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1 Introduction: Active Visual PerceptionRobots need enough perception to accomplish their tasks; active sensing strategies[1; 2]represent the way they can achieve it only by selecting necessary information. In particular,robot vision has taken advantage from the paradigm of active vision[3; 4; 5] that has beende�ned as: "The control of sensors and the control of processing to make observation of theexternal world" (ECUS/NSFWorkshop on Vision[6], Ruzenagaard, July 92) It has been alsopointed out that real-time and continuous operation are the most important characteristicsof active vision systems[7]: the system is always running and it returns results within a�xed delay. On the basis of previous statements the following steps and motivations shouldbe kept in mind when experimenting with active vision:1. De�ne the task. Reactive behaviors to environmental stimuli or more in generalintegration of basic visual behaviors, obtained through eye control, can simplify visionand support behavior itself.2. Identify information necessary for behavioral requirements. Once the taskhas been de�ned the vision system must know what information is to be retrievedfrom images (i.e. position, velocity of a target).3. Select the attentional area in space and time. Fixed delay responses requirelimiting the incoming visual data. In this regard it is very important to know wherethe information is located, and concentrate the processing on it, thus avoiding uselesscomputation.4. Choose processing strategies. Algorithms must retrieve all visual informationneeded to feed the control loop in at least near real-time.5. Study control issues. Latency due to image processing and noise in the extractedinformation are the main problems to deal with.From these considerations it is clear that the choice of image representation is a crucialissue, especially when examining the last three points. The log-polar representation of theimage is characterized by a variable resolution on the visual �eld (an high resolution in thefoveal region and a decreasing one going towards the periphery); together with a controlledmotion of the sensors it acts as a �lter on the observed scene, providing \built-in" selectionboth in space and time. Other peculiarities of this space variant representation (e.g. sym-metries, polar topology, reduced number of pixels) can be exploited in order to fasten andsimplify the extraction of the information useful in active vision tasks[8]. These are some ofthe reasons that have proven space variant vision as being appropriate in di�erent roboticapplications [9; 10; 11].According to the salient points previously mentioned, the paper is organized as follows:section 2 brie
y introduces space variant topology with some details useful for algorithmimplementations. In section 3 the main behavioral tasks of our active platform and thevisual information useful to achieve them are outlined; section 4 is devoted to the choiceand the description of visual processing; section 5 presents the active platform and section 6the experimental results on vergence control and image stabilization techniques.2
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Figure 1: Parameters of retino-cortical mapping. (Left) Any position P in the retinal planecan be expressed in terms of (�; �) or (x; y) coordinates. (Right) In the log-polar plane thesame position is identi�ed by (�i; �i).2 Log-polar MappingThe �rst studies carried out by Daniel and Whitteridge[12] (1961) on visual systems pointout that the retinal topology can be optimally described in term of � (radius) and � (orien-tation). Subsequent studies mainly by Schwartz[13], but also by Hubel and Wiesel[14] yieldto the well known analytical formulation of the mapping that occurs between the retina1(�; �) (retinal plane) and the visual cortex (�; �) (log-polar or cortical plane). The main pa-rameters of the derived logarithmic-polar law (see equations (1) and (2) for the continuousand discrete formulas) that straightforwardly takes into account the linear increment of thephotoreceptor size going from the foveal region towards the periphery, are shown in Fig. 1:( � = lna ��0� = q � (1) and the discrete version ( � = lna �i�0 i 2 [1; ::; Ncirc]� = q �j j 2 [1; ::; Nang] (2)where �0, that corresponds to the radius of the innermost circle of the log-polar layout, isobtained on the basis of the dimensions2 (width; height) of the smallest receptive �eld andthe desired number of cells Nang for each circle. Ncirc is the number of cell for each radius.The parameter a comes out by imposing that �� between two consecutive circles is equal to1 pixel in the log-polar domain; 1=q, that corresponds to the minimum angular resolutionof the log-polar, is 2 �=Nang:�0 = Nang width2 � (3) lna �i+1�i = 1 (4)Substituting in (4) �i = �0 and �i+1 = height+ �0 we obtaina = �0 + height�0 (5)1In this paper we will refer to the retinal plane also through the cartesian coordinates (x,y) with in mindthat � =px2 + y2 and � = arctan yx .2i.e. expressed in micron or retinal pixels 3



At present the log-polar transformation is obtained at frame rate by using remapping soft-ware routines. Hardware remappers[15] and prototypes [16; 17] of space variant CCD's havealready been designed and manufactured in the last years and soon a compact camera[18]using C-MOS technology will be available from of an ongoing research project.3 Basic Visual Tasks and Selection of Visual InformationOn the basis of studies [19; 20; 21; 22] on visual systems of some primates and vertebratesit comes out that they show �ve di�erent types of ocular movements; each of these has aparticular function and seems to be activated by precise input stimuli. These behavioralmovements are vergence, smooth pursuit, saccadic, miniature and vestibular movements.Though not explicitly considered in the previous classi�cation, cyclotorsion[23] is anotherimportant ocular movement related to stereopsis, which is evident in some vertebrates likecats and owls and present in humans too. Apart from vestibular movements, that arerelated to inertial stimuli (not visual), and miniature movements (the role of which is notyet completely understood) the other four movements are chosen as behavioral tasks forour robotic head. Having a binocular system we need to make a further distinction betweenvisual information (the robot visual stimuli) that relates to monocular and binocular view.� Monocular stimuli: all the information related to motion3 in the visual �eld such aslinear shift, rotation, expansion or contraction can be perceived monocularly and usedaccording the following scheme:{ linear shift: to control smooth pursuit and saccadic movements.{ rotation: to control cyclotorsion.{ expansion or contraction: in vergence control.� Binocular stimuli: visual information related to stereo perception can be expressedas an index of similarity of a stereo pair or on the basis of precise displacementmeasurement between correspondent points in the left and right images. In bothcases the extracted information can be used e.g. to control vergence and cyclotorsionor to segment objects in the horopter4 to perform binocular tracking.3Our tasks are related to ocular movements only, therefore recognition and navigation issues are notconsidered in in this paper.4In the human system, any variable point on a circle which also contains the �xation point and the tworetinas on the same circle will have a constant angular disparity and it is called horopter[24].4



4 Correlation Techniques for Space Variant ProcessingGiven the task and having chosen the most suitable representation of the image (in termsof number of pixels, properties and layout) for focusing the visual attention on an object,it is important to de�ne appropriate processing to measure parameters necessary to feedthe control loop. It is worth noting that some of the visual cues we are interested in, suchas motion estimation recoverable through a 2D processing in the retinal domain, can beobtained by processing the image along one dimension in the chosen log-polar plane. It iswell known that in the retinal plane the components of expansion and rotation are bothfunctions of x and y, while in the log-polar domain they can be expressed as functionsof only one coordinate, respectively � and �. Perhaps the fact that also the translationalcomponent of motion can be estimated with a good approximation solely along the � axisin the log-polar domain is less evident. In this way we are able to discriminate among anumber of directions in the retinal plane that correspond to the number of angular positionsrepresented on this axis. We can, however, obtain a precise estimate of the displacementby considering also the � direction.Considering the active and continuous control of camera parameters strictly coupled withthe processing, two basic correlation techniques are investigated in order to compute theabove mentioned visual information and to obtain a stable behavior.4.1 Computation of global indices of correlationGlobal indices of correlation can be used to obtain a measurement of the similarity betweentwo images. There are many di�erent types of indices, but trying to keep a good balancebetween their accuracy and their robustness, two of them especially stand out. The �rsttakes into consideration the quadratic di�erence of the two images:C1 = P�;�[I1(�; �; t1)� I2(� +��; �+ ��; t2)]2N2where I1 and I2 are the grey levels and N is the number of the pixels of the image. Incase of correlation between a log-polar stereo pair (t2 = t1 = t, I1 = Ileft, I2 = Iright and�� = �� = 0) index C1 performs reasonably well for objects that do not show a considerabledi�erence between their projection on the stereo images, but it is very sensitive to changesof brightness and average luminosity of the images. The latter problem becomes almostcompletely negligible when index C1 is used to indicate the degree of correlation betweensubsequent frames acquired from the same camera ( t1 = t and t2 = t � 1). The secondindex is a global correlation index weighted by the variance of the pixel intensity[11]:C2 = 1 � P�;�(I1(�; �; t1)� �1(t1)) � (I2(� + ��; �+��; t2)� �2(t2))qP�;�(I1(�; �; t1)� �1(t1))2 �P�;�(I2(� +��; �+ ��; t2)� �2(t2))2Again I1 and I2 are grey levels of the images and �1, �2 represent their mean values.Index C2 is almost invariant to brightness, much more stable to environmental changes, but5
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FOVEAFigure 2: Coordinate systems: retinal plane (left), log-polar plane (right).computationally more expensive. It has proved particularly useful in the control of vergencewith t2 = t1 = t, I1 = Ileft, I2 = Iright and �� = �� = 0; it is normalized between 0 and1 and has a minimum in the correspondence of the correct vergence angle. In this case thespace variant mapping deserves a special consideration because it is only by using it thatthese indices gain most of their e�ectiveness. Without the mapping there would be no goodindex maximum except in the case where the target covers more than half of the image.The way parameters �� and �� are varied allows to select the kind of information we wantto retrieve when processing two subsequent log-polar frames. If we compute, for example,min��;��C1 with �� 2 [1; ::; Ncirc] ; �� 2 [1; ::; Nang]we are able to estimate the amount of rotation �� and zoom �� of one image comparedto the previous one. Otherwise, if the goal is to measure the virtual5 displacement betweentwo log-polar images (may be also a stereo pair) by using the same kind of computation,�� and �� need to be varied di�erently as it will be explained in the following section.4.2 Log-polar correlationCorrelation in log-polar plane, in order to recover linear displacements occurred in the reti-nal domain, must be considered in a di�erent way. In fact the e�ective measure of distance(amplitude and direction) between two pixels in log-polar images is a function of the posi-tion of the pixels, while in the retinal domain distance is invariant with pixel coordinatesand depends only on the reciprocal position of the pixels. The log-polar correlation can bein general de�ned as Corr(I1(�; �; t1); I2(� +��; � +��; t2)) (6)where Corr is the function chosen to express the correlation between the two images I1 andI2. In order to map retinal linear shifts in the log-polar domain, we can compute the ��,�� increments as a function of the correspondent �x, �y increments and of the position(�; �) in the log-polar plane. Consider the coordinate system in Fig. 2. By di�erentiating5the transformation of a retinal shift (�x;�y) into the log-polar domain.6



Figure 3: Example of a virtual retinal right shift of 20 pixels performed in the log-polardomain (even the hole that corresponds to the fovea results 20 pixels right shifted). Log-polar image dimension is are 128�64.the system of equations (1), that provides the de�nition of the log-polar mapping, and byintegrating the obtained formulas from initial positions i; j to �nal positions fi; fj, it ispossible to evaluate ��, �� increments in the discrete domain6:( d� = d�lna �d� = q d� (7) ( �� = �fi � �i = R fii d� = [loga �i+���i ]�� = �fj � �j = R fjj d� = [q ��] (8)where, considering that �i = �0ai from the log-polar mapping de�nition (4),�i +�� = ���sin �� (9)�� = arctan ����i +��� (10) and ��� = �y cos �j ��x sin �j (11)��� = �y sin �j +�x cos �j (12)Substituting (9), (10) into (8) we obtain the �nal expression for ��, ��:8<: �� =[ 1ln a ln ���sin(��q )�0ai ]�� =[ q arctan ����0ai+�� ] (13)6square brackets are used to indicate the integer part.7
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reduced number of pixels typical of space variant sensors allows an e�cient use of a limitedcomputational power. This approach may be very relevant and appropriate for applicationswhere a reduction of system complexity, size and weight are demanded.6 Experimental Results6.1 Space variant vergenceRobot vision systems that are using foveated visual architectures must improve in the futuretheir ability to control the non-uniform spatial resolution photoreceptor arrays in order torecover the necessary amount of information from the observed scene. Vergence movementshave been studied in the past by many researchers[19; 21; 20]. In recent years control ofvergence has received attention from active vision researchers and successful implementa-tion results have been achieved within the context of space invariant frameworks. Thespace invariant approach relies on computationally expensive techniques like binocular seg-mentation, blur detection and disparity estimation[26; 27]. On the other hand, the reducedcomputational cost and the reduced algorithmic complexity o�ered by space variant sensing,together with other interesting features[28], can be exploited in order to e�ciently controlvergence. Within the log-polar framework, a vergence con�guration can be considered cor-rect when the registration between the stereo pair is as high as possible. Control of vergenceseems advantageous in the context of log-polar image representation because it enables to:� extract information from the whole log-polar image, avoiding the segmenta-tion issues,� emphasize binocular fusion rather than geometrical intersection of opticalaxes,� exploit a global measurement index between the stereo pair,� reduce computational cost and algorithmic complexity.In section 4.1 we touched the idea of using correlation techniques to measure the similaritybetween the log-polar stereo pair in order to control camera vergence. Correlation indicesC1 and C2 can be speci�ed for stereo processing by imposing t2 = t1 = t, I1 = Ileft,I2 = Iright and �� = �� = 0. The advantage of using correlation techniques within a spacevariant framework can be even more emphasized by considering the following comparisonamong four di�erent geometric mappings. The leftmost side of Fig. 5 show the standarduniform sampling tessellation; on the right, there are three di�erent types of space variantmappings: log-polar, log-cartesian, horizontal log-cartesian. The plot below correspond tothe behavior of the correlation index C2 for the four di�erent tessellations with respect to9
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case of rotation: Corr(It(�; �); It�1(� +��(��); �)) = min�� C1where �� =[ loga �i +���i ] and �� = ��� = �xcos � = �ysin �Plotting ��, that is constant along each radial direction, against the direction itself (�) wecome to a discrete sinusoidal function (see �gure 9-left) whose values can be analyzed interms of amplitude and phase in order to recover the vector of motion. Figure 9 illustrateshistogram behavior of �� versus � corresponding to a pan of the camera: two subsequent log-polar frames of the same pan sequence of �gure 8 are shown above the raw data histogramsand the derived DFT �rst harmonic interpolation. Positive peaks on DFT histogramsrepresent the estimated motion direction the amplitude of which is given by �rst DFTharmonic amplitude. The described processing is extremely simple and can run in real timealso on a 486-PC based architecture.7 ConclusionsThis paper has presented some experimental results on the use of log-polar image represen-tation in the context of active control of visual sensors. Use of correlation techniques in thelog-polar domain has proven to be e�cient to extract visual cues for controlling vergencebehavior and providing robust motion estimation of the visual �eld. In the context where anactive and continuous control of camera's parameters is required in order to reach a stablesystem behavior, sometimes a less accurate real time processing is more suitable than a veryprecise processing requiring a long time. On the other hand, computational advantages dueto reduced number of pixels allow an e�cient use of limited computational power. This maybe relevant and appropriate for applications that require reduction of system complexityand consequently a reduction of physical size and weight.8 AcknowledgmentsThe authors would like to thank T. Uhlin, F. Recio, J. Nielsen and P. Questa for helpfuldiscussions and the valuable contributions to software development.
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