used with success in many domains

dealing with sparse, high-dimensional vectors, such as text analysis.

6.2.1.2 k-nearest neighbour implementations and experiments

We now investigate the maximum practical number of user vectors from chapter 5 for which a
similarity graph can be constructed with a reasonable computational budget. As the user dataset
is highly sparse, we also investigate a dense dataset as a comparison for interest. The dense dataset
is a representation of all the articles in the English wikipedia as dense 500-dimensional vectors
calculated using latent semantic indexing [59]. To generate the latent vectors, the raw Wikipedia
text data was downloaded and the vectors computed using the open-source Gensim package [106]
running on a large EC2 server, a process which took around 12 hours. The test dataset properties

are given in Table 6.1.

Wikipedia User vectors

Number of vectors 3 651 422 up to 31 000 000
Number of dimensions 500 approx. 5000
Non-zero entries 100% 0.15% non-zero

Table 6.1: Test datasets

We used a mid 2011 Macbook Pro for prototyping and a cluster of 10 cc2.8xlarge EC2
instances where appropriate for experimenting with larger datasets. The cluster has a combined
605 GB of RAM and 160 Intel Xeon E5-2670 CPU cores. In order to work with numerical arrays
similar in size to the Macbook’s RAM we implemented custom functions in Python and C++ to
load and save numerical arrays to binary and text files, as the standard functions for loading data
in scientific computing libraries typically have peak memory requirements around twice the size of
the array to be read. We would have liked to experiment with a GPU or Xeon Phi™ coprocessor

but did not due to time constraints.

6.2.1.3 Naive k-nearest neighbour computation

We first implemented a ‘naive’ exhaustive pairwise k-nearest-neighbour calculation in C+-. This
implementation stores the input user vectors in memory in sparse format (even the fully dense
Wikipedia dataset) and calculates all pairwise similarities for each input vector, maintaining the
current top 10 similarities in a max-heap to faster insertion of each calculated similarity. It can
use an arbitrary similarity function, as the function is passed a pair of sparse vectors. As this is a
naive, exhaustive implementation, the k-nearest neighbour calculation can be done independently
for each input vector, and we therefore distribute the calculation using the MPICH implementa-
tion of the Message Passing Interface standard. This implementation has a computational cost of

approximately O(n?d + n®logk) and a storage cost of O(nk) where d is the dimension of the user
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vector, n is the number of input vectors, and k is the number of nearest neighbours. We note
that Hadoop-based implementations of this calculation have been published [43], but we wished to
experiment with MPI.

This implementation is limited by both CPU capacity and memory bandwidth (the difference in
speed between cosine and Gaussian similarity functions is approximately 9%). Due to the memory
controller and CPU cache design in modern systems, accessing data stored in RAM sequentially is
much faster than random access Alabduljalil et al. [6]. However, the in-memory representation of
the sparse format used results in non-sequential memory access. As calculating the cosine similarity
is equivalent to Lo normalizing the rows of the user vector matrix X, computing the cosine similarity
matris S is equivalent to taking the matrix product X7 X and selecting the top 10 values from each
row. We therefore experiment with using the Intel Math Kernel Library calculate X7 X. This
requires X to be stored in dense format, which is typically too large for RAM, and we partition
X by rows into multiple submatrices, and operate on these submatrices as described in [106].
This implementation outperformed the ‘naive’ sparse implementation by a factor of 5 on the dense
Wikipedia dataset, as expected. For the user vector dataset, the cache-optimized implementation
also (slightly) out-performs the sparse implementation, despite performing an order of magnitude
more operations.

To achieve faster execution for the sparse user dataset while still obtaining an exact result, we
also experimented with eliminating candidate vectors for each input vector using an inverted index.
This principle is the basis of information retrieval systems. This method exploits properties of
the cosine similarity, and is not suitable for the Gaussian similarity function. The inverted index
maps each dimension of the input vector space to the vectors which have a non-zero value for
that dimension. Only overlapping non-zero dimensions then need be compared for any input pair.
Bayardo et al. [15] describe extensions to this method such as the use of a threshold to further prune
the number of candidate vectors, building the index incrementally, and storing the vector weights
in the index. We modified a parallel implementation of this technique due to Awekar and Samatova
[12], which was kindly provided by the authors. Alabduljalil et al. [7] show that under certain
conditions this method is competitive in time with approximate random projection methods.

The maximum number of input vectors for which the sparse similarity matrix can be calculated
within one day with these implementations and the 10-server cluster is around 2 x 10. Given the

cost of this cluster this is uneconomic, and we consider ways of speeding this calculation up further.

6.2.1.4 Sub-quadratic scaling with locality-sensitive hashing and tree-based algorithms

The constant factors and quadratic scaling of the implementations described above makes finding
the exact solution to the k-nearest neighbour problem for values of n larger than a few million
impractical, even on the 10-machine cluster. A large body of work exists dealing with finding
probabilistic or approximate sub-quadratic algorithms for this problem. Older methods based on
space-partitioning trees include vantage-point trees [132], B-trees [16], and cover trees [22]. How-
ever, these methods display poor performance in high-dimensional spaces. More recently, effective
methods have been developed. Some of these methods are variations on the locality sensitive hash-
ing principle, mitigating the disadvantages of the ‘vanilla’ method, such as the LSH forest algorithm
(ref), or a related method which constructs a forest of trees using random hyperplanes to divide the
dataset at each node. Silpa-Anan and Hartley [118| construct a forest of randomized k — d trees

[118], one of the best performing methods at the time of writing [86]. Another excellent method
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conducts a priority search on a hierarchical k-means tree [87].

The basic locality-sensitive hashing (LSH) method is a probabilistic method for finding a set
of approximate nearest neighbours for an input vector with varying theoretical gaurantees. It
constructs one or more hash functions g : R¢ — U such that for any two vectors x;,x; if the
cosine similarity is greater than an arbitrary value ry, then Pr(g(x;) = g¢(x;)) is significant, and
if the cosine similarity is less than an arbitrary value 72, Pr(g(x;) = g(x;)) is insignificant. The
function g can then be used to compute the approximate k-nearest neighbours of an input vector
x; by retrieving all vectors that fall into the same ‘bucket’ or have the same value of ¢g(x) as x; and
then computing the top k similarities from within these vectors. For the cosine similarity, a simple

function that can be used to construct g is given by

9i(x) = [h1(X), ..., hn (X)] (6.14)

1 ifx-r<0;
h(x) = (6.15)

0 otherwise

where r is a vector of the same dimension as x with each component drawn from the standard
normal distribution [34]. This is equivalent to selecting a number of random hyperplanes passing
through the origin and assigning each user vector either a 0 or 1 depending on which side of the
hyperplane they fall. This is the ‘vanilla’ LSH method for the cosine similarity, where each bucket
is defined by a binary string.

For interest, we implemented the ‘vanilla’ probabilistic locality sensitive hashing algorithm using
a hash function built from random hyperplane projections, and quickly ran into the well-known
drawbacks of this method. In particular, the hash function is blind to the data distribution. We
found that most data points occupy relatively few values of g, or buckets, with the remainder
of the data points occupying buckets with less than k other occupants. No amount of tuning
parameters such as the number of hash functions or random projections alleviated the strongly
non-uniform distribution of input vectors across hash buckets. Various authors have improved
on ‘vanilla’ LSH with with techniques such as probing multiple buckets (binary strings) with low
Hamming distance, or constructing a prefix-tree from the hash codes and probing nearby leaves of
the tree [14]. Other works improving on the basic LSH method include [97], [135], [9], and [94].
A different and very interesting probabilistic algorithm that is independent of the input vector
dimension, allowing millions of dimensions to be used, is given by Zadeh and Goel [133], as well as
the basics of a map-reduce based implemenetation.

Given the unsuitability of the vanilla method we used the elegant annoy library [21] for exper-
imenting with the full dataset. This library creates a forest of trees across the input vectors (with
a fixed leaf size), where each node partitions the input space with a random hyperplane. At query
time, only points in the same leaf node as the input vector for all trees are considered candidates.
Increasing the number of trees increases accuracy at the expense of index size and a slight speed
penalty. This implementation is also for the cosine similarity alone. Extrapolating from results with
datasets up to n = 2 million in size, this implementation would be capable of calculating pairwise
similarities between 10 million input vectors on a single server in approximately one day, which is
enough to be useful, considering around 18 million unique users are observed per month. We would
like to have experimented with hierarchical k-means combined with the Gaussian similarity method,

but ran out of time.
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Figure 6.1: Computational results from investigating the ‘weak scaling’ of the k-nearest neighbour
calculation, or the increase in time required for increasing n with constant computational budget.
The ‘naive’ exhaustive method is the solid line, the inverted index method is the dashed line, and
the random projection tree method is the dotted line. The first two methods scale with n? and the
random projection method scales with n.

6.2.2 Calculating eigenvalues of large, sparse matrices

Recall the objective of finding an m-dimensional nonlinear embedding of the user vector data points,
given by the eigenvectors of generalised eigenvalue problem Ly = ADy corresponding to the m
smallest non-zero eigenvalues. We now describe the methods we used to solve this and similar
eigenproblems in this project. An overview of available eigensolver software is given by Hernandez
et al. [56]. Only sparse solvers are applicable due to the size of the matrices involved.

The recently proposed FEAST algorithm [105] was used to solve realizations of the eigenproblem
above. FEAST can be parallelized to run on multiple servers, and can be used to find eigenvalues
in any part of the eigenspectrum. The multiple shift-invert implicitly restarted Lanczos method
also has these properties, and has been shown to have a lower computational cost for finding
approximately 10% of the eigenvalues of extremely large matrices in a distributed setting [5], which
is primarily due to the computational complexity of the complex arithmetic involved in the FEAST
contour integral-based spectral projection method.

We use the FEAST algorithm because it is interesting. For the experiments with large matrices, a
FORTRAN implementation made available by the author was used. We also experimented with the
implicitly restarted Lanczos method and the Krylov-Schur method using the PARPACK/ARPACK
[80] and SLEPc libraries [57] respectively in order to understand the use of these libraries. The
PARPACK and SLEPc libraries use MPI for parallel computation and can operate in a distributed-
memory environment.

In order to more fully understand the FEAST algorithm, we re-implemented it in MATLAB,
shown in 6.2.2. The FEAST algorithm accelerates Rayleigh-Ritz subspace iteration by constructing
a functional matrix that projects the matrix of interest onto a subspace that closely approximates

the invariant subspace spanned by the eigenvectors inside a given interval on the real line. The
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projection matrix is defined as Xz X%{ B where the columns of X7 are the eigenvectors spanning
the subspace, and can be found by approximating a complex contour integral described below.
For the generalised Hermitian eigenvalue problem A X = B X A the eigenpair is given by (X, A).
Given an interval Z = [A_, A\;] on the real line, let C be the circle centered on the real line and
intersecting it at exactly A_ and A;. Let m(A) be the complex-valued function defined by the
contour integral (in the counter clockwise direction)
1 1

The Cauchy integral theorem shows that 7(A) = 1 for A inside the circle C and 7w(A) = 0 for
A outside of C. The idea is that applying 7 to a matrix whose eigenvalues are A corresponds to a
spectral projection. Since the GHEP is specified by two matrices, we define one single matrix that

serves as a “surrogate”. This is

A xAx! = xAXP B

whose eigenpair is exactly (X, A) by design. Assuming just for now that neither A_ nor Ay is an

eigenvalue of A, then the function 7(A) is well defined as

) L

- dz.
271 C I — A

On the other hand,
m(A) = Xo(M)X! = Xo(M)XTB=X7 X2 B.

Hence

1 1
=~ dz

X XHp = —
14z 2 Jo 21 — A

as long as {\_, A1} does not intersect with A’s spectrum. Moreover
(2 — A7t = (2I = XAX"T B)™! = [B"}(2B—- BXAX"B)™! = (:B—-A)"'B.

Hence the spectral projection of a set of n-vectors Y = [y1,42,...,¥p] admits an integral represen-

tation involving A and B:

! (zJ—A)*de:i (2B — A)"' BY dz.

X: X2 B)yYy = —
(Xz X7 B) 2w Je T Je

This integral can be approximated via numerical quadrature using a parallel multi-frontal complex
linear system solver such as the MUMPS software [§8]. A demonstration implementation of the
FEAST algorithm using MATLAB syntax is given in 6.2.2. Note that the MATLAB implementation
of Arnoldi factorization for solving the inner eigensystem, which uses a modified version of ARPACK

internally.

62



Listing 6.1: MATLAB implementation of the FEAST algorithm

0 = ceil(1l.5xM);
I = 8;
A = rand(N); A = A'xA; B = eye(N);

1 _min = 10; 1l_max = 12;
m_eps = eps; e_eps = 1lE-10;
% choose MO random vectors Y
Y = rand(N,MO0);

w

—orthonormalize Y via Cholesky Factorization
= chol (Y'+*BxY); Q = Y/R;

0 o

o

spectral projection

(l1_max + 1_min)/2;

(l1_max - 1_min)/2;

] = gl (NI, eps);

c + rxexp(lix(pi/2)*(1 + x));

X, W

N —HK Q

I~

trace_old =1
while (trace_residual > 1le-8)
Y = zeros (N,MO);
for I =1 : NI
PROD = B=*Q;
TEMP = (z (I)+*B - A)\PROD;
Y =Y + (w(I)/2)~*real (rxexp (li* (pi/2)* (1 + x(I)))*TEMP);

Y'xAxY;
Y'*BxY;
] = eig(AH,BH);

diag(L);

scaled (X);

s = logical((e > 1l_min).*(e < 1l_max));

al = sum(flags);

= YxX; Q = scaled(Q);

e_matched e(flags); Q_matched = Q(:,flags);
trace_new sum (e_matched) ;

trace_residual = abs(trace_new - trace_old);

trace_old = trace_new;

sum_residual = 0;

for I =1 : total
vector_residual = norm(AxQ_matched(:,I) - e_matched(I)*B*xQ_matched(:,I));
sum_residual = sum_residual + vector_residual;
sum_residual = sum_residual/norm (AH);

end

end

The complexity of the eigendecomposition is dicussed by Saad et al. [113] and Pan and Chen
[98]. This algorithm does not significantly improve on the complexity of the multiple shift-invert
implicitly restarted Lanczos procedure. To obtain k extremal eigenvalues of a matrix the Arnoldi
method has computational cost of (O(ma® 4+ (O(nma) + O(nk)) x O(ma — m)) * (restarts) and a
memory cost of O(nk) + O(nm) memory where m is the Arnoldi length. For n = 20% and m = 200

this is a memory requirement of approximately 102 GB.

6.2.3 Using the spectral embedding as generalised linear model features

We trained a generalised linear model to predict the target of whether a user would interact with a
given campaign, using the original user vectors (the user-website feature space) and the embedded
user vectors as features. We used 16 of the 96 campaigns considered in the previous chapter, with

the following steps
1. Compute the user feature space for each campaign along with the target or interaction vector

2. Calculate a training, validation, and test split
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3. Compute the k-nearest neighbour similarity graph or matrix. We used the sparse, naive
method from subsection 6.2.1 for the heat kernel metric and the inverted index method for
the cosine similarity to ensure the exact nearest neighbours are computed with k& = 10. We
note that there are over 18 million unique users in the training dataset. As the cost to calculate
the k-nearest neighbour graph for all 18 million was considered too high, we selected 2 million
users from the 16 campaign dataset at random, and carried out the embedding process for
these users. A similar number of users remaining were embedded in the same position as
their closest neighbour in the original space, as this calculation is O(n), not O(n?). Even
these calculations took around 10 hours to run on a ten-node, 160-core cluster such as the one

described above.
4. Form the Laplacian matrix as defined above.

5. Calculate the eigenvectors corresponding to the m smallest non-zero eigenvalues for the Lapla-
cian and normalized Laplacian matrices, and the m eigenvectors corresponding to the m largest
eigenvalues for the adjacency matrix using the eigensolver described in . We use m = 20. This

calculation is also performed using a multi-node cluster and the FEAST software.

6. Use the embedded vector created for each user as a set of additional dimensions for each user

of the training data used in chapter chapter 5
7. Re-solve the generalised linear model as described in chapter 5

The log-likelihood results for the test dataset for each of the 16 campaigns tested are shown
in Table 6.2. There is a marginal improvement in log likelihood with the extra features for each
campaign, but the increase in the number of model parameters and the significant effort required

to compute the extra features dwarfs this improvement, making this method not practically useful.

Campaign Original Features Normalized Laplacian Features Percentage improvement

1 2,511 -2,506 0.20
2 4,207 4,204 0.07
3 13,257 113,242 0.11
4 -1,097 1,082 1.37
5 1,118 1,094 2.15
6 1,721 1,685 2.09
7 977 -956 2.15
8 -18,824 -18,811 0.07
9 -25,050 -25,030 0.08
10 -3,867 -3,863 0.10
11 -2,300 2,297 0.13
12 1,727 1,725 0.12
13 -1,370 -1,359 0.80
14 2,429 2,421 0.33
15 1,152 -1,143 0.78
16 -1,807 1,802 0.28

Table 6.2: Log-likelihood improvement for 16 campaigns

We consider two possible reason for why the features are uninformative. First, the number

of website interactions observed for each user increases over time. The mean Ly norm for the
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user vectors is different to the majority of user Ly norms due to the approximately exponential
distribution of the number of website interactions per user. However, all user vectors are embedded
in a space of fixed dimension. Information is discarded for vectors with a large Ly norm, and
information is imputed for vectors with a small Ly norm. For example, if a space containing a set
of vectors with Lo norms equal to 5 and a set of vectors with Lg norms equal to 100 is embedded
into a 10-dimensional space, one set of vectors is reduced in the inherent dimension and one set
is increased in inherent dimension, either discarding or imputing information. The effect of this
variation in position in the original space for otherwise identical users, depending on the time for
which they have been observed, is likely to obscure any signal contained in the user position in the
embedded space.

Second, the sparse k-nearest neighbours graph construction method results in some users (nodes)
having a higher degree distribution than others. The node degree distribution is superficially similar
to a power-law distribution, with a minimum degree of 10 and a maximum degree of around 600. The
graph has multi-scale structure, in that the typical distance between two randomly chosen nodes
increases with the logarithm of the number of nodes in the network. Mihail and Papadimitriou
[84] and [51] demonstrate that the largest eigenvalues of the adjacency matrix of a graph with
a power-law degree distribution also follow a power-law distribution, and that these eigenvectors
express the neighbourhood of the high-degree nodes, rather than interesting clusters, or the manifold
structure. The degree to which the eigenvectors of the unnormalised Laplacian matrix used above
reflect manifold structure is also influenced by the degree distribution. Nadler and Galun [90] and
Zelnik-Manor and Perona [134] also describe the limitations of spectral methods in the presence of
noise and multi-scale data.

We also attempted the embedding process using the m largest eigenvalues of the normalised

Laplacian matrix given by
L=D"Y2Lp~'/? (6.16)

and the adjacency matrix S. There is significant justification that projections using these matrices
offers better performance than the unnormalized Laplacian matrix. However, we did not find
significantly better results than those shown for the Laplacian matrix above. We note that a
spectral method based on a non-backtracking transition matrix is presented in [71]|, which appears
to offer better performance than the Laplacian or adjacency matrices, but we did not have time to
investigate this method.

We also note that even if this method had increased predictive performance over the ‘base’
generalised linear model new information about existing users is continuously arriving. As user-
website interactions are observed over time, each user vector in the original feature space changes,
affecting many other user vectors in the embedded space. This makes it necessary to recompute the
computationally expensive embedding often, which is undesirably expensive.

Finally, despite the poor results on the real problem we find above, we note a similar idea
proposed by Coates et al. [40], in the context of using single-layer neural networks for unsupervised
feature learning. This paper proposes constructing a nonlinear model k-means clustering and a
linear model. First the k-means algorithm is used to cluster the data points. Secondly, the data
points are represented in a new k-dimensional space where each dimension is the distance to one
of the k centroids (or by a radial basis function or other exponential function of this distance).

Thirdly, a linear model is trained on the new feature vectors. Coates et al. [40] achieve the most
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accurate results at the time of publishing on the CIFAR-10 and NORB datasets. This technique
is further discussed in [39], and a scalable implementation of this technique was developed by a

Google engineer, described in [115].

6.2.4 Clustering users with spectral clustering

Instead of training a linear classifier using the embedded space as above, we now assume that
the majority of points in the user-website feature space inhabit regions of higher density on the
manifold, separated by regions of lower density. Intuitively, this corresponds to the assumption that
users belong to groups with distinctive patterns of behaviour, rather than varying smoothly and
continuously across the whole spectrum of possible behaviour. The manifold regularization method
of calculating a ‘modified’ kernel penalizing sharp changes in gradient along the manifold may
then be approximated by constraining the function to be piecewise constant across these clusters
or regions. Stated another way, we simply cluster the users and look for differences in aggregate
campaign interaction behaviour for the clusters. We emphasize again that this process is more about
experimenting with these methods rather than any expectation that it will generate useful results in
the original problem. We note the similarity between this basic heuristic and graph regularization
[17].

We first try spectral clustering, which involves clustering the embedded user vectors found above
with a simple clustering algorithm, typically k-means [24]. The term spectral clustering covers a
family of methods which vary in the matrix used for the embedding and the implementation of the
k-means clustering algorithm. The k-means algorithm partitions a set of real-valued vectors into k

sets S = {S1, Sy, ..., Sk} so as to minimize the sum of squared distances within each cluster:

k
argmin Y0 3 g — gl (6.17)

i=1 x,€S;

Where p; is the centroid of cluster S;. A simple algorithm for this NP-hard minimisation problem
involves selecting k initial centroids for each cluster by some arbitrary method. Every point is then
assigned to the nearest centroid. The centroids are then re-calculated and the process repeated.
One strategy for choosing centroids is to choose vectors from the data at random, and re-run the
algorithm multiple times, choosing the initialization that produces the best clustering. We instead
select one centroid vector at random, and repeatedly select the vector closest to orthogonal to the
worst-case point already selected as suggested in [92]. Once the initial vectors are selected, many
open-source libraries are available for minimizing the objective function. A drawback of this, and
many other clustering methods, is the requirement to select k.

We used spectral clustering to cluster random samples of users of size 10* — 105. We found
that the k-means clustering is always dominated by a single large cluster, with the remainder of the
clusters similar sizes but much smaller than the large cluster. Figure 6.2 shows relative cluster sizes
for the 10° sample; the other samples display similar behaviour.

To explain this result, we note that the eigenvectors of the Laplacian matrix of a graph can also
be used to find partitions of a graph in way which minimises the total weight of cut edges while
attempting to create partitions of equal size [117], [99], [30]. However, for a graph with non-uniform
degree distribution, spectral partitioning methods tend to produce partitions with different degree

distributions, usually with one dense connected partition containing nodes of high degree and the
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Figure 6.2: Cluster sizes from a sample of 10,000 users clustered using spectral clustering

other with lower-degree nodes that are ‘trimmed’ away from the first partition [122] For graphs that
have a pronounced core-periphery structure, algorithms that minimize the edge cut of a partition
split the graph between the core and the periphery. An intuitive description of this core-periphery
effect comes from the equivalence between normalized cut and the transition probabilities of the
random walk [82]. Lang [72] show that graph cut quality varies inversely with cut balance in
small-world graphs. For these graphs, spectral graph partitioning tends to cut away a periphery
of low-degree nodes from a central densely connected core. If the nodes forming the boundaries
between ground-truth communities are of average degree or above, the ‘basic’ spectral algorithms
have difficulty separating the communities. Abou-Rjeili and Karypis [1] discuss partitioning power-

law graphs.

6.3 Community detection in the k-nearest neighbour user graph

Given the shortcomings of spectral clustering in graphs with noise and multi-scale features (exam-
ples of graphs for which spectral methods perform well include graphs generated from images or
finite element meshes) we consider clustering user vectors using the similarity matrix directly, using
community detection methods. Community detection methods look for communities, or clusters,
in a graph with a higher intra-group edge density compared to inter-group edge density. There
is an exceptional volume of literature on community detection, with hundreds of papers published
annually in computer science, social science, physics, and computational biology journals and con-
ferences, much of which is centered on domain application and heuristic variations. Two excellent
surveys are given by Fortunato [46] and Schaeffer [114]. As stated at the beginning of this chapter,
this investigation is more concerned with experimenting with community detection methods than a

belief that the clusters found will exhibit significantly different campaign interaction behaviour.

6.3.0.1 Modularity maximisation

Although modularity maximisation is an older method more recent methods with better performance
exist (such as stochastic block models and non-negative matrix factorization based clustering),
greedy agglomerative modularity maximisation methods easily scale to graphs with hundreds of
millions of nodes, unlike many more performant methods. We therefore investigate two methods
for modularity maximisation, a greedy agglomerative method and a method based on simulated
annealing.

Clustering the user similarity graph involves assigning each node in the sparse user similarity

graph a class that maximises the ‘quality’ of the graph clustering. The well-known graph modularity
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proposed by Girvan and Newman [50] is often used as a measure of quality of the node to community

assignment for a graph with associative community structure, and can be expressed by
1 kik;
Qloh = 537 3 (45 - 537 ) b (6.15)

where M is the number of undirected edges in the network, k; is the degree of node i, A is the
adjacency or similarity matrix, and o; is the class membership of node ¢. Finding the vertex
to cluster assignment that corresponds to the global maximum of the modularity is an NP-hard
problem [27]. However, in practice local minima are practically useful.

One family of algorithms for maximising the modularity includes single-level and multi-level
greedy agglomerative algorithms, many of which are derived from a single level greedy algorithm
by Clauset et al. [38]. This method begins with every node belonging to its own community,
and iteratively merges communities resulting in the greatest modularity increase. Improvements
have been made by Blondel et al. [25] and Wakita and Tsurumi [127]. Noack and Rotta [93]
developed a hierarchical improvement to the single level algorithm, and a parallel version was later
developed by Riedy et al. [111]. Many later papers on the performance characteristics of modularity
maximisation and further improvements exist. Given the prevalence of these methods, numerous
open-source implementations exist, and we experimented with several, selecting the C++ software
by Guillaume Blondel et al. [25] for use in the computational experiments below.

Another approach to modularity maximisation comes from statistical physics [108]. This is based
on the equivalence of maximising the modularity to minimising the negative Hamiltonian of a Potts
spin glass model [130] constructed with a coupling between every pair of nodes in the lattice. In
the Potts model, nodes can have an energetically strongly favourable (ferromagnetic) interaction,
or a weakly unfavourable antiferromagnetic interaction. In the graph context, the graph node
assignment to one of £ communities corresponds to a node’s spin assignment in the Potts model
lattice. If two nodes are connected, there is an ‘energetically favourable’ interaction between two
nodes, and an ‘energetically unfavourable’ interaction if the nodes are not linked, both relative to
a null model for the graph. With sensible choices for the contribution of existing and non-existing
edges to the graph ‘energy’, the Potts model can be used to find an energetically favourable node

spin assignment by minimizing the Hamiltonian

H({o}) == (Aij = Vpij) V0,0, (6.19)
1#£]

where o5 is the spin (community) assignment of node 7, and p;; represents the probability that a link
exists between node ¢ and node j, normalized so that ), 2 Pij = 2M . This formulation compares
the true distribution of links A with the expected distribution of links under the null model defined
by pij. If v =1 and p;; = k;k;/2M then 6.19 is equivalent to the Newman modularity Reichardt
and Bornholdt [108]. The ~ parameter allows recovery of community structures of different scales,
allowing hierarchical community identification.

A common algorithm used to minimise this quality function or Hamiltonian is simulated anneal-

ing, also inspired by statistical physics [67]. The Boltzmann distribution is central to this method,
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and is used to represent the probability of particular node spin assignment x as follows

Pr(x) o exp <f<TX)> (6.20)

where T is the computational temperature and f is the Hamiltonian energy function above (6.19).
The probability that the node spin assignment is not found in the minimum energy state is therefore
strongly dependent on the the value of T'. Given an initial node assignment, the simulated annealing
algorithm iteratively updates the node spin assignment while the computational temperature is
decreased exponentially from a high initial value. At each iteration, the heuristic draws a new spin
assignment x’ drawn from a proposal distribution x ~ ¢(-|x), and computes the value of the energy

function for the current state and the proposed state. Once this is done, the value

oo (100 10) -

is computed. The algorithm then accepts the proposed state with probability min(1,«). The
algorithm therefore probabilistically decides between moving the system to state x’ or staying in
state x depending on the value of . The system therefore moves to a lower energy state with
probability 1 and moves to a higher energy state with a non-zero probability, enabling moves out of
local minima. Typically this iterative process is repeated until the system reaches an energy that
is good enough for the application, or until a given computation budget has been exhausted.

We implemented a simulated annealing algorithm to minimise (6.19) for a unipartite, undirected
graph for use in the computational experiments described in subsubsection 6.3.0.3. The algorithm
is shown in algorithm 6.1. In this algorithm, initializeNodeSpins selects an initial spin
(cluster) configuration for the graph nodes, and f(-) is the Hamiltonian (6.19). The function
proposeCandidate, which selects a ‘neighbouring’ spin configuration x’ to x by changing the
spin assignment for the current node node can be arbitrarily specified. We began with a random
selection and then change this to selecting the weighted vote of the neighbours of the current node,
choosing randomly in the case of a tie.

It is possible to select an optimal number of spin states by re-running the algorithm multiple
times and comparing the maximum modularity achieved with the number of spin states, noting that
the maximum possible modularity for a given graph increases with the number of spin states, until
the the number of spin states equals the number of structural equivalence classes in the network. An
optimimum number of spin states can be chosen by evaluating the ratio of the modularity achieved
for a given network to the null model for the network and selecting the number of spin states so as

to avoid overfitting,.

6.3.0.2 Community detection example with the MNIST dataset

In order to illustrate clustering a graph formed from k-nearest neighbour similarity graph of a
dataset for which the points lie approximately on a low-dimensional manifold, we consider a simple
dataset for which the ground-truth communities are known: the common MNIST digit dataset [74].
This dataset has long been superceded as a demonstration of the capabilities of an algorithm, and
is only used here for illustration purposes. The dataset consists of a set of 28 x 28 pixel greyscale
images of the 10 Arabic numerals. Each image is described by a 784-dimensional vector, where each

element of the vector is a floating point number representing the pixel intensity.
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Input: k4, the maximum number of temperature-decrease iterations
Input: T,,4,, the maximum temperature
Input: ¢, the cooling rate

Input: E,,.., a target energy (optional)
Output: Node spin assignment x

X « initializeNodeSpins()

k<« 0

Qcm‘rent < f(X)

while k < k4 and E > Epq, do

T < Thazexp(ck)

for node € G do

x' < proposeCandidate(x, node)
Qnew <~ f(X)

if Qnew < chrrent then

chrrent — Qnew
x ¢+ x/

else
o = exp((f(x) — f(x))/T)
if o > rand() then
‘ x +— x'
else
| continue
end

end
end

k+—k+1
end

return x
Algorithm 6.1: Modularity maximisation through simulated annealing

We first train two linear classifiers, logistic regression [54] and a single-layer neural network [74]
on a set of 50,000 training images and test the accuracy of the classifiers on a set of 10,000 test
images. Both of these classifiers achieve a digit classification error of approximately 13%. In order
to simulate a context with many unlabelled examples, we then randomly select 10 vectors from
the training set as ‘labelled’ examples and retrain the classifiers above on these examples alone,
resulting in significantly reduced classification performance on the test dataset of approximately
30% classification error.

In order to utilize the marginal distribution Px of the unlabelled examples, we embed the
points using the Laplacian eigenmap method discussed above, cluster the embedded points with
k = 10, and constrain the classifier to output the same value for each cluster, a very simple graph
regularization. Using the 10 labelled examples and the clusters, we achieved 27% classification
error, only a marginal improvement on the unregularized classifier performance. However, using
the clusters found by modularity maximisation using the simulated annealing method, we achieved
4.8% accuracy using only 10 labelled examples. Figure 6.3 shows a graphical layout of the clustered
MNIST graph.
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Figure 6.3: MNIST digit dataset clustered by modularity maximisation and laid out with the sfdp
algorithm [62]

6.3.0.3 Community detection example with the sparse user similarity graph

We tested both the greedy agglomerative algorithm by Blondel et al. [25] and our simulated anneal-
ing implemention for maximising the modularity function of a user-website graph formed using a
random sample of 108 user vectors. The unclustered user adjacency matrix is shown in Figure 6.4a.
Due to the pre-processing methods, the users, or nodes, in the unclustered graph are numbered
according to the number of websites seen by each user (the degree distribution of the bipartite
user-website graph, distinct from the user similarity graph discussed here). This leads to the ob-
servable structure in this matrix. The largest block belongs to users with only 3 website connections.
The adjacency matrix re-ordered by the clusters found using the greedy agglomerative algorithm
is shown in Figure 6.4c, and community structure is clearly evident. The greedy agglomerative
method, for which the number of clusters is not specified, finds a few larger clusters and many much
smaller clusters, which common behaviour for this method. The adjacency matrix re-ordered by
the clusters found using the simulated annealing algorithm is shown in Figure 6.4b. The number
of clusters is specified as 10. Due to the computational cost of this method (the algorithm takes
over a week to run sequentially on a single core with the cooling rate used) we tried 10, 20, 50,
and 200 clusters, and found 10 clusters to have the highest subjective quality, or rate of increase of
the achieved modularity with respect to the number of clusters. As before, community structure is
clearly evident.

An important consideration for community detection methods, which is explicit in the Potts
model formulation, is the comparison to an appropriate null model for the graph under consideration.
Reichardt and White [109] argue that any claim of a practically significant clustering based on a high
modularity value must significantly exceed that for a null model based on the graph under study.
The authors also show that sparse random graphs can exhibit high maximum modularity values and
that exceeding the maximum modularity of a sparse random graph generated by the Erdos-Renyi
model [128] by a significant amount is not possible (for a graph of the same degree distribution
and number of clusters). The ‘discovery’ of community structure in a sparse graph should therefore
exceed the maximum possible modularity value for a random graph with an equivalent degree
distribution.

In order to compare the clustering found by the simulated annealing model with a null model,
we generated a random graph with an identical number of nodes and degree distribution to the user
similarity graph, and ran the same clustering procedure on this graph. The maximum modularity

achieved for the user similarity graph with a computational budget of 10,000 temperature-decrease
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iterations was 0.74. The maximum modularity achieved for the random graph was 0.11. We note
that the maximum possible modularity of a random graph generated using the Erdos-Reyni model
with 10% nodes and connection probability equal to the average connection probability of the user-
website graph has a maximum modularity of 0.233.

However, despite the significance of the clustering found using the simulated annealing method in
a network sense, these clusters do not exhibit significantly different behaviour in terms of campaign
interaction probability for the users in each cluster. This is likely due to the clustering being more
related to the length of time for which users have been observed (and the number of websites
observed for each user) than to the underlying ‘true’ user position in the feature space, and also to

the large cluster size and extremely small effect size we desire to detect.

6.3.0.4 Related work

Reichardt and Bornholdt [107] apply modularity maximisation to clustering users of a large online
auction platform, using a more advanced implementation of the Hamiltonian-based simulated an-
nealing method discussed above. Reichardt and Bornholdt [107] form a user graph by connecting
user vertices with an edge when the users have expressed interest in the same item, conceptually
similar to the user graph formed by the k-nearest-neighbour similarity graph described above. In a
much more sophisticated investigation than conducted here, the authors then cluster the user graph
for varying values of the parameter v, finding communities at different hierarchical scales, and com-
pare their results favourably with results generated from a null model. The hierarchical communities
found in this user graph by the authors exhibit distinct and readily human-interpretable interests

and patterns of behaviour as defined by page-view and purchase behaviour on the auction platform.
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(a) Adjacency matrix for the user (b) Adjacency matrix for the user similarity graph or-
similarity graph ordered by dered by the simulated annealing clustering algorithm
preprocessing only with £ = 10

[es——

(c) Adjacency matrix for the user similarity graph (d) A user similarity graph with 105 nodes, laid out us-
ordered by the agglomerative greedy clustering algo- ing the sfdp algorithm. Assortative community struc-
rithm ture is evident.

Figure 6.4: Adjacency matrices and graph layout for a 10-nearest neighbour user similarity graph
with 10% nodes
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6.4 Segmenting the bipartite user-website graph

This section was inspired by considering how to apply community detection to the weighted, bipar-
tite graph formed by directed user-website interactions, rather than the sparse user-user similarity
graph. Most community detection methods are applicable to unipartite graphs, and investigating
this issue led us to consider network ‘role’ or block discovery by fitting a stochastic block model.
We therefore investigate segmenting users and websites by inferring a degree-corrected stochastic
block model over the directed user-website interaction graph.

Degree-corrected stochastic block models explicitly accommodate the variation in vertex degree
by giving vertices with higher degree a higher probability of being connected to any other vertex,
which avoids the drawbacks of embedding methods described in subsection 6.2.3. After segmenting
the users, we investigate differences in advertisement interaction behaviour for the segments. Al-
though the graph clustering is significant relative to an appropriate null model, the differences in
advertisement interaction probability are not significant enough to be useful in practice. However,
the segments found may be useful in other applications, such as investigating the demographics of

users interacting with different types of websites.

6.4.1 Stochastic block models

Graph block models [129] are a family of generative models describing properties of graphs using the
concept of structural equivalence between vertices. The block model describes a graph by defining
the presence or absence of an edge between classes of structurally equivalent vertices rather than the
vertices themselves. Structural equivalence can be generalised to regular equivalence [60], leading
to a block structure that ‘best matches’ the observed edge pattern between vertices in the same
class. vertices in the same class are stochastically equivalent as they are exchangeable with respect
to the edge probability distribution between the nodes in each class.

The stochastic block model framework allows the expression of a much wider range of interde-
pendencies between network blocks than the independent assortative communities considered in the
context of modularity maximisation and similar methods. In particular, stochastic block models
can be applied to finding densely connected blocks in bipartite, directed networks - note that this
includes blocks where the connectivity is to each other rather than densely connected to themselves,
termed ‘modules’ by some authors.

A generative stochastic blockmodel [95] is defined by a directed graph having a specified number
of vertices, a number of classes (or blocks, or clusters) ¢, and a ¢ x ¢ matrix defining the probability
that a vertex of class ¢; has a (directed) edge to a vertex of class kj. This generative model
defines a probability distribution over graphs G Pr(G|6) over the set G of graphs with a defined
number of vertices. 6 is a parameter vector determining the between-block edge probabilities.
Given a realization of a graph, inferring a stochastic block model is the process of determining
the parameter vector 6 that is most likely to have generated the graph (maximising the posterior
likelihood Pr(G|#)). The degree-corrected stochastic blockmodel, variants of which are considered
from here on, take the degree distribution of each node into account when comparing the between-
block edge probability associated with the generative model to the edges observed for a particular
node.

Reichardt and White [109] use a similar framework to the stochastic blockmodel framework

to define the concept of ‘roles’ (or blocks) in an m-partite network, rewarding links matching a
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generative model of the block relationships and penalize links not matching this generative model,

leading to a quality function of the form

*({o}) = Z llers — [ers]| (6.22)

where e,s and [e,s] are defined as

1
€rs = M Z (ai]’ + b”) Aij 501.77, 5%.’5 (623)
Z#J
ers = Z bz] 501 +00j s (624)
Z#J

where a;; = 1 — p;j, bij = pij = kf“t k;” /M, and as before o represents the node-class assignment.
Note that this formulation compensates for varying node degrees. The e, variable corresponds to
the observed links in the network, and the [e,s] variable corresponds to the number of links expected
under the generative model of block relationships. The maximum value of this function occurs when
the number of roles equals the number of structural equivalence classes in the network. To avoid

over-fitting, the value Q* ({o}) of the function is compared with the maximum value

1 1 kput kzn
Qmam:MiZjaiinj:M (1— ZMJ Aij

for a given number of roles, and the ratio used to select the optimum number of roles. As noted
by the authors Reichardt and White [109], ‘assortative community’ detection and the modularity
objective function emerge as special cases of this framework, where each block connects only to
itself, or the ¢ x ¢ matrix defining relationships between network blocks is diagonal. We note that
Reichardt and White [109] develop a method to determine the ideal block structure as a consequence
of maximising (6.22) rather than specifying a potentially sub-optimal block structure ahead of time.

A more recent work by Peixoto [100] shows that maximising the posterior likelihood Pr(G|6))

of a degree-corrected stochastic block model is equivalent to minimising the entropy function

1 €rs
S.~—E - Nylnk! - 3 > ersn <6T€S> (6.25)
k rs

where e, represents the edges between nodes of blocks r and s, E' =), __e,s/2 is the total number
of edges, N is the total number of nodes of degree k, and e, = ) e, is the total number of
half-edges incident on block r. We select this method to infer block structure in a bipartite graph

due to the availability of a high-quality software impelementation.

6.4.2 Computational experiments and discussion

We now consider segmenting users by inferring a degree-corrected stochastic blockmodel for the
bipartite graph formed by user-website interactions directly. This avoids the extremely compu-
tationally expensive k-nearest neighbour calculation at the expense of introducing a different but
potentially equally expensive inference problem. In this setting, the dimensions in the user feature

vectors represent integer counts of user-website interactions. These user-website interactions are
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used to form a bipartite graph.

For the numerical experiments, we used the sophisticated software by Peixoto [101] to fit a
stochastic blockmodel to biparite user-website networks formed by randomly sampling 10%, 10°, and
105 users. This software uses a combination of a greedy heuristic method and a Monte Carlo Markov
Chain method to minimise the entropy function (6.25). We defer to [101] for details, noting that
greedy heuristic in combination with the Monte Carlo Markov Chain method is the only reason
that the library is able to find an acceptably low value for (6.25) in a reasonable time period (even
still, fitting a block model to this network took over three weeks).

We achieve a high quality segmentation of the bipartite networks into a block structure, shown
in Figure 6.5. As before, we then selected 16 campaigns randomly from the 96 test campaigns,
and divided the users exposed to each campaign randomly in half into a train and test set. We
then compared the ad interaction rates of the user segments in the training set to those in the
test set. However, this was only done with the network containing 10 users, and the number of
users for each campaign was not large enough to draw significant conclusions, although the results
appeared promising for some user blocks. The adjacency matrix with 10° nodes shown in Figure 6.5
was fit after the campaign testing dataset was destroyed in order to reclaim space on our laptop;
the inference took over 3 weeks of continuous computation, and the campaign datasets hundreds
of Gigabytes in size. We note that these clusters may also be useful for other purposes, such as
classifying or clustering websites, anomaly detection, and studying user behaviour for purposes not
directly related to estimating ad interaction rates.

Finally, we note that a linear model constructed using the bipartite user node degree as the only
feature is a useful predictor of campaign interaction probability; however, this method does not sig-
nificantly differentiate between campaigns when tested using the same method as in subsection 5.7.2,

merely predicting an overall higher likelihood of user interaction.
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(a) Unordered user-website adjacency matrix with 10* (b) User-website adjacency matrix with 10* rows or-
rows. Rows are users and columns are websites. dered according to inferred block structure.

(c) User-website adjacency matrix with 10° rows or- (d) User-website adjacency matrix with 10° rows or-
dered according to inferred block structure. dered according to inferred block structure.

Figure 6.5: Adjacency matrices representing bipartite user-website interaction graphs. Rows cor-
respond to users and columns to websites. In Figure 6.5a rows (users) are ordered randomly and
colummns are ordered according to the arbitrary integer website identifier. In Figure 6.5b, Fig-
ure 6.5¢, and Figure 6.5d the rows and columns are ordered according to the inferred block struc-
ture. Note that even for the nearly empty vertical band of websites in Figure 6.5d there is a strongly
associated block of around 15,000 users

7



Summary

In this chapter, we conduct a number of experiment and investigations for their value as learning ex-
ercises, rather than direct industrial usefulness. In no particular order, we re-implement the FEAST
eigensolver algorithm in MATLAB, and experiment with high-performance distributed eigensolvers
in order to embed users into a new feature space using the Laplacian eigenmap technique. We
investigate the use of these embedded coordinates as features for the generalised linear model in
chapter 5, and comment on the outcome using concepts from spectral graph theory. We investigate
fitting degree-corrected stochastic block models to large bipartite user-website networks by apply-
ing an existing, but state-of-the-art hierarchical greedy/Monte Carlo Markov chain method. We
implement a simulated annealing algorithm for graph community detection via modularity max-
imisation, and compare this with the common agglomerative greedy approach. Finally we first
investigate Laplacian regularized least squares for the same application as the generalised linear

model from chapter 5.
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Chapter 7

Exploiting real-time bidding market structure

and competitor’s bids

This chapter contains an overview of the information obtained by analysing all real-time bid auc-
tions involving the exchange considered in this project (as originator or responder) from August
to November 2013. We show the expected fluctuations in auction volume due to the variation of
user impression volume with time, as well as significant exploitable structure in the bid responses
returned by competitors. We also propose using competitor’s bid responses for individual auctions
to generate additional user features for use in the generalised linear model. Note that while most

ad requests originate in Germany, all times are given in UTC/GMT.

7.1 Using external competitor’s real-time bids to generate internal

user features

When a real-time bid request is sent from the exchange to competitors and other demand-side
platforms, the exchange and the recipient platform perform user-matching, where the unique user
identifier sent by the exchange is matched with internal tracking data by the recipient. The recipient
platform may then use information previously collected about the user to decide how to respond
with a bid. Assuming the recipient platform’s competence, these bid responses can then be used to
generate user features for ad interaction probability modeling within the exchange. For instance, if
a certain user repeatedly attracts high bids from Google, then the user will almost certainly have a
higher probability of interaction with the exchange’s own campaigns than the average. We validated
that this approach was possible using the exchange infrastructure and data. However, it was not
evaluated at scale as in chapter 5 due to lack of time. We also note that the legality of this method

is unknown at the time of writing.

7.2 Exploiting real-time bidding market structure

In order to obtain an overview of the real-time bidding market and advertisement price distributions,
we record and analyze real-time bids sent and received by the exchange under consideration over the
period Sep-Nov 2013. 38 other firms are represented in this dataset which contains approximately
30 billion events and is 3 Terabytes in size. We processed this dataset using 100 virtual machines
in parallel (see subsection 5.3.1 for an explanation of the infrastructure used). Selected major
participants in the German online advertising market, including the exchange considered in this
project are shown in Table 7.1 along with traffic statistics from July 2013 produced by the research

firm ComScore.

The outcome of a real-time bidding auction is theoretically determined by a second price auction,

where the highest bidder pays the value of the second highest bid. The optimum strategy in an
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Pageviews (10°)  Users (10°) % of German users Mean daily users (10%)

German Internet Audience 104.3 57.9 100 35.8
Google Display Network 43.0 53.6 92.5 22.4
Performance Advertising 3.6 47.6 82.1 12.2

Adscale GMBH 9.4 44.8 77.3 13.1
ValueClick Media EU 2.2 39.2 67.7 8.3
Yahoo! Network Plus 4.3 36.5 63.0 7.2

TradeDoubler 1.4 34.8 60.2 6.0

Vibrant Media 0.6 29.2 50.4 4.2

Microsoft Media Network 1.8 29.0 50.1 5.5
Adconian Media Group 1.2 24.7 42.7 2.9

Specific Media 0.2 16.5 28.5 1.7

Table 7.1: Comscore German internet traffic analysis, July 2013

idealized second price auction is for each party to bid the exact value that winning is worth to
them, without attempting to ‘game the auction’. For further details refer to Leme and Tardos [76].
In practice, the pure second price auction is often subverted by factors such as soft price floors
specified by publishers, which essentially change the second price auction to a first price auction by
constraining the winning bidder to pay a price equal to the soft floor.

The data recorded includes the distribution of the maximum bid, the distribution of the second
highest bid, and the distribution of the spread between the highest and second highest bids, and the
distribution of the remaining bids for 5-minute windows across the 2 month period. The dataset also
includes these statistics broken down by the real-time bidding parter and the approximately 10,000
webpage urls registered with the exchange. This makes it possible to (for instance) identify real-
time bidding parters who bid unusually high values for users loading particular webpages. Other
ways in which this data is commercially useful include determining the distribution of bids from
a particular competitor, predicting the market response to a change in volume by any competitor,

and identifying strategies in use by competitors.

7.2.1 Calculating e-accurate quantiles for an unordered, infinite data stream

In order to represent the bid distributions, we calculated a large number of quantiles. The naive
method for calculating quantiles is sorting the input and then passing through the sorted input
recording the values falling into the positions corresponding to the desired quantiles. For large
datasets distributed across multiple servers, this is costly in both computation time and in network
data transfer due to the distributed sort. A desirable algorithm for this problem does not require
sorted input.

It is possible to very accurately calculate the quantiles of an infinite, randomly ordered data
stream in practically-bounded memory using the algorithm proposed by Munro and Paterson [8§]
and extended by Manku et al. [79]. Munro and Paterson [88] show that it is possible to calculate the
k-th highest value from an unordered, potentially infinite input stream with probability proportional
to the limited storage used, and provide bounds on the relationship between accuracy and storage.
In particular, they show that there is a probability p > 0 such that any one-pass algorithm which
finds the median of a dataset of size N with probability of failure p requires O(v/N) storage. Their
algorithm maintains b buffers of size k with a weight w and level [. The buffers are initially empty.
New elements from the stream are used to populate an empty buffer, assigned a level of zero. When

every buffer is full, two buffers with the lowest levels are merged by sorting both buffers contiguously
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and selecting every second value. The level of the single output buffer is then incremented by one.
New values from the stream are then inserted into a new empty buffer of level zero created following
the merge operation. When the input stream is exhausted (or at a given point in time), a weight of
2! is assigned to every element of a buffer of level [ € 0,1,...L. The elements of all buffers are then
sorted contiguously, and the desired quantiles are selected from this weighted, ordered list.

Manku et al. [79] improve this algorithm by modifying the tree structure of the buffer merges.
They further show that by randomly sampling the input stream it is possible to calculating e-
approximate quantiles with a probability of success of 1 — p with storage requirements of
O (6_1 logZe ! + e !log?log p_l) space, notably independent of the dataset size, allowing continu-
ous computation of the e-approximate quantiles of an infinite stream.

This allows the quantile computation to be performed in a somewhat efficient manner using the
mapreduce software framework. The map processes read each real-time bid response in parallel and
output a constant value as the key and the bid price as the value. Only one reducer process is created,
which takes as input the unordered stream of (key, value) pairs output by the map processes (which
is assumed to be randomly ordered with respect to the bid prices). The reducer process maintains
the buffers described in subsection 7.2.1 in memory, and continuously discards values with buffer
merges. Without the use of the Munro-Paterson algorithm, a sorted copy of the entire dataset would
need to be created on disk before streaming to the reducer, greatly increasing the time required
for computation. We used an open-source implementation of this method originally developed by

Linkedin to compute the results shown below.

7.2.2 Structure in real-time bid market volume and pricing

The expectation going into this analysis was that the bid distribution would vary with time of day
(as the number of user impressions and purchasing intent varies) with higher demand and prices
expected between 6-10pm in the evenings. This behaviour was expected to result from similar
pricing models operated by a number of equal competitors in an efficient market. Further, we
expected the bid spread (the difference between the largest and second largest bid) to be on average
a small percentage of the largest bid.

Figure 7.1 shows that the total number of ad impressions (and real-time bid auctions) varies on
a 24-hour night and day cycle as expected. What was not expected is that the highest prices are
bid during the early morning, around 0600 hours UTC, with the most bid percentiles including the
95t percentile decreasing from this point onward over the 24 hour day. A possible explanation for
this behaviour is that some kind of daily budget is being renewed overnight, and the competitors’
decision engines take full advantage of the renewed budget early in the day, decreasing the available
budget over the day, resulting in reduced bid prices later in the day.

We also note that there are sharp ‘steps’ in the overall market cumulative bid distribution
that persist for hours at a time, as seen in Figure 7.3. One possible explanation for these levels
is fixed parameters in competitor’s pricing algorithm that result in a ‘ceiling’ for bids made by
that algorithm in certain contexts. A second possible explanation is soft auction floors specified by
publishers, where a publisher specifies a minimum desired price, and if the winning bid is lower than
this price, the winning bidder is constrained to pay the soft floor price. Note that in this situation,
the real-time bid auction is no longer a second price auction.

Figure 7.4 shows cumulative distribution functions for real-time bids received from four of the

exchange’s largest real-time bidding competitors over 20 minute periods. The maximum bid is over
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$30 in each case except for mbr-targeting. All competitors have a similar number of bids, on the
order of 10% in the 20 minute period. Note the different bidding behaviour for each competitor,
and the higher bid values between an instinctively less optimal time of day (early morning) and an
instinctively more optimal time of day (early evening).
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Figure 7.1: Volumes of real-time bids recorded in September 2013
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Summary

In this section, we present an overview of a quantitative investigation into the German real-time
bidding market in September and November 2013, covering a substantial fraction of the market.
The processed data from which the examples presented are drawn is broken down by real-time
bidding competitor, publisher website, and 5-minute period over more than two months. Much

more detailed analysis is possible and useful, but is beyond the scope of this document.
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