
A Hierarchical LSTM Model
for Joint Tasks

Qianrong Zhou, Liyun Wen, Xiaojie Wang,
Long Ma, and Yue Wang

School of Computer,
Beijing University of Posts and Telecommunications,

Beijing, China
{zhouqr,wenliyun,xjwang,

miss_longma,wangyuesophie}@bupt.edu.cn

Abstract. Previous work has shown that joint modeling of two Natu-
ral Language Processing (NLP) tasks are effective for achieving better
performances for both tasks. Lots of task-specific joint models are pro-
posed. This paper proposes a Hierarchical Long Short-Term Memory
(HLSTM) model and some its variants for modeling two tasks jointly.
The models are flexible for modeling different types of combinations of
tasks. It avoids task-specific feature engineering. Besides the enabling of
correlation information between tasks, our models take the hierarchical
relations between two tasks into consideration, which is not discussed in
previous work. Experimental results show that our models outperform
strong baselines in three different types of task combination. While both
correlation information and hierarchical relations between two tasks are
helpful to improve performances for both tasks, the models especially
boost performance of tasks on the top of the hierarchical structures.

Keywords: Hierarchical LSTM · Joint modeling

1 Introduction

It is a normal situation in Natural Language Processing (NLP) that two tasks
interact with each other. For example, Chinese word segmentation and POS-
tagging, POS-tagging and chunking, intent identification and slot filling in goal-
driven spoken language dialogue systems, and so on.

Usually, the second task is modeled after the first one is finished, since the
first task is thought to be more fundamental or lower than the second one. It is
so called pipeline method, i.e. low level tasks are followed by high level tasks.
For example, chunking in character-based languages such as Chinese, Japanese
and Thai requires word segmentation and POS-tagging as pre-processing steps
[1,2,3]. In Spoken Language Understanding (SLU), intent is firstly identified as
a classification problem using Support Vector Machines (SVMs) [4], and then
sequence labeling methods such as Conditional Random Field (CRF) [5] are

2 Q. Zhou et al.

employed for slot filling task. However, pipeline method suffers from error prop-
agation. Lots of methods for jointly modeling the first and the second tasks
simultaneously have been proposed to tackle this problem.

Previous work has shown the effectiveness of joint models. Lyu et al. (2016)
[6] introduced a transition-based framework for joint segmentation, POS-tagging
and chunking, and it achieved better results compared with a pipelined baseline.
Zhu et al. (2010) [7] proposed a joint segmentation and POS-tagging system
based on undirected graphical models which could make full use of the depen-
dencies between the two stages. Shi et al. (2015) [8] proposed a hybrid model
of Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN)
which could exploit possible correlations among intent classification and slot fill-
ing. Lee et al. (2015) [9] introduced a new tag addition method turning utterance
classification task into sequence labeling task, then classification and slot filling
could be analyzed by one sequence tagger. Duh (2005) [10] proposed Factorial
Hidden Markov Models (FHMMs) with additional cross-sequence dependencies,
enabling information sharing between POS-tagging/chunking subtasks. Li (2010)
[11] studied four joint learning approaches on various sequence labeling tasks.

Previous joint modules have been proved to be able to manage the correla-
tions between sub-tasks by jointly modeling two tasks. Most of the joint models
aim to model two specific tasks, i.e. the joint model is task specific. For example,
a joint model for word segmentation and POS-tagging is not suit for intent iden-
tification and slot filling. We argue that there are some common things behind
different joint tasks. High level tasks receive information from low level tasks,
while raise some constraints on low level side by hierarchical structures. Both of
the interactions between two levels and the hierarchical structures for the joint
tasks have important influences on the performances of both tasks. This paper
therefore considers to build a joint model that can deal with different types of
combinations of two tasks by balancing the interactions and hierarchical con-
straints between tasks in different levels. For example, a single model (or its
slight variants) can deal with segmentation and POS-tagging, intent identifica-
tion and slot filling, and others.

We propose a hierarchical LSTM (HLSTM) model and some its variants.
They are used to deal with a wide types of joint tasks without significant mod-
ifications. The model has two-layer LSTM, each layer deals with one task. The
two LSTMs takes both interactive and hierarchical information into considera-
tion. Hierarchical relations are found to be very important in our experiments for
most of joint tasks. It is not seriously considered and discussed in most previous
work. All parameters in two layers are estimated together to minimize a joint ob-
jective function. Experimental results show that the proposed hierarchical model
outperforms non-hierarchical methods in diverse tasks.

The rest of the paper is organized as follows. Section 2 introduces our pro-
posed model in detail; Section 3 presents the tasks and experimental results;
Finally, Section 4 draws conclusions.

A Hierarchical LSTM Model for Joint Tasks 3

2 Models

LSTM is the basic unit of models. We give a brief introduction to LSTM, and
then propose our models one-by-one.

2.1 LSTM

LSTM model [12] is widely used in NLP since it can deal with arbitrary-length
sequences of input. It alleviates the problem of gradients exploding or vanishing
in Recurrent Neural Networks (RNNs) by introducing a memory cell. Commonly,
a memory cell is composed of four components: an input gate, a forget gate, an
output gate and a memory cell. The input gate controls how much information
will be updated in memory cell, the forget gate controls how much information
from previous time step to be remembered, and the output gate controls how
much information will be outputted to next memory cell. At time step t, the
hidden state vector ht is calculated as following:

it = σ(W (i)xt +U (i)ht−1 + b(i)), (1)

ft = σ(W (f)xt +U (f)ht−1 + b(f)), (2)

ot = σ(W (o)xt +U (o)ht−1 + b(o)), (3)

ct = ft ⊙ ct−1 + it ⊙ tanh(W (u)xt +U (u)ht−1 + b(u)), (4)

ht = ot ⊙ tanh(ct), (5)

where it, ft, ot are the gating vectors representing the input gate, the forget
gate and the output gate respectively. xt is the input at the current time step. σ
denotes the sigmoid function and ⊙ denotes elementwise multiplication. W (i),
U (i), W (f), U (f), W (o), U (o), W (u), U (u) are weight matrices associated with
different gates. b(i), b(f), b(o), b(u) are the bias items.

Multilayer LSTM architectures are able to build higher level representations
of input data. They can be created by stacking multiple LSTM hidden layers on
the top of each other [13]. At time step t, the hidden state vector of layer n-1 is
the input of layer n:

h
(m)
t = f(W (m−1,m)h

(m−1)
t +W (m,m)h

(m)
t−1 + b(m)), (6)

where W (m,m) denotes weight matrices between two layers.

2.2 Hierarchical LSTM and Training

We firstly derive our basic joint model from two-layer LSTM for one basic type
of joint tasks, and then propose its variants which fit to different types of joint
tasks.

A common type of joint tasks usually combines a sentence-level classifica-
tion task and a word-level sequence labeling task for a sentence. Examples for

4 Q. Zhou et al.

this type of joint tasks include intent identification and slot filling, sentiment
classification and sentimental elements extraction, and so on.

Let w(1:n) = (w1, w2, ..., wn) be an input sentence, Y be the label set for
sentence, Z be the label set for each word. A joint model assigns a y ∈ Y to the
sentence and z ∈ Z for each word. A hierarchical model called HLSTM (Hier-
archical LSTM) including a sentence-level classification at bottom and a token-
level sequence labeling on top is therefore proposed. The structure of HLSTM is
shown in Fig. 1(a).

LSTM LSTM LSTM

LSTM LSTM LSTM

yy

z1z1 z2z2 z3z3

x1x1 x2x2 x3x3

(a) HLSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

y1y1 y2y2 y3y3

z1z1 z2z2 z3z3

x1x1 x2x2 x3x3

(b) HSLTM-L

LSTM LSTM LSTM

LSTM LSTM LSTM

y1y1 y2y2 y3y3

z1z1 z2z2 z3z3

x1x1 x2x2 x3x3

(c) HLSTM-DL

Fig. 1. Our proposed hierarchical models

Suppose the word embedding of wt is vt (1 ≤ t ≤ n) which is used as input
of HLSTM. Follow the Eq.(5) we get the last time step of hidden state vector

h
(1)
n of lower LSTM, and the hidden state vector is fed to a softmax classifier.

Then probabilities are estimated for sentence label

y = softmax(W (1)h(1)
n + b(1)), (7)

where W (1) is a weight matrix for softmax classifier with respect to lower LSTM,

and b(1) is a bias term. For each time step t, h
(1)
t is still the input of upper LSTM

unit. Then we estimate probabilities for sequence output tags

zt = softmax(W (2)h
(2)
t + b(2)), (8)

whereW (2) is a weight matrix for softmax classifier with respect to upper LSTM,
b(2) is a bias term.

Two tasks are simultaneously by minimizing a joint loss function. The pa-
rameter set of our network is θ = {W (i), U (i), W (f), U (f), W (o), U (o), W (u),
U (u), W (1), W (2)} (bias items are omitted). Given a set of training set D, the
regularized objective function is the loss function J(θ) including a l2-norm term:

J(θ) = αLS + (1− a)LT +
λ

2
||θ||22, (9)

A Hierarchical LSTM Model for Joint Tasks 5

where LS and LT are sentence-level loss and token-level loss respectively. Let ŷ(i)

and ẑ
(i)
t be correct sentence and token label respectively, L(·) be a cross-entropy

error. They are defined as:

LS =
1

|D|

|D|∑
i

L(y(i), ŷ(i)), (10)

LT =
1

|D|

|D|∑
i

1

n

n∑
t=1

L(z
(i)
t , ẑ

(i)
t) . (11)

α (0 < α < 1) is a hyper-parameter used to tradeoff between two objectives. If
α = 0, the model only cares about token-level labeling. The network architecture
degenerates into standard two-layer LSTM only for token-level labeling task. At
the other extreme, if α is set to 1, only sentence-level classification is considered.

In HLSTM (Fig. 1(a)), the sentence-level classification is at the bottom and
the token-level sequence labeling is on the top of the model. The inverse situation
is another choice, i.e. the sentence-level classification is on the top and the token-
level sequence labeling is at the bottom of the model. We call it Inverse HLSTM
(I-HLSTM). It has same optimal objective and training algorithm.

Differing from above one, another common type of joint tasks in NLP in-
cludes two sequence labeling tasks interacting with each other. For example,
POS-tagging and word segmentation, chunking and POS-tagging and so on. We
use same hierarchical frame to deal with this type of joint tasks by extending
basic HLSTM to HLSTM-L (HLSTM for two Labeling tasks). The structure of
HLSTM-L is shown in Fig. 1(b).

HLSTM-L can be formed and trained in same way as those in HLSTM except
for substituting class error in HLSTM with sequence label error. Like that in
HLSTM, HLSTM-L can also be reversed by exchanging the LSTMs in two layer.
We call the Inverse HLSM-L (I-HLSM-L).

In both HLSTM and HLSTM-L, dependencies between sequence labels are
not modeled explicitly. For natural language tasks like word segmentation and
POS-tagging, dependencies between sequence labels are important.

HLSTM-DL (HLSTM for Dependency Labeling tasks) is therefore proposed
by extending HLSTM-L. HLSTM-DL keeps the same frame with HLSTM and
HLSTM-L. The structure of HLSTM-DL is shown in Fig. 1(c), where dependen-
cies between labels in lower level LSTM are taken into consideration explicitly.

To model the tag dependency, we follow Chen et al. (2015) [14] by introducing
tag transition matrix A. Every output tag sequence is given a score by summing
tag transition score and tagging score:

s(x(1:n), y(1:n)) =
n∑

t=1

(Ayt−1yt + (yt)yt) . (12)

Suppose the correct tag sequence of x(i) is ŷ(i). Let Y (x(i)) be the set of all
possible tag sequences. Then the predicted tag sequence ȳ(i) can be computed
as:

6 Q. Zhou et al.

ȳ(i) = argmax
y∈Y (x(i))

(s(x(i), y) +∆(ŷ(i), y)), (13)

where ∆(ŷ(i), y)) =
n∑

t=1
γ1{ŷ(i)t ̸= yt} is a structured margin loss. γ is a discount

parameter, the loss is proportional to the number of words with incorrect tags
in the proposed tag sequence.

However, the way we predict most possible tag sequence during testing is
a little bit different since the correct tag sequence is unknown, thus Eq.(13)
replaced by

ȳ(i) = argmax
y∈Y (x(i))

s(x(i), y) . (14)

Moreover, LS in Eq.(10) is modified to Eq.(15):

LS =
1

n
lS , (15a)

lS =
1

|D|

|D|∑
i

l
(i)
S , (15b)

l
(i)
S = max(0, s(x(i), ȳ(i)) +∆(ŷ(i), ȳ(i))− s(x(i), ŷ(i))) . (15c)

We can also have I-HLSTM-DL which is the reversed version of HLSTM-DL.

3 Experiments

Three different joint tasks are used for evaluating our models experimentally.
They are Intent Classification and Slot Filling in SLU, POS-tagging and Chunk-
ing, Chinese Word Segmentation and POS-tagging.

Before the one-by-one introduction of our experiments, it is worthy to men-
tion that hyper-parameters of all our models are tuned only by trying a few
different settings in all experiments. We choose the smaller networks to achieve
“reasonable” performances rather than picking the best hyper-parameters care-
fully to achieve their top performances. We employ standard experimental setups
for models: for each group of tasks, we use AdaGrad [15] with mini-batches [16]
to minimize the objective function. Derivatives are calculated from standard
back-propagation [17]. The model achieving the best performance on the devel-
opment set is used as the final model to be evaluated. The overall performance
of joint model is simply evaluated by averaging performances of two tasks. All
models are implemented in Theano [18,19].

A Hierarchical LSTM Model for Joint Tasks 7

3.1 Intent Classification and Slot Filling

Joint intent classification and slot filling is typically first type of joint tasks,
where the former is a classification task and latter is treated as a sequence
labeling problem.

User utterance with only one intent (act) in DSTC2 corpus1 [20] is used2.
Basic information about this corpus is listed in Table 1. The number of intent
classes is 13, and the number of different slots is 9 including the O label.

Table 1. Intent Classification and Slot Filling corpus

Dataset Sentences Tokens

Training 4,790 19,562

Dev 1,579 6,807

Test 4,485 16,284

HLSTM and its revered version I-HLSTM fit the joint tasks well. The lower
layer of HLSTM deals with intent classification and upper layer aims at slot
filling task. For I-HLSTM, the lower layer deals with slot filling and upper layer
is for intent classification. Lee’s model [9], which is a CRF-based joint model for
intent classification and slot filling simultaneously, is compared. The open source
toolkits is used3.

Table 2. Test set performance on Intent Classification, Slot Filling

Intent (Acc.) Slot (F1)

Lee et al. (2015) 98.84 98.62

I-HLSTM 99.40 98.84

HLSTM 99.29 98.99

The results are shown in Table 2. From the Table 2, we have two observations.
1) Both HLSTM and I-HLSTM perform better than CRF model on two tasks. It
is similar with the conclusion in Mesnil et al. (2013) [21] and Mesnil et al. (2015)
[22]. They showed RNN model is better than CRF in slot filling only task. 2)
Although the overall performances of two HLSTMs are almost same, HLSTM
achieves a slightly higher performance and they show different strengths. HLSTM
prefers to slot filling task, while I-HLSTM prefers intent classification. Reminded

1 http://camdial.org/~mh521/dstc/
2 Sentences with ‘request’ intent are not included, since there is always no slot values
in those sentences.

3 http://taku910.github.io/crfpp/

http://camdial.org/~mh521/dstc/
http://taku910.github.io/crfpp/

8 Q. Zhou et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9.39

18.89

α

99.2

99.25

99.3

99.35

99.4

99.45

HLSTM
I-HLSTM

A
cc
u
ra
cy

(a) Intent Classification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
13.87
15.25

α

98.4

98.6

98.8

99

HLSTM
I-HLSTM

F
1
-s
co
re

(b) Slot Filling

Fig. 2. Performances with different values of α

that slot filling is on the top of HLSTM, and intent classification is also on the
top of I-HLSTM, we think there is a preference for top-layer LSTM in our two-
layer LSTM models. It is a helpful hint on how to make choice between HLSTM
and I-HLSTM.

α is used to leverage loss function of two tasks. Fig. 2 shows how performances
of model change with α. We can find several points from Fig. 2. 1) It is clear
that both HLSTM and I-HLSTM achieve best performance when α ̸= 0 and
α ̸= 1. It means two tasks can help each other if α is properly given. α = 0.3
seems to be a good choice. On the contrary, improper combinations might hurt
both of them. 2) Again, we find different strengths of two HLSTMs. Hierarchical
structure help tasks on top-layer receive better scores.

3.2 POS-tagging and Chunking

Both POS-tagging and chunking can be regarded as sequence labeling problems.
HLSTM-L and its reverse version are therefore used for joint modeling of the
two tasks.

Penn Treebank Wall Street Journal corpus is used for joint POS-tagging and
chunking. Basic information about this corpus is listed in Table 3. Their training
data consists of sections 02-21 and test data consists of section 00. 10% of the
training set is split into a development set. The corpus contains 45 different types
of POS tags, and 23 types of chunking tags respectively. A transformation-based
learning model [23] was used for comparison since it used same dataset.

Table 3. POS-tagging and Chunking corpus

Dataset Sentences Tokens

Training 39,831 950,011

Test 1,920 46,435

A Hierarchical LSTM Model for Joint Tasks 9

Experimental results are shown in Table 4. As can be seen from Table 4,
1) Both HLSTM-L and I-HLSTM-L are comparable with Florian et al. (2001).
They achieve improvements on chunking, but a little lower in POS-tagging task.
2) HLSTM-L who models the hierarchical structure of joint tasks performs better
overall. Similar to that in previous model, an appropriate value of α is crucial
to the performance of both tasks. The impact of α is shown in Fig. 3.

Table 4. Test set performance on POS-tagging, Chunking

POS (Acc.) Chunking (F1)

Florian et al. (2001) 96.63 93.12

I-HLSTM-L 96.21 93.38

HLSTM-L 96.36 93.68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.02

9.11

α

95.7

95.9

96.1

96.3

96.5

HLSTM-L
I-HLSTM-L

A
cc
u
ra
cy

(a) POS-tagging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.6

6.73

α

92.4

92.8

93.2

93.6

94

HLSTM-L
I-HLSTM-L

F
1
-s
co
re

(b) Chunking

Fig. 3. Performances with different values of α

The results in Fig. 3 illustrate that 1) both POS-tagging and chunking could
be benefit by joint training. POS-tagging gets a performance boost and achieves
best performance by introducing moderate chunking information, the same situ-
ation applies to chunking. α = 0.6 seems to be a good choice. 2) Two HLSTM-Ls
show different strengths on different tasks. HLSTM-L prefers to chunking, while
I-HLSTM-L prefers POS-tagging.

3.3 Chinese Word Segmentation and POS-tagging

Both Chinese word segmentation (CWS) and POS-tagging can be regarded as
sequence labeling problems. Instead of using HLSTM-L, the influence of depen-
dency relation is taken into consideration, and HLSTM-DL is employed to model

10 Q. Zhou et al.

the joint tasks. Since the result of POS-tagging includes the CWS, it is not pos-
sible to put CWS on the top layer with POS-tagging at the bottom, the reversed
version will not be included in this experiment. Inspired by Pei et al. (2014) [24],
bigram embeddings are used as models’ inputs as well.

NLPCC 2015 dataset4 [25] is used for the joint tasks. Different with the popu-
lar used newswire dataset, the NLPCC 2015 dataset collects informal texts from
Weibo. The information of the dataset is shown in Table 5. 10% of the train-
ing set is split into a development set and keep the remaining 90% as the real
training set. Each character is labeled as one of {B, M, E, S} to indicate the seg-
mentation. For POS-tagging labels, each is the cross-product of a segmentation
label and a POS tag, e.g. {B-NN, M-NN, E-NN, S-VP, ...}.

Table 5. CWS and POS-tagging corpus

Dataset Sents Words Chars Word Types Char Types OOV Rate

Training 10,000 215,027 347,984 28,208 3,971 -

Test 5,000 106,327 171,652 18,696 3,538 7.25%

A CRF model for joint CWS and POS-tagging, which presented in the
NLPCC 2015 shared task, is used as baseline. The templates are unigram fea-
ture, bigram feature and trigram feature. Word segmentation can be inferred
from the output.

The results are shown in Table 6. HLSTM-DL achieves much improvement
compared to HLSTM-L. Even with fewer features, HSLTM-DL gets a much
better result on CWS and performs slightly better on POS-tagging compared to
CRF model.

The effect of α is shown in Fig. 4. We can see that POS information brings a
significant boost to CWS. The same analysis of α also applies to this experiment
like previous ones.

Table 6. Test set performance on CWS, POS-tagging

CWS (F1) POS (F1)

Qiu (2015) 93.80 87.69

HLSTM-L 92.10 85.44

HLSTM-DL 95.10 87.75

We compared our proposed hierarchical models with non-hierarchical models
on different kinds of combinations of NLP tasks. In most situation, hierarchical

4 http://nlp.fudan.edu.cn/nlpcc2015

http://nlp.fudan.edu.cn/nlpcc2015

A Hierarchical LSTM Model for Joint Tasks 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22

α

94.2

94.4

94.694.6

94.8

95

95.2

C
W

S
F
1
-s
co
re

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.3

18.7

α

86.5

86.7

86.9

87.1

87.3

87.5

87.7

87.9

P
O
S
F
1
-s
co
re

CWS
POS

Fig. 4. Performances with different values of α

models achieve better results than strong baselines. Top-layer in hierarchical
model is more powerful. Hierarchical model reflecting task hierarchy is likely
to achieve higher overall performance. The detailed analysis of experimental
results shown that the hyper-parameter α of hierarchical joint model can leverage
information in one task to another, thus bring significant performance boosts to
both tasks.

4 Conclusion

We have presented a hierarchical LSTM model and several its variants that can
handle different kinds of combinations of NLP tasks. Experimental results on
three different combinations of NLP tasks show promising results. In most sit-
uation, they outperform strong baselines. Hierarchical relations and correlation
information between different layers are also discussed experimentally. Tasks get
better performances if they are on top-layer. We believe they provide a series of
potential solutions for joint learning of two NLP tasks.

There are several problems waiting for future work. While the hierarchical
structure has been shown to be a good choice for arranging two NLP tasks, it is
still not so clear how the information of two tasks interacts each other, especially
how tasks at the bottom transmit supervision to the tasks on the top layer, and
vice versa. Another problem is how to character dependency relation between
labels in sequence labeling tasks.

Acknowledgments. This paper is partially supported by National Natural
Science Foundation of China (No 61273365), discipline building plan in 111 base
(No.B08004) and Engineering Research Center of Information Networks of MOE,
and the Co-construction Program with the Beijing Municipal Commission of
Education.

12 Q. Zhou et al.

References

1. Zhou, J., Qu, W., & Zhang, F. (2012, July). Exploiting chunk-level features to
improve phrase chunking. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (pp. 557-567). Association for Computational Linguistics.

2. Chen, W., Zhang, Y., & Isahara, H. (2006, July). An empirical study of Chinese
chunking. In Proceedings of the COLING/ACL on Main conference poster sessions
(pp. 97-104). Association for Computational Linguistics.

3. Tan, Y., Yao, T., Chen, Q., & Zhu, J. (2005). Applying conditional random fields
to chinese shallow parsing. In Computational Linguistics and Intelligent Text Pro-
cessing (pp. 167-176). Springer Berlin Heidelberg.

4. Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008). LIB-
LINEAR: A library for large linear classification. The Journal of Machine Learning
Research, 9, 1871-1874.

5. Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data.

6. Lyu, C., Zhang, Y., & Ji, D. (2016, March). Joint Word Segmentation, POS-Tagging
and Syntactic Chunking. In Thirtieth AAAI Conference on Artificial Intelligence.

7. Tie-jun, Z. C. H. Z., & De-quan, Z. (2010). Joint Chinese Word Segmentation and
POS Tagging System with Undirected Graphical Models [J]. Journal of Electronics
& Information Technology, 3, 038.

8. Shi, Y., Yao, K., Chen, H., Pan, Y. C., Hwang, M. Y., & Peng, B. (2015, April). Con-
textual spoken language understanding using recurrent neural networks. In Acous-
tics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference
on (pp. 5271-5275). IEEE.

9. Lee, C., Ko, Y., & Seo, J. A Simultaneous Recognition Framework for the Spo-
ken Language Understanding Module of Intelligent Personal Assistant Software on
Smart Phones. Volume 2: Short Papers, 818.

10. Duh, K. (2005, June). Jointly labeling multiple sequences: A factorial HMM ap-
proach. In Proceedings of the ACL Student Research Workshop (pp. 19-24). Asso-
ciation for Computational Linguistics.

11. Li, Xinxin. (2010). Research on Joint Learning of Sequence Labeling in natural
language Processing (Dissertation for the Doctoral Degree in Engineering). Harbin
Institue of Technology, Harbin, China.

12. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural com-
putation, 9(8), 1735-1780.

13. Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition
with deep recurrent neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on (pp. 6645-6649). IEEE.

14. Chen, X., Qiu, X., Zhu, C., Liu, P., & Huang, X. (2015). Long short-term memory
neural networks for chinese word segmentation. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing.

15. Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research,
12, 2121-2159.

16. Cotter, A., Shamir, O., Srebro, N., & Sridharan, K. (2011). Better mini-batch
algorithms via accelerated gradient methods. In Advances in neural information
processing systems (pp. 1647-1655).

A Hierarchical LSTM Model for Joint Tasks 13

17. Goller, C., & Kuchler, A. (1996, June). Learning task-dependent distributed repre-
sentations by backpropagation through structure. In Neural Networks, 1996., IEEE
International Conference on (Vol. 1, pp. 347-352). IEEE.

18. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., ...
& Bengio, Y. (2012). Theano: new features and speed improvements. arXiv preprint
arXiv:1211.5590.

19. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
... & Bengio, Y. (2010, June). Theano: a CPU and GPU math expression compiler.
In Proceedings of the Python for scientific computing conference (SciPy) (Vol. 4, p.
3).

20. Williams, J., Raux, A., Ramachandran, D., & Black, A. (2013, August). The dialog
state tracking challenge. In Proceedings of the SIGDIAL 2013 Conference (pp. 404-
413).

21. Mesnil, G., He, X., Deng, L., & Bengio, Y. (2013, August). Investigation of
recurrent-neural-network architectures and learning methods for spoken language
understanding. In INTERSPEECH (pp. 3771-3775).

22. Mesnil, G., Dauphin, Y., Yao, K., Bengio, Y., Deng, L., Hakkani-Tur, D., ... &
Zweig, G. (2015). Using recurrent neural networks for slot filling in spoken language
understanding. Audio, Speech, and Language Processing, IEEE/ACM Transactions
on, 23(3), 530-539.

23. Florian, R., & Ngai, G. (2001, July). Multidimensional transformation-based learn-
ing. In Proceedings of the 2001 workshop on Computational Natural Language
Learning-Volume 7 (p. 1). Association for Computational Linguistics.

24. Pei, W., Ge, T., & Chang, B. (2014). Max-Margin Tensor Neural Network for
Chinese Word Segmentation. In ACL (1) (pp. 293-303).

25. Qiu, X., Qian, P., Yin, L., Wu, S., & Huang, X. (2015). Overview of the NLPCC
2015 Shared Task: Chinese Word Segmentation and POS Tagging for Micro-blog
Texts. In Natural Language Processing and Chinese Computing (pp. 541-549).
Springer International Publishing.

	A HLSTM Model for Modeling Joint Tasks
	Introduction
	Models
	LSTM
	Hierarchical LSTM and Training

	Experiments
	Intent Classification and Slot Filling
	POS-tagging and Chunking
	Chinese Word Segmentation and POS-tagging

	Conclusion

