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ABSTRACT
The rapid growth in the amount of user-generated content
(UGCs) online necessitates for social media companies to
automatically extract knowledge structures (concepts) from
user-generated images (UGIs) and user-generated videos
(UGVs) to provide diverse multimedia-related services. For
instance, recommending preference-aware multimedia con-
tent, the understanding of semantics and sentics from UGCs,
and automatically computing tag relevance for UGIs are
benefited from knowledge structures extracted from multi-
ple modalities. Since contextual information captured by
modern devices in conjunction with a media item greatly
helps in its understanding, we leverage both multimedia con-
tent and contextual information (e.g., spatial and temporal
metadata) to address above-mentioned social media prob-
lems in our doctoral research. We present our approaches,
results, and works in progress on these problems.
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1. INTRODUCTION AND MOTIVATION
Due to advancements in technologies, capturing UGCs

anytime and anywhere, and then instantly sharing them on
social media platforms has become a very popular activ-
ity. This activity attracts social media companies to pro-
vide diverse multimedia-related services leveraging multi-
media content. However, providing such services are very
challenging because it is difficult to capture semantics and
sentics from a large collection of real-world UGIs and UGVs.
Since multimodal information augments knowledge bases by
inferring semantics and sentics from unstructured multime-
dia content and contextual information [23], it is beneficial
in several significant multimedia-related applications such
as tag ranking for social media photos [28], automatic lec-
ture video segmentations [26, 27], adaptive news video up-
loading [24], SMS-based FAQ retrieval systems [32, 33]. We
leverage multimodal information in first answering auto-
matic soundtrack recommendation for user-generated videos
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(UGVs) [30, 31]. Next, we deal with the semantics under-
standing of UGIs and automatically generate a multimedia
summary for a given event in real-time [25]. Finally, in our
works in progress, we focus on sentics understanding and
computing tag relevance for UGCs [29].

Since many outdoor UGVs consist of ambient background
noise, it necessitates replacing the noise with matching
soundtracks that matches with scenes, locations, and users’
preferences. However, manually generating soundtracks for
a UGV is tedious and time-consuming. Thus, we present a
fast and effective heuristic ranking approach based on het-
erogeneous late fusion by jointly considering three aspects:
venue categories, visual scenes, and listening histories of
users. First, we predict scene moods for the UGV. Next,
we perform heuristic rankings to fuse the predicted confi-
dence scores of multiple models. Finally, we customize the
video soundtrack recommendation functionality to make it
compatible with mobile devices. Additionally, we consider
areas where UGIs are exploited to provide services.

We present the EventBuilder1 system that deals with the
semantics understanding of user-generated images (UGIs)
aggregated in social media sharing platforms and automati-
cally generates a multimedia summary for a given event. It
has three novel characteristics: (i) leveraging Wikipedia as
event background knowledge to obtain additional contextual
information about the input event during event detection,
(ii) visualizing an interesting event on a Google Maps in real-
time with a diverse set of social media activities, and (iii)
solving an optimization problem to produce text summaries
for the event. Subsequently, we present the EventSensor sys-
tem that aims to address the sentics understanding of UGCs
and produces a multimedia summary for a given mood. It
extracts concepts and mood tags from the visual content
and textual metadata of UGCs and exploits them in sup-
porting several significant multimedia-related services such
as a musical multimedia summary. Finally, we present a
tag ranking system which computes tag relevance for UGIs
based on voting from neighbors derived leveraging the three
proposed high-level features. It is very helpful in the analy-
sis, search, and retrieval of UGCs on social media.

In this doctoral research, we aim to exploit the multimodal
information of UGCs in the support of the above-mentioned
problems. Figure 1 shows an overview of our approach that
leverage contextual information (e.g., temporal, spatial, and
sensor data) in conjunction with captured multimedia con-
tent in our solutions. Moreover, we also exploit knowledge
bases in the semantics and sentics understanding of UGCs.

1eventbuilder.geovid.org
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Figure 1: Overview of our approaches in this doctoral research studies.
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Figure 2: System overview of soundtrack recommen-
dations for UGVs with ADVISOR [30].

2. STATE OF THE ART
Earlier works [11, 34, 37] recognize emotions from videos

but the field of soundtrack recommendation for UGVs [9,39]
is largely unexplored. Our ADVISOR system [30] to recom-
mend a matching soundtrack to a UGV is inspired by prior
works [7, 16, 38]. It performs heterogeneous late fusion to
recognize moods and retrieve a ranked list of songs using
a heuristic approach for sensor-annotated videos (UGVs).
Moreover, significant prior works [8, 10, 17, 18, 40] in the
area of event modeling, understanding, detection, and sum-
marization from multimedia, inspired us to leverage mul-
timodal information and knowledge bases in an effective
event detection and summarization from UGIs [25]. Earlier
works [13,35] added soundtracks to the slideshow of photos.
Moreover, notable contributions [3,4,6,19,21,22] in the area
of sentiment analysis motivated us to exploit multimodal
information in the sentics understanding of UGIs. Further-
more, regarding computing tag relevance for photos, Liu et
al. [15] and Li et al. [14] proposed methods based on ran-
dom walk and neighbor voting, respectively. However, they
computed neighbors using costly low-level visual features.
3. PROPOSED APPROACH

In this doctoral research we focus on the following three
objectives. In our first objective (OBJ-1), our goal is to
recommend soundtracks for outdoor UGVs that correlates
preference-aware activities from different behavioral signals
of individual users (e.g., online listening activities and phys-
ical activities). Furthermore, in our second objective (OBJ-
2), we address the problem of semantics and sentics under-
standing of UGCs. Finally, in our third objective (OBJ-3),
we focus on computing the tag relevance of UGIs.

OBJ-1. Figure 2 shows the architecture of our pro-
posed music video generation system, called ADVISOR [30].

It consists of two parts: an offline training and an on-
line processing component. The online processing is fur-
ther divided into two modules: a smartphone app and a
server backend system. This app allows users to capture
sensor-annotated videos. Geographic contextual informa-
tion (i.e., geo-categories such as Park and Lake derived from
Foursquare [2]) for a UGV serves as an important dimension
to represent valuable semantics information while its video
frame content is often used in scene understanding. During
offline processing, models MG and MF are trained by ex-
ploiting geo- and visual features (G and F ) to predict geo-
and visual aware mood tags (CG and CF ), respectively, us-
ing a SVM hmm technique from a dataset with geo-tagged
videos. Next CG and CF are fused, and mood tags with
high likelihoods are regarded as scene moods C1 of the UGV.
Then, songs matching the scene moods are recommended.
Among them, the songs matching a user’s listening history
are considered as user preference-aware songs.

We proposed a heuristic music retrieval method to recom-
mend a list of songs for input scene moods. We calculate
the total score of each song based on the likelihood of pre-
dicted mood tags for a UGV and then retrieve a ranked list
of soundtracks. Further, our system extracts audio features
including MFCC and pitch from a user’s frequently listened
audio tracks. We re-rank the retrieved list by correlating it
with the computed audio features, and then recommending
a list of user preference-aware songs. Next, the soundtrack
selection component automatically chooses the most appro-
priately matching song from this list and attaches it as the
soundtrack to the UGV (see Figure 3). We leverage sound-
tracks of Hollywood movies to select an appropriate UGV
soundtrack since such music is generated by professionals
and ensures a good harmony with the movie content. We
learn from experiences of such experts using their profes-
sional soundtracks of Hollywood movies through a SVM hmm

learning model M . We construct this model based on het-
erogeneous late fusion of SVM hmm models constructed from
visual features such as a color histogram and audio features
such as MFCC, mel-spectrum, and pitch. The soundtrack
selection process consists of two components. First a music
video generation model that maps visual features F and au-
dio features A of the UGV with a soundtrack St, to mood
tags C2 based on the late fusion of F and A. Second,
a soundtrack selection component that attaches St to the
UGV if C2 is similar to C1 (predicted based on G and F ).

OBJ-2. Figure 4 shows the architecture of EventBuilder
which detects events by computing the relevance score
u(p, e) of a UGI p for a given event e. It is computed by
combining confidence scores from different modalities as fol-
lows: u(p, e) = w1 ξ+w2 λ+w3 γ+w4 µ+w5 ρ, where wi

5
i=1

are weights for different modalities such that
∑5

i=1 wi = 1,
and ξ, λ, γ, µ, and ρ are similarity functions for the given
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Figure 3: Soundtrack selection process in [30].
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Figure 4: System framework of EventBuilder [25].

p and e with respect to event name, temporal information,
spatial information, keywords, and camera model, respec-
tively, as described in [25]. EventBuilder also produces text
summaries from UGIs and the Wikipedia article of e. First,
it determines important concepts (e.g., kid-play-holi for the
event named Holi) from available texts. Next, it solves an
optimization problem by selecting the minimal number of
sentences which cover the maximal number of concepts.

Figure 5 depicts the architecture of the EventSensor sys-
tem consisting of two components: (i) a client which accepts
a user’s inputs such as a mood tag, an event name, and a
timestamp, and (ii) a backend server which contains seman-
tics and sentics engines. EventSensor leverages the seman-
tics engine (EventBuilder) to obtain the representative set
of UGIs R for a given event and timestamp. Subsequently,
it uses its sentics engine to generate a mood-based event
summarization. It attaches soundtracks to the slideshow of
UGIs in R. The soundtracks are selected corresponding to
the most frequent mood tags of the UGIs derived from the
sentics engine in EventSensor.

Figure 6 shows the system framework of the sentics engine
which leverages multimodal information to perform senti-
ments analysis. Specifically, we exploit concepts (knowledge
structures) from the visual content and textual metadata
of UGCs. We extract visual concepts for each multime-
dia item and compute concepts from the textual metadata
of multimedia content using the semantic parser API [20].
Next we fuse the extracted visual and textual concepts. Af-
ter determining the fused concepts C for the multimedia
content, we compute the corresponding SenticNet-3 [5] con-
cepts CP since they bridge the conceptual and affective gap
and contain sentics information. Finally, we compute a six-
dimensional mood vector MP of p by combining mood vec-
tors of all concepts in CP using an arithmetic mean. Experi-
mental results indicate that the arithmetic mean of different
mood vectors for concepts performs better than their geo-
metric and harmonic means. Semantics and sentics informa-
tion computed in earlier steps are very useful in providing
different multimedia-related services to users. For instance

Photos  

+  

Metadata  

+  

Visual  

concepts 

 

YFCC100M 
dataset 

Get textual 

summary 

Representative Selection 

Get 

mood 

Text 

Get song 

GUI 

(client) 

Music  

audio 
 

Music 
songs 

Mood 

Event name 

+ Timestamp 

Slideshow photos with 

background music 
Textual 

summary 

Photo list 

Engine 

(Server)  

Sentics 
Engine 

Photo list 

Mood 

Tag 

EventBuilder / Semantics Engine 

 

Lucene Index 

Index 

Figure 5: System framework of EventSensor [29].

F

U

S

I

O

N

P

h

o

t

o

Visual 

Concepts

Textual 

Concepts

Semantic 

Parser

SenticNet-3 

Concepts 

for photo

YFCC-

100M 

Dataset

EmoSenticNet + 

EmoSenticSpace

Mood 

Vector

Dataset CV

CT

C CPC
Get 

SenticNet-3 

Concepts

CPC

Parser
Find 

Sentics 

Details

Figure 6: System framework of sentics engine [29].

we provide multimedia summaries from UGIs aggregated on
social media such as Flickr. Once the affective information
of UGCs is known, it can be used to provide different ser-
vices related with affect. For instance, we can query Last.fm
to retrieve songs for the determined mood tags and enable
users to obtain a musical multimedia summary.

OBJ-3. Figure 7 shows the system framework of our tag
ranking system based on neighbor voting. We propose three
novel high-level features based on geo, visual, and textual
content to compute neighbors of UGIs. Initial results indi-
cate that the proposed features complement each others in
computing tag relevance. We compute the weights for dif-
ferent modalities based on their recall scores, i.e., the pro-
portion of a seed UGI’s tag covered by different modalities,
and perform their late fusion to compute tag relevance.

We leverage the Foursquare API to map the GPS loca-
tion of a UGI to geo concepts (e.g., cafe, hotel, and office).
Next, we treat each geo concept as a word and exploit the
bag-of-words model [12] on a set of 1194 different geo con-
cepts to create feature vectors. Similarly, we construct 1732-
dimensional feature vectors corresponding to visual concepts
(e.g., nature, building, and art) present in the YFCC100M
dataset [36]. Finally, to construct feature vectors from the
textual metadata, we extract semantics concepts from the
title, description, and tags of UGIs using the semantic parser
provided by Poria et al. [20]. Next, we leverage SenticNet-3
knowledge base to construct an unified vector space, which
is a publicly available resource for concept-level sentiment
analysis [5] and consists of 30,000 common and common-
sense concepts such as food and accomplish_goal. With the
bag-of-words model, we construct 13727-dimensional feature
vectors from textual metadata. After computing feature
vectors for different modalities, we compute their k near-
est neighbors using the cosine similarity metric.

After computing neighbors for a seed UGI p, we compute
the relevance score of the seed UGI’s tag as follows:

s(t, p) =
m∑

i=1

wi (vi(t, p) − prior(t, k)) (1)
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Figure 7: Architecture of our tag ranking system
[28].

where m is the number of modalities, wi is weight for differ-
ent modalities such that

∑m

i=1 wi = 1, s(t, p) is the tag t’s
final relevance score, and vi(t, p) is the vote count from the
k nearest neighbors derived for the ith modality. prior(t, k)
indicates the prior frequency of the tag t.

prior(t, k) = k
Mt

N
(2)

where N and Mt are a total number UGIs and the number
of UGIs tagged with t, respectively, in experimental dataset.
For fast processing, we perform Apache Lucene [1] indexing
of tags and UGIs. Finally, we rank the tags t1, t2, ..., tn based
on their relevance score as follows:

rank(s(t1, p), s(t2, p), ..., s(tn, p)). (3)

4. RESULTS
To evaluate OBJ-1 we used 402 soundtracks D1 from

Hollywood movies, 1213 sensor-annotated videos D2, 729
songs D3 from ISMIR, and 20 most frequent mood tags
from Last.fm. To investigate scene moods prediction ac-
curacy for UGVs, we randomly divided D2 into training and
testing datasets. After 10-fold cross validation, our experi-
ments confirm that the model based on late fusion of geo-
and visual features outperforms the models when they are
trained with geo- and visual features alone. Moreover, to
investigate the accuracy of soundtrack selection process, we
randomly divided D1 into a training and a testing dataset
with a 80:20 ratio, and performed 5-fold cross validation
experiments to calculate the scene moods prediction accu-
racy of M for UGVs in the test dataset. We predict the
scene mood C2 of a UGV from D2 with a recommended
soundtrack St using M , and compared with C1. If both C1
and C2 are similar then we treat St as matching soundtrack
since the prediction accuracy of C1 is high. In this way we
achieved the accuracy of 70.0% for 80 UGVs from D2, which
is comparable to the mood prediction accuracy of 68.8% for
80 soundtrack videos from D1 (see [30] for detailed results).

We evaluate our event detection system [25] in OBJ-2,
on the YFCC100M dataset [36] with 100 million photos and
videos. We performed an extensive user study on results
derived from baseline and EventBuilder. A photo consists
the name of a given event in its metadata is considered as a
result from the baseline. We randomly selected four photos
each for the seven events used in EventBuilder [25] and asked
63 users to evaluatef the results by selecting photos which
are relevant to the input events. We accepted 52 responses
which fulfilled the annotation consistency criteria. More-
over, we also created ground truths for the results leverag-
ing their content and contextual information. We compared
responses of users with ground truths based on two metrics
(i) precision, recall, and F measure, and (ii) cosine similar-
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Figure 8: Results for event detection from 52 users,
where x- and y-axis indicate evaluation metrics and
scores between 0 to 1, respectively [29].

Figure 9: Boxplot for the informative, experience,
and acceptance ratings of text summaries, where
prefix B and E in x-axis indicate baseline and Event-
Builder, respectively. In y-axis ratings range from 1
(low satisfaction) to 5 (high satisfaction) [29].

ity. Figure 8 confirms that EventBuilder outperforms the
proposed baseline in event detection.

Next, we asked ten evaluators to assess produced text
summaries by providing scores from 1 to 5, with a higher
score indicating better satisfaction, based on the following
three perspectives [25]: (i) informativeness, (ii) experience,
and (iii) acceptance. We asked users to rate both the Flickr
summary (baseline) which is derived from descriptions of
UGIs and the Wikipedia summary which is derived from
Wikipedia articles of events. Experimental results in Fig-
ure 9 indicate that users generally think that the Wikipedia
summary is more informative than the baseline and can help
them to obtain a quick overview of the events. However,
the Flickr summary is also very helpful since they give an
overview about what users thinks about the events.

5. CONCLUSIONS
This doctoral research studied the following three prob-

lems: (i) soundtracks recommendation for outdoor UGVs,
(ii) semantics and sentics understanding of UGIs, and (iii)
computing tag relevance for UGIs. We perform multimodal
analysis and exploit knowledge bases to solve above prob-
lems. Experimental results confirm that they augment se-
mantics and sentics understanding from multimedia content.
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