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ABSTRACT
There is an increasing need to link the large amount of

genotypic data, gathered using microarrays for example,
with various phenotypic data from patients. The classifi-
cation problem in which gene expression data serve as
predictors and a class label phenotype as the binary out-
come variable has been examined extensively, but there
has been less emphasis in dealing with other types of phe-
notypic data. In particular, patient survival times with cen-
soring are often not used directly as a response variable
due to the complications that arise from censoring.

We show that the issues involving censored data can be
circumvented by reformulating the problem as a standard
Poisson regression problem. The procedure for solving the
transformed problem is a combination of two approaches:
partial least squares, a regression technique that is
especially effective when there is severe collinearity due
to a large number of predictors, and generalized linear
regression, which extends standard linear regression to
deal with various types of response variables. The linear
combinations of the original variables identified by the
method are highly correlated with the patient survival times
and at the same time account for the variability in the
covariates. The algorithm is fast, as it does not involve
any matrix decompositions in the iterations. We apply our
method to data sets from lung carcinoma and diffuse large
B-cell lymphoma studies to verify its effectiveness.
Contact: peter park@harvard.edu
Keywords: microarrays; generalized linear models; sur-
vivial analysis; Poisson regression; principal components
analysis.

INTRODUCTION
Simultaneous measurement of mRNA transcripts for
thousands of genes using microarrays has made it possi-
ble to study gene expression on a genome-wide scale (for
overview, see Collins (1999) and the articles that follow).
The two most common types are oligonucleotide and
cDNA arrays, but other platforms such as SAGE (Serial

Analysis of Gene Expression) are also available. Expres-
sion profiling has been used in several contexts, notably
in functional characterization of genes and classification
of disease types.

One of the great challenges in medicine is to correlate
genotypic data, such as gene expression measurements
and presence of single nucleotide polymorphisms, and
other covariates, such as age and gender, to a variety of
phenotypic data from the patient. Capturing the relation-
ship between the phenotype and the genotype would not
only allow for a predictive model that can aid in diagnosis
and treatment, but also bring about a better understanding
of the basic biological processes.

The phenotypes considered in many studies so far have
been limited to relatively simple cases. The most common
is the binary type, typically comparing one disease against
normal or another disease (Golub et al., 1999; Alon et al.,
1999; Alizadeh et al., 2000). Larger data sets containing
several types of a disease have also become common,
and multiclass classification has started to receive more
attention recently (Ramaswamy et al., 2001; Bhattacharjee
et al., 2001).

In general, however, phenotypic data can take several
forms. It may be, for example, ‘count’ data, such as
the number of recurrences of a disease, or continuous
data, such as blood pressure. One particularly important
case is that of patient survival time, such as the time
from the beginning of a treatment to a ‘failure’, usually
an occurrence of a particular condition or death. The
difficulty in dealing with survival data is that failure
times may not always be observed. That means for some
patients, failure occurs past a certain time but the exact
time is not known (‘right-censoring’). This happens, for
example, when a clinical trial is terminated before all
the patients have failed, or a patient leaves the study
early. Unfortunately, many of the current algorithms for
linking gene expression data with phenotypic data cannot
be easily extended to the more general cases.

A major source of difficulty in dealing with microarray
data is that the number of variables (genes) is much
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larger than the number of observations (samples). Recent
oligonucleotide arrays contain more than 10 000 gene
probe sets and this number is expected to increase further
in the future. On the other hand, the number of samples
is an order of magnitude smaller, with less than a few
hundred in the largest studies. Even with preprocessing
of the data to filter out those genes that are unlikely to
be relevant, there is a high degree collinearity in the gene
profiles. Direct applications of regression techniques often
result in ill-posed or computationally infeasible problems.

There are several ways of dealing with this severely
ill-conditioned problem in the unsupervised setting. One
approach is to identify a few genes whose behaviour is
representative of the group. A more robust approach may
be to combine similar profiles, as is done, for example,
in Hastie et al. (2001) and Hedenfalk et al. (2001). One
popular method is principal component analysis, which
is a technique for finding the linear combinations of the
original variables that best account for the variability in
the data. A large reduction in the dimensionality results
because only few such components are often needed to
explain most of the variability. However, in relating the
genotypic data to the phenotype, principal components or
other similar methods may be ineffective because there is
no guarantee that such linear combinations will predict the
response well. In finding the principal components, the
response variable is not taken into account. On the other
hand, other methods such as ordinary least squares simply
try to minimize the error in the fitted response variable and
do not handle the collinearity problem.

Partial least squares is a compromise between principal
component analysis and ordinary least squares regression.
It is a method for constructing predictive models when
there are many highly collinear covariates. First intro-
duced in chemometrics (Wold, 1966), partial least squares
attempts to find orthogonal linear combinations that
explain the variability in the predictor space while being
highly correlated with the response variable. Previously,
this method has been extended by Marx (1996) to model
a response variable belonging to an exponential family
of distributions in generalized linear regression. In the
context of expression data, it has been applied to the
binary classification problem using logistic discrimination
and quadratic discriminant analysis (Nguyen and Rocke,
2002).

In this paper, we extend the partial least squares method
to deal with censored survival time data. Survival data
have been used in the context of gene expression studies
before, but only to verify that subclasses of the samples
derived by a classification scheme have significantly
different survival curves in the Kaplan–Meier analysis
(Alizadeh et al., 2000). A direct use of survival time
as a response variable is an important problem, but the
complications due to the censoring in the data make the

analysis difficult. In this work, we show that the censoring
issue can be circumvented by recasting the problem in a
generalized regression setting. This allows us to treat the
highly collinear gene expression data as predictors and
directly link them to survival time as the response variable.
Below, we first briefly review the partial least squares
method, generalized linear regression, and models for
survival data. We then describe how they can be combined
to make an efficient method.

METHODS
Partial least squares
In the linear regression setting, the random response
variable, y, is predicted from p covariates, x1, x2, . . . , x p.
Given n observations, the data consist of an n×1 response
vector y and a n × p covariate matrix X = (x1, . . . , xp). If
gene expression data are used as the only covariates, each
column xi represents a gene.

Partial least squares is an algorithm to find new variables
by constructing appropriate linear combinations of origi-
nal covariates. The underlying motivation for partial least
squares is that there are ‘latent’ variables, t1, . . . , ts , that
explain both the response and covariate space:

X = t1p′
1 + · · · + tsp′

s + Es,

and

y = t1q1 + · · · + tsqs + ys,

where pi and qi are suitably chosen weights and both Es
and ys are small relative to the systematic part explained
by the latent variables. In contrast to the dimension p of
the covariate space defined by X, the dimension of latent
space, s, will be much smaller. Therefore, once the latent
variables are recovered, a regular linear regression model
can be fit with latent variables as predictors. The main
advantage of partial least squares is its ability to handle
a very large number of variables, particularly when p
is much larger than n. There are many versions of the
partial least squares approach. One iteratively re-weighted
scheme is adopted in our algorithm described later.

Unlike principal components analysis, partial least
squares chooses the linear combinations that are highly
correlated with the response while accounting for the
variability in the predictor space. Principal component
analysis is based on the spectral decomposition of X′X;
partial least squares is based on the singular value decom-
position of X′y, hence reflecting the covariance structure
between the predictors and the response. The relationship
between partial least squares and principal component
analysis or other linear regression techniques can be made
precise mathematically and is described in Frank and
Friedman (1993).
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Generalized linear models
The linear regression of the form y = X′β + ε models a
relationship between a set of covariates and a continuous
response. For a different type of response variable, a
generalized linear model with a transformed response is
used (McCullagh and Nelder, 1989). Suppose the random
response variable y comes from an exponential family,
such as normal, binomial, or Poisson distributions, with
E(yi ) = µi . We can model the systematic components
as before, using a linear predictor ηi = ∑p

j=1 xi jβ j .
The connection between the random and systematic
components is provided by ηi = g(µi ), where g(·)
is a given link function. Common generalized models
include logistic regression for binary response and Poisson
regression for count response.

To find the parameters β = (β1, . . . , βp)
′, we often use

maximum likelihood estimation. For generalized linear
models, this can be carried out via the Fisher scoring
method:

β̂
(t+1) = β̂

(t) + I−1(β̂
(t)

)S(β̂
(t)

).

Given a log-likelihood function l(·), S(β̂
(t)

) =
(∂l/∂β1, . . . , ∂l/∂βp)

′ is the score vector and I is the

expected information matrix, I jk = −E
(

∂2l
∂β j ∂βk

)
. This

is very similar to the Newton–Raphson algorithm, except
that the expected value is taken for the Hessian matrix
in order to simplify the computation. For the Poisson
regression case with link function g(·) = log(·), the two
cases are identical.

For the likelihood function from the generalized linear
model, the Fisher Scoring method can be formulated as a
weighted least squares algorithm:

β̂
(t+1) =

(
X′V(β̂

(t)
)X

)−1
X′V(β̂

(t)
)z(β̂

(t)
)

At each iteration, we obtain new β̂, update the linear

predictor η̂ = Xβ̂, and recompute z(β̂
(t)

) where zi =
ηi +(∂ηi/∂µi )(yi −µi ). The weight matrix V = diag(vi i )

reflects the covariance structure of the predictor variables

with the components vi i = [
var(yi ) (∂ηi/∂µi )

2]−1
.

Cox model for survival data
In survival analysis, the hazard function λ(t) is often
modelled. It is the probability that a failure occurs at time
t given that the individual has survived up to time t , and
λ(t) = f (t)/[1 − F(t)], where f (t) and F(t) are the
probability density and cumulative distribution functions
of the failure time, respectively. A parametric approach
using an exponential or Weibull distribution can be used
to model this function.

The most popular way to model survival time, however,
is Cox’s proportional hazards model (Cox, 1972). Specif-
ically, given a vector of covariates z, the hazard function
satisfies

λz(t) = λ0(t)e
β′z,

where λ0(t) is an unspecified baseline hazard function and
eβi represents the rise in risk due to a unit increase in the
covariate zi .

The estimation and statistical inference of β can be han-
dled elegantly based on the ‘partial’ likelihood function.
The observations are yi = min{Ti , Ci } with δi = 1(Ti <

Ci ), where Ti and Ci , respectively, are the failure time of
interest and the censoring time; 1(·) is an indicator func-
tion. For those with δi = 0, we only know that they sur-
vived beyond time yi . The complex semi-parametric like-
lihood can be reduced to the partial likelihood function

L(β) =
n∏

i=1

(
eβ′zi∑

j∈Ri
eβ′z j

)δi

, (1)

where Ri is the set of those patients still in the study
including those censored at ti .

Reformulation of survival data for a Poisson
regression
There is a way to transform the failure time problem into
a generalized linear regression problem. This transforma-
tion (Whitehead, 1980), which we describe below, results
in a Poisson regression (with a modified y and X; X should
be scaled properly) that has the same likelihood function
as in (1). Therefore, the estimates for the parameters β by
the two methods are the same. We have verified that the es-
timates given by the Cox proportional hazards model are
the same as those given by the Poisson regression formu-
lation. With this reformulation, we are able to apply the
partial least squares method directly to the problem, cir-
cumventing the censoring issue in using the patient sur-
vival time as an outcome variable.

To be more specific, let G = {i : δi = 1} denote
the index set for all observed failure times. Let the
observed times be ordered in a descending manner. At
time yi , i ∈ G, we create quasi-response variables yi1 =
0, . . . , yi,i−1 = 0, yii = 1, with covariates x1, . . . , xi ,

respectively. We let yi j ∼ Poisson(µi j ), i ∈ G, j =
1, . . . , i and

log(µi j ) = φi + β′x j (2)

Furthermore, we create a dummy variable

zk =
{

1 if k = i
0 if k �= i

, k ∈ G,
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for observation yi j , and let φ = (φi , i ∈ G), zi j =
(zk, k ∈ G). Then equation (2) becomes

log(µi j ) = (z′
i j , x′

j )

(
φ
β

)
. (3)

It can be shown that the maximum likelihood estimates
of this problem are equivalent to those given by the partial
likelihood in (1). Therefore, the Fisher scoring algorithm
with partial least squares for finding the latent variables
can be used directly to maximize this likelihood function
and obtain the solution to the original problem. β are the
parameters of interest, and φ serve as dummy variables
which we discard at the end.

Example: Suppose we have the following survival times
17+, 15, 12+, 10, (‘+’ indicates censoring) with covariates
x1, x2, x3, x4, respectively. Then we have G = {2, 4},
{y21, y22, y41, y42, y43, y44} = (0, 1, 0, 0, 0, 1), and



log(µ21)

log(µ22)

log(µ41)

log(µ42)

log(µ43)

log(µ44)


 =




1 0 x′
1

1 0 x′
2

0 1 x′
1

0 1 x′
2

0 1 x′
3

0 1 x′
4





φ2

φ4
β




A proposed algorithm
Motivated by the partial least squares method and the
standard Fisher Scoring method, we propose the following
general algorithm. With n observations, y = (y1, . . . , yn)

′
is the response variable and X is the n × p covariance
matrix whose i th row contains the covariates of the i th
subject (We use n and p here to denote the dimensions of
the new Poisson problem). This algorithm is similar to the
one proposed by Marx (1996). The four outer steps (1)–(4)
resemble the weighted least squares algorithm described
earlier and the four inner steps (a)–(d) incorporate the
partial least squares algorithm.

(1) Initialization:

y0 = ψ(y) − 1

n
1′V̂ψ(y);

E0 = X − 1

n
11′V̂X;

V̂ = diag

[
h′(g(ψ(yi )))

2

var(yi )

]
i=1,...,n

,

where g(·) is the link function, h(·) = g−1(·), 1
is a column vector containing 1s, and ψ(y) is a
suitably transformed version of y. (By ψ(y), we mean
[ψ(y1), ψ(y2), . . . , ψ(yn)]′.)

(2) Iterate (a)–(d) to obtain R latent variables: (A weighted
version of partial least squares)

(a) Obtain the loadings for a new latent variable:

wk = E′
k−1V̂yk−1.

(b)Create the latent variable:

tk = Ek−1wk .

(c) Fit the linear model yk−1 = qktk + εk and regress
out the latent variable from the response variable:

qk = y′
k−1V̂tk

t′kV̂tk
,

yk = yk−1 − qktk .

(d)Fit the linear model Ek−1 = tkp′
k + εk and regress

out the latent variable from the predictor variables:

p′ = t′kV̂Ek−1

t′kV̂tk
,

Ek = Ek−1 − tkp′

(3) Update η:

η = 1

n
1′V̂ψ(y) +

R∑
k=1

qktk .

(4) Update the weight matrix:

V̂ = diag

[
h′(ηi )

2

var(yi )

]
i=1,...,n

and

y0 = η + diag

[
1

h′(ηi )

]
i=1,...,n

(y − h(η)).

(5) If �η is not sufficiently small, return to (2).

(6) Select s latent variables, (t1, . . . , ts), to fit the general-
ized linear model to estimate β.

The motivation behind steps (2a)–(2b) is to find the

direction tk = Ek−1wk to maximize t′kV̂yk−1/

√
t′ktk ,

the weighted covariance of the latent variable with the
response variable, subject to the orthogonality condition
t′kV̂tl = 0, l = 1, 2, . . . , k − 1. In (2c)–(2d), we
regress out the latent variable immediately from both the
response variable and the matrix of predictor variables.
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By working with the residuals, the next latent variable is
constructed in a subspace orthogonal to the previous latent
variables. Because of the complex nonlinear nature of the
algorithm, it is difficult to make general statement about its
convergence properties. However, in the two data sets we
examined below, convergence was achieved in few steps
with the �η criterion.

A major advantage of the partial least squares algorithm
is that it does not involve any matrix decompositions. This
is in contrast to most other regression methods, which
require matrix inversions. This property makes it possible
to deal with a large number of genes computationally, and
it will be an increasingly important feature as the number
of genes and patients in data sets grows larger.

RESULTS
In Bhattacharjee et al. (2001), 186 lung tumor samples
were profiled using oligonucleotide arrays to examine
subclasses of lung carcinomas. The specimens included
histologically defined lung adenocarcinomas, squamous
cell lung carcinomas, pulmonary carcinoids, and small-
cell lung carcinomas. Among these, 125 adenocarcinoma
samples were provided with clinical and histological data,
such as tumor size, stage, type of operation performed,
site of relapse, age, gender, and smoking history; the same
samples were also associated with survival times and a
censoring indicator. We note, however, that while all the
samples belong to the adenocarcinoma subtype, there may
be a significant heterogeneity due to the different stages
of the disease when the specimens were taken. Deleting
the subjects with any missing covariates (which included
age, gender, and smoking history), we use 122 subjects,
each with 366 gene expression level measurements. These
genes were selected based on their high correlation
between replicate pairs (Pearson correlation > 0.85). We
can include more genes by lowering the threshold on
the measurement reliability; the speed of algorithm we
propose scales linearly with the number of genes.

One way to evaluate the new variables ti derived from
the algorithm above is to fit them with the Cox model.
In Table 1, we show the result of fitting the Cox model
with the top 10 covariates obtained by partial least squares.
We see that the first few have very low p-values, with
four of them below 10−6. We contrast this with using
the first 10 directions from principal components analysis.
At the p = 0.01 level, six latent variables and only
one principal component are significant. The likelihood
ratio test with 10 degrees of freedom gives p-values of <

10−16 and 0.007 29 for partial least squares and principal
components, respectively. In Table 2, we perform the same
analysis but with only one covariate in each method. We
see that using just a single component gives a highly
significant result for the partial least squares (p-value of
3.6 × 10−7) but not for the principal components (p-
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Fig. 1. Kaplan–Meier survival curves. Based on the first partial least
squares component, we split the patients into two groups, one with
higher than median risk and the other with lower than median risk.
The x-axis is the time in months and the y-axis is the probability
of overall survival. The p-value is p = 0.000 020 for the null
hypothesis of no difference between the two groups.

value of 0.02). The likelihood ratio test gives p-values of
8.6×10−8 for partial least squares and 0.0154 for principal
components. Based on this single component, we divide
the samples into two groups and plot the Kaplan–Meier
survival curves for the two groups in Figure 1, similar to
what is done in Hastie et al. (2001). The difference in
survival between the groups is highly significant, with a
p-value of 2 × 10−5.

In Figure 2, the scatterplot shows the patients in terms
of their first two latent variables. We see that even in
two dimensions the patients with observed failure times
appear to be separated from those with censored failure
times. Because we do not know the actual failure times of
censored patients, this description is of limited value, but
it still shows the trend.

After applying partial least squares regression and
obtaining a large number of latent components, we have
a sequence of models with the number of covariates
1, 2, . . . , R. The optimal selection of the model size can
be conducted through a K -fold cross-validation. First, the
data set is split into K parts. For each k = 1, 2, . . . , K ,
the partial least squares procedure is trained on all the data
except the kth part, and then loss of predicting the kth
part through the trained model is estimated. The results
are averaged over k = 1, . . . , K , and the optimal number
of covariates is selected for the model minimizing the loss
function. A negative log likelihood function and partial
likelihood function can serve as the loss function in the
generalized linear model and proportional hazards model,
respectively. Our results show that a single latent variable
model is selected based on this criterion.
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Table 1. Significance of latent variables. To evaluate the latent variables, the Cox proportional hazards model was fit. Here we use 10 latent variables from
partial least squares and 10 principal components for the lung carcinoma data. Many of the latent variables are highly significant. Six latent variables and one
principal component are significant at p = 0.01

Partial least squares Principal components

coef se(coef) z p-value coef se(coef) z p-value

1 0.007 64 0.001 56 4.91 9.3E−007 −0.0620 0.0209 −2.974 0.0029
2 0.017 39 0.003 33 5.22 1.8E−007 0.0573 0.0239 2.396 0.0170
3 0.011 33 0.002 80 4.05 5.2E−005 0.0204 0.0264 0.773 0.4400
4 0.022 07 0.004 34 5.09 3.6E−007 −0.0343 0.0302 −1.137 0.2600
5 0.027 94 0.004 99 5.60 2.1E−008 −0.0480 0.0286 −1.678 0.0930
6 0.010 51 0.004 01 2.62 8.7E−003 −0.0467 0.0343 −1.360 0.1700
7 0.005 23 0.003 46 1.51 1.3E−001 0.0192 0.0343 0.561 0.5700
8 0.010 59 0.004 33 2.45 1.4E−002 0.1182 0.0456 2.594 0.0095
9 0.008 50 0.006 29 1.35 1.8E−001 −0.0728 0.0455 −1.600 0.1100

10 0.006 56 0.004 58 1.43 1.5E−001 −0.0739 0.0434 −1.703 0.0890

Table 2. Significance of latent variables. The Cox proportional hazards model was again fit in order to evaluate the latent variables. This time, we use only one
latent variable and one principal component in the Cox model. The latent variable from the partial least squares method is highly significant.

Partial least squares Principal components

coef se(coef) z p-value coef se(coef) z p-value

0.007 43 0.001 46 5.09 3.6E−007 −0.0482 0.0208 −2.32 0.02

We also applied our method to the data set from
patients with diffuse large B-cell lymphomas (DLBCLs),
studied in Shipp et al. (2002). This data included the
expression levels of 6817 genes in pre-treatment biopsies
obtained from 58 DLBCL patients who have received
chemotherapeutic regimens, as well as their long-term
clinical outcomes. In the absence of duplicate arrays, we
were unable to reduce the number of genes as we did in
the previous example. Instead, we filtered out those genes
that have expression levels lower than a threshold of 100
in more than 10 cases, and used a low-entropy filter to
eliminate genes with extreme outliers. We then applied
the partial least squares method with the remaining 2800
genes. The results were similar to the those obtained in the
lung carcinoma data. For the model containing 10 latent
variables, there are 6 variables with p-values < 1 × 10−5

and the likelihood ratio test give a p-value of < 1×10−16.
Principal components analysis, on the other hand, involves
computing eigenvectors of a 2800×2800 matrix and gives
a less significant result.

DISCUSSION
The primary emphasis in partial least squares is on pre-
dicting the response. As a result, while it finds the new
variables that best explain the response, it is often difficult
to interpret those latent variables. When linear combina-
tions are used to select new variables, interpretation is dif-
ficult in general, although the first one or two directions in
principal components sometimes can be explained (Ray-
chaudhuri et al., 2000). If any gene is closely correlated
with the survival times, we should be able to identify them
by their large coefficients in the first few latent variables.
In the data set we examined, we have not found any dom-
inant genes, even though the latent variables we obtained
were highly significant. In Figure 3, we show the coeffi-
cients of the genes for the first three latent variables.

The reformulation of the censored problem as a Poisson
regression increases the dimension of the problem for the
iteration step. If the original problem had p columns, it
increases by the number of distinct failure times, through
the addition of φi in equation (2). That number is bounded
by the number of patients n, and the increase is usually
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Fig. 2. Patients with observed and censored failures. Using the first
two latent variables as the new coordinates, we see that the patients
with observed failure times appear to be separated from those with
censored failure times.
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Fig. 3. Coefficients for the latent variables. Each latent variable is a
linear combination of the original variables (genes). The coefficient
for the 366 genes we used are shown here for the first three variables.
No dominant genes seem to be present.

very small relative to p. On the other hand, the increase
in the number of rows varies depending on the number of
censored times and when they occur; in the worst case,
the dimension goes from n to roughly n2/2. Even for
a moderate size n, this results in a substantial increase.
Fortunately, the partial least squares iterations are fast. We
have found that we achieve a reasonable speed even when
there are more than 100 patients as in our data set.

The speed and effectiveness of the algorithm is in part
due to the construction of an orthogonal sequence (in

some weighted metric) in the iteration, which resem-
bles the speedy conjugate gradient method. Indeed, a
recursive formulation of the iteration can be shown to
be equivalent to the conjugate gradient applied to the
normal equations of generalized linear regression (Marx,
1996). The algorithm is highly nonlinear, as each latent
variable is regressed out both from the response vector
and the covariate matrix at each iteration. Because of this,
understanding the convergence properties is not simple.
With the lung carcinoma data, we have found that as the
number of latent variables increases, the relative error for
the weight matrix becomes somewhat inconsistent and
hard to predict; however, we suspect that they still result
in nearly identical predictors.

In this paper, we have shown a way to link censored data
directly to gene expression data. With an iteratively re-
weighted partial least squares approach for selecting ap-
propriate predictors, we are able to solve the transformed
problem efficiently in the generalized linear model setting.
Several latent variables we derive are highly significant, as
the likelihood function values indicate. Eventually, a more
comprehensive model relating various types of genotypic
and phenotypic data will be necessary. Typical genotype
data would include gene expression profiles and presence
of mutations in genes; clinical data may include not just
patient survival information but post-operative patholog-
ical staging, histopathological diagnosis, and site of dis-
ease recurrence and many others. Incorporating all of this
information in a statistically coherent and computationally
feasible framework remains an important challenge.
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