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Validation of Accelerometer Prediction Equations in Children with Chronic Disease 

Abstract: 

Purpose:  To assess the criterion validity of existing accelerometer-based energy 

expenditure (EE) prediction equations among children with chronic conditions, and to 

develop new prediction equations. 

Methods: Children with congenital heart disease (CHD), cystic fibrosis (CF), 

dermatomyositis (JDM), juvenile arthritis (JA), inherited muscle disease (IMD), and 

haemophilia (HE), completed 7 tasks while EE was measured using indirect calorimetry 

with counts determined by accelerometer. Agreement between EE predicted and 

measured EE was assessed. Disease-specific equations and cut points were developed and 

cross-validated.  

Results: 196 subjects participated. One participant dropped out prior to testing due to 

time constraints, 15 CHD, 32 CF, 31 JDM, 31 JA, 30 IMD, 28 HE and 29 healthy 

controls completed the study. Agreement between predicted and measured EE varied 

across disease group and ranged (ICC) 0.13-0.46. Disease specific prediction equations 

exhibited a range of results (ICC 0.62 to ICC 0.88) (SE 0.45-0.78). 

Conclusion:  Poor agreement was demonstrated using current prediction equations in 

children with chronic conditions. Disease-specific equations and cut points were 

developed.  

Acknowledgements: This study was funded with a grant from the Canadian Institute of 

Health Research (# 167391/CIHR).  The study authors have no conflicts of interest to 

report.   
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Introduction 

 Physical activity participation at moderate and vigorous levels has been shown to have 

an important protective effect on cardiovascular and metabolic profiles in healthy 

children that may prevent chronic illness later in adulthood (4, 17). The role of physical 

activity in children with chronic illness may have an even more substantial and wide-

ranging health impact—from improving cardiometabolic profiles to improving physical 

function and limiting long-term disability (16). For example, accurate determination of 

physical activity related energy expenditure could allow for the better clinical 

management of diseases such as Cystic Fibrosis or Duchene’s muscular dystrophy where 

nutritional considerations and energy requirements play a critical role in health outcome 

(37, 48). Further, the ability to accurately quantify physical activity dose (e.g. time spent 

in light, moderate and vigorous physical activity) in children with chronic conditions in 

order to prescribe a dose that confers benefit rather than harm is also of great importance. 

The true effect of physical activity level and role of physical activity related energy 

expenditure on health outcome in children with chronic conditions is currently unclear 

due, in part, to the lack of a precise measure of physical activity (16, 27, 41).   

Objective methods to determine physical activity levels in children may provide more 

accurate and unbiased estimates compared to subjective measurement methods.  One 

objective method that has gained popularity, accelerometry, has demonstrated superior 

validity and reliability when compared to subjective methods such as self-report (2, 39). 

Accelerometers have proven to be reliable and accurate in healthy children and 

adolescents when compared with doubly labelled water, calorimety and direct 

observation (22, 25, 45).   Raw signals related to change in velocity over time (m/s2) are 
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collected over a designated period of time (epoch) and are converted into a unit-less 

index referred to as a count.  Prediction equations are applied to convert counts into more 

physiologically meaningful indices of energy expenditure such as a metabolic equivalent 

(MET).  Additionally, cut-point values enabling the relationship between counts and 

physical activity intensity to be established have also been developed (45).  These 

equations and cut-point estimates have been validated for use in healthy children but not 

in those with chronic conditions. 

Prediction equations and cut-point estimates developed to provide more meaningful 

indices of energy expenditure or physical activity level from accelerometer counts in 

healthy children may not be accurate in children with chronic conditions.  Inaccuracies 

may arise from differences in resting metabolic rates, economy of motion, movement 

biomechanics, and energy cost of breathing in children with chronic conditions (36, 41). 

For example, a longitudinal study of changes in walking related energy expenditure in 

boys with Duchenne’s reported increases in energy expenditure with a decrease in 

comfortable walking distance (8). Boys who were older in age (>8years) had the highest 

increases in walking energy expenditure in comparison to younger boys, a finding that is 

opposite of what occurs in typically developed children(8). Children with disease often 

have inherent physiological or biomechanical differences from healthy children (gait 

deficiencies or metabolic abnormalities) that require them to work at a higher energy 

level to complete the same task (16, 18, 22, 36). For example, a recent gait analysis study 

of 36 children diagnosed with polyarticular arthritis revealed significant differences in 

walking mechanics including: slower walking speeds, a shorter stride length, reduced hip 

and knee extension, tilted pelvis and improper foot mechanics when compared to healthy 
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controls(23). These changes may lead to a higher energy cost of locomotion; such 

differences may not be accounted for by the currently available prediction equations and 

cut-point estimates and could produce significant bias in determining energy expenditure 

or activity levels if used in their current form. 

 Objective tools to measure physical activity in children with chronic conditions are 

needed to accurately determine the relationship between energy expenditure, activity 

level and health outcomes in clinical populations. Therefore the aim of this study was to 

determine if the current prediction equations used to transform accelerometer counts into 

units of energy expenditure are valid in children with chronic conditions. A secondary 

aim of this study was to perform exploratory analyses in order to determine new 

prediction equations and cut-point estimates should the current equations not be accurate 

for use in children with a chronic disease.  

Methods 

 A total of 167 subjects aged 7 to 18 years with a diagnosis of either: juvenile arthritis 

(JA), juvenile dermatomyositis (JDM), moderate or severe haemophilia (HE)A or B (up 

to 5% clotting factor), muscular dystrophinopathies (Beckers, Duchenes or other 

inherited muscle disease; IMD), cystic fibrosis (CF), or congenital heart disease (CHD) 

who had undergone a heart repair (Fontan repair or Tetrology of Fallot repair) were 

approached to participate in the study with the approval from the research ethics boards 

representing three pediatric teritiary care hospitals located in North America and Europe. 

In addition, 29 healthy children, identified from study advertisements posted on internal 

hospital websites and newsletters, were recruited from the same centres. Children were 
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excluded if they were on medication that would affect the heart-rate response to exercise, 

such as beta-blockers, or if they were unable to ambulate or unable to cooperate with the 

testing procedures.  Written informed consent and assent were collected from each 

guardian/subject in accordance to the guidelines of the ethics boards of the participating 

centers. 

Exercise Testing 

Each 2-hour testing session consisted of anthropometric measures, pulmonary function 

testing and three energy expenditure protocols: resting energy expenditure (REE), 

activities of daily living and exercise.  Subjects were asked to abstain from eating or 

drinking anything but water for 2 hours prior to their appointment for more accurate 

determination of REE (31, 34, 35). In order to allow for the comparison of our study 

population with other clinical populations, each subject completed a number of 

questionnaires pertaining to their physical function and quality of life.  All subjects 

underwent a familiarization session in which they were introduced to all equipment and 

were given instructions on how to complete each task.   

Exercise Testing Procedures 

At each session, height (Harpendum Stadiometer, London, UK) and weight (SR555 

Stand-on Scale System, SR Instruments, Tonawanda, NY) were measured to the nearest 

0.1 cm and 0.1 kg, respectively, with subjects wearing light clothing and no shoes. BMI 

was calculated as (kg/m2) with BMI percentile determined for each subject (21, 29). 

Skinfold measures were taken at the triceps, biceps, subscapular and suprailiac locations 

with the sum of skinfolds (mm) determined.  REE was measured for 20 minutes using 
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either a K4B2 (Cosmed, Albano Liziale, Rome) or Cortex Metamax (Cortex Metamax, 

CORTEX Biophysik GmbH, Leipzig Germany) while the subject was resting quietly, but 

awake, in the supine position (31, 34, 35). Subjects then completed a series of 7 tasks to 

represent a broad spectrum of energy expenditure intensities ranging from those 

associated with activities of daily living to moderate and vigorous exercise.  Tasks 

consisted of 6 minutes each of computer work, sweeping, over-ground walking at a self-

selected pace, stair stepping and 3 treadmill walking tasks.  In order to account for a wide 

variability in physical function level in our subjects, two different treadmill protocols 

were used.  A low and high function treadmill walking protocol was each determined 

from the 6-minute self-selected walking task.  Subjects who averaged a walking pace of 

≥3.5 km/hr completed the high function treadmill protocol of 2.0 km/hr, 3.5 km/hr, 6.0 

km/hr and those in the low function protocol completed a treadmill protocol of 1.0 km/hr, 

2.0 km/hr, and 3.5 km/hr.   

Outcomes 

Indirect Calorimetry: Expired gases were collected during each task using a portable 

metabolic cart (K4b2 in North America or a Cortex Metamax in Europe). Prior to study 

initiation the inter-unit reliability was established and no correction factor was necessary 

given the high level of agreement, with an Intraclass Correlation Coefficient (ICC) of 

0.98 (Confidence Interval 0.76-0.99) between the two metabolic systems. Oxygen uptake 

(VO2) and carbon dioxide production (VCO2) were recorded on a breath-by-breath basis 

and were averaged at 15-second intervals. Prior to each test the equipment was calibrated 

using standard protocols. Energy expenditure (J/kg/min) was calculated according to the 

de Weir equations (47). REE was calculated by taking the average of the last 10 minutes 
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of the values recorded by the metabolic cart during the 20 minute resting task. Activity 

Energy Expenditure (AEE) was calculated using the equation AEE = Total Energy 

Expenditure (TEE) – measured REE (32, 33). Metabolic equivalents (TEE/REE) were 

also determined for each activity.  

Accelerometry:  Both the Actical (Mini Mitter, Co) and Actigraph 7164 (Actigraph, LLC) 

accelerometers were chosen to measure acceleration activity counts based on their use in 

national studies of health indices (e.g. National Health and Nutritional Examination 

Survey and Canadian Healthy Measures Survey). The Actical is an omni-directional 

monitor with a sampling frequency of 32 Hz and sensitivity of 0.01 g. Actigraph is a 

unidirectional monitor with a sampling frequency of 10 Hz and sensitivity of 0.05-2.0 g 

(10).  

The two different accelerometer models, Actical and Actigraph, were placed on the right 

hip at the midaxillary line of the superior iliac crest using an elastic belt. The sampling 

rate was set to 15-second epochs for both devices. Prior to the initiation of this study, 

inter-monitor reliability was assessed and excellent agreement was established for all of 

the accelerometers distributed between the North American and European sites with 

ICC’s ranging from 0.98-0.99 (Confidence Interval, 0.88-1.0).  Heart rate measured beat 

by beat was determined by a heart rate monitor (Polar Vantage XL 650i, Polar 

Instruments, Kemplele, Finland) for each task with data averaged each 15 seconds and 

downloaded for analysis.  
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Questionnaires:  

Subjects completed the Child Health Assessment Questionnaire (CHAQ)(38), the Quality 

of My Life Scale (QOML)(26), the Pediatric Quality of Life Scale (PedsQL)(20, 46), the 

Physical Activity Questionnaire for Children and Adolescents (28) and the Tanner 

Staging Questionnaire(15).  The CHAQ consists of questions from 8 functional domains 

comprising eating, dressing and grooming, walking, arising, hygiene, reach, activities, 

and grip. A summary score is given based on the 8 functional activity domains and is 

rated on a 3-point scale (where 0 indicates no limitations and 3 indicates severe 

limitations).  Overall quality of life (QOL) and health related quality of life (HRQOL) 

were measured by the QOML on separate 10 cm visual analog scale with lower scores 

indicating worse QOL/HRQOL and higher scores indicating better QOL/HRQOL. The 

PedsQL generic core, validated in childhood disease, consists of 23 items from 4 

different dimensions related to physical, emotional, social and school functioning (46).  

Items are scaled on a 5-point ordinal scale with 0 indicating never and 4 indicating almost 

always.  Items were reverse scored and transformed into a 100 point scale, a total score 

was derived by taking the sum of all of the items and dividing by the total number of 

completed items (out of 23) with higher scores indicating better quality of life(46). 

Pubertal stage was determined using a self-report Tanner staging method (15) . Pain and 

illness severity were determined using a10 cm visual analog scale from the CHAQ 

questionnaire.    

Data management 

Data from the portable metabolic carts and from the 2 accelerometers were all imported 

into Microsoft excel and merged with the count data from the accelerometers for each 
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task.  A special programming script was written in Python (www.python.org) and run to 

merge all of the subject accelerometer and metabolic data into one summary datasheet. In 

order to determine agreement between predicted and measured EE we averaged the 

accelerometer and metabolic data over the last 2 minutes of each of the task in order to 

capture steady state similar to the protocols of the original validation studies(22, 32, 33).  

For the purpose of the exploratory analysis, metabolic and accelerometer data were kept 

in an as per monitor format.  The as per monitor data format was used for analysis 

purposes and kept the metabolic and accelerometer data in its’ original 15 second format 

with the exception of subtracting out the last 30 seconds of each subjects’ data to allow 

for transitions and timing issues between tasks. Data in this format were used to preserve 

data integrity and to encourage a more realistic picture of physical activity (6, 40).   All 

individual items and scores for each of the questionnaires were entered into a Filemaker 

Pro database (FilemakerPro V., Filemaker, Inc., Santa Clara, Ca). Finally, all data were 

imported into SAS 9.3 (SAS Inc, Cary, N.C.) for further statistical analyses. 

Statistical Analysis  

Patient characteristics and questionnaire scoring were summarized using descriptive 

statistics (e.g. mean, range and standard deviations). Groups were compared using 

Analysis of Variance; subsequent pairwise comparisons were corrected for multiple 

testing using Tukey’s HSD. The primary objective of this study was assessed by 

determining the criterion validity of estimated EE, calculated using manufacturer-

specified accelerometer prediction equations (22, 32, 33), and the reference standard of 

measured EE from indirect calorimetry using an Intra Class Correlation Coefficient (ICC) 

with 95% confidence interval calculated separately for the Actigraph and Actical. 



 

 

10 

According to de Vet et. al, criterion validity is defined as, ‘the degree to which scores of a 

new measurement device agree with the scores of a gold standard’ (13) and criterion 

validity may be assessed by intraclass correlation coefficients when the scores are 

expressed in the same units (13). The level of agreement between scores of the 

instrument (in our case existing EE prediction equations) and the scores (EE) derived 

from the gold standard (indirect calorimetry) allows one to determine if the new 

instrument is a suitable substitute for the old(7). An ICC of 0.61–0.80 was selected a 

priori to indicate substantial agreement while an ICC >0.8 indicated excellent agreement 

(30). Equations that were used to calculate predicted energy expenditure included those 

of: Puyau et al.(32) for the Actical accelerometer and  Corder et al. (11) , Freedson et 

al.(22) and Puyau et al. (33)for the Actigraph accelerometer.  Evenson et al. (19) do not 

provide EE prediction equations in their calibration study, however, cut points from their 

study come with the strongest recommendation for use in healthy children (44).  In order 

to assess classification accuracy (sensitivity and specificity), our disease specific cut 

points were compared to those of Evenson et al. (19).  

Exploratory analyses to develop new prediction equations to estimate metabolic 

equivalents (METs) were conducted using mixed regression modelling (also referred to 

as Cross Sectional Times Series analysis) (9, 49) using SAS 9.3 (SAS Inc., Cary, N.C). 

This method is better able to handle correlated data (the same outcome, energy 

expenditure, was measured multiple times across different tasks for each subject). 

Accelerometer counts were log transformed to normalize their distribution. 

Accelerometer counts of zero were modelled separately in our model such that a zero 

count was recognized as being equivalent to REE. Explanatory variables selected a priori 
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were added to the models in a stepwise fashion to determine which contributed to the best 

fit.  Each model was evaluated using four model fitting approaches, comprising the Intra 

Class Correlation Coefficient (ICC), Akaike information criterion (AIC), Bayesian 

information criterion (BIC) and the standard error of the predicted value.  A model with 

an ICC of >0.8 indicated excellent fit, and an ICC range of 0.61-0.80 indicated good fit. 

Limits of agreement were also calculated. Additionally, paired t-tests with Bonferroni 

correction for multiple testing were preformed to ensure that EE determined from the 

new prediction equations were not different from the measured EE.  

In order to determine how well our new prediction equations might predict energy 

expenditure outside of our sample we conducted a cross-validation using the leave one 

out technique(1). Mean absolute error and root mean squared error were calculated in 

order to evaluate the prediction error around our new equations. 

 Finally, cut points establishing the relationship between accelerometer counts and 

physical activity level, were determined using Receiver Operating curve (ROC) analysis 

with Prismlab 6.3 (Graphpad Software,Inc).  Cut point thresholds that exhibited the best 

sensitivity and specificity for establishing sedentary, light, moderate and vigorous 

physical activity levels were determined. 

Results 

A total of 196 subjects were enrolled into the study; 1 subject dropped out prior to testing 

due to time constraints.   Fifteen children with CHD, 32 CF, 31 JDM, 31 JIA, 30 IMD, 28 

HE and 29 healthy subjects completed the study.  Demographic information along with 

subjective ratings of physical function, pain, illness and quality of life for healthy and 
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chronically ill subjects is presented in Table 1.  Twenty-four of the 195 children 

underwent the low-function group protocol: 1 CF, 4 JDM, 1 JIA, 4 HE, 13 IMD, and no 

CHD subjects. One healthy control also underwent the low function protocol as a result 

of a slow pacing during the 6-minute self-selected walking task.  The CHAQ resulted in 

an overall ranking of mild disability for subjects with CF, HE, JA and JDM; mild to 

moderate disability for the IMD subjects; and no disability in subjects with CHD or 

healthy controls (14). Ratings of pain and illness were highest amongst the JA group.  

Subjects with CF reported that they had the worst overall health and IMD subjects 

reported the worst overall quality of life in comparison to other disease groups and 

healthy controls (See Table 1 for further results).  

 Those with a chronic disease had higher oxygen uptake across all of the tasks combined 

in comparison with healthy controls (ANOVA; F(6, 55) = 17.0, p<0.0001).  The mean 

difference in oxygen uptake between the diseased subjects and healthy controls was 2 

ml/kg/min with a range of 0.5 to 3 ml/kg/min. All disease classifications with the 

exception of the JDM group had energy expenditures that were significantly different 

from healthy controls. Mean VO2 from the indirect calorimeter is plotted by physical task 

and by diagnosis in Figure 1.   

Accelerometer counts differed amongst the disease groups as well as between the healthy 

controls with a mean difference across all tasks combined of 22 counts for both the 

Actical and Actigraph   (range -8 to 89 counts). A significant difference in mean counts 

by diagnosis and task was found (ANOVA; F(13, 55)= 134, p<0.0001).  Figure 2 illustrates 

the difference in mean accelerometer counts (Actigraph) by diagnosis across the physical 

tasks. 
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 Agreement between the measured and predicted EE determined by an ICC and the 95% 

confidence interval around the ICC for Actical and Actigraph are presented in Table 2. 

Overall, when compared to measured, prediction equations for both the Actigraph and 

Actical resulted in poor to moderate agreement in the disease groups.  The Puyau et al.  

equation (32) developed for the Actical resulted in better overall agreement than those for 

the Actigraph with the best performance in the CHD, HE and healthy groups.  The 

Freedson equation (22) developed for the Actigraph 7124 had the best agreement across 

the disease groups in comparison to the other tested equations using the Actigraph.  

 Six disease specific equations were developed based on a significant interaction term 

between diagnosis and accelerometer count (F(6,171) = 4.3, p< 0.0005) indicating that the 

relationship between counts and EE differed depending on diagnosis. All of the disease 

models included a random effect for the intercept and accelerometer count.  Overall each 

of the disease specific models had an ICC value between 0.62-0.88 indicating good to 

excellent model fit.  No significant differences between measured and predicted EE were 

found for any of the disease specific equations with the exception of the Actical equation 

that included heart-rate for IMD subjects (See results in Table 3).  

Models that included heart rate in the prediction equation resulted in improved model fit 

and lower standard errors than prediction equations without heart rate. However, our 

disease specific prediction equations without heart rate still resulted in better agreement 

(ICC range 0.62-0.85) than the non-disease specific equations (ICC range 0.22-0.46) (see 

Supplemental Table 1 for disease specific ICC’s and standard errors).  
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Results from our leave one out cross-validation suggest good prediction precision of our 

new equations.  Generally prediction precision was similar across devices and disease 

groups with mean absolute errors ranging from 0.50 to 0.70; exceptions to this were CHD 

and JDM groups on using the Actigraph, which had poorer prediction precision (mean 

absolute error, 0.80 and 0.84, respectively). See Supplemental Table 2 for further cross-

validation results.  

Final regressions for Actigraph and Actical are presented both with heart-rate included 

and excluded by disease group (Table 3).  Heart-rate was included in order to address 

clinical user groups who will use combined methods for determining energy expenditure. 

The prediction equations along with their limits of agreement are presented in Table 3. 

 ROC curve analysis results for sedentary, light, moderate, and vigorous intensity cut-

points are presented in Table 4 for the Actigraph and Actical.  The area under the curve 

ranged from 0.82 to 0.95 for Actical and 0.80 to 0.90 for Actigraph across the four 

intensity thresholds for all chronic diseases.  Area under the curve and cut point results 

for individual disease groups are also presented in Table 4.  

Evenson et al.(19) cut points were applied to our disease groups and resulted in similar 

specificity to our disease specific cut points.  The sensitivity of the cut points were 

similar for sedentary activity but less than our disease specific cut points at higher levels 

of intensity.  Further results are summarized in Supplemental Table 3.  

 

Discussion 
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The findings of this study suggest that current prediction equations used to transform 

accelerometer counts into EE units are not accurate for children with chronic illnesses, 

since the level of agreement was low to moderate (Table 2).  Moreover, the agreement 

between predicted and measured EE was also only moderate in our healthy control group. 

 We found that EE and accelerometer counts differ across the different disease groups 

and in comparison to healthy controls (Figure 1 and 2).  Differences in EE and 

accelerometer counts could be attributed to factors related to disease pathophysiology, 

sequelae, and drug treatment (42, 43).  For example, mechanical efficiency due to joint 

damage or contractures or muscle atrophy from medication and muscle disuse in JA or 

JDM (23, 42); decreased lung function in CF (36) and disturbed muscle metabolism in 

IMD as well as deconditioning or poor neuromotor control may explain the differences in 

patterns of movement and increased energy cost of performing physical activities(8, 24). 

These differences likely explain the poor agreement using current prediction equations in 

our clinical populations. In a validation study of 34 adults with coronary artery disease 

poor agreement between predicted and measured EE using the Actigraph (7164) was also 

reported (18).  The authors cited deconditioning and limits to functional capacity as one 

of the potential factors that contributed to the poor agreement of the prediction equations 

(18). 

 The current prediction equations resulted in a moderate level of agreement in subjects 

with HE and CHD. These groups may be more similar to healthy controls.  Subjects with 

CHD in our study sample reported no disability and differences between our CHD and 

healthy controls may not have been evident due to the submaximal nature of our 

protocol(5). Recently, it has been reported that children who have undergone a Fontan 
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procedure have an enhanced submaximal work capacity (lower EE) in comparison to 

their healthy peers, and that differences in oxygen uptake are only evident at a peak 

workloads(5). The main sequelae of HE are related to the inability to produce clotting 

factor. The joint contractures and sequelae historically due to repeated significant bleeds 

have been largely eliminated in stable and well-managed North American and North 

Western European subjects with the advent of prophylactically replaced factor VIII and 

VIIII.   

A moderate level of agreement was also found using the current equations in our healthy 

controls. Our findings in the healthy group are in agreement with those published in the 

literature(3, 45). These studies also tested the validity of our selected published 

regression equations for the Actigraph and Actical and found that the accuracy of the 

equations was dependent on the type and intensity of the physical activity (3, 45).  For 

example, Alhassan et al. found that the Freedson equation used for the Actigraph 7164 

tended to overestimate high intensity activities in their sample of healthy children by as 

much as 26%, but was accurate for slow walking (3). The same group reported that the 

regression equation developed by Puyau et al, for the Actical underestimated EE across 

all activities (3, 45).  There are several explanations for the moderate level of agreement 

found in our healthy subjects.  A lack of substantial agreement could be due to 

differences in biological and physiological characteristics of our sample population or 

differences in protocols. It is possible that small validation samples in addition to subject 

selection pools may account for some of the lack of agreement in EE in our healthy 

control group.  For example, a relatively small sample size was used to develop the 

original prediction equations and may make it difficult to capture the vast variability in 
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EE in a different population (3). Biological characteristics of the study population such as 

age of the study participants may also account for some of the differences. Age ranges 

were similar in our protocol to that of Freedson’s group (age range  6 to 18) but differed 

from that of Puyau (age range  10 to 14)(3, 22, 45). Differences in the protocols used to 

develop the regression equations for the Actigraph also differed in our study as compared 

to Freedson’s as activities of daily living were not included in the original Freedson 

validation protocol (22).  

An exploratory analysis was conducted to address the need for more accurate EE 

prediction equations for children with chronic conditions. A new prediction equation was 

not developed for healthy children as much work has already been completed in this area 

with recent advances in regression modelling including time-series models, branched and 

2 regression models demonstrating promising accuracy in this cohort (9, 12, 49) Our new 

disease specific models exhibited good to excellent model fit as assessed by ICC, low 

standard errors around the predicted value, and good precision accuracy determined by 

our cross-validation.   

Our disease specific prediction equations were not significantly different from measured 

with one exception. A significant difference was found between measured and predicted 

EE for the IMD equation this finding may be by chance alone or could represent a true 

difference. The EE between predicted and measured was statistically different, however, 

this equation demonstrated good agreement, small mean differences, limits of agreement 

and standard errors, suggesting good clinical relevance. 

 In order to address the finding of a significantly different accelerometer counts across the 

physical tasks between disease conditions and also with healthy controls we developed 
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new cut-point thresholds.  ROC curve analysis was conducted to determine cut-point 

thresholds for light, moderate and vigorous physical activity for each disease group. The 

overall area under the curve for all chronic diseases demonstrated moderate to excellent 

sensitivity and specificity. The classification accuracy of our equations is similar to 

findings using the same devices in the healthy population (3, 45). In their studies good 

classification was shown for identifying vigorous levels of physical activity with 

moderate to good classification accuracy for light activities and vigorous activities (3, 

45).  

The classification accuracy of our cut points performed better than those of Evenson et 

al., which are often recommended for determining intensity thresholds in healthy 

children. While the specificity of the Evenson cut points were similar to that of the 

disease specific cut points, the sensitivity (false-negative rate) was better in our disease 

specific cut points.  Overall, this suggests that cut points recommended for healthy 

children would result in misclassification of moderate and vigorous physical activity as 

light or sedentary in children with a chronic condition.  

Our results must be considered in the context of some potential limitations in our design.  

We looked at widely used prediction equations to derive EE from both the Actigraph and 

Actical accelerometer; it is possible that a different prediction equation might provide 

better agreement for children with chronic disease.  However – it is unlikely that any 

prediction equation derived from healthy children would provide good accuracy; we have 

found a significant interaction between accelerometer counts and diagnosis that suggests 

that the relationship between accelerometer counts and EE is different in children with 

chronic conditions as compared to healthy controls and when compared to other disease 
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groups (43). As an example, in our previous study we tested the validity of the Actiheart 

accelerometer in the same population and found that a newly developed prediction 

equation tended to over-estimate energy expenditure in our chronic disease group(43).  

We performed exploratory analyses to develop six disease specific prediction equations. 

While we used diagnosis as a means to break apart the prediction equations it is possible 

that diagnosis is actually representative of some other factor (so far unmeasured) that 

could also explain the differences found between these groups. Our findings suggest that 

disease specific energy expenditure equations and cut points perform better than those 

developed in healthy children. This could be because children with a chronic disease are 

actually different from healthy children or the equations and cut points work better 

because we have optimized them for our sample. While we encourage the use of these 

equations in preference to ones developed in the healthy population, further external 

cross validation work is required.   

There are several strengths to our modelling approach that may overcome the limitations 

of other approaches. This type of modelling approach  (sometimes referred to as cross-

sectional time series analysis) (9, 49) has been used successfully in healthy cohorts and 

has shown great accuracy in predicting energy expenditure with reported mean percent 

errors ranging from ±7.4 to 10.8 and correlation concordance coefficients ranging from 

0.91 to 0.93 indicating near perfect agreement between measured and predicted energy 

expenditure(9, 49). The use of a mixed model using random coefficients better accounts 

for the correlation between EE present when a subject repeats physical tasks and may be 

used to better understand how well the modelled prediction will account for the variance 

in EE in the larger population (49). Also, we included all data points in our models rather 
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than averaged data.  Steady state data is often used to model prediction equations, but 

may not properly represent what actually occurs in the field when determining EE.  This 

approach is supported by the findings of others who have presented models that have 

improved performance when determining EE by using full signals(12, 49). Our leave one 

out cross-validation further supports the accuracy of the proposed prediction equations. 

Finally, we have provided cut-points for establishing physical activity level by disease 

group and accelerometer type that have shown good to excellent predictive capabilities. 

In conclusion, our study has shown that current prediction equations used to determine 

EE from the Actical and Actigraph accelerometers are not valid in children with chronic 

conditions.  We have completed preliminary work to develop six disease-specific 

prediction equations that have been shown to have good to excellent model fit and low 

standard errors around predicted METS. Further, we have shown good prediction 

accuracy of our prediction equations using a leave one out cross validation. We have also 

provided disease specific cut point values for the Actical and Actigraph for establishing 

physical activity levels. Future work should concentrate on confirming these equations 

and cut point values in other cohorts of children with chronic conditions and using them 

to establish relationships with health outcomes. 

 

 

References 

1.  

Cross Validation. 2008. In: SAS/STAT® 92 User’s Guide [Internet]. Cary, NC: SAS Institute Inc.: SAS 
Institute Inc. Available from: 
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm - 
statug_glmselect_sect025.htm. 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_glmselect_sect025.htm
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_glmselect_sect025.htm


 21 

 

2. Adamo KB, Prince SA, Tricco AC, Conner-Gorber S, Tremblay MS. A Comparison of 
indirect versus direct measures for assessing physical activity in the pediatric population: A 
systematic review. International Journal of Pediatric Obesity. 2009;4(2):2-27. 

3. Alhassan S, Lyden K, Howe C, Keadle SK, Nwaokelemeh O, Freedson PS. Accuracy of 
Accelerometer Regression Models in Predicting Energy Expenditure and METs in Children and 
Youth. Pediatric Exercise Science. 2012;24:519-36. 

4. Anderson LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al. Physical Activity 
and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart 
Study) 

. Lancet. 2006;368:299-304. 

5. Banks L, McCrindle B, Russel JL, Longmuir PE. Enhanced physiology for Submaximal 
exercise in children after the Fontan procedure. Med & Sci in Sports & Ex. 2013;e published 
ahead of print. 

6. Basset DR, Rowlands A, Trost SG. Calibration and Validation of Wearable Monitors. Med 
& Sci in Sports & Ex. 2012;44(1S):S32-S8. 

7. Bland MaA, D. Statistical Methods for assessing agreement between two methods of 
clinical measurement. The Lancet. 1986 February 8, 1986:307-10. 

8. Brehm M-A, Kempen JCE, van der Kooi AJ, de Groot IJM, van den Bergen JC, 
Verschuuren JJGM, et al. Age-Related Longitudinal Changes in Metabolic Energy Expenditure 
during Walking in Boys with Duchenne Muscular Dystrophy. PLoS ONE. 2014;9(12):e115200. 

9. Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Prediction of Energy 
Expenditure in Preschoolers. Medicine and Science in Sport and Exercise. 2014;46(6):1216-26. 

10. Chen KY, Bassett,  D.R. . The technology of accelerometry-based activity monitors: 
current and future. Med Sci Sports Exerc. 2005;37(11):S490-S500. 

11. Corder K, Brage, S., Wareham, N.J., Ekelund, U. . Comparison of PAEE from combined 
and separate heart rate and movement models in children. Med Sci Sports Exerc. 2005 
2005;37(10):1761-7. 

12. Crouter SE, Erin E, J.D. H, Frongillo EA, Basset DR. A Refined 2-Regression Model for the 
Actigraph Accelerometer. Med & Sci in Sports & Ex. 2010;42(5):1029-37. 



 

 

22 

13. de Vet HCW, Terwee C, Mokkink LB, Knol D. Validity. 2011. In: Measurement in 
Medicine [Online] Practical Guides to Biostatistics and Epidemiology [Internet]. Cambridge 
University Press; [150-201]. 

14. Dempster H, Porepa M, Young N, Feldman BM. The clinical meaning of functional 
outcome scores in children with juvenile arthritis. 44. 2001;44(8):1768-74. 

15. Duke PM, Litt, I.F., and Gross, R.T. Adolescent's Self-Assessment of Sexual Maturation. 
Pediatrics. 1980 1980;66(6):918-20. 

16. Durstine JL, Painter, P. Franklin, B.A. , Morgan, D. ,  Pitetti, K.H.,  Roberts,   S.O. Physical 
activity for the chronically ill and disabled. Sports Medicine. 2000 2000 Sep;30(3):207-19. 

17. Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. Moderate to Vigorous 
Physical Activity and Sedentary Time and Cardiometabolic Risk Factors in Children and 
Adolescents. JAMA. 2012;307(7):704-12. 

18. Ekelund U, Tingstrom P, Kamwendo K, Krantz M, Nylander E, Sjostrom M. The Validity of 
the Computer Science and Applications activity monitor for use in coronary artery disease 
patients. Clin Physiol & Func Im (2002). 2002;22:248-53. 

19. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective 
measures of physical activity for children. Journal of sport Sciences. 2008;26(14):1557-65. 

20. Feldman BM, Ayling-Campos A, Luy L, Stevens D, Silverman E, RM. L. Measuring 
Disability in Juvenile Dermatomyositis: Validity of the Childhood Health Assessment 
Questionnaire. Journal of Rheumatology. 1995;22(2):326-31. 

21. Fredriks AM, Van Buuren S, Wit J, Verlooe-Vanhorick S. Body index measurements in 
1996-7 compared with 1980. Arch Dis Child. 2000;82(2):107-12. 

22. Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci 
Sports Exerc. 2005 2005;37(11 Suppl):S523-S30. 

23. Hartmann M, Kreuzpointner F, Haefner R, Michels H, Schwirtz A, Haas JP. Effects of 
Juvenile Idiopathic Arthritis on Kinematics and Kinetics of the Lower Extremities Call for 
Consequences in Physical Activities Recommendations. International Journal of Pediatrics. 
2010;2010. 



 23 

 

24. Hausdorff JM, Zemany L, Peng C-K, Goldberger AL. Maturation of gait dynamics: stride 
to stride variability and its termporal organization in children. J Appl Physiol. 1999;86:1040-7. 

25. Hoos MB, Plasqui, G., Gerver, W.M. , Westerterp, K.R. . Physical activity level measured 
by doubly labeled water and accelerometry in children. European journal of physiology. 2003 
2003 Apr-Jul;89:624-6. 

26. Huber AM, Hicks JE, Lachenbruch PA, Perez MD, Zemel LS, Rennebohm RM, et al. 
Validation of the Childhood Health Assessment Questionnaire in the juvenile idopathic 
myopathies. Juvenile Dermatomyositis Disease Activity Collaborative Study Group. J Rheumatol. 
2001;28:1106-11. 

27. Kesaniemi Y, Danforth E, Jensen M, Kopelman P, Lefebvre P, Reeder B. Dose-response 
Issues Concerning Physical Activity and Health: An Evidence-Based Symposium. Med & Sci in 
Sports & Ex. 2001;33(6 (Suppl)):S351-S8. 

28. Kowaski K, Crocker P, Faulkner R. Validation of a Physical Activity Questionnaire in Older 
Children. Pediatric Exercise Science. 1997;9(2):174-86. 

29. Kuczmarski R, Ogden C, Grummer-Strawn L, Flegal K, Guo S, Wei R, et al. CDC Growth 
Charts: United States. Hyattsville, MD: National Center for Health Statistics; 2000. 

30. Landis JR, and Koch, G. The Measurement of Observer Agreement for Categorical Data. 
Biometrics. 1977 1977;33(1):159-74. 

31. Pencharz PB, Azcue MP. Measuring resting energy expenditure in clinical practise. 
Journal of Pediatrics. 1995;127(2):2135-43. 

32. Puyau MR, Adolph, A.L. , Vohra, F.A. , Zakeri, I., Butte, N.F. Prediction of activity energy 
expenditure using accelerometers in children. Med Sci Sports Exerc. 2004 2004;36(9):1625-31. 

33. Puyau MR, Adolph, A.L. , Vohra, F.A. , Zakeri, I., Butte, N.F. Validation and calibration of 
physical activity monitors in children. Obesity Research. 2002 2002 Mar;10(3):150-7. 

34. Schmitz KH, Treuth, M. , Hannan, P., McMurray R., Ring, K.B.,  Catellier, D., Pate, R. . 
Predicting energy expenditure from accelerometry counts in adolescent girls. Med Sci Sports 
Exerc. 2005 2005;37(1):155-61. 



 

 

24 

35. Schofield WN, Schofield, C., and W.P.T James. Basal Metabolic Rate: review and 
prediction, together with an annotated bibliography of source material. Human Nutr Clin Nutr. 
1985 1985;39C:1-96. 

36. Shakur Y, Richards H, Pencharz P. Is it Necessary to Measure Resting Energy Expenditure 
in Clinical Practice in Children. Journal of Pediatrics. 2008;152:437-9. 

37. Shimizu-Fujiwara M, Komaki H, Nakagawa E, Mori-Yoshimura  M, Oya Y, Fujisaki T, et al. 
Decreased resting energy expenditure in patients with Duchenne muscular dystrophy. Brain and 
Development. 2012;34:206-2012. 

38. Singh G, Athreya BH, Fries JF, Goldsmith DP. Measurement of health status in children 
with juvenile rheumatoid arthritis. Arthritis Rheum. 1994;37(12):1761-9. 

39. Slootmaker S, Schuit A, Chinapaw M, Seidell J, Van Mechelen W. Disagreement in 
physical activity assessed by accelerometer and self-report in subgroups of age, gender, 
education, and weight status. International Journal of Behavioral Nutrition and Physical Activity. 
2009;6(17). 

40. Staudenmayer J, Zhu W, Catellier DJ. Statistical Considerations in the Analysis of 
Accelerometery-Based Activity Monitor Data. Med & Sci in Sports & Ex. 2012;44(1S):S61-7. 

41. Strath SJ, Pfeiffer K, Whitt-Glover M. Accelerometer Use with Children, Older Adults, 
and Adults with Functional Limitations. Med & Sci in Sports & Ex. 2012;44(1S):S77-85. 

42. Takken T, Elst E, Van der Net J. Pathophysiological Factors Which Determine Exercise 
Intolerance in Patients with Juvenile Dermatomyositis. Current Rheumatology Reviews. 
2005;1:91-9. 

43. Takken T, Stephens S, Balemans A, Tremblay MS, Esliger DW, Beyene J, et al. Validation 
of the Actiheart activity monitor for measurement of activity energy expenditure in children and 
adolescents with chronic disease. Eur J Clin Nutr. 2010;64(12):1494-500. 

44. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of Accelerometer cut points for 
predicting activity intensity in youth. Medicine and Science in Sport and Exercise. 
2011;43(7):1360-8. 

45. Trost SG, Way, R. ,  Okely, A.D. Predictive validity of three ActiGraph energy expenditure 
equations for children. Med Sci Sports Exerc. 2006 2006;38(2):380-7. 



 25 

 

46. Varni J. The PedsQL Multidimensional fatigue scale in pediatric rheumatology: Relability 
and Validity. The Journal of Rheumatology. 2004;31(12):2494-500. 

47. Weir JBdV. New Methods for Calculating Metabolic Rate with Special Reference to 
Protein Metabolism. . J Physiol. 1949;109:1-9. 

48. Williams CA, Stevens D. Physical activity and exercise training in young people with 
cystic fibrosis: Current recommendations and evidence. Journal of Sport and Health Sciences. 
2013;2:39-46. 

49. Zakeri I, Adolph AL, Payau MR, Vohra FA, Butte NF. Application of cross-sectional time 
series modeling for the prediction of energy expenditure from heart rate and accelerometry. J 
Appl Physiol. 2008;104:1665-73. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

26 

 Table 1: Descriptive characteristics of subjects, by disease category 

CF = Cystic Fibrosis; CHD = Congenital Heart Disease; HE = Hemophilia; IMD = Inherited Muscle 
disease; JDM = Juvenile Dermatomyositis; JA = Juvenile Arthritis; CHAQ_DI = Child health Assessment 
Questionnaire; PedsQL= Pediatric Quality of Life Questionnaire; SD= standard deviation 

 

 

Characteristic CF 
 

CHD HE IMD JDM JA Healthy  

Age, years        
Mean ±SD  12.8 ± 2.9  13.6 ±3.3  12.4±3.3  12±3.4 13.4±2.3 12.7±2.6 13.1 ± 2.8  

Gender, n (%)        
Male 18(56) 10(67) 28(100) 22(73) 11(35) 8(26) 16 (55) 
Female 14(44) 5(33) 0 (0) 8(27) 20(65) 23(74) 13 (45) 

Height, cm        
Mean ±SD  156 ± 16  161 ±17  156±19 146±22  159±11 154±12 162 ± 16  

Weight, kg        
Mean ±SD  45 ± 14  54±17  53±20.7  41±14 52±14 47±14 57.6 ± 20  

BMI percentile 
% Underweight <5% 

3% 7% 4% 7% 10% 16% 0% 

% Overweight 85-95% 0% 27% 29% 17% 13% 16% 28% 

% Obese >95% 3% 7% 7% 7% 10% 3% 0% 

Sum of Skinfold, mm        
Mean± SD  31 ± 13  42±15.5  40±20  41±18 48±17 46±22 38 ± 17  

Tanner Stage (%)        
Prepubescent 
(Stages 1,2) 

19% 38% 27% 70% 27% 32% 30% 

Pubescent 
(Stages ≥ 3) 
 

81% 62% 73% 30% 73% 68% 70% 

CHAQ Total Score 0.27±0.3 0.17± 0.3 0.25 ±0.4 0.80 ±0.7 0.40 ±0.6 0.50 ±0.5 0.15±0.26 
 

CHAQ Pain  0.6 ±0.9 0.2 ±0.6 1.0 ±1.7 1.5 ±1.8 1.4 ±2.1 2.6 ±3 1.3± 1 
 

CHAQ Overall Health  2.1 ±2.8 0.4 ±0.6 0.5 ±1.3 1.5 ±2 1.2 ±1.7 1.9 ±2.4 1.3 ± 2 
CHAQ Illness 1.8 ±1.9 0.6 ±1.3 0.7 ±1.4 2.0 ±2.4 2.0 ±2.1 2.1 ±2 1.3 ± 2 

 
PedsQL Total Score 78 ±12 72 ±12  82 ±16 68 ±17 77 ±15 72 ±13 83±9 
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Table 2:  Agreement Between Predicted and Measured AEE by Diagnosis  

Diagnosis 
Actical ICC (2,1)  (95% CI) 

 
Actigraph ICC (2,1)  (95% CI) 

 

Puyau et. al Corder et. al Freedson et. al Puyau et. al 

Chronic Illness 
(combined) 0.40 (0.35-0.45) 0.26 (0.20-0.30) 0.32(0.30-0.40) 0.21(0.10-0.30) 

  CF 0.39 (0.27-0.50) 0.28 (0.14-0.40) 0.36 (0.23-0.48) 0.21(0.09-0.30) 

CHD 0.43 (0.27-0.58) 0.26 (0.03-0.50) 0.35 (0.08-0.58) 0.20 (0.00-0.63) 

HE 0.46 (0.36-0.58) 0.26 (0.14-0.39) 0.35 (0.22-0.46) 0.21 (0.08-0.36) 

IMD 0.38 (0.25-0.50) 0.31 (0.17-0.45) 0.36 (0.21-0.49) 0.25 (0.10-0.39) 

JDM 0.34 (0.21-0.45) 0.17 (0.00-0.33) 0.18 (0.02-0.34) 0.13 (0.00-0.30) 

JA 0.41 (0.30-0.52) 0.28 (0.14-0.40) 0.35 (0.22-0.47) 0.22 (0.09-0.35) 

Healthy 0.41 (0.30-0.52) 0.30 (0.20-0.40) 0.39 (0.30-0.50) 0.23 (0.10-0.40) 
 
CF = Cystic Fibrosis; CHD = Congenital Heart Disease; HE = Hemophilia; IMD = Inherited Muscle Disease;  
JDM =Juvenile Dermatomyostis; JA = Juvenile Arthritis. 
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Table 3: Disease Specific Prediction Equations. Two prediction equations are presented for each type of Accelerometer (Actical or Actigraph) one 
equation with Heart-Rate and one equation without Heart-Rate for Estimating METs. 

Diagnosis Prediction Equation Limits of Agreement 

Mean difference (lower 
and upper bounds)  

Paired 
Difference 

T-value (P-
value) 

Device 

CF METs = - 3.3 – 0.07(zero counts) + 0.52×log (counts+100) + 0.026(heart rate) -0.01 (-1.5 to 1.5) -1.2 (0.24) Actigraph 

 METs = - 2.7– 0.4075(zero counts) + 0.9074×log (counts+100) -0.06 (-1.7 to 1.5) 2.3 (0.01) Actigraph 

 METs= - 3.2 - 0.0815(zero counts) + 0.4384×log(counts+100) + 0.03(heart 
rate) 

-0.004 (-1.5 to 1.6) -0.51 (0.61) Actical 

 METs = - 2.4 – 0.5(zero counts) + 0.9×log(counts+100) -0.00 (-1.8 to 1.8) 0 (0.99) Actical 

CHD METs = - 3.5 – 0.54(zero counts) + 0.83×log (counts+100) + 0.015(heart rate) -0.04 (-2.0 to 1.9) 1.7 (0.09) Actigraph 

 METs = - 2.87 – 0.84(zero counts) + 1.02×log (counts +100) -0.006 (-2.2 to 2.2) -0.30 (0.77) Actigraph 

 METs = - 3.68 - 0.3154(zero counts) + 0.7892×log(counts+100) + 0.018(heart 
rate) 

0.01 (-1.5 to 1.6) 1.1 (0.26) Actical 

 METs = - 3.5 – 0.5(zero counts) +1.1×log(counts+100) 0.01 (-1.6 to 1.6) 0.88 (0.38) Actical 

HE METs = -3.81 - 0.2824 (zero counts) + 0.8396×log (counts+100) + 
0.01692(heart rate) 

-0.01 (-1.3 to 1.3) -1.9 (0.06) Actigraph 

 METs = -3.62- 0.496 (zero counts) + 1.11×log (counts+100) -0.01 (-1.4 to 1.4) -1.5 (0.14) Actigraph 

 METs= -4.0 – 0.3424(zero counts) + 0.8569×log(counts+100)+0.01989(heart 
rate) 

-0.02 (-1.5 to 1.5) -1.2 (0.06) Actical 
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 METs = - 3.55 – 0.69(zero counts) + 1.15×log(counts+100) -0.01 (-1.7 to 1.7) -1.4 (0.16) Actical 

IMD METs = - 2.4 – 0.02933(zero counts) + 0.3044×log(counts+100) + 
0.02652(heart rate) 

0.60 (-1.0 to 2.2) 2.4 (0.02) Actigraph 

 METs = - 2.1 – 0.1753(zero counts) +0.7552×log(counts+100) 0.09 (-1.4 to 1.5) 1.3, (0.19) Actigraph 

 METs = - 3.1 – 0.06421(zero counts) 
+0.3975×log(counts+100)+0.02731(heart rate) 

0.08 (-1.2 to 1.4) 11.0, <0.0001* Actical 

 METs = - 3.9 -0.05573(zero counts) +1.112×log(counts+100) -0.08 (-1.5 to 1.3) 1.3, 0.17 Actical 

JA METs = - 3.1138 + 0.1745(zero counts) + 0.276×log(counts+100) 
+0.041(heart rate) 

0.01 (-1.7 to 1.7) 1.2 (0.24) Actigraph 

 METs = - 1.8 – 1.0 (zero counts) + 0.8462×log(counts+100) 0.09 (-2.1 to 2.3) 0.45 (0.65) Actigraph 

 METs = - 3.64 -0.0879(zero counts) +0.041×log(counts+100)+ 0.03883(heart 
rate) 

0.004 (-1.7 to 1.7) 0.41 (0.68) Actical 

 METs = - 3.4 – 1.1(zero counts) +0.85×log (counts+100) 0.01 (-1.9 to 1.9) -0.95 (0.34) Actical 

JDM METs = - 3.0 – 0.5089(zero counts) + 0.4797×log(counts+100) + 
0.02821(heart rate) 

0.006 (-2.2 to 2.2) 1.7 (0.08) Actigraph 

 METs = - 2.0 – 0.3(zero counts) + 1.1×log(counts+100) -0.002 (-2.2 to 2.2) -0.13 (0.89) Actigraph 

 METS= - 4.3 -0.13(zero counts) +0.7148×log(counts+100) + 
0.02678(heartrate)  

0.004 (-1.8 to 1.8) 0.36 (0.72) Actical 

 METS = - 3.9 – 0.47(zero counts) +1.18×log(counts+100) -0.003 (-1.8 to 1.8) -0.35 (0.72) Actical 

CF = Cystic Fibrosis; CHD = Congenital Heart Disease; HE= Hemophilia; IMD=Inherited Muscle Disease; JA = Juvenile Arthritis; JDM = Juvenile 
Dermatomyositis. * Denotes significance at p < 0.0002 level after adjustment using Bonferroni correction for multiple tests. 
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Table 4: Cut points for Actigraph and Actical Accelerometer by Diagnosis 

 Actigraph Actical  
Diagnosis Intensity* AUC (95%CI) Sensitivity 

% 
Specificity

% Cut point AUC (95%CI) Sensitivity 
% 

Specificity
% Cut point 

Chronic 
Disease 

(combined) 

Sedentary 0.81 (0.77-0.85) 71 96 < 10 0.88 (0.86-0.90) 77 94 < 10 
Light NA NA NA >10 -426 NA NA NA >17-288 

Moderate 0.80 (0.77-0.83) 70 81 >426-784 0.82 (0.80-0.85) 72 78 >289-569 
Vigorous 0.86 (0.79-0.94) 87 84 >785 0.95 (0.92-0.97) 92 87 >570 

CF 
Sedentary 0.90 (0.84-0.95) 77 98 <10 0.86 (0.80-0.92) 74 95 < 5 

Light NA NA NA >10 -487 NA NA NA >5-368 
Moderate 0.88 (0.83-0.93) 83 81 >487-852 0.79 (0.72-0.86) 70 78 >368-1025 
Vigorous 0.91 (0.86-0.96) 100 88 >853 0.98 (0.96-1.0) 100 98 >1025 

CHD 
Sedentary 0.99 (0.99-1.0) 92 97 <10 0.99 (0.99-1.0) 100 98 <9 

Light NA NA NA >10-349 NA NA NA >9-349 
Moderate 0.82 (0.71-0.93) 85 76 >349-785 0.87 (0.81-0.94) 81 83 >349-633 
Vigorous 0.81(0.61-1.0) 87 84 >785 0.95 (0.90-1.0) 100 92 >633 

HE 
Sedentary 0.97 (0.93-1.0) 90 99 <17 0.94 (0.90-1.0) 95 94 < 19 

Light NA NA NA >17-432 NA NA NA >19-306 
Moderate 0.88 (0.84-0.93) 76 87 >432-788 0.82 (0.77-0.88) 72 80 >306-1114 
Vigorous 0.93 (0.85-1.0) 100 84 >788 0.85 (0.64-1.0) 67 98 >1114 

IMD 
Sedentary 0.90(0.86-0.95) 78 91 <37 0.96 (0.93-0.98) 82 97 <14 

Light NA NA NA >37-663 NA NA NA >14-297 
Moderate 0.91(0.85-0.97) 81 94 >663-972 0.89 (0.83-0.94) 82 81 >297-523 
Vigorous 0.92 (0.88-0.96) 100 92 >972 0.91 (0.87-0.95) 100 90 >523 

JDM 
Sedentary 0.83 (0.79-0.9) 73 84 <14 0.89 (0.83-0.94) 83 92 <18 

Light NA NA NA >14-172 NA NA NA >18-166 
Moderate 0.78 (0.71-0.86) 82 66 >172-543 0.85 (0.79-0.90) 86 70 >166-601 
Vigorous 0.79 (0.52-1.0) 83 79 >543 0.96 (0.93-0.99) 100 91 >601 

JA 
Sedentary 0.82 (0.74-0.90) 75 91 <19 0.84 (0.78-0.90) 78 88 <25 

Light NA NA NA >19-152 NA NA NA >25-255 
Moderate 0.78 (0.71-0.86) 86 63 >152-542 0.82 (0.77-0.88) 72 75 >255-771 
Vigorous 0.78 (0.52-1.0) 83 79 >542 0.98 (0.96-1.0) 100 94 >771 

*Sedentary  (<1.5 METs); light (1.5-2.99 METs); moderate (3.0 - 5.99 METs); vigorous (>6.0 METs); NA = Not applicable- values were not calculated as 
sedentary and moderate provide the boundaries for the cut point thresholds. 
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Figure 1: Oxygen Uptake (ml/kg/min) Across Physical Tasks by Diagnosis 

 

 

 

 

 

 

 

 

 

Figure 2: Mean Accelerometer Count (Actigraph) Across Physical Task by Diagnosis 
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