
Data Structure Engineering For Byte-Addressable
Non-Volatile Memory

Ismail Oukid
SAP SE & TU Dresden

Germany
ismail.oukid@sap.com

Wolfgang Lehner
TU Dresden

Germany
wolfgang.lehner@tu-dresden.de

ABSTRACT
Storage Class Memory (SCM) is emerging as a viable alter-
native to traditional DRAM, alleviating its scalability limits,
both in terms of capacity and energy consumption, while
being non-volatile. Hence, SCM has the potential to become
a universal memory, blurring well-known storage hierarchies.
However, along with opportunities, SCM brings many chal-
lenges. In this tutorial we will dissect SCM challenges and
provide an in-depth view of existing programming models
that circumvent them, as well as novel data structures that
stem from these models. We will also elaborate on fail-safety
testing challenges – an often overlooked, yet important topic.
Finally, we will discuss SCM emulation techniques for end-to-
end testing of SCM-based software components. In contrast
to surveys investigating the use of SCM in database sys-
tems, this tutorial is designed as a programming guide for
researchers and professionals interested in leveraging SCM
in database systems.

1. MOTIVATION
The advent of large main-memory capacities has spurred
a shift in software design towards main-memory-centric ar-
chitectures, which yield orders of magnitude faster access
characteristics than traditional, disk-centric approaches. The
rise of Big Data emphasized the importance of such systems
with an ever increasing need for larger main memory ca-
pacities. However, DRAM is hitting its scalability limits:
(1) it is intrinsically hard to further increase its density [7];
and (2) it constitutes a significant share of the energy con-
sumption in data centers [22], either directly or indirectly
(e.g., by the cooling system). Storage Class Memory, also
called byte-addressable Non-Volatile Memory, represents a
viable alternative and is currently considered an umbrella
term for novel memory technologies that exhibit characteris-
tics of both storage and main memory: They combine the
non-volatility, density, and economic characteristics of stor-
age (e.g., flash memory) with the byte-addressability and a
latency close to that of main memory (e.g., DRAM). SCM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14 - 19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3054777

technologies will exhibit asymmetric latencies, with writes
being noticeably slower than reads, and limited write en-
durance (although SCM may be significantly more durable
than flash memory, e.g., 3D XPoint [1] by 3 orders of magni-
tude). Moreover, SCM will be denser than DRAM, yielding
larger memory capacities. Finally, in contrast to DRAM that
constantly consumes energy to refresh its state, idle SCM
does not consume energy – only active cells do. Hence, SCM
has the potential to lift the scalability issues of DRAM, both
in terms of capacity and energy consumption.

In a previous tutorial, Stratis D. Viglas [37] surveyed
extensively research works on SCM within the database
community, which touched upon optimizing database compo-
nents, file systems, recovery techniques, and specific database
algorithms (e.g., sorts and joins) for the unique character-
istics of SCM. In this tutorial, however, we demonstrate
how to build software systems that use SCM as a univer-
sal memory. This tutorial offers comprehensive coverage of
the software development process, starting from understand-
ing the challenges and the opportunities brought by SCM,
through designing and implementing SCM-based memory
management and data structures, up to testing correctness
using suitable frameworks, and evaluating end-to-end perfor-
mance of SCM-enabled software components using different
emulation techniques. Since SCM will be slower than DRAM,
we assume in this tutorial hybrid systems that embed both
SCM and DRAM.

SCM is emerging as a memory technology with long term
prospects. However, potential research efforts may be inhib-
ited by the fact that SCM relies on a novel programming
paradigm that has yet to mature, and that hardware is
currently not available. With this tutorial we aim at demysti-
fying SCM programming and foster efforts to evolve existing
systems to leverage SCM (e.g., Peleton [14]), as well as to
explore new system architectures that were not conceivable
before (e.g., SOFORT [33], FOEDUS [24]). The tutorial will
follow the outline below.

2. SCM PROGRAMMING CHALLENGES
While SCM brings unprecedented opportunities as a poten-
tial universal memory, it fulfills the no free lunch folklore
conjecture and raises unprecedented challenges as well. To
store data, software has traditionally used block-addressable
devices, managed by a file system and accessed through main
memory. The programmer held full control over when data
is persisted and the file system took care of handling partial
writes, leakage problems, and storage fragmentation. With
SCM it becomes possible to access, read, modify, and persist

1759

http://dx.doi.org/10.1145/3035918.3054777

CPU

Buffer

Caches

Buffer

SCM Controller

SCM Device

Transient

Persistent

Legend

Figure 1: Volatility chain in x86-like processors.

data using load and store instructions at a CPU cache line
granularity. The journey from CPU registers to SCM is
long and mostly volatile, as illustrated in Figure 1, including
store buffers and CPU caches, leaving the programmer with
little control over when data is persisted. Worse, compilers
and CPUs might speculatively reorder writes; for instance,
non-temporal stores are not strongly ordered on x86 Intel
CPUs and require a memory barrier [6]. Therefore, there
is a need to enforce the order and durability of SCM writes
sooner than later, often in a synchronous way. In this part of
the tutorial, we will elaborate on the architecture specifics of
modern processors and pinpoint when the store order and/or
durability should be enforced. Thereafter, we will explore
in depth the challenges that stem from using SCM as a uni-
versal memory, namely, data recovery, partial writes, and
persistent memory leaks. Additionally we will elaborate on
the challenge of persistent memory fragmentation. While file
systems face similar challenges, their solutions do no apply
to SCM, since the former benefit from the duality of virtual,
memory-resident pages and persistent, disk-resident pages.

CPU

DRAM SCM

App/DBMS

Application
Virtual Memory

Figure 2: SCM can be mapped directly in the ad-
dress space of the application.

There seems to be a consensus that SCM will be managed
by a special file system that provides zero-copy memory map-
ping [9], i.e., memory mapping that bypasses the operating
system page cache and provides the application layer with
direct access to SCM, as illustrated in Figure 2. Several such
file systems have already been proposed [21, 40, 23, 41, 29],
and recent Linux kernels already embed such a functionality
through the new Direct Access (DAX) feature [3] currently
supported by the ext4 file system [4]. However, the Linux
page table will be a major roadblock for the integration of
SCM in large-scale systems for the following reasons:

• The Linux page table currently implements concurrency
using a global lock, which makes memory reclamation
upon shutdown of a multi-terabyte main memory pro-
cess very slow, although SCM pages do not need to

be reclaimed as they do not correspond to any DRAM
memory. Worse, both DRAM and SCM page entries
are scanned to reclaim the memory of the DRAM ones.
For example, our measurements show that it takes up
to 15 min to reclaim 10 TByte of memory upon process
termination.

• Memory mapping millions of files will stress the (lack)
of scalability of the Linux page table and the file system
indexing [11], significantly slowing down startup time of
large-scale main memory systems.

• Current Linux kernels support only up to 128 TBytes of
address space, which will be insufficient since SCM will
enable main memory capacities well beyond 100 TBytes.
Moreover, systems approaching that limit will face the
issue of address space fragmentation, i.e., the lack of suf-
ficient contiguous virtual memory for memory mapping
operations.

We will elaborate on how this issue will affect large-scale
systems and will comment on potential solutions, such as
modifying the operating system or “reverting” to page-based
memory management.

3. SCM PROGRAMMING MODELS
To address the challenges discussed in the previous section,
state-of-the-art works have followed mainly two approaches.
The first one strives to provide global solutions in the form of
software libraries, mostly following a transactional-memory-
like approach, with the goal of making programming against
SCM easy and accessible for programmers. Among early
works, Volos et al. [39] proposed Mnemosyne, a library col-
lection to program SCM that require kernel modifications
and compiler support. Following a similar approach, Coburn
et al. [20] proposed NV-Heap, a persistent heap that imple-
ments garbage collection through reference counting. Later,
Chakrabarti et al. [16] and Chatzistergiou et al. [17] proposed
respectively Atlas and REWIND, two log-based user-mode
libraries that manage persistent data structures in SCM in
a recoverable state using undo/redo logging. Most recently,
Avni et al. [15] proposed PHyTM, a persistent hybrid transac-
tional memory system that leverages hardware transactional
memory, while assuming hardware support for single-bit
atomic commit to SCM.

The second approach, that we denote as the raw approach,
relies on existing CPU persistence primitives, namely cache
line flushing instructions (CLFLUSH, CLFLUSHOPT, and
CLWB), memory barriers (MFENCE and SFENCE), and
non-temporal stores, to enforce consistency and durability.
Moreover, it employs persistent pointers that comprise a
base (e.g., file ID) and an offset within that base. An open
question, however, is whether to use one large SCM file (pool)
or multiple ones. We will elaborate on the advantages and
drawbacks of each. For instance, a major advantage of using
multiple files is the ability to defragment persistent memory
by leveraging the hole punch feature of sparse files, while
single-pool approaches can abstract away the base part of
persistent pointers, as it is unique.

Intel’s NVML [8] offers an elaborate collection of libraries
that spans both the raw and the transactional approaches.
Additionally, it offers a middle-ground approach based on
the raw one augmented with useful transaction support, such
as atomic execution of object constructors upon persistent
memory allocation, which greatly simplifies fail-safe atomicity
management.

1760

N0

N1 N2

L0 L1 L2 L3 L4 L5

DRAM

Transient

SCM
Persistent

Figure 3: Illustration of a hybrid B-+Tree: inner
nodes are kept in DRAM while leaf nodes are kept
in SCM [32].

We will discuss both approaches, highlighting their re-
spective advantages and drawbacks. For instance, the trans-
actional approach might hinder performance as it system-
atically logs modified data, which cost is amplified by the
higher latency of SCM, while the raw approach offers great
optimization opportunities. Conversely, compared to the raw
approach, the transactional one is less prone to programming
errors and is accessible to a larger number of programmers,
as it abstract away the architectural knowledge and the man-
ual fail-safe atomicity management that the raw approach
requires. In the rest of the tutorial, we will assume the raw
approach as we believe it is the most suitable for implement-
ing high-performance SCM-based software.

4. SCM-BASED DATA STRUCTURES
Data structures are traditionally made durable using undo-
redo logging and shadowing techniques. The rise of flash
memory led to the emergence of novel optimized data struc-
tures, such as the Bw-Tree [26]. However, these remain in-
trinsically tied to the logging and paging mechanisms, which
SCM can do without. The byte-addressability and the asym-
metric latency of SCM impose new data structure design
goals. For instance, a novel design goal is reducing the
number of expensive writes, e.g., by trading writes for more
reads [36]. Another design goal is byte-addressable data dura-
bility and consistency. In that context, Venkataraman et
al. [35] proposed the CDDS B-Tree, a persistent and concur-
rent B-Tree that relies on versioning to achieve consistency.
It recovers from failures by retrieving the version number
of the latest consistent version and removing changes that
were made past that version. However, its scalability suffers
from using a global version number, and it requires garbage
collection to remove old versions.

Chen et al. [18] proposed to use unsorted nodes with
bitmaps to decrease the number of expensive writes to SCM.
They extended their work by proposing the write-atomic B-
Tree (wBTree) [19], a persistent tree that relies on the atomic
update of the bitmap for consistency, and on undo-redo logs
for more complex operations, such as node splits. It employs
sorted indirection slot arrays in nodes to enable binary (in-
stead of linear) search. Following another approach, Yang et
al. [42] proposed the NV-Tree, a persistent and concurrent B-
Tree based on the CSB-Tree [34]. They proposed to enforce
the consistency of leaf nodes while relaxing that of inner
nodes, and rebuilding them in case of a failure, which greatly
simplifies durability management. The NV-Tree keeps inner
nodes contiguous in memory and uses unsorted leaves with
an append-only strategy. This design implies the need for
costly rebuilds when a leaf parent node overflows, and leads
to a high memory footprint.

Oukid et al. [32] proposed the FPTree, a hybrid SCM-
DRAM persistent and concurrent B-Tree. It extends the
relaxed consistency idea of the NV-Tree by placing inner
nodes in DRAM, as illustrated in Figure 3, for better per-
formance, and leveraging hash-based fingerprinting in leaf
nodes as a means to significantly speedup point queries. Be-
sides, it employs a combination of hardware transactional
memory and fine-grained locking to achieve high concurrency.
Nevertheless, some of these approaches are oblivious to the
problem of persistent memory leaks. Indeed, the wBTree
and the NV-Tree do not log the memory reference of a newly
allocated or deallocated leaf, which makes these allocations
prone to persistent memory leaks. In summary, we will revisit
the main proposed techniques for SCM-based data structure
design, highlight the pitfalls with regard to SCM challenges,
and demonstrate how to avoid them.

5. TESTING OF SCM-BASED SOFTWARE
Although they share the same goals, crash-safety testing for
disk-based and SCM-based software are different in that they
have to address radically different failure scenarios, such as
missing or misplaced persistence primitives. Consistency and
recovery testing of SCM-based software did not get much
attention so far. Lantz et al. [25] proposed Yat, a hypervisor-
based off-line testing framework for SCM-based software.
Yat is based on a record-and-replay approach. First, it
records all SCM write operations by logging Virtual Machine
Manager (VMM) exits that are caused by writes to SCM.
Persistence primitive instructions need to be replaced in
tested software by illegal instructions to make them traceable
by causing a VMM exit. Yat then divides the memory
trace into segments, delimited by two persistence barriers.
It considers that SCM write operations can be reordered
arbitrarily within a segment, with the exception of writes
to the same cache line which are considered to be of fixed
order. Yat replays the trace until a non-tested segment
is encountered, then it runs the recovery procedure of the
tested software for every possible reordering combination
inside that segment. While it can approach comprehensive
testing for single-threaded programs, it does so at the cost
of a prohibitive testing time.

In contrast to Yat, Oukid et al. [31] propose an on-line
automated testing framework, illustrated in Figure 4, that
is non-invasive, requiring no software changes in most cases.
It employs a suspend-test-resume approach and simulates
power failures using data replication, similar to shadow mem-
ory testing approaches [27]. The testing framework creates a
mirror file for each file that the program creates; the mirror
file contains only data that is explicitly flushed by the pro-
gram. The testing framework triggers randomly simulated
crashes in the path of persistence primitives, upon which
a test process is forked and the main process is suspended.
Then, the test process executes a user-defined program that
recovers using the mirror files with copy-on-write access se-
mantics. Upon completion of the user-defined program, the
test process is terminated and the changes to the mirror
files are discarded. Finally, the main process resumes normal
execution. While this approach covers only partially memory-
reordering-related errors, this testing framework achieves fast
code coverage by leveraging call stack information to limit
duplicate testing, and is able to automate crash testing inside
the recovery procedure of a program, both of which Yat does

1761

Main process

Original
files

Mirror
files

Replicate
flushes

Test processESimulated
crash

Normal
execution

Resume
execution

(1) Suspend main process;
fork and wait on test process;

(3) Exec binary of test program;

exit()

(5) Resume main process.

(4) Execute
user-defined

test;

(2) Recover using
copy-on-write;

Figure 4: Illustration of automated crash simulation
in a suspend-test-resume testing framework [31].

not provide. We will explain how to combine this testing
framework with Yat to make up for the limitations of both.

Besides, development efforts to add SCM support to ex-
isting debugging frameworks are starting to emerge. For
instance, Intel’s NVML [8] provides a Valgrind extension [13]
that validates the correctness of stores made to SCM. This
work, however, is in its prototypical phase and its internals
are not publicly documented.

We will argue, with supportive examples, that providing
comprehensive consistency and recovery testing for large
SCM-based software is practically infeasible. Instead, im-
proving the quality of such software by covering a wide range
of SCM-related errors in a reasonable amount of time is
possible. Similarly to multi-threaded software, we argue that
providing theoretical correctness guarantees should be a pre-
requisite for any SCM-based software, and that experimental
testing should not (and cannot) make up for the lack of such
theoretical guarantees. Hence, design simplicity is key for
successful large SCM-based software.

6. SCM EMULATION TECHNIQUES
Researchers are often reluctant to dive into systems research
on SCM due to the lack of real hardware. To a certain ex-
tent, their concerns are justified as several SCM performance
characteristics and their interplay with modern CPU archi-
tectures are yet to be seen. Nevertheless, if we assume the
DIMM form factor and an access interface similar to that
of DRAM, we can emulate SCM latency and bandwidth in
different ways, such as:

• Use Non-Uniform Memory Access (NUMA) as a means
to emulate a higher latency and a lower bandwidth
– the number of QPI hops determines these metrics.
This can be achieved using a NUMA-aware allocator
(e.g., using libnuma) or simply using the Linux numactl
command [2].

• Use a DRAM-based tmpfs mount; this approach can be
combined with the NUMA one by configuring tmpfs to
use the memory of a specific socket [12].

• Reserve a DRAM region upon boot time and mount an
SCM-aware file system on it (e.g., ext4 DAX) [5]. This
memory region will be invisible to the operating system
and will be treated as an SCM device, which contrasts
with the tmpfs approach where the operating system
still manages the memory.

These techniques are easy to use and require no particular
effort. On the side of elaborate techniques, Intel has made
available an SCM emulation platform to several academic and
industry partners, and many publications have already used
it [23, 30, 14]. It uses a custom BIOS and microcode to insert
stalls on each access to the DRAM-based emulated SCM.
A full description of its latency and bandwidth modeling
techniques is publicly available [10]. Finally, HP has recently
open-sourced Quartz [38], a DRAM-based SCM performance
emulator that leverages existing hardware features to em-
ulate different latency and bandwidth characteristics. We
will emphasize techniques that the attendees can seamlessly
replicate for their own work.

7. CONCLUSION
SCM is emerging as a disruptive memory technology that
might have the same level of impact as high core counts
and large main-memory capacities, requiring us to rethink
current database system architectures. However, research
on SCM is currently hindered by the absence of hardware
and the lack of maturity of its programming model. In
this tutorial, rather than encyclopedic coverage, we strive to
provide a comprehensive tool set for designing, implementing,
testing the correctness, and evaluating the performance of
SCM-based software systems. By sharing our experience in
designing and implementing durable and consistent systems
fully tailored to SCM, we hope to foster research on novel
system architectures that leverage the full potential of SCM.

Looking ahead, we envision that the next evolution of
hybrid SCM-DRAM data structures will be morphing data
structures that can dynamically adjust their data placement
between SCM and DRAM, following performance and mem-
ory constraints. Moreover, log-structured data structures,
such as the Log-Structured Merge Tree [28], are natural candi-
dates for SCM given their append-only nature and their wide
use in key-value databases; we expect to see more research
in that field.

Finally, similar to multi-threaded programming, SCM pro-
gramming will need a set of mature tools and programming
models to be adopted by a larger audience. To that end, there
has to be a tighter integration of SCM-related functionalities
in existing tools (e.g., Valgrind). Besides, there is a need
for new frameworks that are able to identify complex errors,
such as wrong recovery logic, and to identify optimization
opportunities, such as duplicate flushes.

Acknowledgments
This work is partially funded by the German Research Foun-
dation (DFG) within the Cluster of Excellence “Center for
Advancing Electronics Dresden” (Resilience Path).

1762

Biographies of the Presenters
Ismail Oukid is a fourth year PhD student at TU Dres-
den, working in close collaboration with SAP SE and Intel.
His PhD work consists in conducting pathfinding work for
next-generation databases on SCM, which led him to design
a novel single-level transactional storage engine, called SO-
FORT. Through his work he gained in-depth insights into
the challenges of SCM and investigated data structure design,
memory management techniques, transaction concurrency
control, and fail-safety testing techniques for SCM. He re-
ceived an Engineering degree (eq. MSc) from the Grenoble
Institute of Technology (Grenoble INP – Ensimag) in 2013.

Wolfgang Lehner is full professor and head of the
database systems group at TU Dresden, Germany. His re-
search is dedicated to database system architecture specifi-
cally looking at hardware-related aspects in main-memory
centric settings. He is part of TU Dresden’s excellence clus-
ter with research topics in energy-aware computing, resilient
data structures on unreliable hardware, and orchestration
of wildly heterogeneous systems. He is also a principal in-
vestigator with the DFG-funded CRC on “Highly Adaptive
Energy Efficient Computing” as well as Germany’s national
“Competence Center for Scalable Data Services and Solutions”
(ScaDS). Wolfgang also maintains a close research relation-
ship with the SAP HANA development team in Walldorf,
Seoul, and Waterloo. He serves the community in many PCs,
is an elected member of the VLDB Endowment, serves on the
review board of the German Research Foundation (DFG),
and is an appointed member of the Academy of Europe.
More info at: http://wwwdb.inf.tu-dresden.de/lehner.

8. REFERENCES
[1] 3D XPoint Technology.

https://www.micron.com/about/our-innovation/
3d-xpoint-technology.

[2] Control NUMA policy for processes or shared memory.
https://linux.die.net/man/8/numactl.

[3] Direct Access for files.
https://www.kernel.org/doc/Documentation/
filesystems/dax.txt.

[4] Ext4 file system.
https://www.kernel.org/doc/Documentation/
filesystems/ext4.txt.

[5] How to emulate persistent memory.
http://pmem.io/2016/02/22/pm-emulation.html.

[6] Intel R©Architecture Instruction Set Extensions
Programming Reference.
http://software.intel.com/en-us/intel-isa-extensions.

[7] International Technology Roadmap for Semiconductors
2.0, Beyond CMOS, 2015. http://www.semiconductors.
org/clientuploads/Research Technology/ITRS/2015/
6 2015%20ITRS%202.0%20Beyond%20CMOS.pdf.

[8] NVML Library. http://pmem.io/nvml/.

[9] SNIA NVM Programming Model V1.1.
http://www.snia.org/sites/default/files/
NVMProgrammingModel v1.1.pdf.

[10] SR. Dulloor. Systems and Applications for Persistent
Memory. PhD Thesis, 2016.
https://smartech.gatech.edu/bitstream/handle/1853/
54396/DULLOOR-DISSERTATION-2015.pdf.

[11] Supporting file systems in persistent memory.
https://lwn.net/Articles/610174/.

[12] Tmpfs file system.
https://www.kernel.org/doc/Documentation/
filesystems/tmpfs.txt.

[13] Valgrind extension for persistent memory.
https://github.com/pmem/valgrind.

[14] J. Arulraj, M. Perron, and A. Pavlo. Write-behind
logging. PVLDB, 10(4):337–348, 2016.

[15] H. Avni and T. Brown. Persistent hybrid transactional
memory for databases. PVLDB, 10(4):409–420, 2016.

[16] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari.
Atlas: Leveraging locks for non-volatile memory
consistency. ACM SIGPLAN Notices, 49(10):433–452,
2014.

[17] A. Chatzistergiou, M. Cintra, and S. D. Viglas.
REWIND: Recovery write-ahead system for in-memory
non-volatile data-structures. PVLDB, 8(5):497–508,
2015.

[18] S. Chen, P. B. Gibbons, and S. Nath. Rethinking
Database Algorithms for Phase Change Memory. In
CIDR, pages 21–31, 2011.

[19] S. Chen and Q. Jin. Persistent B+-trees in Non-volatile
Main Memory. PVLDB, 8(7):786–797, 2015.

[20] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-Heaps:
making persistent objects fast and safe with
next-generation, non-volatile memories. ACM Sigplan
Notices, 46(3):105–118, 2011.

[21] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In SOSP, pages
133–146. ACM, 2009.

[22] M. Dayarathna, Y. Wen, and R. Fan. Data Center
Energy Consumption Modeling: A Survey. IEEE
Communications Surveys Tutorials, 18(1):732–794,
Firstquarter 2016.

[23] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System
software for persistent memory. In EuroSys, page 15.
ACM, 2014.

[24] H. Kimura. Foedus: Oltp engine for a thousand cores
and nvram. In SIGMOD, pages 691–706. ACM, 2015.

[25] P. Lantz, D. S. Rao, S. Kumar, R. Sankaran, and
J. Jackson. Yat: A Validation Framework for Persistent
Memory Software. In USENIX Annual Technical
Conference, pages 433–438, 2014.

[26] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
Bw-Tree: A B-tree for new hardware platforms. In
ICDE, pages 302–313. IEEE, 2013.

[27] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. ACM
Sigplan notices, 42(6):89–100, 2007.

[28] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

[29] J. Ou, J. Shu, and Y. Lu. A high performance file
system for non-volatile main memory. In EuroSys,
page 12. ACM, 2016.

[30] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and
T. Willhalm. SOFORT: A hybrid SCM-DRAM storage
engine for fast data recovery. In DaMoN, page 8. ACM,
2014.

1763

http://wwwdb.inf.tu-dresden.de/lehner
https://www.micron.com/about/our-innovation/3d-xpoint-technology
https://www.micron.com/about/our-innovation/3d-xpoint-technology
https://linux.die.net/man/8/numactl
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
http://pmem.io/2016/02/22/pm-emulation.html
http://software.intel.com/en-us/intel-isa-extensions
http://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2015/6_2015%20ITRS%202.0%20Beyond%20CMOS.pdf
http://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2015/6_2015%20ITRS%202.0%20Beyond%20CMOS.pdf
http://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2015/6_2015%20ITRS%202.0%20Beyond%20CMOS.pdf
http://pmem.io/nvml/
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf
https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf
https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf
https://lwn.net/Articles/610174/
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://github.com/pmem/valgrind

2014.

[31] I. Oukid, D. Booss, A. Lespinasse, and W. Lehner. On
testing persistent-memory-based software. In DaMoN,
page 5. ACM, 2016.

[32] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner. FPTree: A Hybrid SCM-DRAM Persistent
and Concurrent B-Tree for Storage Class Memory. In
SIGMOD, pages 371–386. ACM, 2016.

[33] I. Oukid, W. Lehner, T. Kissinger, T. Willhalm, and
P. Bumbulis. Instant recovery for main-memory
databases. In CIDR, 2015.

[34] J. Rao and K. A. Ross. Making B+-trees cache
conscious in main memory. In SIGMOD, pages 475–486.
ACM, 2000.

[35] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory. In FAST,
volume 11, pages 61–75. USENIX Association, 2011.

[36] S. D. Viglas. Write-limited sorts and joins for persistent
memory. PVLDB, 7(5):413–424, 2014.

[37] S. D. Viglas. Data management in non-volatile memory.

In SIGMOD, pages 1707–1711. ACM, 2015.

[38] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li.
Quartz: A Lightweight Performance Emulator for
Persistent Memory Software. In Proceedings of the 16th
Annual Middleware Conference, pages 37–49. ACM,
2015.

[39] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. ACM SIGARCH
Computer Architecture News, 39(1):91–104, 2011.

[40] X. Wu and A. Reddy. SCMFS: a file system for storage
class memory. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, page 39. ACM, 2011.

[41] J. Xu and S. Swanson. NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main
Memories. In FAST, pages 323–338. USENIX, 2016.

[42] J. Yang, Q. Wei, C. Wang, C. Chen, K. L. Yong, and
B. He. NV-Tree: A Consistent and Workload-Adaptive
Tree Structure for Non-Volatile Memory. IEEE
Transactions on Computers, 65(7):2169–2183, 2016.

1764

	Motivation
	SCM Programming Challenges
	SCM Programming Models
	SCM-Based Data Structures
	Testing of SCM-Based Software
	SCM Emulation Techniques
	Conclusion
	References

