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Radix-r Non-Adjacent Form and Its Application to Pairing-Based
Cryptosystem∗

Tsuyoshi TAKAGI†a), Member, David REIS, Jr.††b), Sung-Ming YEN†††c), and Bo-Ching WU†††d), Nonmembers

SUMMARY Recently, the radix-3 representation of integers is used for
the efficient implementation of pairing based cryptosystems. In this paper,
we propose non-adjacent form of radix-r representation (rNAF) and effi-
cient algorithms for generating rNAF. The number of non-trivial digits is
(r − 2)(r + 1)/2 and its average density of non-zero digit is asymptotically
(r − 1)/(2r − 1). For r = 3, the non-trivial digits are {±2,±4} and the non-
zero density is 0.4. We then investigate the width-w version of rNAF for the
general radix-r representation, which is a natural extension of the width-w
NAF. Finally we compare the proposed algorithms with the generalized
NAF (gNAF) discussed by Joye and Yen. The proposed scheme requires
a larger table but its non-zero density is smaller even for large radix. We
explain that gNAF is a simple degeneration of rNAF—we can consider that
rNAF is a canonical form for the radix-r representation. Therefore, rNAF
is a good alternative to gNAF.
key words: non-adjacent form, radix-r representation, signed window
method, elliptic curve cryptosystem, pairing based cryptosystem

1. Introduction

Pairing based cryptosystems [15] are able to construct very
attractive applications in cryptography, e.g., tripartite Diffie-
Hellmann scheme [14], ID-based cryptosystems [4], short
digital signature [5], etc. Barreto et al. and Galbraith et
al. showed efficient algorithms for pairing based cryptosys-
tems over supersingular elliptic curves [1], [8]. Several effi-
cient arithmetic for elliptic curve with characteristic three
have been investigated [2], [11], [13], [18], [20]. Particu-
larly, the radix-3 representation of integers can be used
for efficient implementation of these algorithms with char-
acteristic three. Recently, Duursam and Lee proposed an
efficient implementation of Tate pairing for hyper-elliptic
curves constructed over general characteristic r [7]. In this
case, the radix-r representation is utilized for the efficient
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implementation of the pairing based cryptosystems.
In order to achieve faster scalar multiplication, we have

to exploit an efficient class of the radix-r representation, i.e.,
the number of non-zero digits is smaller. The generalized
non-adjacent form (gNAF) is known as an efficient class of
radix-r representation [6], [16]. The average density of non-
zero digits (non-zero density) of the gNAF is asymptotically
r−1
r+1 with (r − 1) pre-computed points among which (r − 2)
points are non-trivial. For example, r = 3 attains 0.5 non-
zero density with 1 non-trivial pre-computed point. On the
other hand, the non-zero density of the standard radix-r rep-
resentation is r−1

r with the same non-trivial pre-computed
point, which is 0.67 for r = 3. Therefore, the gNAF is
able to improve the efficiency of computing the paring based
cryptosystem, especially scalar multiplication. On the other
hand, we can achieve lower non-zero density, if we have a
larger digit set. Recently, Phillips and Burgess presented a
generalized sliding window method for the radix-r represen-
tation [19]. The canonical form using a larger digit set for
the binary representation is the width-w non-adjacent form
(wNAF) [3], [17], [21]. However, there is no literature that
reports a variation of wNAF for the radix-r representation.

In this paper, we present an efficient class of radix-
r representation, called radix-r non-adjacent form (rNAF).
The proposed algorithm is a natural extension of the classi-
cal non-adjacent form (NAF) for binary representation [3],
[12], namely the adjacent bits are not simultaneously non-
zero. In order to construct rNAF, we define the digit set
Dr, whose elements are smaller than r2−1

2 and are not di-
visible by the radix r. We prove that each integer can be
uniquely represented by rNAF and the Hamming weight of
rNAF representation is minimal among all signed radix-r
representations using digit set Dr. We also prove that the
average density of non-zero digits for rNAF is asymptoti-
cally r−1

2r−1 with (r−2)(r+1)
2 non-trivial digits. For r = 3, we

have 0.4 non-zero density with 2 non-trivial pre-computed
points, which is faster than the radix-3 gNAF but requires 1
more point. Moreover, we extended this result to the width-
w case. Our construction is similar to wNAF proposed by
Solinas [21]. We prove that the proposed width-w rNAF
has asymptotically r−1

w(r−1)+1 non-zero density with rw−rw−1−2
2

non-trivial digits. Finally, we investigate the relationship be-
tween the radix-r gNAF and rNAF. Interestingly, we show
that gNAF is a degenerate form of rNAF, namely if some
conversions for rNAF are ignored, then we can generate
gNAF. Based on this observation we present a simple gener-
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ation algorithm and a simple proof of the non-zero density
for gNAF.

This paper is organized as follows: In Sect. 2 we
shortly review gNAF. In Sect. 3 the radix-r NAF is proposed
and some properties of rNAF are investigated. In Sect. 3.2
we develop the width-w version of rNAF. In Sect. 4 the pro-
posed rNAF is compared with the previous schemes and
the relationship between rNAF and gNAF is discussed. In
Sect. 5 we apply the proposed scheme to the scalar multipli-
cation used for the pairing-based cryptosystems and present
some timings. In Sect. 6 we state the concluding remarks.

2. Generalized Non-Adjacent Form (gNAF)

In this section we discuss some known properties related to
the radix-r representation.

An integer d is uniquely represented using the radix-r
representation, namely

d =
n−1∑
j=0

djr
j, dj ∈ {0, 1, . . . , r − 1}. (1)

We denote by d = (dn−1, . . . , d1, d0) the radix-r representa-
tion of d. Here dj and n are called the j-th digit and the digit
length of the radix-r representation for d. The number of
non-zero digits is called the Hamming weight of the radix-r
representation of d. The average density of non-zero digits
of the radix-r representation is obviously r−1

r .
If digit dj is allowed to take a negative value (i.e.,

dj ∈ {0,±1, . . . ,±(r − 1)}), it is called signed radix-r rep-
resentation. In general the signed radix-r representation is
not unique. However, the generalized non-adjacent form
(gNAF) can uniquely represent each integer and is an op-
timal class for the signed radix-r representation [6]. gNAF
is the signed radix-r representation which satisfied the fol-
lowing two conditions.

(1) |di + di+1| < r for all i,
(2) |di| < |di+1| if didi+1 < 0.

If we choose r = 2, then the definition is equal to the clas-
sical NAF for binary representation. It is known that gNAF
has the minimal Hamming weight among all signed radix-r
representation with digit set {0,±1, . . . ,±(r − 1)}. The av-
erage density of the non-zero digits (non-zero density) is
asymptotically r−1

r+1 . For r = 3, the non-zero density is 0.5.
For a given radix-r representation of integer d, gNAF

is generated by computing (r + 1)d −̇ d, where the minus −̇
is a digit-wise subtraction of (r+1)d by d. This construction
is a generalization of Reitwiesner algorithm for generating
NAF [12]. There is a carry for computing the radix-r rep-
resentation of (r + 1)d, and thus this algorithm is not com-
puted in the left-to-right approach. Joye and Yen proposed a
left-to-right based algorithm for generating a signed radix-r
representation with same non-zero density and digit set as
those of gNAF [16].

3. Radix-r Non-Adjacent Form (rNAF)

In this section, we define the radix-r non-adjacent form
(rNAF) representation and prove some properties of rNAF.

We define the rNAF in the following.

Definition 1. A signed radix-r representation d =

(dn−1, . . . , d1, d0) is called radix-r non-adjacent form (rNAF)
if it satisfies the following conditions.
(1) d jd j−1 = 0 for all j = 0, 1, . . . , n, where we define
dn = d−1 = 0.
(2) d j ∈ Dr = {0,±1,±2, . . . ,±� r2−1

2 �}
\{±1r,±2r, . . . ,±� r−1

2 �r}.
(3) The leftmost non-zero digit is positive.

This definition is a natural extension of non-adjacent
form for binary string to the radix-r representation. Dr is
called the digit set of the rNAF. The set Dr is generated by
right-to-left conversion of two consecutive unsigned digits
(e j, e j−1) (for e j−1 � 0):

if e jr + e j−1 <
r2

2 , then (0, e jr + e j−1),
else (1, 0, (e jr + e j−1) − r2).

Therefore, all possible digits (except “0”) are (e jr + e j−1)
and ((e jr + e j−1) − r2) for e j ∈ {0, 1, . . . , r − 1} and e j−1 ∈
{1, . . . , r − 1}, which are equal to Dr \ {0}. If r is an odd
integer, then there are r2 elements in {0,±1,±2, . . . ,±� r2−1

2 �}
and r − 1 elements in {±1r,±2r, . . . ,±� r−1

2 �r}, respectively.
So, there are totally r2 − (r − 1) = r2 − r + 1 elements in
the set Dr. On the other hand, if r is an even integer, then
there are r2−1 elements in {0,±1,±2, . . . ,±� r2−1

2 �} and r−2
elements in {±1r,±2r, . . . ,±� r−1

2 �r}, respectively. So, there
are totally (r2 − 1) − (r − 2) = r2 − r + 1 elements in Dr.

Note that if we choose r = 2, then Dr is just the digits
of NAF for binary string, namely {0,±1}. We can prove the
following theorem:

Theorem 1. (1) Every positive integer d has a unique rNAF
representation.
(2) The rNAF representation of d has the smallest Hamming
weight among all signed representations of d with digit set
Dr.

Proof. We start with the proof for (1). Assume that r is odd
(the even case can be similarly proven).

We prove it by induction of digit length n for the unique
unsigned radix-r representation d = (en−1, . . . , e1, e0). For
n = 2, d is uniquely represented by

0 = (0, 0), 1 = (0, 1), 2 = (0, 2), . . . ,

r − 1 = (0, r − 1),

r = (1, 0), r + 1 = (0, r + 1), . . . ,

r + (r − 1) = (0, 2r − 1),

. . .

krr = (kr, 0), krr + 1 = (0, krr + 1), . . . ,
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krr + kr =

(
0,

⌊
r2 − 1

2

⌋)
,

krr + (kr + 1) =

(
1, 0,−

⌊
r2 − 1

2

⌋)
, . . . ,

krr + (r − 1) = (1, 0, krr + r − 1 − r2),

. . .

(r − 1)r = (r − 1, 0), (r − 1)r + 1 = (1, 0,−r + 1), . . . ,

(r − 1)r + (r − 1) = (1, 0,−1).

where kr = � r−1
2 � and we have krr + kr = � r2−1

2 �. Note that
the radix-r representation of 2-digit integers can be uniquely
represented by 3-digit rNAF (the leftmost digit is {0, 1}).

We assume that the radix-r representation of n-digit in-
tegers can be uniquely represented by (n + 1)-digit rNAF
(the most significant digit is {0, 1}). Then we try to prove
that it is also true for (n + 1)-digit integers. Let d =
(en, en−1, . . . , e0) be the unique unsigned radix-r represen-
tation of (n + 1)-digit integer d. From the assumption,
the first n-digit (en−1, . . . , e0) has the unique rNAF rep-
resentation (bn, bn−1, . . . , b1, b0). Assume that bn−1 = 0
holds, then the rNAF representation of d is (an+1, an, an−1,
bn−2, . . . , b1, b0), where an+1 = 1, an = 0, an−1 = 0 if
en + bn = r, otherwise an+1 = 0, an = en + bn, an−1 = 0.
Assume that bn−1 � 0 holds, then the rNAF representa-
tion of d is (an+1, an, an−1, bn−2, . . . , b1, b0), where an+1 =

an = 0, an−1 = ren + bn−1 if ren + bn−1 <
r2

2 , otherwise
an+1 = 1, an = 0, an−1 = ren + bn−1 − r2. The representa-
tion of last three digits (an+1, an, an−1) is obviously unique
due to the definition of rNAF. Thus the rNAF representa-
tion of d for (n + 1)-digit integers is unique. Consequently,
all positive integers can be uniquely represented by rNAF
representation.

Next we prove assertion (2). For a give integer d, we
assume that there is a radix-r representation R(d) of d with
digit set Dr, whose Hamming weight is smaller than that of
rNAF representation of d. Then there is a non-zero digit ai

of rNAF representation of d, which should be converted to
zero in representation R(d), namely there are some non-zero
digits c j such that airi =

∑
j c jr j, where i � j and c j ∈ Dr.

However, there is no solution c j for airi =
∑

j c jr j, because∑
j c jr j mod ri � 0 and ai � 0 mod r. Consequently, the

rNAF representation has minimal Hamming weight among
all radix-r representations with digit set Dr. �

3.1 Proposed Generation Algorithm for rNAF

In this section, we explain the proposed algorithm that gen-
erates the rNAF from an integer or a usual radix-r represen-
tation.

The notation ‘mods’ stands for the signed modulo,
namely d mods r is equal to (d mod r)−r if (d mod r) ≥ r/2,
otherwise (d mod r). Note that the set of all possible dig-
its in Step 2.2 is exactly equal to Dr, because we eliminate
the integers divisible by r at Step 2.1. The computation of
d ← d − cdi causes a carry +1 if cdi is a negative digit. At

Algorithm 1: Proposed Algorithm (Integer to
rNAF)

Input : An integer d.
Output: The rNAF of d: cd = (. . . , cd1, cd0).

i← 0;
while d > 0 do

if d mod r = 0 then cdi ← 0;
else

cdi ← d mods r2;
d ← d − cdi;

end
d ← d/r;
i← i + 1;

end
return (. . . , cd1, cd0);

Step 2.3, we lift to the next digit of the rNAF representation
of d.

Next we investigate the average density of non-zero
digits (non-zero density) appeared in rNAF representation
for n → ∞. It is obvious that the non-zero density of rNAF
is smaller than that of the usual radix-r representation, i.e.,
r−1

r . Indeed, we prove the following theorem.

Theorem 2. The average non-zero density of the rNAF is
asymptotically r−1

2r−1 . The number of non-trivial digits (ex-

cept {0,±1} and ignoring their sign) is (r−2)(r+1)
2 .

Proof. We investigate the distribution of each digit after the
conversion di+1r + di mods r. If non-zero digit di appears,
the next digit di+1 is always zero. Then there are two cases
(di) = (0) and (di+1, di) = (0, x) with non-zero digit x. If case
(0, x) with a negative digit x appears, then there is a carry
+1 to the next bits. The carry propagates to the higher bits.
However, we can assume that each digit of radix-r represen-
tation d is randomly distributed in {0, 1, . . . , r − 1}, namely
each digit of d appear with probability 1/r. We can also as-
sume that each digit of d + 1 appears with probability 1/r,
because we deal with the asymptotical estimation. There-
fore, the zero digit with probability 1/r and non-zero digit
appears with (r − 1)/r after both cases (0) and (0, x). Thus,
the Markov chain of the two case (0), (0, x) is as follows:(

(0) : 1/r (r − 1)/r
(0, x) : 1/r (r − 1)/r

)
.

This Markov chain is aperiodic and irreducible, and thus
there is the stationary distribution: ((0), (0, x)) = (1/r, (r −
1)/r). Thus non-zero digit asymptotically appears r − 1 out
of 1 + 2(r − 1). Consequently, we prove the assertion about
the non-zero density. Next, Dr has (r2−1)−(r−2) = r2−r+1
elements and the non-zero digits always have their opposite
sign. Therefore second assertion is true. �

Note that if we choose the classical binary case r = 2,
then we obtain the famous non-zero density of NAF, namely
1/3.
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3.2 Extension to Higher Width

We define the width-w radix-r non-adjacent form (wrNAF)
in the following.

Definition 2. A signed radix-r representation d = (dn−1,
. . . , d1, d0) is called the width-w radix-r non-adjacent form
(wrNAF) if it satisfies the following conditions.
(1) there is at most 1 non-zero digit among any w adjacent
digits
(2) d j ∈ Dw,r = {0,±1,±2, . . . ,±� rw−1

2 �} \ {±1r,±2r, . . . ,

±� rw−1−1
2 �r}.

(3) the leftmost non-zero digit is positive.

This definition is a natural extension of width-w non-
adjacent form for binary string to the radix-r representation.
The set Dw,r is generated by right-to-left conversion of w
consecutive unsigned digits (e j+w−1, . . . , e j+1, e j) (for e j �
0):

let ew = e j+w−1rw−1 + . . . + e j+1r + e j,

if ew < rw

2 , then (0, . . . , 0︸��︷︷��︸
w−1

, ew),

else (1, 0, . . . , 0︸��︷︷��︸
w−1

, ew − rw).

Therefore all possible digits (except “0”) are (ew) and (ew −
rw) for e j ∈ {1, . . . , r−1} and e j+1, . . . , e j+w−1 ∈ {0, 1, . . . , r−
1}, which are equal to Dw,r \ {0}. The number of elements
in Dw,r is rw − rw−1 + 1. Note that if we choose r = 2,
then Dw,r is just the digits of NAF for binary string, namely
{0,±1,±3, . . . ,±(2w−1 − 1)}.

We can prove the following theorem:

Theorem 3. (1) Every positive integer d has a unique
wrNAF representation.
(2) The wrNAF representation of d has the smallest Ham-
ming weight among all signed representations for d with
digit set Dw,r.

Proof. The proof of these assertions is similar to that of
Theorem 1. �

In the following, we explain the proposed algorithm
that generates the width-w rNAF (i.e., wrNAF) from an in-
teger or from a usual radix-r representation.

This is a simple generalization of rNAF to the width-
w approach. The difference from the width-2 case is the
signed modulus rw operation at Step 2.2. This algorithm is
also a natural extension of the wNAF generation algorithm
proposed by Solinas [21].

We can prove the following theorem about the non-zero
density of the wrNAF.

Theorem 4. The non-zero density of the wrNAF is asymp-
totically r−1

w(r−1)+1 . The number of non-trivial digits (except

{0,±1} and ignoring their sign) is rw−rw−1−2
2 .

Algorithm 2: Proposed Algorithm (Integer to
wrNAF)

Input : An integer d and width w.
Output: The wrNAF of d: wcd = (. . . , wcd1, wcd0).

i← 0;
while d > 0 do

if d mod r = 0 then wcdi ← 0;
else wcdi ← d mods rw;
d ← d − wcdi;
d ← d/r;
i← i + 1;

end
return (. . . , wcd1, wcd0);

Proof. The proof is similar to the case of w = 2. The only
difference is that we deal with two statuses (di) = (0) and
status (0, . . . , 0︸��︷︷��︸

w−1

, x). The Markov chain of the two statuses

(0), (0, . . . , 0, x) is as follows:(
(0) : 1/r (r − 1)/r

(0, . . . , 0, x) : 1/r (r − 1)/r

)
.

This Markov chain is aperiodic and irreducible, and thus
there is the stationary distribution: ((0), (0, . . . , 0, x)) =
(1/r, (r − 1)/r). Thus non-zero digit asymptotically appears
r − 1 out of 1 + w(r − 1). The second assertion is trivial
from the definition of Dw,r. Consequently, we prove the the-
orem. �

4. Comparisons

Arithmetic weight (or non-zero density) of the representa-
tion of secret key usually reflects performance of an im-
plementation for cryptographic operation, e.g., scalar mul-
tiplication over elliptic curve or exponentiation over finite
group. Performance comparisons of the proposed rNAF
and wrNAF with gNAF and the well known sliding window
technique will be given.

4.1 Comparison with gNAF

The gNAF representation is an approach to reduce the arith-
metic weight in order to enhance the performance of com-
puting scalar multiplication. In the following comparison,
we consider only the case of width-2 rNAF since existing
gNAF does not consider a width larger than two.

The gNAF achieves r−1
r+1 non-zero density recoding and

needs to store r − 2 non-trivial precomputed values within
a table. On the other hand, the proposed rNAF has r−1

2r−1

asymptotical non-zero density and needs to store (r−2)(r+1)
2

non-trivial precomputed values. Numerical enumeration of
the above comparisons are provided in Table 1. The result
is that the proposed rNAF has better performance for im-
plementing scalar multiplication with the cost of additional
storage space. For practical applications, a noticeable com-
putational speedup with only one additional precomputed
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Table 1 Comparisons of gNAF and the proposed rNAF.

gNAF rNAF
non-zero number of non-zero number of

radix density non-trivial density non-trivial
digits digits

2 1
3 ≈ 0.333 0 1

3 = 0.333 0

3 1
2 = 0.5 1 2

5 = 0.4 2

4 3
5 = 0.6 2 3

7 = 0.428 5

5 2
3 ≈ 0.666 3 4

9 ≈ 0.444 9

6 5
7 ≈ 0.714 4 5

11 ≈ 0.454 14

value is possible by selecting r = 3. In this case, non-trivial
digits {±2,±4} are selected and a 0.4 non-zero density re-
coding is achieved. By using gNAF, a 0.5 non-zero density
recoding is obtained with non-trivial digit {±2}. Note that
we count the number of non-trivial digits ignoring their sign.

4.2 Comparison with Sliding Window Technique

Sliding window technique [10], [19], [22] is an enhanced
windowing technique by exploiting space-time trade-off in
order to speedup scalar multiplication or exponentiation
computations. With the same characteristic that a larger ta-
ble with appropriate precomputed values can lead to a re-
duction of computational load. The conventional sliding
window technique for binary representation can lead to a
generalized form for any radix r larger than 2, and we called
this the generalized sliding window form (gSWF).

We describe the width-w sliding window method for
the radix-r representation (gSWF).

We scan the digits of the radix-r representation from
the most significant bit, and if a non-zero digit appears, then
we convert the w-consecutive digits using the following con-
version table TS W :

(1, 0, . . . , 0)→ (1, 0, . . . , 0), . . . ,

(r − 1, 0, . . . , 0)→ (r − 1, 0, . . . , 0),

(1, 1, 0, . . . , 0)→ (0, r + 1, 0, . . . , 0), . . . ,

(r − 1, r − 1, 0, . . . , 0)→ (0, r2 − 1, 0, . . . , 0),

. . .

(r − 1, . . . , r − 1, 1)→ (0, . . . , 0, rw − r + 1), . . . ,

(r − 1, . . . , r − 1, r − 1)→ (0, . . . , 0, rw − 1).

Then, we convert the radix-r representation to gSWF
as Algorithm 3.

Each integer is uniquely converted to gSWF by this al-
gorithm. We can prove that the number of non-trivial digits
of gSWF is rw−rw−1−1 (excluding {1}) and the average den-
sity of non-zero digits of gSWF is asymptotically r−1

(r−1)w+1 .
In the proposed wrNAF, larger width w may reduce the

non-zero density. Similarly, in the gSWF, a larger window-
ing width (usually denoted as w) will also reduce the com-
putational load by reducing the non-zero density. However,
storage space for both the wrNAF and the gSWF increase

Algorithm 3: Proposed Algorithm (Radix-r to
gSWF)

Input : An integer in radix-r representation
d = (dn−1, . . . , d1, d0) and width-w.

Output: The width-w SW chain of d: swd = (swdn−1, . . . ,
swd1, swd0).

i← n − 1;
d0 ← 0, . . . , d−w+1 ← 0;
while i > 0 do

if di = 0 then
swdi ← 0;
i← i − 1;

end
else

(swdi, . . . , swdi−w+1)← TS W (di, . . . , di−w+1);
i← i − w;

end
end
return (swdn−1, . . . , swd1, swd0);

Table 2 Comparisons of sliding window technique and the proposed
wrNAF.

gSWF wrNAF
non-zero number of non-zero number of

(r, w) density non-trivial density non-trivial
table elements digits

(2,2) 0.3333 1 0.3333 0
(2,3) 0.25 3 0.25 1
(2,4) 0.2 7 0.2 3
(2,5) 0.1667 15 0.1667 7
(2,6) 0.1429 31 0.1429 15
(3,2) 0.4 5 0.4 2
(3,3) 0.2857 17 0.2857 8
(4,2) 0.4286 11 0.4286 5
(5,2) 0.4444 19 0.4444 9

for larger width w. It is therefore interesting to compare
both the wrNAF and the gSWF.

Consider the case of r = 3 and w = 2, the elements
stored within the gSWF precomputed table are {2, 4, 5, 7, 8}
and the elements of the wrNAF digit set are {±2,±4} (or
{2, 4} is sufficient for scalar multiplication over elliptic
curve), respectively. An interesting fact is that both wrNAF
and gSWF remove elements divisible by the radix r from
their tables. Evidently, storage space requirement for the
proposed wrNAF is much smaller. It will be clear from
the following paragraph that the non-zero densities of both
wrNAF and gSWF are the same.

The number of non-trivial elements in the gSWF ta-
ble is rw − rw−1 − 1 (excluding {1}) and the non-zero den-
sity of gSWF is r−1

(r−1)w+1 . Recall that there are rw−rw−1−2
2 non-

trivial elements (excluding {±1}) in the wrNAF digit set (or
a corresponding precomputed table) and the non-zero den-
sity of wrNAF is r−1

w(r−1)+1 . With the above results, numerical
enumeration of comparisons between gSWF and wrNAF are
listed in Table 2. The result is that both gSWF and wrNAF
have identical non-zero density and thus have equivalent
computational performance. However, wrNAF is superior
to gSWF due to much less storage space requirement. The
wrNAF based approach needs less than half memory space
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Table 3 Example of gNAF and rNAF.

integer radix-3 rNAF gNAF gSWF
1 0001 0001 0001 0001
2 0002 0002 0002 0002
3 0010 0010 0010 0010
4 0011 0004 0011 0004

5 0012 0104̄ 0021̄ 0005
6 0020 0020 0020 0020

7 0021 0102̄ 0102̄ 0007

8 0022 0101̄ 0101̄ 0008
9 0100 0100 0100 0100
10 0101 0101 0101 0101
11 0102 0102 0102 0102
12 0110 0040 0110 0040
13 0111 0104 0111 0041

14 0112 0204̄ 021̄1̄ 0042

15 0120 104̄0 021̄0 0050

16 0121 0202̄ 0202̄ 0051

17 0122 0201̄ 0201̄ 0052
18 0200 0200 0200 0200
19 0201 0201 0201 0201
20 0202 0202 0202 0202

21 0210 102̄0 102̄0 0070

22 0211 0204 102̄1 0071

23 0212 1004̄ 101̄1̄ 0072

24 0220 101̄0 101̄0 0080

25 0221 1002̄ 1002̄ 0081

26 0222 1001̄ 1001̄ 0082

as gSWF.

4.3 Example of gNAF, rNAF and gSWF

In Table 3, we show examples of gNAF, rNAF in Sect. 3,
and gSWF in Sect. 4.2 up to 3-digit radix-r representation
for r = 3 and width 2.

4.4 Relationship between gNAF and rNAF

We explain that gNAF is a simple degeneration of rNAF. Re-
call that rNAF is generated by the conversion table of two
consecutive digits described in Sect. 3.1. We show that the
conversion table for gNAF can be obtained by degenerat-
ing that of rNAF. For example, the degenerated conversion
table for r = 3 is as follows: (0, 1) ← (0, 1), (0, 2) ←
(0, 2), (1, 0, 2̄) ← (2, 1), (1, 0, 1̄) ← (2, 2). The differ-
ence from the rNAF generation algorithm is to eliminate the
tables (0, 4̄) ← (1, 2) and (0, 4) ← (1, 1). In other words,
if the consecutive digits (1, 2) or (1, 1) appear, we do not
convert it, but slide 1 bit to the left.

Indeed the gNAF can be generated by the following
algorithm, which is a simple modification of the generation
algorithm for rNAF. For the sake of simplicity, we use the
radix-r representation for input d.

The only difference from the rNAF generation algo-
rithm is the if-condition “if di+1 + di/r mod r = 0 or r − 1”
appeared at Step 2.2 and its branch (i.e., the whole process
of Step 2.3). In order to satisfy the property of gNAF, we

Algorithm 4: Proposed Algorithm (Radix-r to
gNAF)

Input : An integer in radix-r representation
d = (dn−1, . . . , d1, d0) . . .

Output: The radix-r gNAF of d: cd = (cdn, . . . , cd1, cd0).

i← 0;
dn ← 0;
while i < n do

if di mod r = 0 then
cdi ← 0;
di+1 ← di+1 + di/r;
i← i + 1;

end
else if di+1 + di/r mod r = 0 or r − 1 cdi+1 ← 0;
cdi ← di+1r + di mods r;
di+2 ← di+2 + (1 − sign(cdi))/2;
i← i + 2;
else

di+1 ← di+1 + di/r;
if (di mod r + di+1 mod r) > r then

cdi ← di mod r − r;
di+1 ← di+1 + 1;
i← i + 1;

end
else

cdi ← di mod r;
i← i + 1;

end
end

end
return (cdn, . . . , cd1, cd0);

have an additional treatment at Step 2.3, namely we perform
(di+1, di)→ (di+1 +1, di − r) for (di mod r+di+1 mod r) > r.

In the following, we prove that this algorithm correctly
returns the gNAF representation of the radix-r representa-
tion of d.

Theorem 5. The algorithm (Radix-r to gNAF) generates
radix-r gNAF.

Proof. Let d′i = di + b mod r, where b is a carry in the algo-
rithm from right hand side, namely d′i = di + di−1/r mod r.

At step 2.1., we have a branch, if digit d′i is equal to
zero, then we skip to the next bit after computing carry.
If digit d′i is non-zero, we check digit d′i+1 with carry is 0
or r − 1. If d′i+1 = 0, we assign (cdi+1, cdi) = (0, d′i ). If
d′i+1 = r − 1, then we perform the conversion (cdi+1, cdi) =
(1, 0, d′i+1r + d′i − r2). Note that |d′i+1r + d′i − r2| < r, and
thus the converted digits (cdi+1, cdi) after Step 2.2. satisfy
the condition of gNAF.

If d′i+1 is neither 0 nor r − 1, then we assign d′i based
on the size of |d′i+1 + d′i | at Step 2.3. If |d′i+1 + d′i | > r holds,
we assign cdi = d′i − r with carry to d′i+1 = d′i+1 + 1. Other-
wise, cdi = d′i . Therefore, after Step 2.3. the converted dig-
its (d′i+1, cdi) satisfy the condition of gNAF. Then we have to
consider the case that the digit d′i+1 arisen from Step 2.3 is
converted by the next Step 2.2 or Step 2.3. Denote by cdi+1

the converted digit, and we check whether two consecu-
tive bits (cdi+1, cdi) satisfy the condition of gNAF. Note that
d′i+1 > 0 and cdi+1 = d′i+1 − r < 0. Recall that |d′i+1 + cdi| < r
and |d′i+1| > |cdi| for cdi < 0 from the above discussion. If
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cdi < 0, then we have |cdi+1 + cdi| = r − |d′i+1| + |cdi| < r. In
the case of cdi > 0, we have |cdi+1+cdi| = |d′i+1+cdi− r| < r
due to d′i+1 + cdi � 0, and |cdi+1| − |cdi| = r− (d′i+1 + cdi) > 0.

Consequently, any two consecutive digits (cdi+1, cdi)
obtained by the algorithm satisfied the condition of
gNAF. �

The proposed algorithm has the minimal non-zero den-
sity (r − 1)/(r + 1) with digit set {0,±1, . . . ,±(r − 1)} due to
the uniqueness of gNAF. However, our algorithm is able to
show an easier proof about the non-zero density of gNAF.

Theorem 6. The average density of non-zero digits arisen
from the algorithm (Radix-r to gNAF) is asymptotically r−1

r+1 .

Proof. The above algorithm has four statuses of digit di,
namely digit (0), digit (i) for i = 1, 2, . . . , r−2, digit (r−1, y)
with carry from the right, and digit (r − 1, n) without carry
from the right. The statuses are transited by the following
Markov chain:

(0) : 1/r (r − 2)/r 0 1/r
(i) : 1/r (r − 2)/r 1/r 0

(r − 1, y) : 1/r (r − 2)/r 0 1/r
(r − 1, n) : 1/r (r − 2)/r 1/r 0

 .

This Markov chain is aperiodic and irreducible, and thus
there is the stationary distribution: ((0), (i), (r − 1, y), (r −
1, n)) = ( 1

r ,
r−2

r ,
r−1

(r+1)r ,
2

(r+1)r ). Thus zero digit appears at
statuses (0) and (r − 1, y), and thus the non-zero density is
1− 1

r −
r−1

(r+1)r =
r−1
r+1 . Consequently, we prove the theorem. �

5. Experimental Results

Main operations appeared in pairing based cryptosystems
are as follows;

(1) Tate pairing e(Q,R),
(2) scalar multiplication dP,

where P,Q,R are points on the underlying elliptic curve
and d is an integer scalar [4], [5], [14], [15]. The proposed
scheme in this paper aims at improving the efficiency of the
scalar multiplication dP of elliptic curves over a finite field
with characteristic r > 2.

In order to evaluate the performance of the proposed
scheme, we implemented the scalar multiplication dP on su-
persingular curve E : y2 = x3−x+1 over finite field GF(397)
used in the references [8], [9], [11]. In this curve, the tripling
operation is very efficient, i.e., 3P = ((x3)3 − 1,−(y3)3) for a
given point P = (x, y), which requires no multiplications but
4 cubings in the base field GF(397). The finite field opera-
tions were implemented following the algorithms from [23],
but the multiplication used the well-known comb method.
As the irreducible trinomial for GF(397), we use x97+x12+1.

Our experiment environment was a Pentium 4
2.66 GHz desktop, with 512 MBytes of RAM, running
Linux Gentoo 2.6.10-r4. We wrote the program in C and
compiled it with GCC version 3.3.3 using the flags -O3
-fomit-frame-pointer -funroll-loops. In our im-
plementation the ratio of multiplication time to inversion

Table 4 Timings for the scalar multiplication using wrNAF.

(Radix,Width) Precomp. Evaluation Total
(2,1) 0.00 µs 5690.61 µs 5690.61 µs
(2,2) 0.00 µs 4990.20 µs 4990.20 µs
(2,3) 3.02 µs 4619.18 µs 4622.20 µs
(2,4) 80.87 µs 4410.00 µs 4490.87 µs
(2,5) 188.20 µs 4269.61 µs 4457.81 µs
(2,6) 446.59 µs 4198.47 µs 4645.06 µs

(3,1) 0.00 µs 2040.71 µs 2040.71 µs
(3,2) 47.54 µs 1321.59 µs 1369.13 µs
(3,3) 216.42 µs 986.48 µs 1202.90 µs
(3,4) 704.61 µs 812.27 µs 1516.87 µs
(3,5) 2167.39 µs 709.31 µs 2876.71 µs

Fig. 1 Precomputation (black) and evaluation (gray) times for wrNAF.

time in finite field is about 5, in this case, the affine coordi-
nates are more interesting. The conversion algorithm from
an exponent in base 2 to wrNAF was implemented using
GNU Multiple Precision Arithmetic Library (GMP).

Table 4 shows the pre-computation and the evaluation
time for radix-2 and -3 with different widths. To evalu-
ate timings of the scalar multiplication dP, we executed
it 100000 times for each pair (radix,width) with a random
155-bit exponent. We added the width 1 as reference, and
it corresponds to the double-and-add for radix-2 and triple-
and-add for radix-3. As expected the radix-3 representa-
tion is much faster then radix-2, because in characteristic
3 the point tripling can be efficiently computed. For com-
parison, the timing of computing Tate pairing e(Q,R) using
Duursma-Lee algorithm [7], [13] requires 7.71 ms in our ex-
periment.

In Fig. 1, we show the precomputation time, in black,
and the evaluation time, in gray. The precomputation time
grows faster in characteristic 3 leading to different optimal
width for radix-2 and -3. In our implementation the optimal
width, in terms of speed, for radix-2 is 5 and for radix-3
is 3. In our implementation, the wrNAF representation is
about 21% faster when using radix-2 and 41% when using
radix-3 then a standard scalar multiplication.

6. Conclusion

In this paper, we extended the width-w non-adjacent form
(wNAF) of binary representation to that of the radix-r rep-
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resentation, called rNAF. Our construction inherits the prop-
erty of the classical width-w NAF, namely there is at most
1 non-zero digit among w consecutive digits, and the digits
are not divisible by r. We estimated the required size of digit
set and the average density of non-zero digits using Markov
chain. We compared the proposed scheme with the previ-
ously known gNAF representation discussed by Joye-Yen.
Our scheme has smaller non-zero density with a larger digit
set. For radix 3, the proposed algorithm with width w = 2 at-
tains non-zero density 0.4 with two additional digits, where
gNAF has 0.5 with one additional digit.

Moreover, we showed that gNAF is a degenerated form
of rNAF—if some conversion tables for rNAF are removed,
we can obtain gNAF with a small modification. Based on
this observation, we presented a simple generation algo-
rithm of gNAF. Therefore, the proposed scheme can be con-
sidered as a canonical class for the signed radix-r represen-
tation. Indeed, if we choose r = 2, then we are able to obtain
the classical NAF. The proposed scheme is a good alterna-
tive to gNAF.

The radix-r representation is used for the efficient com-
putation of pairing-based cryptosystem constructed over
(hyper-)elliptic curve with characteristic r. The proposed
rNAF is particularly able to improve the speed of comput-
ing scalar multiplications.
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