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H I G H L I G H T S

• Real-time MPC has been implemented and evaluated in the physical testbed.

• Three special efforts are made to enable real-time implementation of MPC.

• Load fluctuations on the shipboard are addressed using real-time MPC.

• A filter-based algorithm is used to validate the effectiveness of MPC.

• The bus voltage variation and HESS loss can be reduced by up to 38% and 65%.
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A B S T R A C T

Electrification is a clear trend for both commercial and military ship development. Shipboard load fluctuations,
such as propulsion-load fluctuations and pulse power loads, can significantly affect power system reliability. In
order to address this issue, this paper explores a real-time model predictive control based energy management
strategy for load fluctuation mitigation in all-electric ships. A battery combined with ultra-capacitor hybrid
energy storage system (HESS) is used as a buffer to compensate load fluctuations from the shipboard network. In
order to implement the proposed real-time MPC-based energy management strategy on a physical testbed, three
special efforts have been made to enable real-time implementation: a specially tailored problem formulation, an
efficient optimization algorithm and a multi-core hardware implementation. Given the multi-frequency char-
acteristics of load fluctuations, a filter-based power split strategy is developed as a baseline control to evaluate
the proposed MPC. Compared to the filter-based strategy, the experimental results show that the proposed real-
time MPC achieves superior performance in terms of enhanced system reliability, improved HESS efficiency,
long self-sustained time, and extended battery life. The bus voltage variation and hybrid energy storage losses
can be reduced by up to 38% and 65%, respectively.

1. Introduction

The global warming is an international issue, which requires a de-
crease of fuel consumption and green house gas emission in all types of
ships [1]. To achieve this goal, the propulsion system efficiency is re-
quired to be improved [2]. Electric propulsion could optimize the op-
eration of onboard generators and facilitate the use of renewable energy
sources and fuel cells [3]. Electric propulsion in marine applications is
not a new concept, dating back over 100 years [4]. Marine electrifica-
tion became increasingly popular after the development of high power

variable speed drives (VSDs) in the 1970’s–1980’s [5]. With the use of
VSDs to electric propulsion motors, a common set of generators could
power both the ship service and propulsion systems [6]. This concept is
referred to as an integrated power system (IPS), which is the char-
acterizing element of an all-electric ship (AES) [7].

IPS provides electrical power for both the propulsion system and
service loads. Because of the integration of the shipboard network, load
fluctuations from the propulsion system, as well as pulse-power loads
from high-power missions, can significantly affect power quality and
system reliability. In order to guarantee power quality and achieve
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superior reliability, effects of load fluctuations must be mitigated. Given
the diverse characteristics of shipboard load fluctuations, such as those
due to propulsion-load fluctuations [8] and on-and-off of pulse-power
loads, energy storage systems (ESSs) and advanced control algorithms
are required [9]. Using single type of ESS can result in increased size,
weight, and cost for electric ship operations [10]. Different combina-
tions of ESSs are also investigated in different applications [11–15]. In
[11], the engine-generator, battery and ultracapacitor (UC) are ex-
plored for a plug-in hybrid electric vehicle (PHEV). The literature [12]
uses battery with UC to improve the efficiency and durability of a
PHEV. In [13], different control strategies of battery combined with UC
for an electric city bus have been studied. The benefits of using UC to
improve the battery life cycle in a low temperature are further explored
in [14]. The ZEBRA batteries with UC in a commercial vehicle have
been studied in [15], and the experimental results demonstrate the
benefits of this combination of ESSs. In this paper, hybrid energy sto-
rage systems (HESSs), where batteries and ultra-capacitors are used as a
buffer to mitigate shipboard load fluctuations [16], are investigated.
The lithium-ion batteries are chosen due to their higher power and
energy densities [17].

IPS with HESS are expected to manage multiple objectives, in-
cluding improving fuel efficiency, enhancing response speed, and
strengthening reliability [18]. Advanced optimization-based energy
management strategies are essential to achieve desired trade-off among
these competing objectives [19]. Model predictive control (MPC) is an
effective optimization-based approach [20]. Compared to LQG, MPC
does not require unique performance criteria, and it is able to deal with
constraints and process nonlinearities [21]. MPC has been successfully
implemented in process industries. Recently, MPC becomes one of the
promising control strategy in many applications, such as micro-grids
[22], (hybrid) electric ships [23], and (hybrid) electric vehicles [24].
The sampling periods in most of those applications are from seconds to
hours. However, the sampling period in this study is on the order of
milliseconds, which makes the MPC implementation more difficult. In
order to implement real-time MPC, the explicit MPC is one solution,
which uses offline computations to reduce the computational time [25].
Online linearization is another popular approach to enable real-time
feasibility [26]. Typically, the quadratic programming (QP) formula-
tion is preferred to solve the optimization problem efficiently [27].
However, the problem studied in this paper is nonlinear and non-
convex, which requires advanced optimization solver.

In marine applications, MPC can exploit the optimal solution with a
receding horizon to address constraints, such as physical dynamics and

operation boundaries of IPS and HESS [28]. MPC is therefore used in
this paper as an optimization-based energy management strategy
(EMS). In [29], a nonlinear MPC is developed to compensate the pulse
power load and follow the desired references, including the desired bus
voltage, reference power for generator sets and reference speed for the
motor. A sensitivity-function-based approach is proposed in [30] in
order to achieve real-time trajectory tracking. In [31], the stochastic
MPC is developed to smooth out low-frequency power fluctuations.
Scenario-based MPC is developed for dynamic safety constraints in
[32]. Multi-level MPC is used in [33] to address the disturbances from
the environment. However, most of those state-of-the-art MPC-based
EMSs only present software or hardware-in-the-loop simulation results.
The main challenge to implement the MPC-based approaches is to solve
the optimization problem in real-time within a relatively short sampling
period, as the system dynamics in this paper is fast and the sampling
period is on the order of milliseconds.

The objective of this paper is to address shipboard load fluctuations,
including not only propulsion-load fluctuations but also pulse-power
loads, and validate the effectiveness of MPC on a physical testbed. A
filter-based power split EMS is used as a baseline strategy to illustrate
the benefits of the proposed MPC-based EMS. For the filter-based EMS,
the battery compensates low-frequency load fluctuations, while the UC
handles high-frequency fluctuations. Note that the filter-based EMS
requires much less computational time, which makes it easy to imple-
ment in real time. On the other hand, the main challenge for MPC based
EMS is to handle the computational tasks. In order to achieve real-time
feasibility of the proposed MPC-based EMS, three special efforts have
been made:

• A novel MPC formulation with state of charge (SOC) reference being
incorporated is used to achieve the desired performance with a re-
latively short predictive horizon [16].

• An integrated perturbation analysis and sequential quadratic pro-
gramming (IPA-SQP) algorithm [34] is used to solve the optimiza-
tion problem with high computational efficiency.

• A multi-core hardware implementation is used for the real-time
system controller to guarantee system signal synchronization and
separate system-level and component-level controls, thereby in-
creasing real-time capabilities.

Load fluctuation compensation and HESS loss minimization are two
main control objectives for the load fluctuation mitigation problem. In
order to implement MPC in real-time, a short predictive horizon is

Nomenclature

A A/e o expanded blade-area ratio
CUC capacitance of ultra-capacitor
DP propeller diameter

…D1,2, , 4 duty cycle comments of DC/DC converters
I I,B UC current of battery and ultra-capacitor
J K,A Q advance and torque coefficients
N predictive horizon
n Pitch D, / P propeller rotational speed and pitch ratio
P P,B UC output power of battery and ultra-capacitor
PFL shipboard load power fluctuations
QB capacity of battery
Rn propeller Reynolds number
R R,B UC internal resistance of battery and ultra-capacitor
S sliding surface
SOC SOC,B UC SOC of battery and ultra-capacitor
Tload propeller torque
Ts sampling time
Vmax maximum voltage of ultra-capacitor

VOC battery open circuit voltage
w wake field
Z number of propeller blades
β loss factor
ρ water density
AES all-electric ship
AMPC adaptive model predictive control
EMS energy management strategy
ESS energy storage system
HESS hybrid energy storage system
IPA-SQP integrated perturbation analysis and sequential quadratic

programming
IPS integrated power system
MPC model predictive control
MPEL Michigan Power and Energy Lab
PA perturbation analysis
SQP sequential quadratic programming
UC ultra-capacitor
VSD variable speed drive
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preferred. However, the short-horizon MPC cannot incorporate the
long-term perspectives of operation. Due to the smaller internal re-
sistance of UC, the UC will be tasked to compensate the load fluctua-
tions as much as possible, leading to a rapid decreasing in its SOC. As
the UC SOC decreases, delivering the same output power requires a
larger current and results in significantly increased losses. In this paper,
an SOC reference of UC is incorporated in the MPC optimization pro-
blem formulation to address the limitations imposed by short predictive
horizons.

To solve the optimization problem efficiently, we use IPA-SQP ap-
proach. The IPA-SQP approach, developed for nonlinear MPC in [35],
combines solution updates derived using perturbation analysis (PA) and
sequential quadratic programming (SQP). For the PA-based update,
IPA-SQP exploits neighboring extremal (NE) optimal control theory
extended to discrete-time systems with constraints [36] to improve
computational efficiency. The solution at time t is obtained as a cor-
rection to the solution at time −t( 1) through the NE update. If the NE
update is not fulfilling optimality criteria, one or multiple SQP updates
are used until the optimality criteria are satisfied. The merged PA and
SQP updates yield a fast solver for NMPC problems [37].

In order to provide a physical platform for shipboard EMS experi-
mental validations, a physical test-bed has been constructed in the
University of Michigan Power and Energy Lab (MPEL). This state-of-
the-art test-bed consists of a system controller, electric machines, high-
power converters, energy storage devices (batteries, UCs, and flywheel)
and a high-power load resistor bank. The system controller has multiple
cores which can be used to separate the system-level MPC-based EMS
and component-level controls, and therefore increases its real-time
capability.

In our previous work, the modeling of propulsion-load fluctuations
has been developed [16]. Furthermore, compared to the single type of
ESS, the advantages of HESS have been discussed, and the MPC algo-
rithm used in this paper has been proposed and investigated with a
simulation study. However, uncertainties were not taken into con-
sideration in [16], which makes the control solution impossible to be
directly used in the experiments. In order to deal with uncertainties and
enable real-time implementation, the bus voltage regulation is com-
bined with the real-time MPC, and this combination has been success-
fully implemented in the physical testbed. The work in [8] mainly
provides insights into the comparison between batteries/flywheels and
batteries/UCs. This paper focuses on the implementation and evalua-
tion of the proposed real-time MPC. The novelties and contributions of
this paper are summarized in the following:

1. This paper not only addresses the propulsion-load fluctuations, but
also takes the pulse-power load into consideration, which makes this
study closer to real applications. Furthermore, it also demonstrates
that the proposed method could deal with more general load fluc-
tuation problems, such as load fluctuations in electric vehicles or
shore-based microgrids.

2. The implementation and evaluation of the real-time MPC is the main
contribution of this paper. Three special efforts have been made to
enable real-time implementation: a specially tailored problem for-
mulation, an efficient optimization algorithm and a multi-core
hardware implementation. These efforts can be used for other ap-
plications as well. Furthermore, in order to deal with the un-
certainties in the experiments, the voltage regulator is also in-
tegrated.

The paper is organized as follows. In Section 2, the shipboard load
fluctuation problem and control objectives are described, and the op-
timization-oriented model is presented. A specially tailored MPC-based
EMS is developed as a system-level controller, and the IPA-SQP algo-
rithm is introduced. The component-level controllers, such as the cur-
rent regulators for HESS, are developed in Section 3. In Section 4, the
multi-core implementation is performed and the experimental results

on the physical test bed are presented and analyzed. Compared to the
filter-based EMS, the proposed MPC-based EMS achieves superior per-
formance in terms of reduced bus voltage variations, reduced battery
peak and RMS currents, and reduced HESS losses. Section 5 concludes
the paper.

2. System-level controller development: energy management
strategy

2.1. Control objectives

The system concept is shown in Fig. 1, where the HESS serves as a
buffer to isolate the power network from the propulsion load fluctua-
tions. We assume the motor is working at the nominal operating point
and the generator sets provide the average power.

In DC shipboard networks, the variation of the DC bus voltage re-
flects the power quality and the stability of the DC ship power system
[38]. Therefore, the first control objective of the power management
system is guaranteeing power quality and system reliability, which
translates into DC bus voltage stability.

The second control objective is to optimize system efficiency. In
order to improve the system efficiency, the losses of HESS must be
minimized and the sensitivity of power losses to HESS operating con-
dition needs to be exploited. Furthermore, a long self-sustained op-
eration time (i.e., the operation time before the HESS will be charged by
or discharged to external power sources) is preferred, which implies
that we should take advantage of the battery’s high energy density [16].

The third control objective is to extend battery life. Batteries aging
is accompanied by its capacity decrease [39] and its resistance increase
[40]. Numerous publications have associated the battery C-rate op-
eration and usage with the battery life cycle [41]. In this paper, the
battery peak and RMS currents are used to represent high C-rate op-
eration and battery usage.

The control objectives considered in this paper for HESS power
management development are therefore summarized as follows.

• Assure system reliability: compensate load fluctuations and main-
tain the DC bus voltage at the desired value.

• Optimize system efficiency: minimize HESS losses.

• Extend battery life cycle: reduce battery peak and RMS currents.

2.2. Hybrid energy storage system model

For the HESS model, we define the states as the state of charge
(SOC) of the batteries (SOCB) and ultra-capacitor (SOCUC), and the
control variables as the battery current (IB) and the ultra-capacitor
(IUC):

Fig. 1. Schematic diagram of electric drive system with hybrid energy storage
[16].
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where VOC and RB are the open-circuit voltage and internal resistance of
the battery; and RUC is the internal resistance of the ultra-capacitor. In
this paper, the internal resistance model is used to evaluate the HESS
power loss. In the literature, there are considerable models of battery
and ultracapacitor. For example, the first-order equivalent circuit
model (an internal resistance with a parallel RC network) is one of ef-
fective battery models [42], and it has been widely used in many ap-
plications, such as the system level energy management strategy de-
velopment [43]. However, according to our parameter identification
results, the RC time constant of the battery pack in our testbed is about
60 s, which is much higher than the sample time of the MPC (0.01 s).
Therefore, this RC pair has slight impact on the MPC performance.
Furthermore, the parallel RC network will introduce another state into
MPC, leading to increased computational cost. As a result, the control-
oriented HESS model with only one internal resistance is used in this
paper.

2.3. Energy management strategy

Filter-based control strategies [44] and independent PI voltage
regulators [45] have been investigated for HESS in marine applications.
The filter-based control splits the load power into high-frequency and
low-frequency components, then use UC to deal with the high-fre-
quency components and battery to address the low-frequency compo-
nents. The drawback of independent PI bus voltage regulators for
multiple energy sources is lack of coordination and therefore negative
impact on performance. In [46], experimental results show that the
filter-based control strategy outperforms the independent PI control
strategy. In this paper, the filter-based power split control strategy is
used as a baseline control to evaluate the effectiveness of the proposed

real-time MPC strategy. The schematic of the filter-based controller is
shown in Fig. 2, where a low-pass filter is used to create the power split,
and a voltage regulator using UC is used to deal with disturbance and
uncertainties. In order to perform a fair comparison, the same voltage
regulator is used in the real-time MPC. The schematic of the real-time
MPC is shown in Fig. 3. In order to achieve the control objectives dis-
cussed in the previous section, the optimization problem is formulated
as follows. Minimize the following cost function with the predictive
horizon N:
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Because of the smaller internal resistance of UC, minimizing the
HESS losses term ( +R u k R u k( ) ( )B B UC UC

2 2 ) can also reduce the battery
RMS and peak currents. There is an additional SOC reference term
( −( ( ) )x k SOCUC2

2
ref ) in the cost function, which aims to address the

limitation of a short predictive horizon. For example, without the SOC
penalty of UC, the short-horizon MPC is not able to maintain the UC
operating in its high SOC range, because the benefit of maintaining it is
too small in the short term and is therefore ignored in the optimization
[16]. As a result, the SOC of the UC drops quickly. As it decreases, the
delivery of the same output power requires a larger current, thereby
leading to significantly increased losses and power tracking error. With
the SOC penalty, the UC maintains its operation in a high SOC range.
The SOC reference term ( −( ( ) )γ x k SOCUC UC2

2
SOC ref ) has been demon-

strated to be important to MPC performance [16]. The value of γUCSOC
depends on the sea state, and it is determined by the offline simulations,
as shown in Fig. 4. Since the higher SOC of UC is preferred in terms of
its efficiency and maximum power capability, the SOCUCref is designed
to be close to its upper boundary (99%). Note that SOCUCref cannot be
99%, because UC is required to absorb energy as well.

The IPA-SQP algorithm, which includes prediction-correction in

Fig. 2. Schematic of the filter-based power split control.
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approximating the optimal solution numerically, is used to solve the
optimization problem efficiently. IPA-SQP uses neighboring extremal
(NE) updates in the prediction step to improve computational efficiency
[34]. The IPA-SQP approach combines the solutions derived using PA
and SQP. This approach updates the solution to the optimization pro-
blem at time t by considering it as a perturbation to the solution at time

−t( 1) using neighboring optimal control theory [36] extended to dis-
crete-time systems with constraints, and then corrects the results using
SQP updates. The merged PA and SQP updates exploit the sequential
form of predictor-and-corrector steps and closed-form solution of PA,
thereby yielding a fast solver for nonlinear MPC problems [37]. The
flowchart of IPA-SQP is shown in Fig. 5 [47], which illustrates the main
steps of the IPA-SQP algorithm obtain the NE solutions and to deal with
changes in the activity status of constraints.

3. Electric propulsion drive testbed and component-level control

In order to provide a flexible hardware environment for the testing
and validation of control algorithms for electric propulsion systems
with HESS, the Advanced Electric Drive with AED-HES test-bed has
been constructed in the Michigan Power and Energy Lab. The test-bed
photo is shown in Fig. 6. In the test-bed, the power electronic con-
verters, which serve as actuators in directing the power flow to and
from various components of the test-bed, are controlled by a central
micro-controller (Speedgoat). Since there is no generator in our testbed,
we use a DC/DC converter to provide the average power to the DC bus
in order to emulate impacts of generator sets.

A Lithium-Iron-Phosphate battery chemistry has been selected for
its high energy density and superior thermal and chemical stability.
Currently, the battery consists of four 38.4 V, 100 A h modules, as

Fig. 3. Schematic of the real-time MPC.

Fig. 4. Pareto-front of B/UC HESS at sea state 4 (left) and sea state 6 (right) with different γUCSOC .

Fig. 5. Flowchart of the IPA-SQP algorithm [47].
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shown in Fig. 7, which can be connected in series to provide a pack
voltage of up to 154 V. The nominal cell voltage is 3.2 V. The individual
cells have bolted interconnections via copper bus bar, and a Battery
Management System (BMS) from Flux Power®utilizes a distributed ar-
chitecture, where every BMS module manages 4 cells via passive (re-
sistive shunting) cell balancing. The Battery Control Module (BCM)
measures battery current to compute the SOC of the pack in addition to
monitoring cell voltages and thermal feedback from the individual
BMS’s via a CANbus network. In the event of a problem (over/under-
voltage cell or over-temperature cell), the BCM will open contactor
relays to prevent damage to the battery system (see Table 1).

The test-bed has four 63 farad/ 125 volt ultra-capacitors from
Maxwell Technologies®, as shown in Fig. 8, which can be connected in
series/parallel combinations to suit testing needs. The modules provide
analog feedback measurements of temperature and voltage, and inter-
face with the DC bus via a current-regulated power electronic con-
verter. Manufacturer specifications for the ultra-capacitors are provided
in Table 2. In this experiment, two ultra-capacitors are used and con-
nected in series.

In this testbed, bi-directional DC/DC converters are used for HESS
control. The circuit diagram of the bi-directional DC/DC converters is
shown in Fig. 9. The average-value model of the HESS can be described
as follows:
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where C0 is the bus capacitor; C1, and C2 are the capacitors in parallel

Fig. 6. MPEL AED-HES test-bed.

Fig. 7. Battery module of MPEL test-bed.

Table 1
Specifications for the battery system.

Li-ION battery

Manufacturer: Flux Power®(BMS) & Winston®(cells)
Voltage limits (max/min): 3.9 V/2.5 V
Max. continuous current: 3C
Capacity: 100 A h
DC voltage: 36–154 V (in 38.4 V increments)
Communication Interface: CAN bus

Fig. 8. UC module of MPEL test-bed.

Table 2
Specifications for the ultra-capacitors.

Ultra-capacitor

Manufacturer: Maxwell Technologies®
Rated capacitance: 63 F
Rated voltage: 125 V
Max. continuous current: 240 A at °40 C
Max. equivalent series resistance: 18mΩ

Fig. 9. Circuit diagram of bi-directional DC/DC converters for HESS.
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Fig. 10. Hierarchical control structure for real-time control implementation.

Table 3
Parameters for simulation study.

Description Parameter Value

Ship length Lship 190m
Ship breadth Bship 28.4 m
Draft H 15.8 m
Mass m 20,000 ton
Added-mass mx 28,755 ton
Thrust deduction coefficient td 0.2
Propeller diameter D 5.6 m
Wetted area S 12,297m2

Advance facing area in the air AT 675.2m2

Water resistance coefficients +C CF R 0.0043
Air resistance coefficient Cair 0.8
Wave period Twave 12 sec
Wave height hwave 2m(SS4)/ 4m(SS6)
Wave length Lwave L40.29% ship

Ship speed command Ud 12.4 knot
Motor speed command ωd 125 rpm
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Fig. 12. Load power fluctuations (top plots), zoom-in fluctuations (middle
plots), and their frequency spectrums (bottom plots) [16].
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with the battery and UC, respectively; V V,0 1 and V2 are the voltages
corresponding to capacitors C C,0 1, and C2, respectively; L1, and L2 are
the inductors of the bi-directional DC/DC converters; i1 and i2 are the
inductor currents; RL1, and RL2 are the resistance of inductor L1 and L2,
respectively; and D1 and D3 are the duty cycle commands of the DC/DC
converters.

The hierarchical control structure is shown in Fig. 10. To implement
the system-level EMS, component-level controllers are required to
follow the reference power commands. As shown in Eq. (7), the HESS
with bi-directional converters model is nonlinear, and its control re-
quires a robust nonlinear approach. Sliding-mode control is a natural
candidate, which has been successfully applied to robot manipulators,
vehicles, high-performance electric motors, and power systems [48]. In
this paper, the sliding-mode control presented in [49] is used to control
the bi-directional DC/DC converters. The sliding surface is defined as

=S S S[ , ]T
1 2 , where = −S i iref1 1 1 and = −S i iref2 2 2.

In order to ensure the existence of the sliding-mode surface, the
condition <SṠ 0 must be satisfied. The differential sliding variable is
set as:

= − −S KS εsat Ṡ ( ), (8)

where the saturation function sat S( ) is defined as:

=
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n n
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and =n K1, 2, and ε are the sliding-mode gains.
To simplify the solution, we assume that =R Ron on1 2 and

=R Ron on3 4. Assuming a time scale separation (i.e., the current dynamic
is much faster than the voltage dynamic, the voltages V0,1,2 are assumed
to be constant. Therefore, the sliding-mode control law is developed as
follows [49]:
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4. Experimental implementation and performance evaluation

In this section, the experimental setup is introduced at the begin-
ning. And then, the component-level controllers are validated that the
HESS can accurately follow the power command. After that, the real-
time simulation of both the system-level and component-level con-
trollers is performed to validate the computational capability. The ex-
perimental results are presented and discussed at the end.

4.1. Propeller and ship dynamic model

In order to capture the dynamics of the load fluctuations and the
HESS, a control-oriented model of an electric ship propulsion system
with HESS is presented. The key elements of the model are presented in
this section for easy reference, and the detailed description of the model
can be found in [16]. A cargo ship is studied in this paper, and its

Fig. 13. Diagram of real-time MPC experiment.

Table 4
Manufacturer specifications for system controller.

System controller

Manufacturer: Speedgoat®
Processor: Intel Core i5-680 3.6 GHz
Main drive: 320 GB SATA Hard Disk
Memory: DDR3 4096MB
Serial ports: 4×RS232
Software: Simulink Real-Time®
PWM outputs: 18
Quadrature decoding inputs: 2
Digital inputs/outputs: 4
Analog-to-digital inputs: 16 in differential mode
Controller area network (CAN): 1
Ethernet communication block: 1
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parameters as well as the parameters associated with wave behaviors
and operating conditions are listed in Table 3. The periods of ocean
waves are typically from 4 s to 12 s [50]. Because of the large ship mass
( +m mx), the impact of the high-frequency wave on the shipboard
network, e.g., 5 s, will be significantly reduced. As shown in Fig. 11, the
amplitude of 5-s wave is much smaller than the other two. Since we
would like to study the worst-case scenario in the common condition
(4–12 s), we choose 12 s in this manuscript. Fig. 11 also demonstrates
the effectiveness of the proposed solution with different wave periods.

The propeller and ship model captures the dynamic behavior of the
propeller and ship motion, and determines the load power fluctuations
(PFL), which is the power demand of HESS. The mechanical load power
transmitted to the ship body from the propeller can be expressed as:

=P πnT2 ,Load Load (11)

where TLoad is the propeller torque and n is the rotational speed of the
propeller in revolutions-per-second. The propeller is assumed to be
directly connected to the motor (as typically done for all-electric ships),
so n is also the rotational speed of the motor. The torque generated by
the propeller can be expressed as:

=T n βK ρn Dsgn( ) ,Load Q P0
2 5 (12)

where KQ0 denotes the torque coefficient when no losses are present, β
is the loss factor which is used to capture the effects of in-and-out water
motion of the propeller, ρ is the density of water, and DP is the diameter
of the propeller. The torque coefficient is determined as follows:

=K f J Pitch D A A Z R( , / , / , , ),Q K A P e o n0 Q (13)

where =JA
V

nD
a
P
is the advance coefficient with Va being the ship ad-

vance speed, Pitch D/ P is the pitch ratio, A A/e 0 is the expanded blade-
area ratio, Z is the number of blades, and Rn is the Reynolds number.
Note that the wake field, defined as = −w U V

U
a , should be taken into

account, which includes the average and fluctuation components.
Note that the high-frequency fluctuations are mainly caused by the

variations of wake field in w and the low-frequency fluctuations are
caused by the wave effect through the ship speed U and the in-and-out
of water loss factor β. In this paper, a high-gain speed control is used to
study the worst-case scenario, namely the load torque balanced by the
motor torque. As discussed in [51], the torque or power control,
especially power control, could reduce the torque or power fluctuations
on the shipboard network. However, they are more suitable at nominal
sea states, where the propeller is always in the water. If the propeller is
in-and-out of water, the good properties of torque and power control
will turn to the opposite.

The power load fluctuations of a cargo ship in both the time and
frequency domains are shown in Fig. 12 [16], where the responses in
two sea states (sea state 4 and sea state 6) are shown side-by-side. Sea
state 4 represents a moderate sea condition and is considered as the
nominal condition. Sea state 6 represents a rough sea condition, where
the propeller can be in-and-out of water. The load power fluctuation
(PFL) shown in Fig. 12 is that the total load power (PLoad) minuses the
propulsion power (the average value of PLoad). Positive fluctuations
mean that the system is overload, so that the HESS should provide
power (discharging), while negative fluctuations mean that the system
is underload, then the HESS should absorb power (charging). The
reason why large load power fluctuations appear at sea state 6 is that
the propeller could be in-and-out of water.

In order to predict the propulsion-load fluctuations, a simplified
model-based approach is used [52]. Since the prediction cannot be
evaluated in this testbed, only the impact of the predictive horizon will
be studied in the experiments. As the predictive horizon increases, more
future information can be obtained, but the predictive error will be
increased at the same time.

Fig. 15. Multi-core structure of Speedgoat.

Fig. 16. Real-time simulation evaluation of system-level controller (core1).

Fig. 17. Real-time simulation evaluation of component-level controllers
(core2).
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4.2. Experimental setup

In this experiment, the desired DC bus voltage is defined as 200 V,
and the maximum voltage and the desired reference voltage of UC are

defined as 150 V and 145 V, respectively. The maximum and minimum
output currents of the battery and UC are 30 A and−30 A, respectively.
Typically, the DC bus voltage of MVDC shipboard networks is constant,
so that only a constant desired DC bus voltage is considered in this
paper. The load fluctuations in Fig. 12 are scaled to a peak value of
2 kW. Uncertainties, such as load uncertainties, parameter un-
certainties, modeling uncertainties, and measurement uncertainties,
exist in the system and can be used to evaluate the robustness of the
proposed controller. A diagram of this experimental setup is shown in
Fig. 13. A three-phase diode rectifier converts the AC power from the
grid to DC power, and then a DC/DC converter (PCM1) “bucks” the DC
voltage down to the nominal voltage. We note that a constant duty
cycle is used for this DC/DC converter. In order to emulate the
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Fig. 18. Experimental results of sea state 4: MPC vs. filter-based control.

Table 5
Performance comparison: filter-based vs. MPC.

SS4 SS6 SS4 with pulse

Voltvar 38.04% 36.05% 28.90%
HESSLoss 65.95% 50.23% 64.18%
BPeak 48.89% 32.65% 46.50%
BRMS 59.01% 35.81% 49.64%
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generator sets, the second DC/DC converter (PCM2) is controlled to
provide the average current for the DC bus. Since the bus voltage is well
regulated, the second DC/DC converter (PCM2) is almost provided the
average power. PCM3, PCM4 and PCM5 are used to control the power
flow of battery, ultracapacitor and resistive load bank, respectively. The
resistive load bank is controlled to emulate the propulsion-load fluc-
tuations by using the propulsion-load model and pulse-power loads
with about 1 kW amplitude and 1 s duration [47]. The pulse power load
is used to demonstrate the effectiveness of the proposed method. The
duration of pulse power load is not necessary to be 1 s. The HESS
compensates the load fluctuations to maintain a constant DC bus vol-
tage. The predictive horizon is chosen to be N=20. Note that the
scaling factor is based on the resistive load bank, which is capable of
providing a peak power of 2 kW. This resistive load bank is a key
component to emulate different applications, which include not only

ship applications, but also other applications in automotive and mi-
crogrid fields.

4.3. Component-level control validation

As the first step, the performance of component-level controllers is
validated in the MPEL AED-HES test-bed. The system micro-controller,
made by Speedgoat, supports Matlab Real-Time Simulink to enable
rapid prototyping of advanced control algorithms. Specifications for the
Speedgoat®system controller are provided in Table 4. A center-based
PWM trigger signal enables the synchronization of the PWM waveforms
and analog-to-digital measurements. The trigger signal is generated at
the center of PWM waveforms. The kernel of Speedgoat receives this
trigger signal to read A/D feedback, and then initiates the controller
computation. Once the controller computation is completed, PWM
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Fig. 19. Experimental results of sea state 6: MPC vs. filter-based control.
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counter values, which determine the duty cycles, are updated for the
next switching period. This center-based trigger reduces the effects of
noise, as the switching of the power electronic transistors and the
sampling of the analog-to-digital converters are synchronized. Conse-
quently, sampling always occurs in between switching transitions,
avoiding the pick-up of electromagnetic interference caused by the
transitions. Center-based sampling is also able to measure the average
value of the inductor current. However, due to hardware delays, a
phase shift can cause measurement errors which can be significant
when the value of the measurement is small. Our double-sampling
method, which samples twice within one switching period, can achieve
more accurate average feedback. As shown in Fig. 14, the actual output
power of the HESS can follow the power reference quite accurately.

4.4. Real-time computational capability validation

The real-time computational capability is validated in the following.
In addition to the efficient optimization algorithm described in the
previous section, exploiting parallel computing using a multi-core
micro-controller structure can also increase the computational cap-
abilities of our system [53,54]. In this experiment, the system-level
controller is executed in core 1, while the component-level controllers
are executed in core 2. Both system-level and component-level con-
trollers are synchronized with the center-based trigger signal. The
multi-core structure in Matlab/Simulink is shown in Fig. 15. The sam-
pling frequency of core 1 is 100 Hz (i.e., MPC), while the sampling
frequency of core 2 is 20 kHz. The outputs of core 1 will be the com-
mand or reference for core 2. A real-time simulation is performed to
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Fig. 20. Experimental results of pulse power load: MPC vs. filter-based control.
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evaluate the computational capability of our proposed hierarchical real-
time MPC. As shown in Figs. 16 and 17, the maximum execution time
for cores 1 and 2 are smaller than their corresponding sampling times.
Even though the average and maximum execution times in core 1 are
much smaller than its sampling time (0.01 s), it is not feasible to im-
plement the MPC on core 2. It is essential to implement real-time MPC
in a multi-core structure.

4.5. Experimental results and discussion

In this experimental study, the internal resistances of battery (RB)
and UC (RUC) are obtained from experimental identification results
using the recursive least square. The experimental results of the filter-
based and real-time MPC strategies to deal with propulsion-load fluc-
tuations are shown in Figs. 18 (sea state 4) and 19 (sea state 6). The
results of the propulsion load fluctuations with pulse power loads are
shown in Fig. 20. The following performance metrics (performance
improvement) are used to compare the real-time MPC with the filter-
based strategy:

1. Voltage variation (Voltvar): ×
− − −

−
rms Vbus Vbus rms Vbus Vbus

rms Vbus Vbus
( ) ( )

( )
baseline ref testing ref

baseline ref
100%;

2. Estimated HESS losses (HESSLoss): ×− 100%Losses Losses
Losses

baseline testing

baseline
;

3. Battery peak current (BPeak): ×− 100%max I max I
max I

(| |) (| |)
(| |)

B baseline B testing

B baseline

, ,

,
;

4. Battery RMS current (BRMS): ×− 100%rms I rms I
rms I

( ) ( )
( )

B baseline B testing

B baseline

, ,

,
.

In this section, the proposed MPC algorithm is the testing algorithm
and the filter-based is the baseline algorithm. As shown in Table 5,
compared with the filter-based strategy, the proposed real-time MPC
can improve the bus voltage variation 38% of the filter-based approach,
and HESS total losses are improved as high as 65% of the filter-based
approach. Furthermore, the real-time MPC operates with much smaller
battery peak and RMS currents than the filter-based strategy, leading to
an extended battery life cycle. As shown in Figs. 18–20, the UC is op-
erating around the desired reference voltage under the real-time MPC
strategy in all scenarios, while the voltage of UC keeps decreasing under
the filter-based strategy. Although the generator is assumed to provide
the average power for the propulsion system, the UC voltage still drops
as shown in Figs. 18 and 19. This performance is mainly caused by the
HESS losses, undesirable interaction, and the uncertainties. The un-
desirable interaction between battery and UC can also increase the
HESS losses. The decreasing rate of UC voltage under pulse power loads
is higher than those in the other two cases, because the HESS fully
compensates the discharge pulses. The efficiency of the filter-based
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Fig. 21. Experimental results of sea state 4: MPC(N=20) vs. MPC(N=40).
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strategy will decrease as the UC voltage drops, and so the self-sustained
time of the filter-based strategy is much shorter than the real-time MPC.
In summary, compared to the baseline control, this experiment shows
the effectiveness of the proposed real-time MPC in terms of enhanced
system reliability, improved HESS efficiency, long self-sustained time,
and extended battery life cycle.

The predictive horizon was found to be an important design para-
meter. Extending the predictive horizon will generally improve per-
formance at the cost of increased computational complexity. However,
when uncertainties exist, performance improvement with increasing
horizon is not guaranteed. In order to provide insight into the predictive
horizon, the real-time MPC with an extended predictive horizon N=40
is implemented on the testbed. The experimental results are shown in
Figs. 21–23. As shown in these figures, the difference between
MPC(N=20) and MPC(N=40) is not obvious, especially in Fig. 23. In
order to compare these two predictive horizons, the numerical results
are required. In this case, MPC(N=20) is the baseline algorithm and
MPC(N=40) is the testing algorithm.

As shown in Table 6, MPC with N=40 does not outperform MPC
with N=20 in most performance metrics. The real-time MPC only
applies the first element of the control sequence as the control action
before moving to the next sample, when new measurements are col-
lected and the optimization is repeated with new initial conditions. This

feedback mechanism is helpful to improve the robustness of the MPC
strategy. However, as the predictive horizon increases, it is seen that
uncertainties can affect the control performance more significantly than
a short predictive horizon. In this study, therefore, the predictive hor-
izon was chosen to be N=20.

As presented in the literature, MPC has been found to be a robust
type of control in many applications, although the stability and ro-
bustness proofs are difficult [55]. Furthermore, the bus voltage reg-
ulation is combined with MPC to deal with uncertainties. Parameter
uncertainties exist in every element, such as battery, ultracapacitors
and power electric converters. The predictive uncertainties include two
parts: one is from the predictive method; another is caused by the re-
sistance uncertainty of the resistive load bank, since the resistance is
changed as its temperature increases. Uncertainties discussed above are
useful to evaluate the effectiveness of the control algorithm. Therefore,
the experimental results demonstrate the robustness of the proposed
control system, given predictive errors, parameter uncertainties and
unmodeled dynamics (model simplification).

5. Conclusion

This paper aims to address shipboard load fluctuations, including
not only propulsion-load fluctuations but also pulse-power loads, and
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validate the effectiveness of MPC on a physical testbed. The HESS is
used as a buffer to isolate the load fluctuations on the shipboard net-
work, and the real-time MPC-based EMS is developed to achieve en-
hanced system reliability and improved system efficiency. This real-
time MPC is implemented and evaluated in the testbed, which is used to
emulate the load fluctuations. Compared to the filter-based power split
strategy, the proposed MPC-based EMS is demonstrated on the testbed
to have superior performance in terms of reduced bus voltage variation,
battery peak and RMS currents, and HESS losses. The bus voltage var-
iation and hybrid energy storage losses can be reduced by up to 38%
and 65%, respectively. Given the uncertainties associated with the
problem and hardware setup, the robustness of the proposed MPC is
also validated. The proposed method could deal with more general load
fluctuation problems, such as load fluctuations in electric vehicles or

shore-based microgrids.
The main contribution of this paper is to achieve real-time feasi-

bility of MPC-based EMS. Three specific efforts have been made:
properly formulating the optimization problem, identifying an efficient
optimization solver, and implementing the controller with a multi-core
structure. The proper formulation includes both the cost function for-
mulation and system dynamics simplification. Note that the choice of
the solver highly depends on the optimization problem, and therefore
IPA-SQP is used herein to solve the optimization problem efficiently.
The implementation of MPC-based EMS is also important. The multi-
core structure can guarantee system signal synchronization and sepa-
rate system-level and component-level controls. In the future work, we
will study the generalization of the proposed algorithm for other po-
tential applications (such as electric vehicles, microgrids, and electric
trains) and investigate in what conditions the hybrid energy storage
with the proposed strategy provides significant benefits. Furthermore,
the irregular wave model for shipboard microgrids will particularly be
one of our focuses in the future.
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Table 6
Performance comparison: MPC(N=20) vs. MPC(N=40).

SS4 SS6 SS4 with pulse

Voltvar −2.27% −0.52% −1.45%
HESSLoss −1.86% −10.59% 1.45%
BPeak −7.69% −7.67% 1.70%
BRMS −5.94% −8.36% −0.44%
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