
Energy Aware Persistence: Reducing Energy Overheads of
Memory-based Persistence in NVMs

Sudarsun Kannan
College of Computing,

Georgia Tech
sudarsun@gatech.edu

Moinuddin Qureshi
School of ECE, Georgia Tech
moin@ece.gatech.edu

Ada Gavrilovska
College of Computing,

Georgia Tech
ada@cc.gatech.edu

Karsten Schwan
College of Computing,

Georgia Tech

ABSTRACT
Next generation byte addressable nonvolatile memories (NVMs)
such as PCM, Memristor, and 3D X-Point are attractive solutions
for mobile and other end-user devices, as they offer memory scal-
ability as well as fast persistent storage. However, NVM’s limita-
tions of slow writes and high write energy are magnified for appli-
cations that require atomic, consistent, isolated and durable (ACID)
persistence. For maintaining ACID persistence guarantees, appli-
cations not only need to do extra writes to NVM but also need to
execute a significant number of additional CPU instructions for per-
forming NVM writes in a transactional manner. Our analysis shows
that maintaining persistence with ACID guarantees increases CPU
energy up to 7.3x and NVM energy up to 5.1x compared to a base-
line with no ACID guarantees. For computing platforms such as
mobile devices, where energy consumption is a critical factor, it is
important that the energy cost of persistence is reduced.

To address the energy overheads of persistence with ACID guar-
antees, we develop novel energy-aware persistence (EAP) princi-
ples that identify data durability (logging) as the dominant factor in
energy increase. Next, for low energy states, we formulate energy
efficient durability techniques that include a mechanism to switch
between performance and energy efficient logging modes, support
for NVM group commit, and a memory management method that
reduces energy by trading capacity via less frequent garbage col-
lection. For critical energy states, we propose a relaxed durability
mechanism – ACI-RD – that relaxes data logging without affecting
the correctness of an application. Finally, we evaluate EAP’s prin-
ciples with real applications and benchmarks. Our experimental re-
sults demonstrate up to 2x reduction in CPU and 2.4x reduction in
NVM energy usage compared to the traditional ACID persistence.

1. INTRODUCTION
Industry announcements claim future byte addressable, nonvolatile

memory (NVM) technologies like phase change memory (PCM)
and 3D Xpoint [1] to have 100x lower access latency compared

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11-15, 2016, Haifa, Israel
c© 2016 ACM. ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967953

to that of Flash/SSD devices and to scale to 4-8 times the den-
sity of DRAM, without consuming refresh power. The promised
outcomes include larger memory capacities [37] at lower energy
usage [29] compared to DRAM, coupled with faster persistent data
storage and access than Flash/SSD. Given this, current end-user de-
vices such as smartphones, tablets, and laptops with limited DRAM
capacity and slow flash storage [27] are an important target for
NVM. Particularly attractive are the dual benefits of using NVM
for higher memory capacity (volatile heap) and faster data persis-
tence [29, 37, 23].

However, using NVM for persistence requires fail-safe guaran-
tees from application or device failures. For example, when saving
a user id (key) and password (value) into a persistent key-value
store, a failure after updating the key, but before saving the pass-
word can result in an undesired state. To guard against such prob-
lems, applications must satisfy atomicity (A), consistency (C), iso-
lation (I), and durability (D), also commonly referred to as ACID.
In ACID, ‘A’ requires either all or none of the operations to com-
plete in a transaction, whereas ‘C’ requires each update to convert
persistent data from one consistent state to another. ‘I’ ensures con-
current updates are invisible to each other, and is realized through
race free mechanisms and synchronization, and finally, ‘D’ requires
that any changes to application data committed before a crash can
be recovered, usually achieved by logging the updates.

Prior work has focused mainly on optimizing the performance of
persistent storage that satisfies ACID properties by either treating
NVM as a fast disk [36, 14, 12] or by using NVM as heap [39,
11, 35], also commonly referred to as memory-based persistence
(hereafter simply memory persistence). In an NVM-as-a-disk ap-
proach, applications rely on the filesystem for ACID guarantees,
whereas in memory persistence, applications use persistent allo-
cators to allocate and update heap objects inside a transaction be-
fore committing them. The benefits of memory persistence over
disk-based persistence has been widely studied for a broad range
of applications such as key-value stores, persistent in-memory data
structures, object-based storage, NoSQL and SQL database.

When using memory persistence, the correctness of an applica-
tion is maintained by frequently flushing the application data and
the related metadata, whereas durability is achieved by logging
them. The metadata refers to information such as the state of a per-
sistent allocator, and the data log headers. Consequently, support-
ing memory persistence not only increases the energy cost due to
increase in NVM accesses but also increases the CPU instructions,
hence resulting in a higher CPU energy use. Our analysis shows
that memory persistence with ACID guarantees incurs a CPU en-
ergy increase of up to 7.3x and NVM energy increases of up to

165

5.1x compared to a baseline that does not maintain persistence. For
computing platforms (such as mobile devices) where energy con-
sumption is a critical factor, it is important that the energy cost of
persistence is reduced.

To address this, we propose energy-aware persistence (EAP) as
an essential element for deploying NVM in end-user devices. Prior
work has sought to reduce the cost of consistent and durable mem-
ory persistence [42, 12, 35, 30] using performance-centric solu-
tions. These solutions optimize the transactional component of the
memory persistence without considering whether such optimiza-
tions address the durability- or correctness-related persistent costs.
In contrast, EAP analyzes the energy implications of the correct-
ness and durability software components in detail. Our analysis is
the first to identify that durability (logging) costs are the most sig-
nificant contributor to energy usage in an memory persistence, and
to quantitatively demonstrate the significance of both NVM and
CPU-related energy costs in the overall energy overheads of sup-
porting persistence. EAP’s energy reduction methods are applica-
ble for other non-NVM storage mediums too. EAP leverages these
observations to reduce the durability-related energy cost of ACID.
The EAP design comprises of two parts, (i) energy efficient durabil-
ity for low-but-not-critical energy states, and (ii) relaxed durability
(ACI-RD) for critically low energy states. We next briefly intro-
duce the key ideas of energy efficient durability and ACI-RD.
Energy efficient durability. Durability methods can be broadly
classified into REDO and UNDO logging. In REDO, the appli-
cation updates are first written to a log, and when the log is full,
the log contents are committed to the original data location. This
method is also referred to as Write-Ahead Logging (WAL). In con-
trast, for UNDO, the updates are committed in-place by first tak-
ing a backup of the original data. Most state-of-the-art memory
persistence designs use WAL because UNDO doubles the required
NVM updates in a transaction. However, as we show in Section
3, WAL is performance-efficient but consumes higher energy com-
pared to the UNDO logging. We also show that persistent mem-
ory allocation and garbage collection have to be logged, and add a
significant CPU and NVM energy cost. To address these issues,
we first design energy efficient durability. The energy efficient
durability method provides a mechanism to switch automatically
between performance-efficient WAL and energy-efficient UNDO
logging modes. Further, to reduce the allocation and garbage col-
lection cost, the energy efficient durability reduces frequent allo-
cation and garbage collection, and thereby trades additional NVM
capacity use with lower energy cost.
Relaxed durability (ACI-RD). The energy efficient durability
method is not sufficient when the energy availability is critical.
For such energy critical states, we design ACI-RD, that relaxes
the strict application data logging (D of ACID) requirements of a
traditional ACID model, without impacting the correctness (ACI)
of an application. Although ACI-RD weakens the durability guar-
antees and increases the application recovery time after a failure,
we show that by careful design, energy consumption can be sig-
nificantly reduced without weakening the correctness property of
ACID. Figure 1 provides a high-level timing diagram comparing a
traditional ACID vs. our ACI-RD design. In the ACID case, after
application execution, both application data, and metadata are or-
dered, flushed and logged. In contrast, with EAP, when energy is
critically low, data durability is relaxed for application data, but not
for its metadata, thus maintaining the ACI properties essential for
correct operation after a failure.

EAP uses an epoch-based execution model, where the target en-
ergy level at the start of each epoch drives the choices of suitable al-
ternatives by dynamically measuring the durability-related energy

D E

D App. data ordering,
logging

Metadata ordering,
logging

(A) ACID Model

(B) ACI-RD Model Strict metadata updates
Relaxed data logging, and flushing

Execution

Epoch 1 Epoch 2 Epoch 3 Epoch 4

E M

M D E M D E M D E M

D E MD E M E M E M

Figure 1: (A) Traditional ACID epoch execution, (B) ACID-RD:
Data logging relaxed for critically low energy Epoch 2,3

of each ACID stack component. If the energy budget is low-but-
not critical, EAP just uses the efficient durability, but when the en-
ergy is critically low, EAP combines the efficient durability meth-
ods with ACID-RD by relaxing the durability guarantees.

We implement EAP’s software-based efficient durability and ACI-
RD methods by extending Intel’s NVML [21] open source persis-
tence library. Our evaluations using different memory persistence
benchmarks and applications show that EAP’s efficient durability
for low energy state reduces NVM and CPU energy usage by up
to 28% and 41%, respectively. By combining efficient durability
with ACI-RD for critical energy states, EAP achieves up to 2.1x
and 2.4x CPU and NVM energy reduction, respectively.

In summary, this paper makes the following contributions:

• Durability cost. We quantify data durability as the key
source of energy bottlenecks for applications with memory
persistence with ACID guarantees (Section 3).

• Energy efficient durability. To reduce durability-related en-
ergy overheads, we propose energy efficient principles that
trade off performance and capacity for energy, support flex-
ible logging, and NVM group commit methods when the
available budget is low (Section 4).

• Epoch-based relaxed durability (ACI-RD). For critically low
energy budgets, we design a novel ACI-RD model that re-
laxes data durability based on the energy usage in each epoch,
without affecting application correctness (Section 5).

• Experimental evaluation. We evaluate EAP with realistic
benchmarks and applications and demonstrate the substantial
benefits of EAP (Section 6).

In the rest of the paper, Section 2 discusses the background of
the memory-based persistence and the related work, Section 3 an-
alyzes the energy overheads of different memory persistence soft-
ware components such as cache flush and logging required for pro-
viding memory persistence. Section 4 discusses the energy effi-
cient durability principles for low-but-not-critical energy budget.
Section 5 describes the ACI-RD design and implementation details
for critically low energy budget. Section 6 presents the evaluation
methodology, and the energy benefits and implications of the pro-
posed EAP design, followed by the conclusion in Section 7

2. BACKGROUND AND RELATED WORK
Byte-addressable NVMs. NVMs such as PCM are byte-addressable
persistent devices expected to be 100x faster (read-write perfor-
mance) compared to current SSDs [12, 14, 8]. Further, NVM can
scale 2x-4x higher density than DRAM [1] as they can store mul-
tiple bits per cell with no refresh power, with known limitations
imposed by an endurance of a few million writes per cell. These at-
tributes make NVM a suitable candidate for replacing SSDs. Addi-

166

tionally, NVM can be extended as a memory placed in parallel with
DRAM, connected via the memory bus. NVMs offer load/store ac-
cess interface that can potentially avoid POSIX-based block access
supported in current storage devices. NVMs’ read latency is com-
parable to DRAM latency, but the write latency is 5x-10x slower
due to high SET times [28], and more importantly, the active write
energy is 15-40x higher than DRAM [41, 28].
NVM usage models. One usage model is to treat DRAM as
a cache for NVM, while also providing a file system interface,
such as in [37]. However, with this usage mode, supporting per-
sistence with ACID guarantees can be expensive because the data
needs to be flushed and moved to multiple levels (processor cache
to DRAM to NVM) before committing it to NVM. Moneta [8],
BPFS [12], and PMFS [14] address this by designing a new filesys-
tem for NVM that does not use DRAM as a cache, and provides di-
rect access to NVM. Although the I/O performance improves with
these filesystems, the use of the block-based POSIX I/O operations
such as read(), write() require frequent user-to-kernel transitions.

An alternative usage model is to provide applications with a
byte-level access to NVM. This reduces the user-to-kernel tran-
sition and the kernel-level filesystem cost. POSIX already pro-
vides a byte-level access to a persistent storage device via memory-
mapped (mmap()) interface. But mmap() is coarse grained and
inflexible [11, 35, 23, 25], and it does not provide ACID guar-
antees [14]. Prior research addresses these issues by designing a
persistent object store [39, 11, 21] for NVM that provides a byte
addressable load-store interface. The object store also provides a
persistent memory allocator and transactional persistence support.
In EAP, we use the persistent object store model and address the
energy overheads of persistence.
Durability and consistency. The processor cache can buffer writes
and significantly reduce the impact of high NVM write latency.
Current OSes and architectures use a write-back cache model in
which the cache lines can be evicted in any order. However, for
guaranteeing ACID properties in persistent storage, writes to NVM
must be ordered for preserving the application correctness [35, 30].
For example, committing the metadata before committing the orig-
inal data can be dangerous. The prior research uses a write-through
cache model [39] with an epoch-based cache eviction [12] sup-
ported by memory barriers or introduces a persistent processor cache.
Besides the write ordering issues, data durability can be affected
due to a power failure that destroys the cached data, resulting in a
non-deterministic state. Although applications can flush the cache
to reduce non-recoverable failures, for ACID guarantees, other mech-
anisms such as logging (e.g., UNDO or REDO) are required. How-
ever, frequent cache flushes and logging are expensive.
Reducing ACID overheads on performance. Recent research
such as [42, 23, 35, 43, 30] have proposed both hardware and soft-
ware methods to reduce NVM overheads while preserving ACID.
They have also considered relaxed consistency models [35, 30] that
do not impact application performance. A recent research, persis-
tent hardware transactional memory (PHTM) [7] analyzes the ben-
efits of supporting persistence for the transactional memory hard-
ware when providing strict ACID guarantees. PHTM’s hardware
extension improves parallelism and transaction performance result-
ing in application speedup. However, even with the hardware ex-
tension, results show up to 5x slowdown for supporting strict ACID
guarantees compared to no ACID support. In contrast, EAP aims
to reduce the number of CPU instructions, NVM accesses, and
energy, by optimizing and relaxing strict ACID guarantees with-
out impacting the correctness of an application. More importantly,
EAP does not require hardware changes. We believe its software
methods are complementary to the hardware extensions.

P.hdrP Alloc.C

2. Log parent metadata P.hdr

1. Log allocator metadata

insert(child) :
TX_BEGIN
 /*Allocate child*/
 C = TX_Alloc(child)

 /* Log parent */
 TX_LOG(P)

 /*Add child*/
 P.child[0] = C

 TX_COMMIT

UNDO log

 Metadata logging Data logging
Correctness, durability Durability
Fixed size (16 bytes) Variable size

Less energy Higher energy

P Alloc.C

Alloc.C

Figure 2: Software NVM memory persistence. The figure shows
steps for inserting a child node to a persistent B-tree inside a trans-
action, including allocator metadata and data logging.

NVM-based memory persistence. Recent research has exten-
sively explored memory persistence for NVMs with ACID guaran-
tees [39, 11]. Support for memory persistence requires application-
level changes, and the objects made persistent have to be logged
either with a UNDO log or with a write-ahead log (WAL). In con-
trast, the disk-based persistence used in prior database research [36,
6] log the entire page even when a word in the page changes.

To provide a background of how memory persistence works, Fig-
ure 2 shows an example of inserting a new node to a persistent
B-tree inside a software transaction. First, a new child node is
allocated using the persistent memory allocator and the allocator
metadata (Alloc.C) for this child node is logged. Second, before
adding the child node to the parent, the parent is backed into an
UNDO log. The backup involves first writing the parent node (P)
– considered as an application data – to the UNDO log, followed
by a header of the application data (P.hdr) – considered as the ap-
plication metadata. After UNDO logging, the parent pointer to the
child node is updated, and when the transaction successfully com-
mits, the UNDO logs (application data and metadata) are cleared.
In the event of a failure before a transaction commit, the appli-
cation metadata (P.hdr) is used to UNDO any data changes and
restore the parent (P) to a state before the child node was added,
using the UNDO log. The allocator metadata (Alloc.C) is used for
the garbage collection of the allocated memory for the child node.
Note that the metadata (Alloc.C and P.hdr) is required for correct-
ness of the application and is typically much smaller (16B) than
the data, thus requiring much lower energy costs during updates.
We target applications which, as in this example, require memory
persistence, and we focus on reducing the energy costs associated
with providing ACID requirements in memory persistence.
Memory persistence libraries. Prior work has developed memory
persistence libraries that include Mnemosyne [39], NV-Heaps [11],
NVML [21], and Atlas [9]. Both Mnemosyne and NV-Heaps use
transactional memory persistence, and differ in the granularity of
logging (word versus object). Atlas, a recent work, differs from
prior work by providing semantics for locking-based persistence in
contrast to transactional memory persistence. While implementa-
tions such as NV-Heaps and Atlas are not openly available, Mne-
mosyne’s legacy user-level Intel STM libraries are no longer func-
tional. Also, Mnemosyne’s OS component suffers significant cache
overhead [24]. Hence, in this work, we use the NVML library from
Intel for its comprehensive memory persistence implementation,
SNIA compatibility, and architecture-specific optimizations. Other
persistent allocators such as NVMAlloc [31], nvm_malloc [38],
and NVMMalloc [40] only provide ACID guarantees for the al-
locator, but not for the transactional updates important for per-

167

sistence. We also demonstrate EAP’s generic principles for other
well-known applications such as SQLite [5], and Snappy compres-
sion [16].
Relaxing persistence. To reduce persistence overheads, Pelly
et al. [35] propose a consistency model that allows reordering be-
tween one or more independent transactions for better concurrency.
Reordering is done only for writes to the cache, whereas writes to
the NVM from the cache are ordered. This approach constitutes a
variation of the epoch-based consistency model that requires hard-
ware and software changes for reordering writes. Y. Lu et al. [30]
propose a loose ordering consistency (LOC) protocol for relaxing
intra- and inter-transaction ordering. In their approach, the log
area is divided into blocks of 64 bytes with one metadata header
for seven blocks. Committing log data in block-groups avoids re-
peated metadata update. After a failure, the consistency is val-
idated using the group-level metadata. LOC assumes the pres-
ence of a nonvolatile cache. FIRM [43] improves persistent stor-
age performance by adding intelligence to the memory controller
for prioritizing persistent data updates over non-persistent data up-
dates. All of the above proposals require hardware and software
modification. A recent software-only solution, NVRAMDB [36],
uses NVM as a disk for page-based persistence and proposes per-
formance optimizations specifically for databases. NVRAMDB
uses a batched/group commit that first copies the original data to
a UNDO rollback/recovery log, then buffers multiple transactions
in a DRAM buffer, and finally, it commits all the buffered data to
NVM. Although this approach improves the throughput, it does not
change the total data logged to NVM. In fact, by buffering transac-
tions in DRAM and then copying to NVM, this solution consumes
additional CPU and DRAM energy. In contrast, we propose a group
commit update customized for memory persistence that reduces en-
ergy use.
EAP versus prior work. EAP differs from the work reviewed
above [35, 30, 43, 36] in several ways. (1) EAP identifies and
addresses the ACID software components that increase energy. (2)
Other than NVM support, EAP does not require additional hard-
ware changes. (3) Prior work principally seeks improvements in
application performance, a case in point being the lazy asynchronous,
or relaxed atomicity and ordering in [30] and [35]. Using such
methods changes when certain actions are taken, but they do not
reduce the total CPU instructions or NVM accesses. As a result,
prior research does not directly reduce the persistence-related en-
ergy consumption. (4) EAP’s relaxed durability model is designed
for memory persistence where it is important to classify data and
metadata for maintaining correctness of the heap and the applica-
tion state, unlike [35]. Finally, (5) our mechanisms are driven by
the current energy availability, with flexibility to switch between
the performance and energy efficient modes.

3. DECONSTRUCTING ACID ENERGY COST
To understand the energy costs of memory persistence, we ana-

lyze the CPU and NVM energy usage of correctness and durability
ACID components. We use the analysis to formulate EAP’s en-
ergy efficient durability principles and ACI-RD design. All our
memory persistence applications use only the NVM [32] as op-
posed to a DRAM-NVM hybrid model. We report the increase in
CPU instructions, NVM writes, and CPU and NVM energy. For
NVM energy, we use the PCM energy prediction values as dis-
cussed in [28] with a 36x higher active write energy compared to
DRAM. Although we use PCM for analysis, EAP’s software prin-
ciples are generic with its main focus toward reducing the necessary
parameters such as CPU and NVM use. To validate the benefits of
EAP’s principles for other competing NVM technologies such as

STT-RAM (only 5-10x higher write energy than DRAM), in Sec-
tion 6, we run the same applications only on DRAM, and measure
the full system energy using a power meter.

3.1 Component-level energy analysis
For memory persistence with ACID guarantees, multiple user-

level and system-level software components are required. The user-
level components include the actual application code, the persistent
allocation and garbage collection component, and the transaction
component with logging support. System-level components can be
a persistent filesystem or persistent memory management mecha-
nisms [11, 23], each maintaining ACID properties for their internal
system-level persistent data and metadata structures.
Model. The total energy consumed by a persistent application
is the sum of energy used by each of the ACID components that
order, flush, fence, and log their states. Our energy-aware opti-
mizations, therefore, address these components and their joint op-
eration. Stated more precisely and focusing on the major contribu-
tors of energy consumption – CPU and NVM, the following simple
equations denote the total energy used by an application.

Etotal = EAPP +Edatlog +Emetalog +E f lush

EA = Edatlog +Emetalog +E f lush = Etotal −EAPP

EA = EACPU +EANV M

 (1)

EAPP denotes energy without ACID, E f lush - the energy from cache
flush, fence and drain, Edatlog - the energy from data logging, Emetalog
- the energy from metadata logging, and EA - the energy for main-
taining ACID guarantees.

NVM emulation and analysis approach. We use an x86 Haswell
desktop system running Linux 3.9.4 kernel. The system has a 32KB
L1 and 4MB LLC write-back cache, Intel 520 120GB flash mem-
ory, and 4GB of DDR3-based DRAM, of which we use 2GB for
NVM by mounting the PMFS filesystem [14]. Because byte ad-
dressable NVMs such as PCM are not commercially available, to
emulate NVM’s read and write latency, we inject software delays
similar to most of the prior NVM research [39, 11]. Our emula-
tor periodically gets the total load and store cache misses (every
100ms) using the RDTSCP synchronous instruction as a timer with
+-20ns accuracy. It uses the delay model proposed by Dulloor et
al. [14] to emulate 100ns load and 400ns store latency. For the
CPU and NVM energy, we use the RAPL support [18] to first mea-
sure the CPU and DRAM energy consumption, and then use the
LLC cache misses due to load and store instructions to estimate
the NVM energy usage based on the read and write energy values
discussed in [28]. In Section 6, we describe the details of our dy-
namic energy estimation method. We focus our analysis on the fun-
damental elements necessary for performance and energy such as
the increase in CPU instructions and NVM accesses from memory
persistence with ACID guarantees. In Section 6, we show that our
analysis and solutions are applicable even when the NVM latency
and energy cost are same as DRAM.

We extend and optimize the SNIA standard-based [4] NVML li-
brary from Intel [21]. NVML already supports transactional object
persistence, persistent memory allocations, logging, and persistent
barrier. The persistent objects are stored in a large memory-mapped
region managed by the PMFS filesystem. NVML provides an API
for an UNDO log, as shown in Figure 2, and rolls back failed trans-
actions. We also extend NVML with a support for WAL-based log-
ging. Further, each persistent object has a different virtual address
but one unique identifier across application restarts. The unique
identifier is used for loading the object from a persistent region.
Applications. Table 1 shows the end-user-centric persistence bench-

168

Applications Description Workload
RB-tree [21] Red-black trees (cache & memory inefficient) 500K random insert, read, delete operations
B-tree [21] Persistence-friendly, balance search tree used in

databases, software cache etc.
Same as RB-tree

KV-store Simple key-value store using persistent hashmap Same as RB-tree
SQLite [5] Database used extensively in end-user devices 500K operations of SQLite benchmark [15]
Snappy [16] Fast compression library used in chrome and other

Google products. We ported it with memory persistence
1.5GB of image, video, audio, document files

JPEG [3] Well know image conversion service that we ported
with memory-based persistence

40K JPEG images converted to bitmap format

Table 1: Applications.

1.0
1.5
2.0
2.5
3.0
3.5
4.0

 In
str

uc
tio

ns
 in

cr
ea

se

FLUSH Metadata Log Data Log

(a) CPU instructions increase.

1

3

5

7

N
V

M
 st

or
e i

nc
re

as
e

FLUSH Metadata Log Data Log

(b) NVM stores increase.

1

2

3

4

CP
U

 en
er

gy
 in

cr
ea

se

FLUSH Metadata Log Data Log

(c) CPU energy increase.

Figure 3: ACID cost analysis. Bars show cost of each component. Y-axis shows increase factor relative to No-ACID as the baseline.

marks [30] and applications used in prior studies [30, 23].
(1) B-tree (balance search tree) is a well-known persistence-efficient
data structure extensively used in databases, large graph libraries,
and also for memory management [21]. B-tree has an O(log n) up-
date or search worst case complexity, and O(n) space complexity.
Each B-tree node can have one or many child nodes which reduce
the depth of the B-tree. The parent and child nodes can fit inside
one cache line reducing the overall cache misses. However, node
additions and deletions require re-balancing the tree. Consequently,
a memory persistence implementation has to log and commit the
changes inside a transaction, and the cost of persistence increases
the energy cost significantly.
(2) RB-tree (red-black tree) is extensively used for in-memory data
structures inside the OS with an O(log n) insert and O(n) worst-
case space complexity. RB-trees are both memory and persistence
inefficient because every update to a tree node results in flushing
and logging both the parent node and its two child pointers.
(3) A key-value store (KV-store), like those used as a data cache in
both end-user and server platforms, is designed using a persistent
hashtable. For adding a KV-store entry, first, a hash entry, a key,
and its value are allocated using a persistent memory allocator, and
the allocations are logged (metadata logging). Next, the data of
the key, value and the hash entry pointers are updated and logged.
Hence, the persistent KV-store also has a high ACID persistence
cost.
(4) The SQLite database is widely used in end-user platforms. It
supports both write-ahead logging (WAL), journaling and rollback
(referred to as UNDO in this paper). We use the existing in-memory
database and logging feature of SQLite with page-based (as op-
posed to an object-based) persistence to avoid significant code changes
to the application.
Finally, we use (5) Google’s Snappy object compression library,
and (6) JPEG – an image conversion library widely used across
different OSes.

0%
20%
40%
60%
80%

100%

Da
ta

to
 M

eta
da

ta
ra

tio Data Metadata

Figure 5: Total data vs. metadata log size ratio.

Analysis. Figures 3.(a)-(c) show the increase in CPU instructions,
NVM writes, and CPU energy for applications listed on the x-axis
compared to the No-ACID approach that does not offer correctness
or durability guarantees. The FLUSH bar refers to persistent bar-
rier cost that includes cache flush and memory ordering (fence and
drain operations) instructions [4]. Metadata and Data Log refer to
the application and allocator metadata, and data logging cost, re-
spectively.

As the graphs show, supporting ACID for NVM memory per-
sistence increases CPU instructions, NVM accesses, and energy
significantly, with durability (metadata and data logging) dominat-
ing the cost. The overall CPU energy increases by up to 6.1x for
RB-tree of which the data logging alone adds 4.1x overheads. The
NVM store increase also shows a similar trend but with even higher
overheads. For instance, both RB-tree and KV-store incur 7x more
NVM writes. It is important to note that, for KV-store, the meta-
data to data size ratio is higher compared to all the other application
benchmarks as shown in Figure 5. This is primarily due to higher
persistent memory allocation and garbage collection cost including
the application metadata cost for the reasons we discussed earlier.
Therefore, the metadata-related CPU energy and NVM stores in-

169

59 46

2

136

56 46
4

142

0
40
80

120
160

K
O

PS
/se

c

WAL UNDO

163
89

289

149
96

342

0

100

200

300

400

Insert
(64 B)

Insert
(1 KB)

80%
Insert

K
O

PS
/se

c

WAL UNDO

(B) B-tree(A) SQLite

(a) WAL vs. UNDO Kilo operations/second for access patterns.

0
1
2
3
4
5

O
ve

rh
ea

d
fa

ct
or

WAL UNDO

(A) SQLite

0
1
2
3
4
5

O
ve

rh
ea

d
fa

ct
or

WAL UNDO

(B) B-tree

(b) WAL vs. UNDO Instruction, CPU energy, NVM access. Y-axis is
overhead increase factor relative to No-ACID.

Figure 4: WAL vs. UNDO performance and energy comparison.

crease by 2.5x and 3.72x, respectively. Snappy and JPEG have rel-
atively lower metadata logging cost as they process less than 50K
files. In contrast, the data logging cost is high mainly from logging
large multimedia objects.

3.2 Deciphering durability costs
We next analyze the sources of application data and metadata

logging costs. We use the resulting insights to formulate a set of
EAP principles for reducing energy usage.
Logging methods. Prior research on NVM memory persistence
have used either (1) UNDO (refers to journaling) logging [11] or (2)
write-ahead logging (WAL) [39]. Also, to exploit byte addressing
capability, the memory persistence research use word or object-
based logging unlike page-based logging in disk-based systems.
We next discuss the energy implications of such logging methods.
UNDO vs. WAL logging for memory persistence. When using
UNDO logging, the original data is backed to a journal (log) in the
NVM before modifying the data in-place. After a transaction com-
mits successfully, the log is discarded, or else, if the transaction
aborts or if the system fails, the backed up log is used to revert the
intermediate updates. Although UNDO requires double writes to
NVM for each transaction – first to UNDO journal, and then to ac-
tual data address, it allows in-place writes and read-after-writes. In
contrast, WAL reduces the double write bottleneck by first append-
ing updates directly to the log, and when the log space runs out,
it checkpoints the log contents to the original data location. How-
ever, because updates are not in-place, subsequent writes and read-
after-writes inside a transaction have to be redirected to a log. To
read from the log, WAL maintains an index to locate and fetch the
latest version. WAL, therefore, sequentially appends writes, which
can improve performance and concurrency for large multi-core sys-
tems with write-intensive workloads. However, for read-intensive
workloads, access redirections can be expensive in terms of CPU
instructions and NVM accesses. Additionally, sequential updates
are significantly beneficial for disks, but the gains are limited for
NVMs [32, 14]. Redirecting every access to a log can result in sig-
nificant code changes, eliminating the use of the byte-addressable
load-store interface.

As discussed by [32, 14], another drawback of WAL for large
data updates is that the fixed size log buffers have to be frequently
truncated, and their contents have to be checkpointed to the original
data location. Checkpoints require parsing the log records sequen-
tially and copying multiple versions of the same data to the original
location. Although the updates are faster with WAL log appends,
eventually all log entries should be committed, and hence this does
not change the total CPU instructions or NVM access. These issues
are relevant for page-based logging mechanisms too [33, 10].

Analysis. We analyze the performance and energy impact of
UNDO and WAL logging for the B-tree benchmark that uses NVML’s
object-based memory persistence, and for SQLite that uses page-
based persistence. The system setup and NVM emulation are same
as discussed earlier. Figure 4a compares the performance (through-
put) of WAL and UNDO for B-tree and SQLite. The y-axis repre-
sents thousands of operations per second, and the x-axis shows dif-
ferent access patterns. For small sequential, write-intensive work-
load as in the case of SQLite and All-insert for B-tree, WAL per-
forms marginally better than UNDO. However, for the read-intensive
workload (20% writes, 80% reads) and large data updates for B-
tree, the UNDO performance is better, and large SQLite updates
show similar trends. Next, regarding the energy use, Figure 4b
shows the increase in CPU instructions, NVM writes, and energy
for SQLite and B-tree when using WAL and UNDO. The y-axis
shows the increase factor compared to the No-ACID (and no log-
ging). The y-axis values are for an entire benchmark (cumulative)
run with different access patterns. We observe that, compared to
WAL, UNDO logging reduces CPU instructions, NVM writes and
energy usage for both B-tree and SQLite. In short, the performance
and energy of logging methods vary based on the workload and im-
plementation. Hence, a mechanism that can switch between energy
and performance modes is important.
Metadata durability cost. Concerning the energy overheads as-
sociated with the metadata persistence, the persistent memory allo-
cators’ state has to be logged for correctness and durability, which
can increase the energy use for applications that frequently allo-
cate and deallocate data structures (e.g., KV-store, B-tree). Our
prior research [23] proposes an NVM write-aware allocator that re-
duces NVM writes by placing complex allocator data structures in
DRAM and just maintaining a log of all allocations in the NVM.
However, even with this approach, for small and frequent NVM
allocations, logging and flushing the allocator state can become ex-
pensive, especially when the metadata/data ratio increases. As a
result, the CPU instructions, NVM accesses, and metadata-related
energy cost increase.

4. ENERGY EFFICIENT ACID PRINCIPLES
Based on the insights gained from the analysis of memory per-

sistence ACID overheads, we next formulate a set of energy effi-
cient durability (logging) principles. The principles discussed are
the first step towards energy reduction under low-but-not-critical
energy budgets for end-user devices. In the next section, we pro-
pose a relaxed durability model (ACI-RD) for critically low energy
state.

170

0

10

20

30

40

50

0 2 10 20 29 39 43 46 49 52Ga
in

s (
%

) r
ela

tiv
e t

o A
CI

D

 Increase in memory capacity(%)

Instructions
NVM Stores
NVM Loads

Figure 6: B-tree: y-axis shows the gains relative to ACID by trading
memory capacity (x-axis in %).

Instructions NVM Loads NVM Stores
11.86% 9.28% 10.68%

Table 2: SQLite gains from trading 35% higher capacity.

4.1 Flexible logging
As discussed in Section 3, although WAL provides marginally

higher throughput compared to the UNDO log method for small
updates and write-intensive workloads, it increases CPU and NVM
energy usage for large and read-intensive workloads.
Key idea. Motivated by these observations, EAP provides a dy-
namic logging mechanism that transparently switches to an energy-
aware logging mode (WAL to UNDO, and vice versa). When en-
ergy is not a constraint, applications start with WAL as a default
logging mode. At fixed time intervals (epochs), the logging li-
brary measures the available energy budget. When energy avail-
ability becomes limited, the library switches to UNDO logging.
The dynamic switch from WAL to UNDO is initiated only for new
transactions because splitting the log for a dirty and uncommitted
transaction across WAL and UNDO is suboptimal for logging and
recovery. Additionally, all the pending WAL transactions (includ-
ing nested transactions) are committed before the switch. These
restrictions simplify code changes required for SQLite to support
EAP’s energy-aware methods. We evaluate the additional energy
overheads of frequent switching due to small epochs in Section 6.

4.2 Gain energy by trading capacity
We next discuss the principles for reducing persistent memory

management energy costs by trading capacity when energy avail-
ability is limited.
Reduce allocator work. Modern DRAM and persistent memory
allocators strive to provide fast allocation and reduce memory frag-
mentation. They maintain memory object slabs of different sizes
(generally in powers of two), and service request from the slabs.
To align requests to the nearest slab, allocators frequently perform
complex operations such as merging multiple small objects. When
ineffective, they request the OS (via mmap() or break()) to allocate
a batch of pages, and these operations consume significant CPU
energy. Requests for a smaller batch result in frequent OS requests,
whereas larger batch increases memory fragmentation. The persis-
tent allocator state must also be persisted, which adds to the en-
ergy cost. Hence, to reduce energy (and instructions and NVM ac-
cesses) usage, EAP’s energy efficient durability trades off capacity
by using large OS allocations (64MB) only when there is an energy
constraint. Consequently, complex merge operations are avoided,
reducing CPU work and energy.
Reduce garbage collection overheads. More than the memory

allocation, the cost of persistent memory garbage collection is even
higher. Most garbage collection methods use a ‘mark and sweep’
approach (mark, and then delete objects). Prior research have an-
alyzed the performance overheads of DRAM-based garbage col-
lection in end-user devices [34] and server machines [19]. For
NVMs, the allocator-related persistence cost is even higher because
the allocator has to persist (and log) the allocator state for deletion
(free()) before requesting the OS to release memory pages using
an expensive munmap() call. Hence, when the energy is a con-
straint, EAP delays the garbage collection, and therefore, trades
NVM capacity for reduced energy consumption, without affecting
the correctness. Garbage collection is delayed only until the system
swapping threshold is reached. We modify the persistent memory
allocator to mark the objects for deletion but to free them only when
the available free NVM capacity is below a threshold. We extend
this to the OS-level garbage collection for delaying the release of
application heap pages by setting a special one-bit page flag.
Analysis. Figure 6 shows the combined effects of energy effi-
cient allocation and delayed garbage collection. The results show
reduced NVM load-store accesses and CPU instructions compared
to the memory persistence with traditional ACID approach (y-axis
in %). The x-axis indicates the increase in NVM usage as a trade-
off for energy. Trading off capacity reduces allocator and garbage
collection cost thereby reducing CPU instructions and NVM ac-
cess. It is important to note that the reduction in NVM accesses is
higher compared to the decrease in CPU instructions because recy-
cling objects requires several expensive memset(), memcopy(), and
FLUSH operations. Beyond 45% increase in the capacity, the gains
reduce because, after reaching the swap threshold, both the persis-
tent memory allocator and the OS have to release memory aggres-
sively. These actions increase the overall work done by both the
allocator and the OS, thereby increasing the total CPU instructions
and NVM accesses. Furthermore, a subtle but important reason is
that the library allocator maintains all objects as nodes in a B-tree,
and their lookup or update time increases as we delay the garbage
collection. We observe similar trends for SQLite (see Table 2), but
the benefits are lower due to a custom page-management.

4.3 Memory persistence group commit
Transactional updates with persistence barriers can be expensive.

Grouping smaller transactions into a larger one, referred to as group
commit protocol in databases and filesystems [17] is a well-known
technique. NVRAMDB mentioned in Section 2 uses a group com-
mit protocol that buffers updates in DRAM and lazily commits logs
and data to NVM [36]. However, NVRAMDB is a performance-
centric approach and lacks energy awareness. It increases CPU
instructions and accesses to DRAM and NVM by adding a DRAM
buffer. Instead, we propose an energy-aware group commit proto-
col for memory persistence.
Key idea. In a traditional ACID design, a persistence barrier (FLUSH
for application data including log [36]) is applied twice, once to the
UNDO log before an update, and once to the original data after an
in-place update. In contrast, in EAP, we apply barriers only twice
in a group of transactions instead of every transaction. The first
barrier is used when an object is modified for the first time in a
group, and the next barrier when the entire group commits. Also,
unlike NVRAMDB [36], our design does not buffer the log updates
in DRAM but creates a clean, separate undo log when an object is
updated for the first time in a transaction group. For subsequent
transactions, logging and in-place updates happen without persis-
tence barriers. Figure 7 shows the pseudocode for inserting a node
in B-tree. Before the parent node pointers are updated, an UNDO
log is created for every child (update or delete operations). For a

171

insert(child arg) {
TX_BEGIN

 /*Allocate child*/
 C1 = TX_Alloc(arg);

/* Log parent */
 TX_LOG(P1);

 /*Add child*/
 p1->items[pos]=c
TX_COMMIT

}

T1:insert(c1) T2:insert(c2) T9:insert(c9)

EAP group commit

P1

C2C1

P1

C2C1

P1 P1

C1 C9

P1P1

C2C1

P1 P1

C2C1

P1

C1

P1 P1 P1P1P1

C9

ACID

P1 P1

Log with persist barrier

Log only

P1P1P1 P1

Figure 7: Memory persistence group commit. Circles P, C rep-
resent B-tree parent and child nodes. Shaded and non-shaded P1
squares indicate UNDO log with and without persistence barriers,
respectively.

5.0
10.0
15.0
20.0
25.0
30.0

10 50 100 1000Re
du

ce
d(

%
)

N
V

M
 a

cc
es

s

Group transaction batch size

B-tree KV-store RB-tree

Figure 8: Impact of group commit batch size. Higher object re-
access reduces NVM access.

transaction batch size nine in this example, the persistence barrier
for the parent node (P1) is only applied for T1 and T9. If a failure or
abort occurs before the group commit, all the updates inside a batch
are reverted using the UNDO log. This guarantee of "all or none"
is same as the prior group commit approach. We implement this
by adding a single bit to the object’s allocator metadata and setting
the flag first time an object is modified inside a group and reset-
ting the flag when the entire group commits. Figure 8 shows the
impact of transaction batch size in the x-axis. Intuitively, the ben-
efits are higher for objects that are repeatedly accessed in the same
group. B-tree benefits by reducing the redundant barriers for the
parent node when multiple new child nodes are inserted, whereas
in the KV-store, repeated barriers for parent hashtable structure is
avoided. The energy impact is minimal for RB-tree with fewer
reaccess. Hence limiting the group transaction size to increase reac-
cess per batch is important.
Atomic commits. New persistent memory-specific x86 atomic
instructions such as CLWB for cache line write-back without in-
validation but ordered store fences, PCOMMIT for non-temporal
stores, and CLFLUSHOPT for optimized cache line flush [20] can
reduce CPU instruction and NVM access cost by avoiding the need
to log values smaller than 64 bytes. This can significantly reduce
the metadata logging cost and the data logging cost for small up-
dates.

5. RELAXED DURABILITY – ACI-RD
When the energy budget is critically low, the efficient durability

principles discussed in the previous section are not sufficient. In
other words, always using a strict ACID approach for end-user de-
vices can substantially drain the battery power preventing an appli-
cation from running to completion. This impacts the target memory

crash

3
Consistent log

Metadata A B

a1 b1

1

a1 b1

Orig. data

Data

A B

Update var A, B
with values a1, b1

A B

2

a2 b2

Orig. data

ACI-RD epoch

A B

Update A, B
with values a2, b2

 Undo
metadata log

Recovery

Orig. data

A B

a1 b1

Orig. data

A B

4

5

Failure

Undo

Recover

ACID epoch

Figure 9: ACI-RD steps. ACI-RD used for critical low energy state.

persistence application, as well as other background applications.
Key Idea. In memory persistence, all application state, includ-
ing object data, its metadata (object headers), and library metadata
(persistent memory allocator state) is logged to a consistent log. In
the group commit approach discussed earlier, the metadata and data
logs are written for each transaction, and only persistence barriers
are relaxed in a group. For critical energy states, when such opti-
mizations are insufficient, we propose a relaxed durability model –
ACI-RD. ACI-RD reduces the frequency of logging by increasing
the interval between data logging, but without delaying the appli-
cation, allocator, and the library metadata logging, critical for the
correctness of an application. When ACI-RD is enabled, the meta-
data is updated to a separate UNDO log used only during ACI-RD.
Further, an application can transition from a strict ACID phase to
ACI-RD phase, and vice versa, depending on the available energy.
We refer to each phase as an ‘epoch’, corresponding to a fixed time
interval during which either an ACID or ACI-RD is used. As dis-
cussed in Section 2, prior performance-centric delayed durability
methods reduce logging cost by buffering log writes in DRAM and
eventually writing them to the NVM. However, they do not reduce
the overall CPU instructions, NVM writes and the energy usage.
In contrast, EAP, to address critical energy state, writes only the
metadata log to UNDO thereby reducing NVM writes, CPU in-
structions, and energy, without compromising the correctness.
Why to use a separate ACI-RD metadata UNDO log? The
use of a separate UNDO log for metadata updates during an ACI-
RD epoch is critical for application correctness. In the event of a
failure, all metadata updates in the UNDO log are used to revert up-
dates during an ACI-RD epoch, and restore the last checkpoint state
where both data and metadata were made durable in a consistent
log. Specifically, for memory persistence, the UNDO log contains
both application- and library-related metadata and provides infor-
mation for garbage collection of memory allocated in an ACI-RD
epoch. Further, the UNDO log clearly segregates the consistent
updates in the ACID epoch from the relaxed updates in the ACI-
RD epoch. The separate log avoids the need to parse the entire log
sequentially and classify the ACID and ACI-RD updates.
Transition from ACI-RD to ACID. During the transition to ACID,
EAP first enables load and store fences, flushes all data updates
from the cache lines, followed by all metadata updates, and finally,
issues a load and store fence, so as to guarantee that all updates
from the previous ACI-RD epoch are complete. This provides the
same correctness guarantees as ACID. In-flight errors can exist in
both ACID or ACI-RD, and can be avoided if the future hardware
provides an acknowledgment upon a successful write [8].
ACID-RD steps. Figure 9 shows the update and recovery steps for
two variables A and B, for both ACID and ACI-RD epochs. When

172

for each epoch do
if energy_save_mode = true then

/*EAP-ACID (efficient durability)*/
Switch to undo logging
Apply EAP batch allocation
Apply EAP delayed garbage collection
Apply group commit transactions
Find ∆Transepoch from Equation 3
if ∆Transepoch <= 0 then

continue;
end
if energy_critical = true then

if commit.size < cacheline.size then
atomic commit;

end
if ∆Transepoch > 0 || commit.size > maxsize then

/* ACI-RD epoch */
Apply fence
Update data in-place, FLUSH, drain
Log metadata to UNDO log
For transaction commit, return special code

end
end

end
end

Algorithm 1: EAP efficient durability and ACI-RD steps.

the variables A and B are updated with values a1 and b1 in an ACID
epoch with no energy constraints in 1 , both data (a1, b1), and the
metadata (address of A, B, and size of update) are written to a con-
sistent log. When the energy becomes a constraint, in 2 , ACI-RD
is enabled. In this case, for updates of the variables A and B with
values a2 and b2 only the metadata (A, B address, and update size)
is written to the ACI-RD UNDO log. The data is updated in-place
with FLUSH or atomic updates, if applicable. If a failure happens
as in 3 , first the updates to A and B are reverted using the meta-
data log as shown in 4 , and then the consistent data log is used to
restore the previous values a1 and b1. The result of this mechanism
is a trade-off between durability (D in ACID) and energy, without
compromising application correctness.

Intuitively, as the ACI-RD epoch time interval increases, the size
of the total data that is not made durable increases. Hence, a failure
during the ACI-RD epoch increases restart cost. More formally,
as shown in Equation 2, after a failure in the ACI-RD epoch, the
restart time (RACI−RDt) is approximately the sum of the time to
undo all updates in the ACI-RD epoch (UNDOt), the time to re-
cover data from the consistent log, and the time to re-execute the
‘lost’ transactions. The time to recover from a consistent log is
equal to the restart time (RACIDt). The time to re-execute the ‘lost’
transactions is the product of total relaxed transactions (NTransepoch)
and the average per-transaction time (Transt). UNDOt directly
depends on NTransepoch , and average UNDO time per transaction
(UNDOTranst).

RACI−RDt ≈ RACIDt +UNDOt +(NTransepoch ∗Transt)

UNDOt ≈ NTransepoch ∗UNDOTranst

}
(2)

∆Transepoch = Transepochi −Transepochi−1

∆Eepoch = (Eepochi −Ebudget)/Ebudget

}
(3)

To implement the ACI-RD mechanism, given an energy budget
E, the application execution is divided into per-epoch intervals of
time tmsec with per-epoch energy budget Ebudget . We assume the

value of Ebudget is known and is equal to the per-epoch energy of
the metadata only approach in which only the metadata required
for correctness is logged. We estimate this budget by sampling an
epoch at runtime [13]. After the end of each epoch, EAP estimates
the increase in the epoch’s energy usage (∆Eepoch) and the increase
in the number of transactions (∆Transepoch) relative to the current
and previous epoch transactions Transepochi and Transepochi−1 . As
discussed in Section 3, the total energy for persistent applications
with ACID guarantees is a factor of application execution, data log-
ging, cache flush, and metadata transactions. We use this simple
estimation model to avoid the overheads (including energy) of a
complicated model.
EAP execution. Algorithm 1 shows EAP’s sequence of steps for
reducing energy usage. EAP’s efficient and relaxed durability are
activated only when the energy saving mode is enabled – a fea-
ture available in most end-user devices. For low energy budget,
EAP applies the energy efficient durability principles described in
Section 4 – switching from WAL to UNDO logging, group com-
mit, batched allocation, and relaxed garbage collection – while still
maintaining ACID guarantees. We refer to this mode as EAP-
ACID. In the next epoch, the EAP runtime checks if EAP-ACID
is sufficient to meet the per-epoch energy budget, and if not, ACI-
RD is activated. These steps are repeated for subsequent epochs
until the energy budget is satisfied. Note that unlike checkpointing-
recovery protocols with fixed checkpoint interval [26], in a trans-
actional application, the logging frequency depends on the number
of transactions executed by the application. EAP uses the energy
budget to tailor/relax logging without affecting the application cor-
rectness. For ACI-RD epochs, atomic commits can be used for
the metadata log, as shown in Algorithm 1. Further, durability for
objects larger than a threshold size is relaxed as they consume sig-
nificantly higher energy.
Application notification and restarts. ACI-RD is a feature of
EAP that either a user or a developer can enable. When ACI-
RD is enabled for critically low energy budget, our implementa-
tion notifies the application about the completion of a transaction
with a special return code on commits. If a system with ACI-RD
epoch encounters failure, then the application re-executes all ACI-
RD transaction for the failed epoch upon restart.

6. EAP EVALUATION
The key goal of our evaluation is to understand the impact of the

proposed energy efficient durability (EAP-ACID), relaxed durabil-
ity (ACI-RD), and the overall benefits of EAP that combine EAP-
ACID and ACI-RD. We also analyze the implications of ACI-RD
on restart time after a failure, and the overall impact on the system
energy.
Methodology. In Section 3, we described our experimental plat-
form details, NVM emulation with software delay, and the use of
the RAPL [2] hardware counters to estimate the NVM and the CPU
energy. We dynamically query the performance and energy hard-
ware counters every 100ms (minimum frequency to measure en-
ergy) to measure the increase in CPU instructions, NVM accesses,
and CPU energy. We estimate the NVM energy usage using the
load-store cache misses [39, 22]. The latency and energy values
are based on a PCM-based NVM [28], but EAP’s principles for
reducing energy are relevant for other NVM technologies such as
STT-RAM. We also validate this by running the applications in a
DRAM-based system and measuring the overall system energy us-
ing a power meter.
Baselines. We evaluate and compare EAP, a system which com-
bines EAP-ACID and ACI-RD, against four different persistence

173

3.7

2.6

3.4

2.9

2.0

1.0

2.0

3.0

4.0

 In
cr

ea
se

 fa
ct

or

5.1 5.8

3.53.7 3.4 2.5

0.0

2.0

4.0

6.0

8.0

 In
cr

ea
se

 fa
ct

or

7.2

3.4
5.1

2.5

0.0

2.0

4.0

6.0

8.0

 In
cr

ea
se

 fa
ct

or
6.3

3.93.7
2.7

0.0

2.0

4.0

6.0

 In
cr

ea
se

 fa
ct

or

B. NVM Stores

D. NVM Energy

0.0010.00
Btree BiTree Snappy Sqlite

 In cr eaACID Metadata EAP-ACID EAP

A. CPU Instructions

C. CPU Energy

Figure 10: EAP impact on CPU instructions, NVM writes, CPU and NVM energy. Y-axis in the graphs denotes increase factors(x) relative
to using only FLUSH. EAP bars include EAP-ACID and ACI-RD.

0.00
2.00
4.00
6.00
8.00

10.00

 In
cr

ea
se

 fa
ct

or

ACID
Metadata
EAP-ACID
EAP

Figure 11: EAP runtime impact.

methods. First, the baseline method – FLUSH – that performs only
flush, fence, and orders data in the cache without satisfying dura-
bility and correctness. Second, the traditional ACID approach with
full data and metadata logging. Third, the Metadata-only method
that provides durability only for the allocation and library meta-
data without the data durability. This method cannot recover any
data after a failure and only validates the correctness, and hence,
is not useful for most applications. Fourth, the EAP-ACID, which
provides efficient durability via flexible logging, energy-aware al-
location and garbage collection and the group commit mechanism.
Note that unlike EAP, this approach does not relax durability and is
applied for low-but-not-critical energy states.

6.1 Reduced energy use with EAP
Figures 10.(A)-(D) analyze the implications of persistence on in-

crease in CPU instructions, NVM writes, CPU energy, and NVM
energy, respectively. The y-axis shows the overheads as factor in-
crease relative to the FLUSH approach as a baseline. The experi-
ments use the applications and benchmarks introduced in Section 3.
Application runtimes vary between 28 and 64 seconds. In EAP-
ACID and EAP, the epoch time is set to 400ms, and we later discuss
the epoch interval sensitivity. All the three benchmarks – B-tree,
RB-tree, and KV-store – perform insert, find, delete and overwrite
operations with 128-byte values.

Analysis. Although B-tree is persistence friendly, ACID increases
CPU instructions by 1.9x and NVM accesses by 3.28x compared
to the baseline. EAP-ACID with its energy efficient optimization
reduces instructions and NVM accesses by 30% and 48% respec-
tively compared to ACID. These benefits are mainly from the mem-
ory persistence-based group commit that reduces multiple persis-
tent barriers for the same parent when child nodes are inserted, and
from trading capacity by reducing the overhead of garbage collec-
tion. In contrast, EAP, by using ACI-RD with 400ms epoch in-
tervals further reduces CPU and NVM energy by 61% and 67%,
respectively.

RB-tree is a persistence inefficient data structure and shows the
highest the ACID cost. When using only EAP-ACID, the energy
reduction gains are minimal (~28% reduction in the CPU energy),
most of which are from reducing the garbage collection cost and
avoiding redundant log updates using the group commit. In con-
trast, with EAP, the logging is relaxed for RB-tree updates. Specif-
ically, relaxing a log update for a parent node in the RB-tree avoids
the logging cost for two of its child nodes. Consequently, this re-
duces instructions and NVM access by 80% and 2.6x, respectively.
The Metadata-only approach offers higher gains but is less useful.
For the KV-store, EAP reduces the high CPU and NVM energy
costs of ACID by 2x and 2.5x, respectively. EAP still exhibits high
overheads because of the allocator cost. Redesigning the KV-store
data structure can reduce such cost.

For Snappy [16], which uses an input workload of 50K files (to-
tal 1.5 GB), and file sizes that vary between 10KB-140MB, the
metadata logging cost is negligible. However, persisting large files
with FLUSH is expensive, and the data logging is even more ex-
pensive. EAP relaxes logging for large data updates (see Algo-
rithm 1), which provides considerable improvement. For applica-
tions such as Snappy, strict ACID is unnecessary because only files
for which compression failed require re-compression. EAP pro-
vides a transparent support without depending on the application
developer. JPEG image conversion [3] shows similar trends with
only 40K transactions but incurs higher number of NVM store ac-
cesses because the output files can be larger (up to 30%) adding to

174

1
11
21
31
41
51
61

10 50 75 100

EA
P

ga
in

s (
%

) r
el

at
iv

e
to

A

CI
D

Energy budget(%) higher than Metadata-only

Instructions NVM Stores
CPU Energy NVM Loads

Figure 12: Impact of energy budget.

1
11
21
31
41
51
61

0.3 0.4 0.7 1.3 2.9 5.7G
ai

n
(%

) r
el

at
iv

e
to

 A
CI

D

Epoch Interval (Sec)

Instructions
NVM Loads
NVM Stores
CPU Energy
Relaxed datalog(%)

Figure 13: Impact of epoch interval.

0
20
40
60
80

100
120
140

Instr. Stores Loads Instr. Stores Loads

Re
sta

rt
co

st
(%

) r
ela

tiv
e t

o
AC

ID

100K 250K 500K

700 msec epoch400 msec epoch

Figure 14: Epoch interval vs. restart cost. Load and stores
represent NVM load stores.

1800

2300

2800

3300

3800

4300

Flush Metadata ACID EAP
To

ta
l e

ne
rg

y
(jo

ul
es

)

Large (400K trans)
Medium (300K trans)
Small (200K trans)

Figure 15: Overall system energy improvements with EAP. Y-axis in-
dicates cumulative energy from running all applications.

the logging cost. With SQLite, EAP-ACID’s flexible logging and
allocator optimization reduce instructions (16%) and NVM writes
(12%), compared to ACID with WAL-based logging. ACI-RD re-
duces CPU and NVM energy by additional 26-28%. Furthermore,
using a page-based persistence limits the gain [33], and redesign-
ing SQLite for memory persistence in the future can improve the
benefits. Figure 11 shows the runtime impact of EAP. As shown,
EAP, by combining efficient durability with ACI-RD, reduces CPU
instructions and NVM writes, thereby improving application run-
time. The runtime results show the same trends as the other system
parameters.

6.2 EAP parameter sensitivity
We next use the persistence-efficient B-tree benchmark to ana-

lyze the sensitivity of the energy gains and the restart cost for EAP,
by varying the energy budget and the epoch interval.
Energy budget. Figure 12 shows the impact of the energy budget
on the gains that can be achieved with EAP. The x-axis shows the
increase (%) in the budget compared to the energy required for the
Metadata-only case. The y-axis shows the gains compared to strict
ACID. Intuitively, when the budget is high, the number of ACI-
RD epochs decreases along with EAP’s energy gains. As observed,
for 0 to 45% increase in the budget, the CPU instruction and energy
reduction gains vary from 56% to 40%, and the NVM accesses vary
from 36% to 31%. These results show (1) the significant difference
between the ACID and the Metadata-only case, and (2) the need
to use both efficient durability (EAP-ACID) and ACI-RD for most
epochs when the energy budget is low. When increasing the budget
beyond 50%, the number of ACI-RD epochs decreases, and at 90%
EAP is turned off to use the strict ACID.
Epoch interval. Figure 13 shows the sensitivity to the epoch
interval duration. Note that after each epoch interval, EAP’s Al-
gorithm 1 is used to decide if EAP-ACID or ACI-RD should be
applied. In addition to the reduction in CPU instructions and NVM

accesses, we also show the percentage of the total data log size
that is relaxed, compared to the ACID case. We observe the fol-
lowing. First, for B-tree, EAP achieves maximum gains for epoch
intervals in the 400-700ms range (10-50K B-tree transactions). Re-
ducing the epoch interval below 400ms or increasing it above one
second reduces the EAP’s gains. The reduction is because for short
execution intervals, the overhead of switching from ACID to EAP
or from EAP to ACID dominates the benefits achieved from EAP.
The costs include switching to an energy efficient logging mode
and EAP’s software budget profiling cost, which increase CPU in-
structions by 10%. When increasing the epoch interval beyond one
second, EAP fails to apply ACI-RD when the energy budget ex-
ceeds the epoch budget, thus incurring higher data durability cost,
as shown in the figure. These results confirm the high data logging
cost, and show that even when relaxing the data logging interval
to 400ms, reductions of up to ~60% CPU instructions and ~40%
NVM accesses can be achieved with EAP.
Restart costs. As discussed in Section 5 and Equation 2, the
restart cost is dependent on the epoch interval for which data dura-
bility is relaxed. For brevity, in Figure 14, we show only the impact
of epoch intervals of 400ms and 700ms. The y-axis shows the in-
crease in restart cost compared to strict ACID for 100K, 250K, and
500K transactions. For a 400ms epoch interval with 100K transac-
tions, around 5K transactions are relaxed. For restarts after a fail-
ure, the CPU instructions and NVM accesses increase by only 19%
and 10%, respectively. For 500K transactions, the CPU instruc-
tions and NVM accesses overheads further reduce mainly because
the restart cost from loading the UNDO log and other initialization
costs amortize. For ACI-RD epoch of 700ms, the additional UNDO
operations increase the restart costs. The results show that using an
optimal epoch interval (400ms in this case) is important to reduce
the increase in restart cost due to ACI-RD.

It is also important to note that the overall duration of a restart is
59x lower than the total application execution time, and the energy

175

benefits of EAP are significantly higher compared to the increase
in the restart cost. The results show the sensitivity of EAP’s gain
towards the epoch interval and energy budget.

6.3 Memory technology independent gains
To validate EAP’s principles independent of the NVM technol-

ogy, we run all applications on DRAM for storage and computa-
tion, without emulating PCM-based NVM. We measure the overall
system energy consumption by connecting the power source to a
power meter. In Figure 15, the y-axis shows the overall energy
usage (in joules) when running all applications (B-tree, RB-tree,
KW-store, JPEG, and Snappy). The number of total transactions
per application is varied (large, medium, and small) by changing
the problem or the input data size. The x-axis indicates different
persistence methods. For EAP, we use a 400ms epoch interval –
the best case in the previous evaluation result. As seen, the overall
energy increase from strict ACID memory persistence shows same
trends as in the earlier NVM and CPU energy results. For large and
medium transactions, ACID increases energy use by 2x compared
to the FLUSH only approach. EAP, by combining EAP-ACID and
ACI-RD, reduces energy consumption by ~34% compared to the
ACID approach. The results validate EAP’s generic energy reduc-
tion principles, regardless of the persistent memory technology.

Summary and Discussion. In summary, EAP, by combining EAP-
ACID and ACI-RD provides up to 2.4x reduction in NVM energy
and 2.1x reduction in CPU energy for data structures that are not
persistence friendly (RB-tree), and up to 64% and 40% CPU and
NVM energy gains for persistence-efficient applications (B-tree).
Although EAP-ACID is effective for typical systems, for systems
with critically low energy budget, ACI-RD may be required to en-
sure application completion. EAP does not compromise correct-
ness. Support for multi-cache line commits and hardware-based
energy profiling can reduce metadata and software energy cost.

7. CONCLUSIONS AND FUTURE WORK
This paper analyzes the energy overheads of persistence, and

identifies durability-related costs as the most significant contribu-
tor to energy usage. To reduce durability energy costs, we propose
energy-aware persistence (EAP). EAP first designs energy-efficient
durability principles that under low but not critical energy budgets
include flexible logging to trade off a small fraction of performance
with energy, delayed garbage collection to trade NVM capacity
with energy, and use of an NVM group commit method. For crit-
ically low energy conditions, EAP proposes a relaxed durability
(ACI-RD) design that reduces energy significantly by relaxing data
logging, but without impacting correctness. EAP’s evaluation us-
ing benchmarks and applications shows a reduction of up to 2.1x in
CPU energy and 2.4x in NVM energy, compared to a strict ACID
approach. An interesting outcome of this research is that, for re-
ducing persistence cost, it is important to reduce both the CPU and
NVM energy. As a future work, we plan to understand the fail-
ure modes of end-user devices and to support alternative durability
models.

8. ACKNOWLEDGMENT
The authors would like to thank all the anonymous reviewers and

our shepherds, Professor Yan Solihin and Professor Larry Rudolph,
for their valuable feedback in improving the quality of the paper.
We thank the immense contribution of Professor Karsten Schwan
whom we will greatly miss. This work was supported in part by the
Intel URO program on software for persistent memories, and by C-

FAR, one of the six SRC STARnet Centers, sponsored by MARCO
and DARPA.

9. REFERENCES
[1] Intel-Micron Memory 3D XPoint. http://intel.ly/1eICR0a.
[2] Intel RAPL driver. http://lwn.net/Articles/545745/.
[3] JPEG library. http://libjpeg.sourceforge.net/.
[4] SNIA specification. http://tinyurl.com/nktmrby.
[5] SQLite. http://www.sqlite.org.
[6] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about

storage & recovery methods for non-volatile memory
database systems. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’15, pages 707–722, New York, NY, USA, 2015. ACM.

[7] H. Avni, E. Levy, and A. Mendelson. Hardware Transactions
in Nonvolatile Memory, pages 617–630. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2015.

[8] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta,
and S. Swanson. Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories. In
MICRO 2010, pages 385–395.

[9] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. In
Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages &
Applications, OOPSLA ’14, pages 433–452, New York, NY,
USA, 2014. ACM.

[10] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and
S. Swanson. From aries to mars: Transaction support for
next-generation, solid-state drives. In SOSP 2013, pages
197–212.

[11] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: Making
persistent objects fast and safe with next-generation,
non-volatile memories. In ASPLOS, 2011, pages 105–118.

[12] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through
byte-addressable, persistent memory. In SOSP, 2009, pages
133–146.

[13] I. Constandache, S. Gaonkar, M. Sayler, R. Choudhury, and
L. Cox. Enloc: Energy-efficient localization for mobile
phones. In INFOCOM 2009, pages 2716–2720, 2009.

[14] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System software for
persistent memory. In EUROSYS, 2014, pages 15:1–15:15.

[15] Google. LevelDb. http://leveldb.org/.
[16] Google. Snappy Compession. http://tinyurl.com/ku899co.
[17] R. Hagmann. Reimplementing the cedar file system using

logging and group commit. In Proceedings of the Eleventh
ACM Symposium on Operating Systems Principles, SOSP
’87, pages 155–162, New York, NY, USA, 1987. ACM.

[18] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring
energy consumption for short code paths using rapl.
SIGMETRICS Perform. Eval. Rev., 40(3):13–17, Jan. 2012.

[19] M. Hertz and E. D. Berger. Quantifying the performance of
garbage collection vs. explicit memory management. In
OOPSLA, 2015, pages 313–326.

[20] Intel. Intel Development Manual. http://intel.ly/1CdHj1r.
[21] Intel. Logging library. https://github.com/pmem/nvml.
[22] Intel. PMFS: Persistent memory file system.

github.com/linux-pmfs.

176

[23] S. Kannan, A. Gavrilovska, and K. Schwan. Reducing the
cost of persistence for nonvolatile heaps in end user devices.
In HPCA, 2014, pages 512–523.

[24] S. Kannan, A. Gavrilovska, and K. Schwan. pvm: Persistent
virtual memory for efficient capacity scaling and object
storage. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, pages
13:1–13:16, New York, NY, USA, 2016. ACM.

[25] S. Kannan, A. Gavrilovska, K. Schwan, and S. Kumar. Nvm
heaps for accelerating browser-based applications. In
Proceedings of the 1st Workshop on Interactions of
NVM/FLASH with Operating Systems and Workloads,
INFLOW ’13, pages 8:1–8:8, New York, NY, USA, 2013.
ACM.

[26] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic.
Optimizing checkpoints using nvm as virtual memory. In
Parallel Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pages 29–40, May 2013.

[27] H. Kim, M. Ryu, and U. Ramachandran. What is a good
buffer cache replacement scheme for mobile flash storage?
SIGMETRICS Perform. Eval. Rev., 40(1):235–246, June
2012.

[28] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable dram alternative. In
ISCA, 2009, pages 2–13.

[29] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M.
Wang. Nvm duet: Unified working memory and persistent
store architecture. In ASPLOS, 2014, pages 455–470.

[30] Y. Lu, J. Shu, L. Sun, and O. Mutlu. Loose-ordering
consistency for persistent memory. In ICCD, 2014, pages
216–223.

[31] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia,
P. Ranganathan, and N. Binkert. Consistent, durable, and
safe memory management for byte-addressable non volatile
main memory. In Proceedings of the First ACM SIGOPS
Conference on Timely Results in Operating Systems, TRIOS
’13, pages 1:1–1:17, New York, NY, USA, 2013. ACM.

[32] D. Narayanan and O. Hodson. Whole-system persistence. In
ASPLOS, 2012, pages 401–410.

[33] G. Oh, S. Kim, S. Lee, and B. Moon. Sqlite optimization
with phase change memory for mobile applications. PVLDB,
8(12):1454–1465, 2015.

[34] K. Paul and T. K. Kundu. Android on mobile devices: An
energy perspective. In CIT 2010, pages 2421–2426.

[35] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory
persistency. In ISCA, 2014, pages 265–276.

[36] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
management in the nvram era. Proc. VLDB Endow.,
7(2):121–132, Oct. 2013.

[37] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change
memory technology. SIGARCH Comput. Archit. News,
37(3):24–33, June 2009.

[38] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and
H. Plattner. nvm malloc: Memory allocation for nvram. In
VLDB, 2015.

[39] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In ASPLOS, 2011, pages
91–104.

[40] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and
C. Engelmann. Nvmalloc: Exposing an aggregate ssd store
as a memory partition in extreme-scale machines. In Parallel
Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pages 957–968, May 2012.

[41] H. Yoon. Row buffer locality aware caching policies for
hybrid memories. In ICCD, 2012, pages 337–344.

[42] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:
Closing the performance gap between systems with and
without persistence support. MICRO-46, pages 421–432,
2013.

[43] J. Zhao, O. Mutlu, and Y. Xie. Firm: Fair and
high-performance memory control for persistent memory
systems. In MICRO-47, 2014, pages 153–165.

177

