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Adaptive wvirtual cut-through is considered as a viable alternative to
wormhole switching for fast and hardware-efficient interprocessor communica-
tion in multicomputers. Computer simulations are used to show that our
implementation of a minimal-path fully-adaptive virtual cut-through algo-
rithm outperforms both deterministic and adaptive wormhole switching
methods under both uniform random message distributions and clustered dis-
tributions such as the matrix transpose. A hardware-efficient implementation
of adaptive virtual cut-through has been implemented using a semi-custom-
designed router chip that requires only 2.3% more area than a comparable
deterministic wormhole router chip. A network interface controller chip,
which is crucial to our adaptive virtual cut-through method, has also been
designed and is under fabrication.  © 1998 Academic Press, Inc.
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1. INTRODUCTION

The interconnection network is a critical component of a massively parallel com-
puter system because information must be communicated quickly in order for the
processing nodes of the parallel computer to cooperate in solving a given problem.
Information may be sent as messages between the processing nodes of a distributed-
memory multicomputer or as data between the processors and memories of a
shared-memory multiprocessor

For fast inter-processor communications, dedicated hardware devices, termed
routers, can be used to perform flow control without the intervention of the com-
putation processor. Two popular hardware-supported switching methods are
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wormhole (WH ) switching [ 1] and virtual cut-through (VCT) switching [ 1]. In WH
switching (also known as WH routing) and VCT switching, messages arriving at an
intermediate node are immediately forwarded to the next node on the path without
buffering, provided that a channel to the next node is available. This is referred to
as a cut-through operation. A cut-through may be performed at an intermediate
node as soon as the header of the message arrives with the destination information.
If cut-throughs are established through all intermediate nodes, a circuit is estab-
lished to the destination, and the switching method resembles traditional circuit
switching. If the message header is blocked at an intermediate node because the
requested outgoing channel is unavailable, the message is kept in the network (i.e.,
in the on-line flit buffers at each node along the path up to the current node) in
WH and completely buffered at the current node in VCT.

Wormhole switching is the most popular communication method used in current
commercial multicomputers due to its low hardware overhead (requiring only a
single flit buffer per incoming channel) and high performance. However, VCT can
typically achieve higher performance than WH for the following reason: when a
packet cannot cut-through an intermediate node, the packet is buffered at that node
instead of being kept in the network as in WH. This effect becomes particularly
evident with heavy network traffic. The main reason that VCT has not been as
popular as WH is that the required buffering capability of the former method has
been seen as a large hardware overhead.

Due to its relative unpopularity, VCT has not been as heavily researched as WH.
However, this paper will show that VCT, in particular adaptive VCT, has signifi-
cant performance benefits over WH and can be implemented with minimal
hardware overhead. It is shown that adaptive VCT has several attractive features
when compared to WH: negligible overhead for avoiding deadlock (a situation
in which no packet can proceed toward its destination), use of 100% of the free
channels, good performance with heavy network traffic, and good performance with
random or arbitrary locations of destination nodes. The hardware complexity issue
is addressed by showing that VCT can be implemented with little hardware over-
head (in some cases, less than WH), by exploiting the source buffer in the network
interface to the router.

2. BACKGROUND

The type of parallel computer assumed will be a multicomputer with a direct
interconnection network, in which a communication link can only be used by the
two end-nodes that it is connected to. Adjacent processing nodes are assumed to be
connected by two directed communication links in opposite directions (although
undirected links are also possible, directed links are assumed for simplicity). A com-
munication link consists of one or more data lines and several control lines. One
or more physical channels may occupy a single communication link by using time
multiplexing or by partitioning the set of data lines. One or more virtual channels
may occupy a single physical channel by using separate flit buffers and control lines
for each virtual channel. When two or more virtual channels are active over a single
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physical channel, they must be time-multiplexed; however, when only one of the
virtual channels is active, it can utilize the full bandwidth of the physical channel.
It is also assumed that messages are sent in fixed-size packets.

All communication methods must deal with the problem of deadlock, which
occurs when there is a cycle of packets in which no packet can progress toward its
destination because it is blocked by some other packet. WH switching is par-
ticularly susceptible to deadlock because blocked packets remain in the network,
thereby reducing the number of free channels. Although much less likely, deadlock
is also possible with VCT as the packet buffers at intermediate nodes can become
full. The use of virtual channels was introduced by Dally and Seitz [ 1] as a means
of guaranteeing deadlock-free WH switching. The WH routing algorithms intro-
duced in [ 1] are deterministic algorithms, in which the routing path used is com-
pletely determined by the source and destination node addresses. In [3], Dally
showed that virtual channels could also be used with a deterministic WH routing
algorithm to significantly reduce the probability of blocking, and thus increase the
throughput of the network.

Realizing the need for adaptability in routing around congested or faulty nodes
and links, several researchers [4, 5] used virtual channels to produce adaptive
deadlock-free WH routing algorithms, in which a packet is permitted to change its
routing path if a blocked channel is encountered. Adaptive algorithms can be
classified into minimal [6] and nonminimal [4, 7] algorithms, where a minimal
algorithm always uses the shortest-length paths to each destination, and fully adap-
tive [4] and partially adaptive [ 6, 7] algorithms, where the former differs from the
latter in that only a subset of the possible paths may be used.

3. ADAPTIVE VIRTUAL CUT-THROUGH

Wormhole switching methods have several deficiencies when compared to VCT.
First, WH in general has a lower saturation throughput than a comparable VCT
method as blocked packets contribute to network congestion in WH; however, this
problem is significantly alleviated by the use of multiple-flit flit buffers and/or multi-
ple virtual channels. Second, in WH based on deadlock avoidance, even with the
use of virtual channels, 100 % of the free channels (and flit-buffers) are not available
for use by a given packet as some of the channels have to be reserved in order to
prevent deadlock. Also, in WH based on deadlock recovery, extra hardware over-
head (deadlock buffer, timer, and crossbar) is necessary to detect and recover from
deadlock [8-10]. Third, fully adaptive routing in torus networks is difficult and
requires extra virtual channels to be used for deadlock avoidance. Although virtual
channels do not waste channel bandwidth, virtual channels do occupy valuable
hardware resources because each virtual channel requires a separate on-line flit
buffer and control line and contributes to the complexity of the arbitration logic
within the router (refer to Section 4).

For the above reasons, adaptive VCT is proposed as an alternative to WH.
When originally proposed in [2], VCT was described as a deterministic routing
algorithm. In deterministic VCT, when the head of a packet is received at an
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incoming channel, the header is decoded to determine the “one” outgoing channel
to connect to. If that outgoing channel is busy, then the packet is buffered at the
current node. This method is analogous to deterministic WH as originally described
by Dally and Seitz [ 1]. Thus, it is natural to consider an adaptive version of virtual
cut-through in order to be able to navigate around congested or faulty nodes/links.
In order to facilitate discussion of the many possible forms of adaptive VCT, a
general switching model, shown in Fig. 1, is proposed. When the head of a packet
is received at an incoming channel, the destination node information is extracted
from the header. A connection is then attempted to the first-choice outgoing chan-
nel. If successful, then a cut-through is established through the current node as
denoted by (0) in Fig. 1. However, if the requested outgoing channel is blocked (1)
because it is being used by another packet, then a connection is attempted to the
second-choice outgoing channel (2). This process is repeated until a cut-through is
achieved or all outgoing channels permitted by the adaptive VCT algorithm are
exhausted, as is the situation in Fig. 1. In this situation, the blocked packet remains
in the network (as in WH) until one of the permissible outgoing channels becomes
available or the “permitted waiting time” (PWT) expires. In the latter case, the
packet is received at the current node (3) and inserted into the source buffer of the
current node just as if the packet originated there (the circuit implementation is dis-
cussed in Section 4). The packet at the head of the source buffer waits until one of
the outgoing channels permitted to it becomes available, and then exits through
that outgoing channel, as shown by (4) in Fig. 1. The ejection latency out of and
the reinjection latency into the network for blocked messages in intermediate nodes
are alleviated with the aid of a specially designed network interface controller.
Based on the above switching model, simulations were conducted with several
different variations of adaptive VCT. In [11], we showed that deflection VCT,
based on the deflection routing methods proposed for computer networks with
packet switching [ 12], adaptive VCT with PWT >0, and adaptive VCT with the
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FIG. 1. A general switching model for adaptive VCT.
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choice of adaptivity limited to a fixed number were inferior to adaptive mini-
mal-path VCT with PWT = 0. In adaptive minimal-path VCT, the packet is permit-
ted to choose between all possible minimum-length paths to the destination. Also,
within adaptive minimal-path VCT, it is possible to attempt to follow a “zig-zag”
path (algorithm A, ) or to simply follow a “priority-X-direction” path (algorithm
Apn). Again, in [11], we showed that A, . performs worse than A4, with certain
destination node distributions and is only slightly better than A, with other
destination node distributions. Thus, this paper uses the A, adaptive minimal-path
VCT algorithm, in which the switching model of Fig. 1 is used and minimal paths
are followed with the X-direction attempted first.

The A,,, algorithm deals with deadlock in the following manner. Since VCT buff-
ers blocked packets, the deadlock conditions for VCT are identical to packet
switching—thus, the methods used to avoid deadlock in packet switching can be
used [13, 14]. In our hardware implementation of adaptive VCT, the “structured
buffer pool technique” for deadlock avoidance [13] was used because of its
simplicity. In this method, the source buffer is partitioned into K buffer classes,
where K is the diameter of the network. The ith buffer class, also called the i-hop
class, may only hold those packets that have i of fewer hops to go to their respec-
tive destinations. It is well known that this technique ensures deadlock-free store-
and-forward packet switching [ 13]. Our implementation in Section 4.3 shows that
the source buffer can be implemented in a small SRAM (or even main memory)—in
fact, several researchers are investigating the injection of packets into the network
directly from memory, thus avoiding intermediate buffer copies [15, 16]. The
number of buffers in the NIC required to guarantee deadlock freedom is high and
depends on the network size. There are other techniques to reduce those
buffer requirements to small constant values regardless of network size [17, 18].
However, at the time we initiated the NIC design, we were not aware of these
techniques.

4. HARDWARE IMPLEMENTATION

4.1. Communication Architecture

The proposed communication architecture for supporting adaptive VCT is shown
in Fig. 2. As can be seen from this figure, there is a network interface controller
(NIC), source and receive buffers, and a processor responsible for preparing and
sending the packets out onto the network. The NIC is logically partitioned into the
external and internal NI. The external NI responds to the network and the internal
NI responds to the processor and memory [ 19]. Packets are initially stored in the
source buffer before being sent out to the router chip. The router chip is connected
to other router chips in a connection pattern determined by the interconnection
network topology used. A packet which is injected into a router chip from a pro-
cessing node is routed to the router chip connected to the destination node. Packets
to be received by the current node are initially buffered in the receive buffer before
being transferred to local memory.
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FIG. 2. Communication architecture.

To demonstrate the feasibility of adaptive VCT, the A4,, algorithm was
implemented in a semi-custom-designed VLSI router chip and NIC chip. The com-
plete hardware implementation of the 4, algorithm in a multicomputer would
involve using our router and NIC chips in the network interface. Upon receiving a
new packet in the receive buffer, the NIC must examine the header to determine if
the packet is destined for the current node or is “in transit.” In the latter case, the
packet must be rerouted to the source buffer to be transmitted when one of its per-
mitted outgoing channels becomes available. (Note that bandwidth matching
requirements imply that the data transfer rates in the source and the receive buffers
must match the data transfer rates within the router network.) In order to perform
this rerouting efficiently without having to contend for the local bus, a dedicated
path must be established to the source buffer within the external NI—arbitration
with packet insertion from the local processing node (on a FCFS basis) is of course
necessary.

4.2. An Adaptive VCT Router Chip

A block diagram of our router chip, designed to implement the A4, adaptive
VCT algorithm in a two-dimensional mesh or torus network, is shown in Fig. 3. As
can be seen, there are single-flit buffers at the receivers and transmitters and a
crossbar switch connecting the receivers to the transmitters. The crosspoint logic
includes arbitration logic to handle contention for common transmitters (outgoing
channels). Finite state machine control logic in the receiver implements algorithm
A, by first attempting to connect to the first-choice transmitter, then the second-
choice transmitter (if one exists), and then the PN (processing node) transmitter
(for reception) if none of the first two choices are available. Note that in our
prototype chip, 6-bit-wide data lines were used to connect to other routers and the
local processing node due to a shortage of 1/O pins. Note also that the “permitted
waiting time” used is 0.

The router chip was designed using Mentor Graphics design tools, manufactured
using Samsung’s 1.0-um CMOS process, and successfully tested. The arbitration
capabilities of the crossbar switch were successfully tested and the 4., adaptive
routing algorithm worked as designed. The chip required 33,000 transistors, con-
sumed 800 mW of power, and was tested successfully up to a clock frequency of
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FIG. 3. Block diagram of the A4, adaptive VCT router chip.

12.5 MHz. The layout for this chip is shown in Fig. 4. The placement of the various
blocks for the router design are approximately the same as in Fig. 3.

The hardware overhead required for our adaptive VCT router chip was estimated
by measuring the layout area required by our chip as compared to the layout area
required by a comparable deterministic WH router chip. This comparison is shown
in Table 1. When our chip is compared to a deterministic WH router chip without
multiple virtual channels, the overhead is 2.3%. When our chip is compared to a
deterministic WH router chip with two virtual channels per physical channel (to

FIG. 4. Layout of the completed router chip.
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TABLE 1

Router Chip Layout Area Comparison

| Routing algorithm || Total Area ( mm?) |
(1) Deterministic WH 18.699 (4.278 x 4.371)
(2) Adaptive VCT 19.136 (4.367 x 4.382)
(3) Deterministic WH with 2 virtual chan. || 35.405 (6.098 x 5.806)
(4) Adaptive VCT with 2 virtual chan. 38.763 (6.147 x 6.306)

avoid deadlock), our chip is smaller by 85.0 %, even though the size of the crossbar
is kept constant [3]. Since this latter chip has higher performance, however, it
should perhaps be compared to an adaptive VCT chip with two virtual channels
per physical channel—in this case, the overhead for our chip is 9.5%. The
significance of a smaller chip area is that the router can easily be implemented in
one corner of a multiple-capability chip (such as a processor + memory +
NIC + router chip). It should be noted, however, that this comparison is only a
rough estimate, as the layout is not optimized.

It is noted that in a practical VCT router implementation it is more preferable
to use multiple-flit buffers, such as in [20, 21], rather than single-flit buffers since
single-flit buffers can result in bubbles and reduced throughput.

4.3. Network Interface Controller Design

Figure 5 shows a block diagram of our NIC chip, which is designed to interface
to our router chip and support the A4, adaptive VCT algorithm. The send queue
is a queue of “send packet requests.” If an entry is detected at the head of the send
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FIG. 5. Block diagram of the network interface controller chip.
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FIG. 6. Layout of the network interface controller chip.

queue, the sending control logic forms a packet header from the destination infor-
mation and sends it out followed by the packet body. The packet body is sent out
from the source buffer starting at the address pointed to by “data address.” The
receiving control logic, upon receiving the header of a packet, determines if the
packet is destined for the current node or is simply being stored temporarily. In the
former case, the packet is stored in the receive buffer. In the latter case, the received
packet is stored in the source buffer and an entry is appended to the tail of the send
queue. The only addition required to the basic NIC design to implement the A,
adaptive VCT algorithm is a flit buffer and some extra control logic to send tem-
porarily buffered messages to the source buffer.

In our NIC implementation, the source buffer and receive buffer are implemented
as SRAMs with a possible maximum size of 32 K words (256 words in an internal
SRAM and the rest in an external SRAM) and a word size of 6 bits (to interface
to our 6-bit router chip). Logically, the source buffer is partitioned into two parti-
tions. In the first partition, which we arbitrarily chose to be 2 K words, packets are
stored in any “packet slot” as they are received. The second partition is sub-parti-
tioned into K buffer classes to implement the “structured buffer pool technique” for
deadlock avoidance described at the end of Section 3. This second partition is used
only when the first partition is completely filled. Our simulation results at the end
of Section 5 show, however, that we almost never have to use this second partition.

The NIC chip was designed using a 0.8-um CMOS process and is currently
awaiting fabrication. Figure 6 shows the layout for the NIC chip.

5. SIMULATIONS

Computer simulations were used to compare the performance of the 4, adaptive
VCT algorithm and WH methods. Simulations were conducted for various
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topologies, network sizes, packet sizes, flit buffer sizes, and multiple virtual chan-
nels. A 16 x 16 two-dimensional mesh topology was chosen to allow meaningful
comparison with deterministic and adaptive WH routing algorithms as most WH
routing algorithms do not work on a two-dimensional torus with only one virtual
channel per communication link. Note that the adaptive VCT algorithms, by con-
trast, work efficiently (without deadlock) on any network topology, using only one
virtual channel per communication link. In the simulations for the A4, algorithm,
the ejection and reinjection overhead for an in-transit buffered packet were modeled
based on the delays measured with the circuit simulations for our NIC hardware
implementation.

In our simulations, a 20-flit packet size is assumed, and packets are transmitted
one flit at a time through the network, with one flit being transferred in one clock
cycle time. Each node generates new packets according to a Poisson distribution
with rate A/L, where A is the applied load and L is the length of the packets.
Destination nodes are selected using two methods, one based on a random uniform
distribution and one based on a clustered distribution. Although we have
experimented with several clustered distributions, for the sake of brevity only the
results for the matrix transpose distribution are shown in this paper.

The simulation results are presented with the offered traffic, /, along the X-axis
and the average network latency on the Y-axis. Note that, as in [3], the offered
traffic has been normalized by the maximum possible throughput, which on a
16 x 16 mesh with uniform random traffic is 64 flits/cycle. The latency is defined as
the time from when a packet is first generated and stored in the source buffer to
when the tail of the packet leaves the network and enters the receive buffer of the
destination node. All times are measured in terms of flit cycles. Each simulation is
executed for 30,000 cycles, with statistics collected for only the last 20,000 cycles in
order to avoid transient startup effects.
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FIG. 7. Average latency comparison with deterministic and adaptive WH routing algorithms given
a 16x16 mesh and 20-flit packets, a uniform destination node distribution, 2 flit buffers per virtual
channel and 4 virtual channels per link.
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Figure 7 shows a comparison of the 4, algorithm with deterministic and adap-
tive WH routing algorithms based on a uniform destination node distribution. The
deterministic WH routing algorithm used is the X-Y routing algorithm in which the
packet is first sent in the X direction and then in the Y direction. The adaptive WH
routing algorithms simulated are Glass and Ni’s negative-first algorithm based on
the turn model [7] (NEG), which is a partially-adaptive minimal algorithm, and
Disha’s WH routing algorithm based on deadlock recovery (Disha-Seq), which is
a fully-adaptive algorithm [ 8, 97]. The Disha-Seq algorithm is simulated with a time
out of 80, the recommended value. At low traffic loads, all methods perform
similarly, with Disha-Seq showing slightly better performance than the other algo-
rithms. However, when comparing the saturation point, it can clearly be seen that
the A4, algorithm has the best performance—only the A4, algorithm is capable of
supporting a 75 % traffic load.

Figure 8 shows the results for a matrix transpose destination node distribution.
With a matrix transpose destination node distribution, the Disha-Seq algorithm
again has the best performance at low traffic loads and the A4, algorithm has the
highest network saturation point.

Figures 9 and 10 show the results of using 16 virtual channels per communication
link (with 32-flit buffers allocated to each virtual channel). The interested reader is
referred to [3] and [22] for the effects of larger numbers of virtual channels and
larger buffers. Figure 9 compares the A4, algorithm with deterministic and adaptive
WH routing algorithms assuming 20-flit packets, two virtual channels per link, and
a uniform destination node distribution. Figure 10 shows a similar comparison
assuming a matrix transpose destination node distribution. It can be seen that while
the performance of all algorithms have improved significantly from Figs. 7 and 8§,
the A,,, algorithm again has the highest network saturation point.
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FIG. 8. Average latency comparison with deterministic and adaptive WH routing algorithms given
a 16 x 16 mesh and 20-flit packets, a matrix transpose destination node distribution, 2 flit buffers per
virtual channel and 4 virtual channels per link.
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FIG. 9. Average latency comparison with deterministic and adaptive WH routing algorithms given
a 16 x 16 mesh, 20-flit packets, a uniform destination node distribution, 32 flit buffers per virtual channel
and 16 virtual channels per link.

During all simulations with the A, algorithm, records were kept of the maxi-
mum source buffer lengths observed. This is important as our adaptive VCT
method is dependent on using the source buffer in the NIC to buffer temporarily
blocked packets. The maximum of the source buffer lengths observed under very
heavily-loaded network conditions in all of our simulations (taken to be the point
when the average latency was over 70 times the minimum average latency—the
network will rarely be used or usable at loads beyond this point) was only 11 packets.
Thus, in this case, with a packet length of 20 flits, a 220-flit source buffer is sufficient
to support adaptive VCT.
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FIG. 10. Average latency comparison with deterministic and adaptive WH routing algorithms given
a 16 x 16 mesh, 20-flit packets, a matrix transpose destination node distribution, 32 flit buffers per
virtual channel and 16 virtual channels per link.
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CONCLUSION

This paper has investigated adaptive VCT as a viable alternative to WH switching.
It has been shown that adaptive VCT has several attractive features when compared
to WH: negligible overhead for avoiding deadlock (in terms of both performance
and hardware), the possibility of using 100 % of the free buffers and channels, good
performance with heavy network traffic, and good performance with uniform or
clustered locations of destination nodes. Simulations have been used to investigate
the performance of a minimal-path adaptive VCT algorithm (4,,,). When compared
to other deterministic and adaptive WH routing algorithm, the results show that
A, has a significantly higher network saturation point, and only slightly poorer
performance at low network traffic loads. Finally, the hardware complexity issue
was addressed by showing that VCT can be implemented with little hardware over-
head (in some cases, less than WH) by exploiting the source buffer in the network
interface to the router.
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