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AbstractÐGiven a WDM optical network with wavelength channels on its fiber links, we consider the problem of finding the minimum

set of network nodes such that, with wavelength converters at these nodes, broadcast can be supported in the network. We call this

problem the Converter Placement problem. We model a given network using a graph G with colors on its edges and give a

mathematical formulation for the problem based on the graph model. Two related problems, Color-Covering and Vertex Color-

Covering, are given and analyzed. Both of them are shown to have a polynomial-time approximation with performance ratio lnn� 1

and lnn is the best possible performance ratio unless NP � DTIME�npoly logn�, where n is the number of vertices in G. Using these

results, we show that the Converter Placement problem has a polynomial-time approximation with performance ratio 2�lnn� 1� and
1
2 lnn is the best possible performance ratio unless NP � DTIME�npoly logn�. We present an approximation algorithm to solve the

Converter Placement problem and study the performance of the algorithm on randomly generated network topologies.

Index TermsÐNetwork optimization, optical networks, WDM, converter placement, Color-Covering, Vertex Color-Covering.
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1 INTRODUCTION

OPTICAL networks employing wavelength division multi-
plexing (WDM) are believed to be the next generation

networks that can meet the ever-increasing bandwidth
demand of end users [7]. WDM provides an efficient way to
utilize the tremendous bandwidth of a fiber (up to 50THz)
[1]. In WDM, the optical spectrum is divided into many
nonoverlapping channels, each corresponding to a different
wavelength. Multiple users are multiplexed onto a fiber by
using different wavelength channels.

A WDM optical network consists of optical routing

nodes interconnected by fiber links. Each fiber link supports

a set of wavelength channels and each routing node is able

to route a signal coming in on one wavelength at an input

port to any other output port. In WDM optical networks,

one-to-one connections are supported by lightpaths. A

lightpath consists of a physical path in the network between

two end nodes and a wavelength channel assigned on each

link along the path. If no wavelength converters are present,

then all the links along the path must use the same

wavelength. If a converter is available at node i, then a

lightpath entering i using wavelength �1 can leave it using a

different wavelength �2. It has been shown that placing
wavelength converters at routing nodes can reduce the
blocking probability experienced by connection requests [4],
[5]. Wavelength conversion can be done either electronically
or optically [6]. In the electronic approach, O-E-O conver-
sion is required and it causes long delays. In all optical
approaches, the optical signal is allowed in the optical
domain throughout the conversion process. This kind of
converter is costly at present. Therefore, in either case, it is
desirable to minimize the number of wavelength converters
used to save the hardware cost and conversion delay.
Algorithms for placing a given number of wavelength
converters in the network to minimize blocking probability
were proposed in [13], [14], [15]. All these works assume
that only one-to-one connections are present in the
network. Recently, Sahasrabuddhe and Mukherjee intro-
duced the concept of lighttree to support one-to-many (or
multicast) connections in optical domain [8]. Unlike
lightpath, lighttree connects a source to multiple destina-
tions. At the branching points in the tree, lights are split
to reach multiple outgoing links. In this way, multicast
can be realized in the optical domain. To establish a
lighttree, we first need to find a set of links that form the
physical route of the tree and then assign a wavelength
channel to each link on the tree. When two adjacent links
use different wavelengths, wavelength conversion is
needed at their joint node.

Multicast is increasingly popular on the Internet. A
number of applications, such as video distribution and
teleconferencing, require a multicast connection to be
established. Some recent works studied wavelength re-
quirements of multicast and the construction of multicast
routing trees in optical networks [9], [10], [11], [12].
Broadcast is a special case of multicast where a source
node connects to all the other nodes in the network. In order
to support broadcast, a spanning lighttree needs to be

750 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 7, JULY 2001

. L. Ruan is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455.
E-mail: ruan@cs.umn.edu.

. D. Du is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455 and the Institute of
Applied Mathematics, Chinese Academy of Science, Beijing, China.
E-mail: dzd@cs.umn.edu.

. X. Hu is with the Institute of Applied Mathematics, Chinese Academy of
Science, Beijing, China.

. X. Jia and D. Li are with the Department of Computer Science, City
University of Hong Kong, Kowloon Tong, Hong Kong.

. Z. Sun is with the School of Mathematics and System Sciences, Shandong
University, Jinan, China.

Manuscript received 3 Jan. 2000; revised 13 Sept. 2000; accepted 23 Feb. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111335.

0018-9340/01/$10.00 ß 2001 IEEE



constructed in the given network and each link in the
lighttree occupies a wavelength channel. In this paper, we
study how to find the minimum set of network nodes such
that, with converters at these nodes, broadcast can be
supported in the network or, equivalently, a spanning
lighttree can be built using these nodes to do wavelength
conversions. We call this problem the Converter Placement
problem.

To tackle the Converter Placement problem, we intro-
duce a graph model to represent the WDM optical networks
and give a mathematical formulation for the problem using
this graph model. We study the hardness of two related
problems, namely Color-Covering and Vertex Color-Cover-
ing. Based on the results, we derive both a lower bound and
an upper bound of the approximation of the Converter
Placement problem and propose a greedy algorithm to
generate approximation solutions to the problem.

The rest of the paper is organized as follows: Section 2
introduces the graph model and some definitions. Section 3
gives the mathematical formulations of the three problems.
In Section 4, 5, and 6, we study Color-Covering, Vertex
Color-Covering, and Converter Placement, respectively. In
addition, two greedy algorithms are given in Section 4 and
Section 6 for solving the Color-Covering problem and the
Converter Placement problem. We give numerical results
on the performance of the algorithm for the Converter
Placement problem in Section 7 and Section 8 concludes the
paper.

2 NETWORK MODEL AND DEFINITIONS

The network under our consideration is a set of routing
nodes interconnected by fiber links. Each fiber link has a set
of wavelength channels. We assume that each link is
bidirectional and consists of a pair of fibers carrying
information in opposite directions. Our goal is to find the
minimum number of nodes to place converters such that
broadcast can be supported.

We model the network using a connected graph G �
�V ;E� and a mapping c from E to a set of colors represented
by positive integers. The vertex set V of the graph

represents the set of routing nodes and the edge set E of

the graph represents the set of fiber links in the network.

The colors on an edge represent the wavelength channels on

that link. c is a function that assigns a set of colors to each

edge e 2 E.
Fig. 1 shows an example network modeled as a graph

with colors on its edges. In this example, we can place

converters at nodes d and h to support broadcast. A

spanning lighttree with wavelength conversion at d and h is

shown in Fig. 2.
Let G be a graph representing a given network. We

introduce some definitions on G in the following.
For an edge e, c�e� is the set of colors on edge e and we

call it edge color set of e. For example, in Fig. 1, c��c; d�� �
f1; 2g is the set of colors on edge �c; d�.

For a vertex x, define the vertex color set of x, denoted by

vc�x�, to be the union of the color sets of the edges incident

to x. For example, in Fig. 1,
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Fig. 1. The graph model of a network. The integers on each edge represent the colors on that edge.

Fig. 2. A spanning lighttree with wavelength conversions at nodes d

and h.



vc�h� � c��b; h�� [ c��d; h�� [ c��g; h�� [ c��i; h��
� f3g [ f2; 3g [ f4; 5g [ f2g � f2; 3; 4; 5g:

A set of colors is called a color-covering if all edges in
those colors form a connected graph on V and therefore
contain a spanning tree of G. In Fig. 1, f1; 2; 3; 4g is a color-
covering since the edges with color 1, 2, 3, and 4 form a
connected graph on V , as shown in Fig. 3.

A subset of vertices is called a vertex color-covering if all
colors of those vertices form a color-covering. In Fig. 1,
fd; hg is a vertex color-covering since the colors of these two
vertices are 1, 2, 3, 4, and 5 and f1; 2; 3; 4; 5g is a color-
covering of G.

A subset of vertices is said to be color-connected if
connecting every pair of vertices that share at least one
common color gives a connected graph. Given a subset of
vertices U � V , we can construct a graph A�U� in the
following way to test whether U is color-connected. The
vertex set of A�U� equals U . For any two vertices
u1; u2 2 A�U�, add an edge between them if vc�u1� \ vc�u2�
is not empty (u1 and u2 share at least one common color).
Now, A�U� is connected if and only if U is color-connected.
For example, in Fig. 1, fa; b; dg is color-connected since
vc�a� � f3g, vc�b� � f1; 3g, vc�d� � f1; 2; 3; 5g, and each pair
of the three vertices share at least one color. Graph
A�fa; b; dg� is a triangle and is connected. For another
example, fa; fg is not color-connected since vc�a� � f3g,
vc�f� � f2; 5g, and they don't share a common color. Graph
A�fa; fg� is an empty graph on a and f and is not
connected.

3 PROBLEM FORMULATION

In this section, we give the mathematical formulation of the
Converter Placement problem. We also define two related
problems: Color-Covering and Vertex Color-Covering.

We start by looking at the properties of the solutions to
the Converter Placement problem. Suppose S is a solution
to the Converter Placement problem for a given graph G,
then S is a set of vertices in G that has the following two
properties:

1. S is a vertex color-covering of G.
2. S is color-connected.

Property 1 is clear since the colors of S have to be a color-
covering, otherwise, no spanning lighttree can be built
using the colors of S. To see why Property 2 is true, let's
look at the example network in Fig. 4a. Both fb; d; fg and
fa; cg are vertex color-covering since both sets have colors
1; 2; 3 and f1; 2; 3g is a color-covering. The set fb; d; fg is not
color-connected since none of b; d; f share a common color.
The set fa; cg is color-connected since a and c share color 2.
We can't build a spanning lighttree with wavelength
converters placed at b, d and f , but we can build a spanning
lighttree with wavelength converters placed at a and c, as
shown in Fig. 4b. Since fb; d; fg is not color-connected, the
three components of color 1, color 2, and color 3 can't be
joined together via fb; d; fg. On the other hand, the three
components can be joined together by fa; cg since fa; cg is
color-connected.

Now, we give the mathematical formulation of the
Converter Placement problem.

Converter Placement (CP): Given a connected graph
G � �V ;E� and a mapping c from E to a set of colors such
that, for every color x, all edges in x form a connected
subgraph, compute a minimum cardinality color-connected
vertex color-covering of G.

In the problem formulation, we require that, for every
color, all edges in the color form a connected subgraph. This
may not be true in the given graph. But, we can easily
modify the graph such that the condition is satisfied.
Suppose, for a color x, all the edges with this color form k
components P1; P2; � � � ; Pk and k > 1. We can replace x by k
different colors x1; x2; � � � ; xk and let component Pi have
color xi for 1 � i � k. In this way, all the edges in a color
form a connected subgraph. An example of this transforma-
tion is shown in Fig. 5. In Fig. 5a, color 1 has two
components. We transform the graph into Fig. 5b such that
one component has color 11 and the other component has
color 12.

In the following, we define two problems that are closely
related to Converter Placement. The problems are: Color-
Covering and Vertex Color-Covering.
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Fig. 3. f1; 2; 3; 4g is a color-covering since the edges in these colors form a connected graph on V .



Color-Covering (CC): Given a connected graph G �
�V ;E� and edge color sets for each edge in G, compute a

color-covering of minimum cardinality.
An optimal solution of Color-Covering is called a

minimum color-covering. In Fig. 1, f1; 2; 3; 4g is a minimum

cover-covering.
Vertex Color-Covering (VCC): Given a connected graph

G � �V ;E� and edge color sets for each edge in G, compute

a vertex color-covering of minimum cardinality.
An optimal solution of Vertex Color-Covering is called a

minimum vertex color-covering. In Fig. 1, fd; hg is a minimum

vertex color-covering.
In the following two sections, we study Color-Covering

and Vertex Color-Covering, respectively. Both of the

problems will be shown to be NP-hard and we will derive

both a lower bound and an upper bound of the approxima-

tion of the two problems. Using these results, we then give

some theoretical results about the hardness of the Converter

Placement problem and propose a greedy algorithm to

solve it in Section 6.

4 COLOR-COVERING

In this section, we study the Color-Covering problem. We

first give a lower bound for the approximation of the

problem and then propose a greedy algorithm that reaches

nearly-the-best performance ratio.

4.1 Lower Bound of Approximation

The following is a negative result which implies that Color-

Covering is unlikely to have a polynomial-time approxima-

tion with performance ratio � lnn for � < 1.

Theorem 1. Color-Covering has no polynomial-time approx-

imation with performance ratio � lnn for � < 1 unless

NP � DTIME�npoly logn�, where n is the number of vertices

in the input graph.

Proof. The proof is based on a recent result of Raz and Safra

[3] which is obtained by improving a result of Lund and

Yannakakis [2]. Consider the following problem:
Set-Covering: Given a (finite) collection S of subsets

of a set U of n elements, find a minimum cardinality
subcollection of S such that the union of all subsets in the
subcollection covers U .

Raz and Safra proved the following:
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Fig. 4. (a) An example network. (b) A spanning lighttree using wavelength converters at nodes a and c.

Fig. 5. (a) A graph G, where color 1 has two components. (b) After transformation, for each color, the edges form a connected subgraph.



Lemma 2. For any 0 < � < 1, there is no polynomial-time
approximation algorithm with performance ratio � lnn for the
Set-Covering problem unless NP � DTIME�npoly logn�.

Now, supposing Color-Covering has a polynomial-
time approximation with performance ratio � lnn, where
� < 1, we then show that Set-Covering also has a
polynomial-time approximation with performance ratio
� lnn.

For any collection S of subsets of a set U of n elements,
construct a graph G with edge-colors as follows: G has
n� 1 vertices consisting of all elements in U and a special
vertex o and n edges �o; a� for each a 2 U . Suppose
S � fS1; S2; � � � ; Smg. Then, for each a 2 Si, assign a color
i to edge �o; a�. As an example of this construction, if we
have an instance of Set-Covering: U � fa1; a2; a3g,
S � fS1; S2; S3g, S1 � fa1; a2g, S2 � fa2; a3g, a n d
S3 � fa2g, then G is the graph shown in Fig. 6.

It's easy to verify that fSi1 ; Si2 ; � � � ; Sikg is a set-
covering of U if and only if fi1; i2; � � � ; ikg is a color-
covering of G. It follows immediately that if
fi1; i2; � � � ; ikg is a color-covering of G with a factor of
� lnn from optimal, then fSi1 ; Si2 ; � � � ; Sikg is a set-cover-
ing of U with a factor of � lnn from optimal. By Lemma 2,
Theorem 1 is proven. tu

4.2 A Greedy Algorithm

In this section, we give a polynomial-time greedy algorithm
with performance ratio lnn� 1 for the Color-Covering
problem. Since Theorem 1 shows that Color-Covering is
unlikely to have a polynomial-time approximation with
performance ratio � lnn for � < 1, our algorithm reaches
nearly-the-best possible performance ratio.

The input to our algorithm is a graph G � �V ;E� and a
mapping c from E to a set of colors. The output is a color-
covering of G. The algorithm starts with an empty set C and
repeatedly chooses a color to add into C until it becomes a
color-covering. In each step, we choose a color as follows:
Let H be an initially empty graph on V . Let cpnt�H� be the
number of components in H, initially, cpnt�H� � jV j. Let Ei

denote the set of all edges with color i. Let r�Ei;H� be the
number of components reduced by adding Ei to graph H.
Our greedy approach is to choose the color that reduces the
most number of components in H. Thus, the greedy choice
maximizes r�Ei;H�. Whenever we choose a color i to add

into C, we modify H by adding Ei to it and this will reduce
cpnt�H�. We stop when cpnt�H� is reduced to 1. At this
point, the graph is connected and therefore, C is a color-
covering. The pseudocode of the algorithm is given below.

Greedy Algorithm 1

1. input G � �V ;E� and a mapping c from E to a set of
colors;

2. C  ;;
3. H  the empty graph with vertex set V ;
4. Ei  fe 2 E j i 2 c�e�g;
5. while H is not connected
6. select a color i that maximizes r�Ei;H�;
7. C  C [ fig;
8. E�H�  E�H� [ Ei;
9. return C.

We now analyze the time complexity of Greedy

Algorithm 1. Let w be the number of colors in the graph.

Lines 2 and 3 take constant time. Lines 4 takes time

O�wjEj�. The while loop in line 5 executes at most w

times. In line 6, we need to take each color i not in C to

compute r�Ei;H� and choose a color that maximizes the

reduction. The computation of r�Ei;H� takes time O�jV j�
and there are at most w colors we can choose from,

therefore, line 6 takes time O�wjV j�. Lines 7 and line 8

take constant time. Thus, the while loop between line 5

and line 8 takes time O�w2jV j�. The running time of the

entire algorithm is thus O�wjEj � w2jV j�.
Theorem 3. Greedy Algorithm 1 produces an approximation

solution for Color-Covering within a factor of lnn� 1 from
optimal, where n is the number of vertices in the input graph.

Proof. Suppose C is the color set obtained by Greedy

Algorithm 1 and jCj � k. Let 1; 2; � � � ; k be elements of C

in the order of their appearance. Denote by Hi the graph

with vertex set V and edge set E1 [ � � � [ Ei (H0 is the

empty graph on V ). Let si � 1 be the number of

components of Hi, then we have sk � 0 since Hk is

connected and s0 � nÿ 1 since H0 has n components.

Denote ri � r�Ei;Hiÿ1�. Let C� be an optimal solution.
For each Hiÿ1, we have

maxj2C�r�Ej;Hiÿ1� � siÿ1

jC�j :

This is true since adding [j2C�Ej to Hiÿ1 will produce a

connected graph, thus reducing the number of compo-

nents of Hiÿ1 by siÿ1. So, there must be a color j 2 C�
such that, when Ej is added to Hiÿ1, the number of

components of Hiÿ1 decreases at least siÿ1

jC�j .
Consider Step 6 in Greedy Algorithm 1: Since i is the

color that maximizes r�Ei;H�, we have

ri � r�Ei;Hiÿ1� � maxj2C�r�Ej;Hiÿ1� � siÿ1

jC�j
and

si � siÿ1 ÿ ri � siÿ1 ÿ siÿ1

jC�j �
jC�j ÿ 1

jC�j � siÿ1:
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Fig. 6. Reduction from Set-Covering to Color-Covering. Edge �o; a1� has
color 1 since a1 2 S1; edge �o; a2� has color 1; 2; 3 since a2 belongs to S1,
S2, and S3; edge �o; a3� has color 2 since a2 2 S2. fS1; S2g is a set-
covering of U and f1; 2g is a color-covering of G.



Thus,

1 � sjCjÿ1 � jC�j ÿ 1

jC�j
� �jCjÿ1

�s0 � jC�j ÿ 1

jC�j
� �jCjÿ1

��nÿ 1�:

Therefore,

jCj � log jC�j
jC�jÿ1

�nÿ 1� � 1:

Dividing both sides by C�, we have

jCj
jC�j �

log jC�j
jC�jÿ1

�nÿ 1�
jC�j � 1

jC�j �
lnn

jC�j ln jC�j
jC�jÿ1

� 1

� lnn

ln jC�j
jC�jÿ1

� �jC�j � 1:

Since � i
iÿ1�i � e, we get

jCj
jC�j � lnn� 1:

This proved that the solution produced by Greedy
Algorithm 1 is within a factor of lnn� 1 from the
optimal solution. tu

5 VERTEX COLOR-COLORING

We study the Vertex Color-Covering problem in this
section.

Theorem 4. Vertex Color-Covering has no polynomial-time
approximation with performance ratio � lnn for � < 1 unless
NP � DTIME�npoly logn�, where n is the number of vertices
in input graph. Moreover, Vertex Color-Covering has a
polynomial-time approximation with performance ratio
lnn� 1.

Proof. We prove the first part of the theorem by reducing
Set-Covering to Vertex Color-Covering. For an input
collection S of subsets of a set U of m elements, construct
a graph G � �V ;E� with edge-colors as follows: The
vertex set V consists of all elements in U , all subsets in S,
and a special vertex o. The edge set E consists of �o; S�
for al l S 2 S and �a; S� for al l a 2 S 2 S. Let
U � fa1; a2; � � � ; amg. Define a mapping c from E to
colors f1; 2; 3; � � � ;m;m� 1g by

c��o; S�� � fm� 1g for all S 2 S;
c��ai; S�� � fig for all ai 2 S 2 S:

To illustrate the reduction, let's use the same Set-
Covering example as in the proof of Theorem 1.
Given an instance of Set-Covering: U � fa1; a2; a3g,
S � fS1; S2; S3g, S1 � fa1; a2g, S2 � fa2; a3g, a n d
S3 � fa2g, the reduction produces a graph G, as shown
in Fig. 7.

Let V 0 be a vertex color-covering on < G; c > . With-
out loss of generality, we may assume V 0 � S since,
otherwise, we can easily find a solution in S with the
same or smaller cardinality by replacing each vertex not
in S with one of its adjacent vertices in S. For example, in
Fig. 7, if o is in V 0, we can replace it by any one of

S1; S2; S3. If a3 is in V 0, we can replace it by S2. We claim
that V 0 is a vertex color-covering for G if and only if V 0 is
a set-covering for U . First, suppose V 0 is a vertex color-
covering for G. Since f1; 2; 3; � � � ;m;m� 1g is the only
color-covering for G, the colors of V 0 must be
1; 2; 3; � � � ;m;m� 1. Then, V 0 must cover a1; a2; � � � ; am
since ai is connected to some vertex in V 0 with an edge of
color i. Conversely, suppose V 0 is a set-covering for U ,
then the colors of V 0 must include 1; 2; � � � ;m plus m� 1.
Since these colors form a color-covering of G, V 0 is a
vertex color-covering of G. Now, it's clear that an
optimal solution V � � S for Set-Covering is also an
optimal solution for Vertex Color-Covering.

Let n be the number of vertices in G, then
n � m� jSj � 1. Suppose V 0 is a polynomial-time ap-
proximation for Vertex Color-Covering with perfor-
mance ratio � lnn � � ln�m� jSj � 1�, where � < 1.
When jSj � m, � ln�m� jSj � 1� � �0 lnm for � < �0 < 1
and a sufficiently large m. Therefore, V 0 is a polynomial-
time approximation with performance ratio �0 lnm for
the Set-Covering problem in the special case jSj � m.
From [3], we know that Lemma 2 holds in this special
case, therefore Vertex Color-Covering has no polyno-
mial-time approximation with performance ratio � lnn
for � < 1 unless NP � DTIME�npoly logn�.

Next, we prove the second part of the theorem by
showing that an instance of Vertex Color-Covering can
be transformed to an instance of Color-Covering and a
solution to the latter problem is also a solution to the
former problem.

Consider an instance < G; c > of Vertex Color-Cover-
ing. Let v1; v2; � � � ; vn be the vertices of G. We construct an
instance < G; c0 > of Color-Covering where c0 is a
mapping from E to colors f1; 2; � � � ; ng defined by

c0�e� � fi j e is in a color of vig:
Fig. 8 shows an example of the reduction from Vertex

Color-Covering to Color-Covering. Fig. 8a is an instance

of Vertex Color-Covering. Fig. 8b is an instance of Color-

Covering constructed from Fig. 8a. In Fig. 8a, edge

�v1; v2� has color 1, which is a color of v1, v2, and v3.

Therefore, in Fig. 8b, edge �v1; v2� has color set f1; 2; 3g.
Similarly, edge �v2; v3� in Fig. 8b also has color set
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Fig. 7. Reduction from Set-Covering to Vertex Color-Covering. fS1; S2g
is a vertex color-covering for G and is also a set-covering for U.



f1; 2; 3g. In Fig. 8a, edge �v1; v4� has color 2, which is a
color of v1 and v4. Therefore, in Fig. 8b, edge �v1; v4� has
color set f1; 4g. Finally, edge �v3; v4� has color 3, which is
a color of v3 and v4. Therefore, in Fig. 8b, edge �v3; v4� has
color set f3; 4g.

Now, we show that fvi1 ; vi2 ; � � � ; vikg is a Vertex Color-
Covering on input < G; c > if and only if fi1; i2; � � � ; ikg is
a Color-Covering on input < G; c0 > . First, suppose
fvi1 ; vi2 ; � � � ; vikg is a Vertex Color-Covering on input
< G; c > . Let C be the color set of these vertices, then
there is a set of edges F in G such that F contains a
spanning tree of G and each edge in F has a color in C.
By the definition of c0, on input < G; c0 > , each edge in F
has a color i, where i 2 fi1; i2; � � � ; ikg. Thus, fi1; i2; � � � ; ikg
is a Color-Covering on input < G; c0 > . Conversely,
suppose fi1; i2; � � � ; ikg is a Color-Covering on input
< G; c0 > . Then, there is a set of edges F in G such that
F contains a spanning tree of G and each edge in F has a
color in the colors of vertices vi1 ; vi2 ; � � � ; vik . Therefore,
fvi1 ; vi2 ; � � � ; vikg is a Vertex Color-Covering on input
< G; c > .

By Theorem 3, Color-Covering has a polynomial-time
approximation with performance ratio lnn� 1, there-
fore, Vertex Color-Covering also has a polynomial-time
approximation with performance ratio lnn� 1; the
second half of the theorem is proven. tu

6 CONVERTER PLACEMENT

Using the results of Color-Covering and Vertex Color-
Covering presented in the previous two sections, we study
the hardness of the Converter Placement problem in this
section and give an approximation algorithm for solving it.

6.1 Lower and Upper Bound of Approximation

Theorem 5. Converter Placement has no polynomial-time
approximation with performance ratio � lnn for � < 1=2

unless NP � DTIME�npoly logn�, where n is the number of
vertices in the input graph. Moreover, Converter Placement
has a polynomial-time approximation with performance ratio
2�lnn� 1�.

Proof. Let S be a solution to Vertex Color-Covering. If S
is color-connected, then it is also a solution to
Converter Placement. Otherwise, we can modify S to

become color-connected and therefore be a solution to
Converter Placement as follows: We call a subset P � S
a color-connected component if P is the vertex set of a
component in graph A�S�. Recall that graph A�U� is
defined in Section 2 to test the color-connectedness of a
set U . Let k be the size of S, then S has at most k color-
connected components. Notice that we can add a vertex
x 2 V ÿ S to S such that it connects at least two color-
connected components and thus reduce the number of
color-connected components by at least 1. This can be
done since, if we can't find such a vertex, then the graph
is not connected, contradicting the fact that it is
connected.

As an example, let's consider the graph in Fig. 1. fb; gg is
a vertex color-covering but is not color-connected. It has
two color-connected components fbg and fgg. We can add
vertex h to connect them since h shares color 3 with b and
shares colors 2, 4, 5 with g. Now, fb; g; hg is color-connected
and therefore is a solution to Converter Placement.

At most kÿ 1 vertices are needed to connect all the
color-connected components in S. Therefore, there is a
solution of at most 2kÿ 1 vertices for Converter
Placement.

Let Avcc be the size of an approximation solution to

Vertex Color-Covering and Acp be the size of an

approximation solution to Converter Placement. Let

Ovcc be the size of an optimal solution to Vertex Color

Covering and Ocp be the size of an optimal solution to

Converter Placement. By the above argument, we have

Acp � 2Avcc and Ocp � 2Ovcc. Also, it's clear that Ocp �
Ovcc and Acp � Avcc. Thus,

Acp

Ocp
� Avcc

2Ovcc
and, therefore,

Avcc

Ovcc
� 2 � Acp

Ocp
. If Converter Placement has an approxima-

tion with performance ratio � lnn, where � < 1=2, then

Vertex Color-Covering has an an approximation with

performance ratio � lnn, where � < 1. By Theorem 4, the

first half of the theorem is proven.

To prove the second half of the theorem, note that
Acp

Ocp
� 2 Avcc

Ovcc
. By Theorem 4, Vertex Color-Covering has a

polynomial-time approximation with performance ratio

lnn� 1, therefore, Converter Placement has a polyno-

mial-time approximation with performance ratio

2�lnn� 1�. tu
6.2 A Greedy Algorithm

We now give a greedy approximation algorithm for
Converter Placement that achieves the approximation
performance ratio 2�lnn� 1�. The input to our algorithm
is a graph G � �V ;E� and a mapping c from E to a set of
colors. The output is a color-connected vertex color-cover-
ing of G. The algorithm first finds a vertex color-covering of
G as follows: Letting C be an initially empty set, we
repeatedly choose a vertex to add into C until C becomes a
vertex color-covering. In each step, we choose a vertex as
follows: Let H be an initially empty graph on V . Let cpnt�H�
be the number of components of H, initially, cpnt�H� � jV j.
Let Ei denote the set of all edges with color i. Let r�Ei;H� be
the number of components reduced by adding Ei to graph
H. When we choose a vertex x to add into C, we compute
[i2vc�x�Ei, which are all the edges in the vertex color set of x.
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Fig. 8. (a) An instance of Vertex Color-Covering. (b) An instance of

Color-Covering constructed from (a). fv1g is a vertex color-covering for

(a) and f1g is a color-covering for (b).



Adding these edges to graph H will reduce cpnt�H�. At
each step, our greedy strategy is to pick a vertex that
reduces the most number of components in H, i.e., we pick
a vertex x that maximizes r�[i2vc�x�Ei;H�. Our goal is to
reduce cpnt�H� to 1. At this point, the graph is connected
and, therefore, C is a vertex color-covering. After a vertex
color-covering C is found, we check if it's color-connected.
If yes, then a solution is found. Otherwise, we modify C by
keep adding vertices to it until C becomes color-connected.
The vertex we choose to add at each step is a vertex that
reduces the most number of color-connected components in
C. The pseudocode of the algorithm is given below.

Greedy Algorithm 2

1. input G � �V ;E� and a mapping c from E to a set of
colors;

2. C  ;;
3. H  the empty graph with vertex set V ;
4. Ei  fe 2 E j i 2 c�e�g;
5. whileH is not connected
6. select a vertex x that maximizes r�[i2vc�x�Ei;H�;
7. C  C [ fxg;
8. E�H�  E�H� [ [i2vc�x�Ei;
9. whileC is not color-connected
10. select a vertex x such that C [ fxg has the least

number of color-connected components;
11. C  C [ fxg;
12. return C.

We now analyze the time complexity of Greedy Algo-
rithm 2. Let w be the number of colors in the graph. Lines 2
and 3 take constant time. Line 4 takes time O�wjEj�. The
while loop in line 5 executes at most jV j times. In line 6, we
need to take each vertex x not in C to compute
r�[i2vc�x�Ei;H� and choose one vertex that maximizes the
reduction. The computation of r�[i2vc�x�Ei;H� takes time
O�wjV j� and there are at most jV j vertices we can choose
from, therefore, line 6 takes time O�wjV j2�. Line 7 takes
constant time and line 8 takes time O�w�. Thus, the while
loop between line 5 and line 8 takes time O�jV j�wjV j2 � w��,
which is O�wjV j3�. For the loop between line 9 and line 11, it
executes at most jV j times and, in each loop, line 10
dominates the running time. In line 10, we need to take each
vertex x not in C to compute the number of color-connected

components in C [ fxg and choose the vertex that produces
the least number of color-connected components. The
computation of the number of color-connected components
in C [ fxg takes time O�wjV j� and there are at most jV j
vertices we can choose from, therefore, line 10 takes time
O�wjV j2�. Thus, the while loop between line 9 and line 11
takes time O�wjV j3�. The running time of the entire
algorithm is thus O�wjEj � wjV j3�. Furthermore, since jEj
is O�jV j2�, the running time is O�wjV j3�.

7 NUMERICAL RESULTS

To evaluate the performance of Greedy Algorithm 2, we
implemented the algorithm in C++. We also implemented a
brute force (BF) algorithm to compute the optimal solution
so that we can obtain the performance ratio of our
algorithm. Suppose the input network has n nodes, BF
computes an optimal solution as follows: It generates
subsets of f1; 2; � � � ; ng from size 1 to size n. Whenever a
subset is generated, it is tested to see whether the subset is a
solution to Converter Placement. If it's a solution, then the
algorithm stops. Otherwise, it continues to generate the next
subset and checks again. BF guarantees to produce the
optimal solution, but the running time is exponential to n
and therefore is not useful in practice.

We run both Greedy Algorithm 2 and BF on 50 randomly
generated graphs. The number of vertices ranges from 10 to
500 and the number of colors ranges from four to 64. The
results showed that, out of the 50 test cases, Greedy Algorithm
2 produced optimal solution in 26 cases. A summary of the test
results is shown in Table 1. Column 1 is the number of vertices
in the test cases. Column 2 is the number of test cases that
produce an optimal solution. Column 3 is the number of test
cases that produce a nonoptimal solution. The last column is
the average performance ratio of the test cases. The average
performance ratio over the 50 test cases is 1.169. Since it is
fairly close to 1, we conclude that Greedy Algorithm 2
produces good approximation solutions to the Converter
Placement problem.

8 CONCLUSION

In this paper, we studied the problem of finding the
minimum set of network nodes to place converters to
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TABLE 1
Performance of Greedy Algorithm 2 on 50 Randomly Generated Graphs



support broadcast in WDM optical networks. We presented
a mathematical formulation of the Converter Placement
problem. Theoretical lower bound and upper bound are
given for the approximation of the problem by studying
two related problems, namely Color-Covering and Vertex
Color-Covering. Two approximation algorithms are given.
Greedy Algorithm 1 solves the Color-Covering problem
and Greedy Algorithm 2 solves the Converter Placement
Problem. We evaluated the performance of Greedy Algo-
rithm 2 and our results showed that it achieves the optimal
solution in 52 percent of the time and the average
performance ratio is 1.169.
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