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Abstract

Most conventional document categorization methods require a large
number of documents with labeled categories for training. These
methods are hard to be applied in scenarios, such as scientific pub-
lications, where training data is expensive to obtain and categories
could change over years and across domains. In this work, we pro-
pose UNEC, an unsupervised representation learning model that
directly categories documents without the need of labeled train-
ing data. Specifically, we develop a novel cascade embedding ap-
proach. We first embed concepts, i.e., significant phrases mined
from scientific publications, into continuous vectors, which cap-
ture concept semantics. Based on the concept similarity graph built
from the concept embedding, we further embed concepts into a hid-
den category space, where the category information of concepts be-
comes explicit. Finally we categorize documents by jointly consid-
ering the category attribution of their concepts. Our experimental
results show that UNEC significantly outperforms several strong
baselines on a number of real scientific corpora, under both auto-
matic and manual evaluation.

1 Introduction

The large volume of scientific publications is becoming pro-
hibitive for researchers. According to the prominent STM
report [1], about 2.5 million journal articles are published in
2014 alone, and the number of publications per year is still
growing at an annual rate of 3 %. Advanced techniques for
better organizing, navigating, and searching scientific pub-
lications are in great demand. These techniques will not
only save scientists massive amount of time, but also let out-
siders quickly understand what is going on in a specific do-
main. A first step towards the next-generation management
system for scientific publications is document categoriza-
tion, i.e., assigning scientific publications into different cat-
egories, which provides critical information for many down-
stream tasks like navigation, search, and trend analysis. For
example, given a set of recently published material science
research articles, can we identify those related to thermal
management, and then divide them into subcategories like
insulation, active cooling, etc.?

Conventional document categorization methods mostly
focus on general documents like news articles in a super-
vised setting, which requires a sufficient number of docu-
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ments with labeled categories [2, 3]. However, manual cate-
gory labeling of scientific publications could be very expen-
sive since it can only be fulfilled by highly skilled domain
experts. It will also incur a prohibitively high cost to col-
lect labeled training data for every scientific discipline. On
the other hand, some articles may come with category infor-
mation. For example, the articles published in ACM con-
ferences are often associated with category labels from the
ACM classification taxonomy [4], like “natural language
processing”, which are specified by authors. However, the
subject of scientific study is highly dynamic. A fixed set
of categories can age quickly. The evolvement of the ACM
classification taxonomy gives a clear evidence. The currently
used 2012 version has changed significantly from its 1998
version: The total number of categories has increased by
90%, and only 9% of the new categories are also in the previ-
ous version, not to mention that 14 years is minuscule in the
long course of scientific study. So collecting labeled training
data in this way is also not sustainable.

Therefore, we propose to study the challenging setting
of unsupervised categorization for scientific publications.
Given a corpus of scientific publications (in the form of plain
text documents) and a set of categories (in the form of plain
text names), we aim to categorize the documents without any
labeled training data. Free of manual labeling, unsupervised
categorization brings another important benefit, that is, the
freedom to specify target categories. A user can change
the target categories without the cost of labeling training
data for the new categories; the only cost would be to
retrain the categorization model. This is critical for scientific
publications because of the dynamics of scientific study.

Although few previous studies have addressed the prob-
lem of unsupervised document categorization per se, there
are several lines of related research which can be potentially
used for this problem. Topic modeling [5] extracts a set of
topics, i.e., word distributions, from a text corpus, and rep-
resents each document as a distribution over topics. One
can then categorize documents by manually associating each
topic to the corresponding categories. On the other hand, one
can convert unsupervised categorization into an information
retrieval problem: treat each category as a keyword query,
and categorize documents based on their relevance to each
category query. Finally, when the target categories can be
linked to some external knowledge bases, it is also possible
to categorize documents in a distantly supervised fashion [6].
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Table 1: Top concepts of each category learned by our model. Concepts are ranked by their strength of association to each
category. Left: “machine learning” vs. “database”. Neutral concepts that are strongly associated with neither category are
also shown. Right: “biophysics” vs. “optics” vs. “fluid dynamics”, three subfields of physics.

Category Top Concepts Category Top Concepts

machine learning  causal models, convergence rates, decision trees, statistical biophysics dna extension, rna world, viral genome, supported
inference, ensemble learning, statistical tests, support membranes, end monomers, transcription regulation,
vector machines, . .. polymer configurations, . . .

database map and reduce, pattern mining algorithms, NNqueries, optics inhomogeneous anisotropic, periodic layered, confocal

star schema, database state, transaction log, business
objects, . ..

lenslet arrays, relativistically moving, surface plasmon
polariton waves, uniaxially anisotropic, . . .

neutral strong assumption, national university of singapore,
central role, edge in the graph, meta generalisation,

intrinsic dimension, query nodes q, . . .

fluid dynamics turbulent structures, finite elements, mechanical engineering,
large eddy simulations, kelvin helmholtz instability,

stagnation points, . . .

We explore a different approach to this problem. Moti-
vated by the recent development of unsupervised deep learn-
ing [7], we propose a representation learning based model,
named UNEC (unsupervised neural categorization), for the
problem of unsupervised categorization of scientific publica-
tions. Our key observation is that scientific publications are
organized based on concepts that bear highly discriminative
information about their categories. For example, a database
paper often involves concepts like “map and reduce” and
“transaction”, while a machine learning paper involves con-
cepts like “statistical inference” and “convergence rate”. By
leveraging state of the art methods, we can mine those con-
cepts from the corpus and obtain a concept representation for
each document, i.e. a document is represented based on the
mined concepts, instead of single words. We then leverage
neural representation learning technique to learn the strength
of association of the concepts to each category (Table 1), and
finally categorize each document based on its concept repre-
sentation. Our model requires no external knowledge bases,
which may not always exist, and no human intervention,
which may be subjective. The categorization predictions are
also highly interpretable because of the concept representa-
tion. It is worth noting that the proposed model can be poten-
tially applied to general documents. We focus on scientific
publications in this work because it is easy to obtain a large
amount of data for automatic evaluation (see Section 5). We
leave the further application on general documents to future
work.

Keyphrase mining techniques [8] can be leveraged to
mine significant concepts in a given corpus. The key chal-
lenge is to associate the concepts with the target categories.
How can we know that the concept “statistical inference”
has a stronger association with the category “machine learn-
ing” than the category “database”, without using any labeled
training data?

We propose to learn concept embeddings to address the
aforementioned challenge. Given the concepts mined from a
corpus, we embed each concept into a category-driven vec-
tor in a low-dimensional Euclidean space. The category at-
tribution of concepts will become explicit in the new space,

with each of the first few dimensions corresponding to a tar-
get category (Figure 1). For example, if the first dimension
corresponds to “machine learning” and the second dimen-
sion corresponds to “database”, then the embedding of the
concept “statistical inference” will have a larger value on the
first dimension than on the second, indicating that it has a
stronger association with “machine learning”.

However, there is a great gap from the symbolic,
category-implicit concepts to their numeric, category-
explicit embeddings. If labeled training data is available, one
may leverage supervised classification techniques to bridge
the gap. Without labeled training data, it becomes much
harder. We develop a novel cascade embedding approach
to bridge this gap. In the first stage, by leveraging word em-
bedding techniques [9], we learn similarity-driven embed-
ding of concepts, which captures the semantics as well as the
similarity of concepts. Compared with the original symbolic
representation, the learned concept embeddings can provide
much richer information for the next stage. In the second
stage, we are able to learn category-driven embedding of
concepts from their similarity-drive embeddings.

The main contributions of this paper are as follows:

e We studied the novel problem of unsupervised catego-
rization for scientific publications, without manual la-
beling for training data.

e We developed a novel model to address the categoriza-
tion problem, where we proposed a cascade embedding
approach to learn the semantics and category attribution
of concepts inside the corpus, and categorize documents
based on their concepts.

e We collected real datasets for the categorization task,
and demonstrated the superior performance of our ap-
proach against an array of strong baseline methods.

2 Overview

We formulate the unsupervised document categorization task
as follows: Given a corpus of plain text documents D, a
set of target categories L, assign a category attribution, i.e.
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Figure 1: Pipeline of UNEC. The concept similarity graph is a complete graph, but some edges are omitted for simplicity.

a distribution over the target categories, to each document,
without external knowledge bases or labeled training docu-
ments. The documents and categories are each represented
as a sequence of word tokens.

Figure 1 shows the pipeline of our approach. We
first mine concepts, i.e., significant phrases from the corpus
(Figure 1 (a)). We propose a cascade embedding method to
learn the category attribution of concepts in an unsupervised
manner. The first embedding step is to learn similarity-
driven embedding of concepts, which can well capture the
semantic similarity between concepts, but not revealing their
category attribution (Figure 1 (b)). Based on the similarity-
driven concept embeddings, we build a concept similarity
graph, and learn category-driven embedding of concepts
with a novel regulated auto-encoder model (Figure 1 (c)).
The new embedding of each concept will consist of two
parts (Figure 1 (c)). The first n dimensions will be the
category attribution of the concept, where n is the number
of target categories, and each dimension corresponds to a
single category. The rest dimensions will represent other
auxiliary information of the concept. Finally, with the
category attribution of concepts, it becomes straightforward
to categorize a document by jointly considering all of its
concepts. Next we discuss every step in details.

3 Concept Mining and Similarity-Driven Embedding

The first step in our pipeline is concept mining. A straight-
forward approach is to use external knowledge bases, includ-
ing general-purpose ones like Wikipedia, or domain-specific
ones like the ACM classification taxonomy. However, many
domains may not have a well curated concept set. Even
existing ones are often not complete and not updated in a
timely fashion. Therefore, we propose to use a state-of-the-
art key phrase mining technique, Segphrase [8], and directly
use its outputted key phrase as concepts. Segphrase takes a
data driven approach to mine significant phrases using cor-
pus statistics such as popularity, concordance, informative-
ness, and completeness. (See Table 2 ) Then we obtain the
“concept representation” of each document, by keeping only
the concepts and remove all other words. A document is thus
represented as a sequence of concepts, which is more com-
pact but still preserves the most important information for

categorization.

Given the concept representation of documents, we can
apply the state of the art Skip-gram model [9] to obtain
similarity-driven embedding for each concept.  From the
examples in Table 2, we can see that concepts having sim-
ilar semantics or within similar domains will be neighbors
in the embedding space. Moreover, the learned concept em-
beddings are beyond simple co-occurrence: the neighbors of
a concept in the embedding space are usually not its neigh-
bors in the original text, but are concepts with highly related
semantics. As we will elaborate in the next section, this se-
mantic homogeneity in the embedding space, commonly re-
ferred to as topical similarity [10] is particularly useful for
the task of unsupervised categorization. We build a complete
concept similarity graph (Figure 1 (b)), where nodes are the
concepts, and each edge is weighted by the embedding sim-
ilarity of the corresponding concept pair.

4 Category-driven Concept Embedding

In this section we propose a regularized auto-encoder model
to obtain the category driven embeddings for concepts based
on their similarity-driven embeddings, and use it to compute
the categorization for each document.

4.1 Problem Formulation At this stage, we have mined a
set of concepts C' from the corpus, and associated each con-
cept ¢; € C with a similarity-driven embedding vector z;.
We denote the similarity-driven embedding space as X. As-
suming some similarity measure sim (we use cosine similar-
ity), we can obtain a concept similarity graph. The following
task is to learn the category-driven concept embedding y; for
¢; in another space ), where the category attribution of con-
cepts will become explicit.

Lacking explicit supervision signal, unsupervised meth-
ods have to carefully exploit the inherent structure of the
data. Although the original symbolic representation of con-
cepts provides little useful structure, in our cascade embed-
ding approach, the similarity-driven embedding of concepts
provides much richer structure to exploit. Specifically, we
focus on its topical similarity: now that we have learned se-
mantically similar concepts such as “generalization error”,
“leave one out error”, and “expected risk” are close to each
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Table 2: Example concepts and their most similar neighbors mined from a collection of JMLR (Journal of Machine Learning

Research) and VLDB (Very Large Data Bases) papers.

Concept Most Similar Concepts

joint distribution
generalization error
bayesian network
skyline points
query plan

joint probability distribution, joint distributions, joint probability, conditional distribution, probability mass function, cumulative distribution
generalisation error, generalization errors, leave one out error, generalization error bound, empirical error, true error, expected risk, training errors
bayesian networks, module network, bayesian network structure, structure learning algorithm, dependency network, structure learning

skyline point, dynamic skyline, skyline layers, skyline groups, reverse skyline, skyline set, interval tree, skyline algorithms, domination tests

join operators, join orders, join predicates, input relations, query plans, plan generation, query optimizer, join plan, selection operator, outer join

other in the similarity-driven embedding space X, can we
project them into a category-driven concept embedding ),
while preserving such proximity?

We formulate a graph embedding problem [11] to cap-
ture this structure. The original space X is represented as a
concept similarity graph, and in the target space ) we want
to preserve the pair-wise similarity in the concept similarity
graph: V¢;, c; € C, if x; and x; are similar, y; and y; should
also be similar.

In addition, we will use a data driven approach to
obtain regularization signal. The idea is that, given a set
of target categories, say “machine learning” and “database”,
there will be a lot of concepts such as “supervised machine
learning”, “large-scale machine learning”, or “relational
database”, ”database administrator” which we can easily tell
what categories they belong to, without the need of expert
human labeling or domain knowledge base. This will be
the “seed concepts” for each target category. In this work,
we select seed concept for each category as all concepts that
contain the category name as a substring. !

Mathematically, for each category cat;,l = 1...n, we
impose constraints for a set of seed concepts Ciqy,, SO that
their vectors in the target space ) corresponds to the correct
category attribution. Starting from the seed concepts, this
regularization effect will spread out over the whole concept
similarity graph, and impose correct category attribution on
the other concepts. More formally, we define the following
guided graph embedding problem:

PROBLEM 1. (GUIDED GRAPH EMBEDDING) Given a set
of nodes (concepts) C, their similarity-driven embeddings
{zile; € C}, a similarity measure sim, a set of n target
categories {cat;}"_,, and a set of seed concepts for each
category {Coar, Yy, find a category-driven embedding vy;
for each x;, c; € C, that satisfy the following objective:

4.1) |2

minimize Z llyi — y;lI* - sim(z;, z;)

i,j€C
n

+Ocz Z P(yi, caty)
=1 ¢;€Ceay,

subject to ||y;|| = 1,¢; € C,

TUsers can also provide additional seed concepts to further improve

accuracy.

where « is a balance parameter for the regularization term.
The norm constraint follows the convention in the original
graph embedding formulation [11], with the goal to prevent
from collapsing to trivial solutions.

Here the regularization term ¢(y;, cat;) is implemented
as the cross entropy between the length n one hot vector
for cat; and the first n dimensions of y; (i.e., the category
attribution).

4.2 Solution Solving the guided graph embedding prob-
lem is a very challenging task. Because of the regulariza-
tion, the analytical solution for the original graph embedding
problem [11] is no longer applicable. On the other hand,
because of the non-convex constraints, convex optimization
methods are also not applicable, and there is no straightfor-
ward solution with optimality guarantee. Therefore, we re-
sort to neural network methods for numerical solution.

One intuitive solution is to use a neural network to
directly learn a mapping f: X — ) such that y; = f(x,]0)
using gradient descend methods following the objective in
Problem 1. However, it is critical to note that the topical
information, or the information about category attribution, is
not embodied in the similarity-driven concept embeddings
{x;} per se; rather, it is embodied in the similarities between
concepts. A concept likely belongs to a category if its
neighboring concepts belong to that category. The above
solution would not work well because it only considers
individual z;, lacking the critical inter-concept similarity
information.

Therefore, we use inter-concept similarities instead
of x; as input to the neural network. More formally,
we first compute the normalized similarity matrix S =
D='/28D=1/2 where S; ; = sim(x;,2;), and D is the de-
gree matrix with D, ; = chec sim(x;, x;), 0 otherwise.
We first define the following problem which aims to learn a
low-dimensional matrix to best reconstruct .S:

PROBLEM 2. (GUIDED GRAPH SIMILARITY RECONSTRUCTION)

Given the same inputs as Problem 1, the goal is to find matrix
Y, with each row being a low-dimensional category-driven
concept embedding vy;, that best reconstructs the original
similarity matrix S under the Frobenius norm via certain
mapping function O(Y'), with the same regularization term
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Figure 2: Illustration of the auto-encoder architecture.

®(Y') and norm constraints.

4.2) maxzé:/nize [|S —O)||Fr + a®(Y)

subject to ||y;|| = 1

The regularization form is the same as before:

oY) =Y Y ey catr)

=1 c;€Cecay,

Despite the different input (i.e., similarity matrix S
v.s. individual z;), it can be proved that Problem 2 has
the same optimal solution as Problem 1 under some mild
condition. The detailed proof is omitted here for brevity,
and can be found in supplementary materials. This provides
some theoretical support for using the similarity matrix S
as input instead of individual z;. Next we present an
autoencoder model to solve Problem 2, which has shown
superior performance in reconstruction problems [7].

4.2.1 Auto-encoder implementation We propose a regu-
lated auto-encoder model to learn category-driven concept
embedding. It is capable of learning a representation that ac-
curately reconstructs the original input, while being flexible
enough to incorporate constraints on the neurons to account
for the regularization [12].

Our model architecture is shown in Figure 2. The model
consists of two components, an encoder and a decoder. The
input data is the normalized similarity matrix .S, with each
row representing the similarity between concept ¢ and every
other concept in C. Each time, the model will take a row
of the similarity matrix (denoted as s;) as input, map it to a
latent vector y; using the encoder, and then try to reconstruct
the similarity vector s; using the decoder, denoted as s;.

More specifically, the encoder is a multi-layer neural re-
gressor, which is a universal approximator and is capable
of learning an arbitrary mapping from s; to y; [13] (equa-
tion 4.3), along with a normalization layer (equation 4.4)
that ensures the learned representation y; conforms to the

normalization constraints. The decoder implements the re-
construction function ©(Y") in Problem 2. We also use a
multi-layer neural regressor (equation 4.5). The regulariza-
tion is imposed as a loss on the hidden representation layer
as shown in equation 4.6. More formally, the prediction for
a single concept ¢; € C is as follows:

4.3) Gi = Wo f(W'si +b1) + by
4.4) vi = Ui/ ||il|
(4.5) i = WL F(WS f(yi) + ba) + by

the objective is to minimize the overall loss

(4.6) loss = Z [|15: — sil| + a®@(Y)

c;eC
Here W, and b, are model parameters to learn; f is the
activation function, for which we use the sigmoid function.

®(Y) is the regularization term defined in equation 4.2.

Pre-training. Training the model can still be challenging
because the input dimension is the same as the number of
concepts, which can be large. Learning with randomly ini-
tialized parameters may be hard to converge. To overcome
this problem, we propose a pre-training technique. That
is, we first pre-compute a “nearly stable” solution y;, by
analytically solving the original graph embedding problem
(Problem 1 without guidance) with eigenvalue decomposi-
tion techniques [11]. Then we use the pre-computed solution
to pre-train the model weights with the following loss:

(47) lossencoder = ||yl - gi|‘2
(48) lossdecoder = ||Wirf(WéTf(gz) + 62) + Z)l - sz”

(49) loss = lossencoder + lossdecoder

These pre-trained weights are used to initialize the model.

4.3 Computing the category attribution for documents
Once we obtain the category attribution of each concept,
the rest of the task is reduced to a common scoring task
in information retrieval: Given a category as a query, the
relevance score between each term (concept) and the query,
and the containment relationship between a document and
the terms, the goal is to compute the relevance score between
that document and the query. We utilize the traditional
TF-IDF scoring criteria [14] to compute a weight wq . for
a concept ¢ to a document d, and compute the category
attribution of d as Zce 4 Wd,c0c, where 0. is the category
attribution of concept c.

5 Experiments

We experimentally compare the proposed method with an
array of most related baseline methods, and demonstrate the
superior performance of our proposed approach.
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5.1 Setup Computation Environment. All the experi-
ments were conducted on a Linux server with 12 Core(TM)
17-5930K CPU (3.50GHz), 64 GB memory, and 1 TITAN X
(Pascal) GPU. The longest run of our inference algorithm de-
scribed in Section 4 took less than 20 minutes to converge.

Datasets. There are two possible ways to evaluate unsuper-
vised document categorization methods. One is to use a set
of manually categorized documents, which is accurate but
hard to scale. The other is to use a set of documents with
automatically collected category labels, which may contain
some noise but can be done at a larger scale. We will use
both, but the second method will be more frequently used.

We collect documents from conference and journal pro-
ceedings, which makes it possible to automatically solicit the
document categories. Our first dataset contains a complete
crawl of JMLR and VLDB proceedings, resulting in a total
of 3,283 papers and 31M words. For the automatic evalu-
ation, we assign all the JMLR papers to the category “ma-
chine learning”, and all the VLDB papers to the category
“database’.

Our second dataset contains a complete crawl of NIPS
and ACL proceedings (available online), resulting in a total
of 11,198 papers and 48M words. For the automatic eval-
uation, we assign all the NIPS papers to the category “ma-
chine learning”, and all the ACL papers to the category “nat-
ural language processing”. This is more challenging than
the first, because historically the two research communities
overlap significantly.

We also collect a third dataset of physics papers to
test the ability our model outside the domain of computer
science. We collect papers on arXiv under three subfields
of physics, “biophysics”, “optics”, and “fluid dynamics”.
The resulted dataset contains 15,558 papers and 86M words.
Some example concepts mined from this dataset are shown
in Table 1.

In addition to automatic evaluation using the collected
datasets, we also conduct a manual evaluation in two set-
tings. The first setting is still to categorize “machine learn-
ing” papers against “natural language processing” papers
using the NIPS and ACL proceedings. Because the automat-
ically collected category labels may contain errors for these
two categories, the manual evaluation may lead to more ac-
curate evaluation of model performance. The second setting
is more challenging. Instead of querying general categories
like “machine learning”, we target three more specialized
sub-categories, “bayesian learning”, “deep learning/neural
network”, and “optimization”, and aim to find papers be-
longing to them. This is again conducted using the NIPS
and ACL proceedings.

Evaluation Metric. We use F1 score for evaluation, a metric
widely used in document classification and information re-
trieval literature. For each document, its category determined

by a method is the one with the highest matching score. We
will test all the methods in an unsupervised setting; no la-
beled training dataset will be provided.

5.2 Methods Compared. We compare with a wide range
of related methods.

Comparative Retrieval (IR): This method treats each cate-
gory as a keyword query, and scores the relevance of docu-
ments to each category via the standard TF-IDF model. The
predicted category of a document is determined in a compar-
ative fashion, i.e., the one with which the document has the
highest relevance.

Comparative Retrieval with Query Expansion (IR+QE):
We also test query expansion with word embedding [15],
which works best among alternatives. It adds the k£ nearest
neighbors (under word embedding similarity) to the original
category query in the TF-IDF method. The model parameter
is the number of expansion words k. We set this value by
performing grid search over all possible values: from 0 to
the vocabulary size.

Topic Modeling (TM): LDA [5] is a fundamental technique
for modeling documents, and is still one of the most popular
models used in industry. Many variants of LDA have been
proposed, which either focus on improving its efficiency [16]
or require supervised data [17]. Here we use the standard
LDA model. We first build a topic model on the corpus via
LDA, then manually relate the learned topics to each cate-
gory according to the topic distribution of the category key-
words, and finally categorize documents according to their
topic distribution. We perform grid search from [n, 10n]
with step size n to select the number of topics, where n is
the number of categories.

Dataless Classification: Dataless classification [6] is a
document categorization method based on distant supervi-
sion [18]. Although they are distant supervision methods in
nature and rely on external knowledge base like Wikipedia,
we perform the comparison nonetheless. An important pa-
rameter of dataless classification is the number of Wikipedia
pages to use for expanding each category. We set this value
by performing grid search in the range of [10, 30, 100, 1000].
Baseline with Concept Representation (X+C): We try to
augment each of the above baseline methods with our con-
cept representation, which resulted in (1) comparative re-
trieval with concept expansion (IR+QE+C), that perform re-
trieval with query expansion over concepts, and (2) concept
augmented topic modeling (TM+C), that perform topic mod-
eling over concepts. There is no trivial way to adapt the
dataless classification method based on the way it queries
the knowledge base.

PPR: We use personalized page rank (PPR) on the concept
similarity graph to replace the category-driven embedding
step of our method. For each node, we only keep its top 100
similar neighbors. For each category, we run personalized
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page rank by setting the personalization weight of the seed
concepts (see section 4) as 1, and others as 0, and get the
page rank score as the category attribution.

UNEC: We evaluate our proposed method, UNEC, with the
following setting. We use the default SegPhrase settings for
concept extraction and learn a 200-dimensional embeddings
vector of each concept via the Skip-gram model. For the
auto-encoder, both the encoder and the decoder consist of 32
neurons, and the dimension of low dimension representation
is 6. The most important parameter is the balance parameter
for the regularization term alpha. We set this in a way
that keeps the ratio between the regularization loss and the
reconstruction loss (see Equation 4.1) to be close to 1073,
as determined by a validation set of size 200. We keep this
setting throughout the experiment.

5.3 Overall Performance with Automatic Evaluation
We first use the three datasets with automatically collected
category labels for evaluation. The results are shown in Ta-
ble 3. For the baseline methods, we report their performance
with their best parameter setting.  The proposed UNEC
model consistently outperforms the baseline methods by a
remarkable margin. The results also show that the perfor-
mance of the baseline methods varies significantly across
datasets. On the two datasets from the computer science
domain, because the target categories are relatively easier
to separate, the baseline methods are able to achieve a rea-
sonable performance. However, on the more challenging
physics dataset, the performance for many of the baseline
methods degrade significantly. Part of the reason is that there
are three target categories. Another important reason is that
the category names are less discriminative, and it is harder
to find appropriate expansion words that happen to differen-
tiate the categories. For example, papers about “dna” may
not have direct mention of word “biophysics”. IR methods
and the Dataless classification method suffer from this prob-
lem. The method IR + QE + C is an exception, showing
that the mined concepts are more discriminative than general
words. On the other hand, the topics identified by the topic
modeling methods are not very discriminative for the tar-
get categories as well; they contain a mix of words/concepts
from different categories. So topic modeling methods work
poorly in this case. The baseline of PPR perform relatively
well , because it is able to utilize the extracted concept and
the similarity-driven embedding. The performance of UNEC
is more robust, because it takes better advantage of global
statistics: It learns concept semantics and categories docu-
ments by jointly considering all the concepts. UNEC con-
sistently outperforms PPR, showing that our regulated auto-
encoder model is better than PPR on this task.

5.4 Effect of Parameters The key parameter in UNEC is
the regularization weight o (Equation 4.6), which controls

Table 3: Overall performance under automatic evaluation.

Method JMLR vs. VLDB NIPS vs. ACL  Physics Avg.
IR 0.85 0.78 0.51 0.71
IR + QE 0.85 0.78 0.67 0.77
IR+QE+C 0.88 0.76 0.83 0.82
Dataless 0.83 0.78 0.68 0.76
™ 0.87 0.86 0.48 0.74
™ +C 0.76 0.77 0.37 0.63
PPR 0.90 0.81 0.87 0.86
UNEC 0.99 0.91 0.88 0.93
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Figure 3: Performance of UNEC and the relative regulariza-
tion loss under different regularization weight .

the balance between the reconstruction loss (how well do
the learned embeddings capture concept similarities?) and
the regularization loss (how well do the learned embeddings
respect the category constraints?). A larger o means more
weight on category regularization. Intuitively, different cate-
gorization tasks require different o values. If the categories
are harder to separate, the optimal value of « shall be larger.
This is supported by the experiment results shown in Fig-
ure 3. The optimal « for separating “machine learning” from
“database” (JMLR vs. VLDB) is smaller than that for sepa-
rating “machine learning” from “natural language process-
ing” (NIPS vs. ACL).

However, because the role of « is to balance the two
kinds of losses, we can gain more insights from the relative
regularization loss, which is the regularization loss divided
by the reconstruction loss. From the results in Figure 3, it
can be observed that a good balance between the two kinds
of loss is achieved when the relative regularization loss in
the range of [10~%,1072], i.e., the regularization loss is 2 to
4 orders of magnitude smaller than the reconstruction loss.

The optimal number of topics is always 2 for TM,
and 4 for TM+C. Adding model capacity is not helpful in
this case. For Dataless, the optimal parameter value is 30.
For IR+QE, the optimal number of expansion terms is 0,
while it is 100 for IR+QE+C. This shows that under the
conceptualized representation similarity is better captured,
SO query expansion becomes more beneficial.

5.5 Qualitative Study We show in Table 1 the top con-
cepts for each category, ranked by the corresponding neuron
activation, which would be a strongly biased “pillar” for its
category. For comparison, we also show general concepts
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Figure 4: Results on manual evaluation. (a) “machine learn-
ing” vs. “natural language processing.” (b) “bayesian learn-
ing” vs. “deep learning/neural network” vs. “optimization.”

that are indifferent to the categories. Such mined concepts
can potentially be used for other tasks like identifying emerg-
ing techniques.

5.6 Evaluation with human labeled ground truth Next
we experiment with manually labeled testing sets. In the first
experiment, the target categories are still “machine learning”
vs. “natural language processing”, and the corpus consists
of all the NIPS and ACL papers. We employ 10 graduate stu-
dents to manually categorize randomly sampled papers into
the target categories, until we get 200 papers with ground
truth labels. Any documents with label disagreement are
discarded to ensure the label quality. All the methods are
trained using the entire corpus and then tested on the man-
ually labeled testing set. Other experiment settings are the
same as before. The results are shown in Figure 4a(b). Still,
UNEC significantly outperforms all the baseline methods.
We then experiment with a more challenging setting,
targeting an array of more specialized categories, “bayesian
learning,” vs. “deep learning/neural network,” vs. “opti-
mization,” and try to find papers belonging to these cate-
gories from the NIPS and ACL proceedings. Similar as be-
fore, we collect 200 papers, discarding any documents with
label disagreement. Other settings remain the same. The
results are shown in Figure 4b(b). We observe that the per-
formance of many baseline methods degrade because of the
implicitness of the category names. For example, a paper on
“Gaussian random field”, which belongs to the category of
“bayesian learning”, may not contain any direct mention of
words like “bayesian”. Because the categories are more fine-
grained than before, it becomes harder to categorize con-
cepts, e.g., to tell whether a concept belongs to “bayesian
learning” or “deep learning”. Methods like IR+QE+C and
TM+C suffer from this problem. Jointly considering all the
concepts, UNEC can still correctly categorize concepts, and
achieve a good performance under this challenging setting.

6 Related work

Document categorization is a general problem studied in
the field of library science, information science, and com-

puter science [2]. Techniques for automatic text categoriza-
tion have evolved from rule-based expert system to machine
learning (ML) paradigm. Most of the ML based document
categorization approaches are supervised in nature and ap-
ply supervised learning models to texts [3, 19]. Knowledge
bases are also explored to represent the meaning of texts and
perform categorization [6, 20]. These approaches cannot di-
rectly solve the unsupervised categorization problem where
there is little labeled training data and knowledge base cov-
erage.

Recent advances in information extraction, including
mining concepts from text [8] or from structured data [21],
concept type and relation inference and knowledge base in-
tegration [22], along with more traditional natural language
processing techniques such as named entity recognition and
linking [23], strongly support us to adopt the “concept rep-
resent” of each document and perform categorization more
effectively.

Meanwhile, the rapid development in representation
learning [7] help facilitated deeper understanding of these
mined concepts. One major outcome of representation learn-
ing is a vector representation of objects that reveals their se-
mantic meaning. Since the success of the word embedding
approaches [9], the embedding learning scheme has been ap-
plied to a wide range of tasks. For example, sentence embed-
ding [24] is proposed to embed each sentence into a vector
space, which can effectively reveal its inner structure such as
word importance and help relevance prediction. Network
embedding [25, 26] aims to embed network vertices into
vectors to capture the network structure, and help improve
downstream tasks like link prediction. A central theme
of representation learning is to discover a low-dimensional
representation that compresses the information stored in the
original input. The auto-encoder approach aims to learn such
a representation using a neural network [7]. Our proposed
cascade embedding approach is based upon these studies.

7 Conclusions

In this work, we studied the problem of categorizing scien-
tific publications in a fully unsupervised setting. We em-
ployed state-of-the-art concept extraction technique to dis-
cover concepts from text corpora, utilized word embedding
techniques to learn the embedding of the concepts, and pro-
posed an auto-encoder model that extract category attribu-
tion from the learned concept embeddings, which is then
used to categorize documents. We extensively evaluated our
method against several carefully designed baseline methods,
and demonstrated that our method significantly outperforms
those strong baselines. Our research raised a series of new
questions. A particularly interesting one is how to robustly
handle the scenario where the number of target categories
is large and categorization model will become more com-
plex and harder to train. Techniques for encouraging model
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sparsity, and the separability of concepts and documents into
categories could be explored. Given the effectiveness of the
concept representation, we’re also interested in extending
its category predicting capability to other tasks of document
analysis. How can we learn a representation that most effec-
tively reveals the semantics of a document? Can we build a
more general-purpose document understanding mechanism
based on the concept semantics? These are all promising
directions to explore in the future.
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