
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 11, NOVEMBER 2002 2405

Road Detection in Dense Urban Areas Using SAR
Imagery and the Usefulness of Multiple Views

Florence Tupin, Bijan Houshmand, and Mihai Datcu

Abstract—This paper deals with the automatic extraction of the
road network in dense urban areas using a few-meters-resolution
synthetic aperture radar (SAR) images. The first part presents the
proposed method, which is an adaptation of previous work to the
specific case of urban areas. The major modifications are 1) the
clique potentials of the Markov random field that extracts the road
network are adapted and 2) a multiscale framework is used. Re-
sults on shuttle mission and aerial SAR images with different res-
olutions are presented. The second part is dedicated to road ex-
traction combining two SAR images taken with different flight di-
rections (orthogonal and antiparallel passes), and the obtained im-
provement is analyzed.

Index Terms—Different orientation views, Markov random
fields, road detection, SAR images.

I. INTRODUCTION

SATELLITE REMOTE sensing has reached a new level of
sophistication. There are at present many synthetic aper-

ture radar (SAR) sensors providing a wide-area coverage of the
earth (either satellite sensors like ERS-2, Radarsat, and soon En-
viSat, as well as Shuttle missions [1], or even aerial acquisitions
[2]) due to their all-time capabilities.1 Small-scale higher res-
olution imagery is required for detailed work. In this respect,
the new generations of a few-meter-resolution SAR sensors will
open the way to novel applications. However, the available inter-
pretation methodologies cannot cope with the high complexity
and huge amounts of acquired data. Many valuable datasets are
unexplored.

The paper presents and demonstrates solutions for one of the
most relevant applications of a few-meter-resolution SAR data:
road network detection in dense urban areas. Although many al-
gorithms have already been proposed for optical remote sensing
images [3], their application to SAR data remains difficult due
to speckle noise. Indeed, their direct application provides poor
results, and their performance depends on the radiometric mean
of a region in the SAR image. Therefore, dedicated works have
been developed to deal with radar images and their specific
properties [4].

Nevertheless, only very few works deal with road extraction
in dense urban areas [5]. The particular properties of these areas
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can disturb the detection process in two ways: 1) the backscat-
tering mechanisms are specific to these areas, implying different
statistical laws; and 2) the network characteristics are also spe-
cific (higher frequency of crossroads, multiple networks with
different widths, etc.). The subject of this paper is the introduc-
tion of a road detection algorithm for urban environment. We
present an adaptation of a previous method [6]. This method has
proven to be efficient on radar images but is not well adapted to
urban areas. Indeed, the prior knowledge introduced in [6] is not
valid in this case.

The first part of this paper presents the proposed method,
which is a modification of a road detection algorithm for
nonurban areas [6]. The new clique potentials are introduced,
and the multiscale process is described. Results of the method
are then presented for two American cities: New York and
San Francisco. In the second part, we study the potential
improvement when images taken from two different flight
directions are available. First, the merging method is described,
and then the results in the case of orthogonal (New York area)
and antiparallel (San Francisco area) directions are presented.

II. ROAD DETECTION IN DENSEURBAN AREAS

A. Appearance of the Road Network in Urban Areas

The road network usually appears as dark lines in SAR
data. This is due to the smoothness of the road compared to
its surrounding structures, thus having a mirror-like reflec-
tion resulting in low radar signal returns. The effect is more
pronounced for roads oriented in range direction. In azimuth
direction, some specific configurations, like border lines of
highways, road rails, elevated roads, bridges, etc., make roads
to appear as very bright lines because of multiple bounce
scatterings.

In the case of urban areas, roads also appear as dark lines,
and the contrast with its surroundings is usually higher than
in nonurban areas due to the double-bounce reflections of the
buildings. Nevertheless, the following phenomena must be kept
in mind:

1) heights of the building induce some lay-over effects, and
thus the accurate position of the roads is hard to define;
depending on the street orientation and the incidence
angle, there may be some discrepancy between the
detected roads and their real position;

2) if the buildings are too high compared to the incidence
angle and the streets too narrow, the roads may not be
visible on the radar image; in this case, some parts of the
streets may not be available on the radar data.

0196-2892/02$17.00 © 2002 IEEE
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Fig. 1. Diagram of the proposed method for road detection.

The difference in appearance depending on range or azimuth
directions makes the merging of different views very useful as
presented in Section III.

B. Description of the Method

The road detection method proposed in [6] is divided into two
main steps, which are summed up here (see also the diagram of
Fig. 1):

Step 1) a line detector adapted to the speckle statistics of
SAR images is applied (thresholding and linking
provide segments that are candidates for belonging
to the network);

Step 2) the “network reconstruction” step (Section II-B.2), a
closure method based on a Markovian approach de-
fined on a graph of segments is performed; this step
is a labeling of the segment graph with labels “road”
and “not-road” by minimizing an energy function;
this function, derived from probabilities and from a
Markovian hypothesis made on the label field, takes
both original data and prior knowledge about the
road shape (probability of crossings and curvature
limitations) into account.

In the following sections, we detail these different phases of
the process, emphasizing the adaptation of the algorithm to the
urban areas.

1) Feature Extraction: In this step, the segments that are
candidates for belonging to the road network are extracted using
a line detector applied on the SAR image (first block of Fig. 1).
This line detector is based on the statistical properties of fully
developed speckle areas [7] and corresponds to the fusion of a
ratio-based [8] and a correlation-based detector. In the case of
a Gamma-distributed amplitude image (fully developed speckle
[9]), a statistical study of the line detector gives the false-alarm

and detection rates, depending on certain parameters (contrasts
on both sides of the linear structure, size of the moving window,
etc.) [6]. Therefore, the threshold of the line responses may be
deduced as a compromise between a chosen false-alarm rate and
a minimum detectable contrast.

In the case of urban areas, the previous study is not valid.
Indeed, the backscattering mechanisms in the case of build-
ings—or most of the urban man-made objects—that are smooth
compared to the wavelength do not correspond to the fully de-
veloped speckle model [10], [11]. A simplified model corre-
sponding to a strong reflector (specular backscattering in a par-
ticular orientation) surrounded by a rough region implies a Rice
statistic, but in a more common case of a mixing of strong and
weak reflectors inside a resolution cell, no statistical model is
available. Besides, having to take into account more compli-
cated distributions, large analysis windows are necessary, which
is not compatible with the fine lines we want to detect. More-
over, in practice, the line detector used in [6] provides acceptable
results for urban areas. Indeed, the contrast on both sides of the
road is high due to the building responses.

Starting from the response of the line detector for each pixel,
we now generate segment primitives for further processing by
the following procedures: thresholding of the response image
and thinning of the binary image [12]; then, a polygonal approx-
imation step gives a vectorial representation of the segments.
Some of the local “cleaning” treatments proposed in [6] are no
longer valid, since they do not take into account the possibility
of crossroads; this is the case for the local Hough transform [13],
which retains only the most predominant road in a window, thus
suppressing the possible other parts of the crossroad.

2) Network Reconstruction Step:We now deal with the seg-
ments previously detected, trying to suppress false alarms and to
connect the “good” ones to obtain a fully connected network of
the streets (second block of Fig. 1). The same scheme as in [6]
is adopted (please refer to it for a detailed description of the fol-
lowing steps). Starting from the remark that local knowledge is
generally sufficient to identify roads, Markovian modeling has
been developed to deal with road identification.

a) Graph Construction:A graph is built from the
detected segments and all the connections between them
(actually, some proximity and alignment constraints are used to
reduce the size of the graph). Let us denote bythe number
of segments. Each segment is indexed byand represents
a node of the graph . Two nodes are linked when their
corresponding segments share an extremity (see Fig. 2).is
thus the “line-graph” of the graph of segments [14].

The cliques of the graph are the complete subgraphs of
that correspond to all subsets of segments sharing an extremity,
including singletons and cycles of three segments. Attributes
are attached to the nodes and the arcs of, taking into account
geometric properties:

• attribute is associated to each
graph node, where is the segment length;
will serve in the following as a scale factor that may be ad-
justed independently on the scene; this attribute is denoted
by and takes its value in ;

• angle modulo between the two segments is associ-
ated to each arc between nodesand .
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Fig. 2. Set of segments (detected and connections) and the corresponding
graph.

is the label ( ) associated to the node, and is
the label configuration for the whole graph (collection of all the
node labels).

Then the road identification process is modeled as the search
of the “optimal” binary labeling of the nodes of the graph (label
1 for road segments, 0 for others). The optimal labeling corre-
sponds to the configuration, which minimizes an energy func-
tion derived from a probabilistic model (cf. [6]). This energy can
be written as (with the set of all the segment measures derived
from the data)

(1)

The first term measures the likelihood of the
segments to belong to a road given the radiometric values of the
SAR image and depending on the data. The second one
reflects thea priori fit of the local configurations of the seg-
ments to a road hypothesis (contextual knowledge). Both terms
are detailed in the following sections.

b) Likelihood Term : The observation
associated to each segmentis defined as the mean of the edge
detector responses in the direction of the segment. The higher

is, the more confidence we have that it could be a road.
The potential associated to an observationand a

label must be low for a “good” association (e.g., low measure
and label 0-“not-road”-). The potentials have been derived

from a probabilistic study after a manual segmentation of roads
by a human observer and is given by (see [6] for a detailed ex-
planation):

if (2)

if (3)

if (4)

(5)

To respect the normalization constraint [6], the constant
is added to the potentials , with

and . Since ,
we have . Besides, to take into account the length
of the segments, the potentials are multiplied by.

The likelihood term is then defined by the sum of all the node
potentials

(6)

This term is not modified compared to the previous version
of [6]. The main modifications are introduced in the contextual
term that takes into account the prior information we have about
the road shape.

c) Prior Term : In the Markovian framework, the
prior (contextual) term can be written as a sum of the local clique
potentials

(7)

where is the set of cliques ( is simplified as
in the following).

Clique potentials have been chosen to express the following
prior knowledge about roads in [6]:

1) roads are long (they should almost never stop);
2) roads have a low curvature;
3) intersections are rare (by this we mean that a segment is

more often connected to a unique other segment in one of
its extremities than to many segments, at least in nonurban
areas).

In the case of urban areas, point 3) is no longer valid and is
replaced by the following assumptions:

• crossroads with either “cross” or “T” shapes are frequent;
crossroads with more than four segments are rare.

The flexibility of the Gibbs field framework allows us to
construct simple potentials endowing the random field with a
probability distribution stemming from this prior knowledge.
These potentials have been empirically chosen to express the
previous constraints and are an extension of the previous work.
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Some simple parametric potentials have been defined with intu-
itive signification, as explained below. Supervised learning with
neural networks as in [15] could also be done, but some prelim-
inary experiments showed that the size of the learning set has to
be huge. Of course, the chosen model with “cross” or “T” cross-
roads is restrictive and adapted to certain type of cities.

All clique potentials are null except for the cliques of
highest order corresponding to the sets of segments sharing the
same common extremity for all segments, which turns out to
be sufficient for modeling all the interactions between road seg-
ments given above. Denoting by an alignment criterion and

a perpendicularity criterion, for a cliqueof highest order,
we define the following set of equations:

in all other cases

All parameters are connected in a simple way with the three
previously expressed road characteristics. Choosing
and fulfills condition 1) and favors long roads (ex-
tremity penalty and length reward). penalizes road con-
figurations with high curvatures excepting crossroads fulfilling
conditions 2) and 3), whereas puts crossroads with
more than three or four parts and no “cross” or “T” shapes at
a disadvantage, which corresponds to condition 3). In practice,
the same study as in [6] can be used to define parameter inter-
vals, but some typical values are , , and

(the parameter values are, in fact, identical to
the ones of the previous work). Fig. 3 presents results showing
the influence of the parameter values.

3) Multiscale Analysis:The road width is very variable on
a remote sensing image, depending on the effective road size
and the image resolution. The line detector of the line extraction
step is limited to a line width of five pixels. To extract larger
roads, a multiscale process is applied. The number of scales to
be considered is deduced from the pixel spacing of the data.

Instead of detecting all the segment candidates and building a
large graph for the connection step (and thus mixing all the net-
works), we prefer extracting the roads with different scales and
then merging the networks with different widths. This method
has the advantage of preserving the coherence of each network
and produces less noisy results.

The multiscale analysis is, therefore, made in the following
way:

Fig. 3. Influence of the parameters illustrated on a small part (middle bottom)
of the San Francisco image. (Top) Default parameter setK = 0:21, K =

0:12, andK = K = 0:3, (middle) with increased “extremity penalty”K =

0:4 (all other parameters are kept), (bottom) with increased “angular penalty”
K = K = 0:8 (andK = 0:21,K = 0:12).
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Fig. 4. X-SAR image of Brooklyn, NY © IMF-DLR (size is 2048� 2048
pixels).

• creation of an image pyramid; the resolution is degraded
by averaging the amplitudes of pixel blocks; only
two levels with and are considered here;

• extraction of the road network for each level by the pre-
viously described method (coarser when and finer
with the original image corresponding to );

• merging of the different networks by superimposition fol-
lowed by a cleaning step.

C. Results

In this section, we present the results on two large American
cities, San Francisco and New York, acquired by different sen-
sors of a few-meter resolution. The next satellite sensor genera-
tion should provide data with similar resolutions to the examples
given below (6.25 m for X-SAR and 2.5 m for ERIM X-band
IFSAR data).

1) Results for X-SAR Image (New York):This first example
is an X-SAR image of New York (Fig. 4), acquired in October
1994 during a Shuttle Radar Laboratory mission. The pixel
spacing is 6.25 m 6.25 m for a nominal resolution of 15.9
m in range and 10 m in azimuth. The incidence angle is 62.7
in ascending mode. The image is in ground-range geometry. It
corresponds to the Brooklyn quarter with Greenwood Cemetery
and Prospect Park in the upper left corner of the image [see the
map Fig. 6(d)].

Automatic extraction provides the result in Fig. 6(a). The fol-
lowing comments can be made on the result: the main roads are
detected; the network is incomplete (it misses some parts of the
road); some false alarms occur in water areas due to the multi-
scale process.

2) Results for ERIM IFSAR Image (San Francisco):This
second example deals with an X-band, 80-MHz radar image
of San Francisco [Fig. 8(a)] with a finer resolution, taken with

the ERIM sensor. This image is acquired by an aerial interfer-
ometric SAR system. The nominal radar incident angle at the
center of the image is 45. The nominal resolution is 5 m, and
the pixel spacing is 2.5 m. The image is orthorectified as part of
the interferometric processing. In addition to the radar image,
the digital elevation model is also acquired.

Results are shown in Fig. 8(b). Since the resolution is better,
the road detection is improved compared to the previous result.
Nevertheless, the same comments can be made: the whole or-
ganization of the network (density and direction) is well de-
tected (specially the low density of roads in the San Francisco
Golden Gate Park in the left of the image compared, for in-
stance, to the upper right part); the false alarms in San Francisco
Bay occur due to the presence of the bridge and some inhomo-
geneities in the water producing lines in the feature detection
step. Note, also, that although it is not very frequent, some con-
nections in vegetation areas can occur due to the network re-
construction step of the method (this case occurs, for instance,
in Alamo Square in the middle of the image).

III. U SE OFMULTIPLE VIEWS WITH DIFFERENTORIENTATIONS

Since radars are side-looking sensors, the direction of looking
has a great influence on the acquired image [4]. This phenom-
enon is especially important for relief areas, but also in dense
urban areas, influencing road and building aspects. It is illus-
trated in Fig. 5 where the same area is seen with almost two or-
thogonal directions. In the first image [Fig. 5(a)], the sensor is on
the left, and therefore horizontal roads (in the range direction)
are easily visible. The buildings, which are perpendicular to the
direction of looking (in azimuth direction), appear very bright
due to double-bounce reflections in “favorable” orientation, and
the selected area has a very high radiometry compared to the
whole SAR image. In the second image [Fig. 5(b)], the sensor
is “above” the image, and therefore vertical roads are the most
visible, whereas horizontal ones are more difficult to detect. The
buildings do not have the same appearance as in Fig. 5(a) and
have a globally lower radiometry.

Not only the orientation has a great influence on the
human-made structure aspect, but also the incidence angle
value [10]; this is the case, for instance, for streets where high
buildings stand along both sides of the road; in this situation,
depending on the incidence angle, the width of the streets, and
the height of the buildings, the roads may or not be visible on
the radar image.

This part studies the road extraction improvement using
different views of the same area. The first studied case is a very
favorable one, since the two views are almost perpendicular
giving “orthogonal” information, and the second one is the
“worst case” with two antiparallel directions.

The merging method has been described in [16] where two
approaches were described: the first one was a simple superim-
position of the two extracted networks, and the second one was
a merging of the two SAR data retrievals inside the extraction
process. Since the improvement using the second (more sophis-
ticated) method was slight, we only present here the results of
the superimposition of the two detected networks. In all cases,
the images are manually registered. Automatic registering using
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Fig. 5. Two SAR data with different looking directions. (Left) Radar is on the left (looking right). (Right) Radar is above (looking top to bottom).

the two detected networks is the scope of some future work.
Let us note here, that some registering problems may appear in
dense urban areas due to the lay-over effects that are particularly
important for the buildings.

A. Case of Orthogonal Views

We had at our disposal an almost perpendicular image of New
York, taken in descending mode, with an incidence angle of
31.6 . The result using the two perpendicular SAR images is
shown in Fig. 6(b) and (c). Comparing the result of Fig. 6(b)
with Fig. 6(a), as expected we observe a clear improvement of
the detected networks:

• some of the vertical streets that were not detected in a
single view are now extracted [e.g., see Fig. 6(d)];

• some of the discontinuous roads are now complete, which
gives a better organization of the urban landscape [e.g., see
Fig. 6(a)];

• some of the missed roads have been detected, so there are
fewer undetected network parts (e.g., see the darker area
in between the two very bright quarters).

In this case, the road network extraction is greatly improved
using the two views with different orientations.

A quantitative analysis of the results showed that approxi-
mately only one third of the roads are detected on one image (in
this particular area). Thus, the percentage of detected roads is
increased by around 30% compared to a single view.

B. Case of Antiparallel Views

The processed images are JPL C-band AIRSAR images of
San Francisco [Fig. 7(a)], with a 40-MHz sensor, a nominal res-
olution of 10 m in ground range and azimuth, and a pixel spacing
of 5 m. The image is orthorectified using the interferometric
process.

Here the problem is different, since the information is mainly
redundant instead of complementary as in the previous case.
Indeed, since the flights are parallel, the same road directions
are favored. Therefore, in this case, the fusion of the two views is
mostly useful to suppress some false alarms in the road detection
process. The roads detected on both images are quite reliable,
whereas those appearing in only one view are suspected to be
an erroneous detection.

The results are shown in Fig. 7(b) and (c) (due to the lack
of space, only a small part is presented). The roads detected on
both images are shown [Fig. 7(d)]. It only contains the main
roads of the San Francisco image. Some of the spurious streets
found in between the real ones are suppressed. An analysis of
the corresponding optical image has shown that the false detec-
tions are due to the specific organization of the town. Indeed,
inside the square delimited by four roads, there are two rows of
high buildings (along the streets) and an inner courtyard with
vegetation. This yard has a lower radiometry and appears as a
dark linear feature in the SAR image, inducing false alarms in
the road detection process.

As for the two orthogonal views, the road extraction is im-
proved, but in a different way. Here, we have a means to classify
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(a) (b)

(c) (d)

Fig. 6. Result of the road extraction process for the New York image. (a) using one view, (b) using two orthogonal views (the networks extracted on each view
are superimposed); (c) the three networks: (blue) the network detected on both views, (green) the one detected on the south view only, (pink) the one detected on
the east view only, (d), the corresponding map.

the network depending on the confidence we have in the detec-
tion.

If we try to quantify the improvement, the following results
can be found (for the whole image):

• cross validation of a road section by the two images would
reduce the false alarm rate by about 10% in this part of
the image (a road section is classified as a false alarm
if it does not correspond to the network, even if its size
is small, which means that the global false alarm rate is
overestimated);

• in return, the number of nondetected roads will increase,
but only by 1%.

IV. CONCLUSION AND FURTHER WORK

This paper has presented a road detection method that is an
adaptation of previous work to the case of dense urban areas.
The clique potentials have been modified to take into account
more adapted knowledge. In a second part, the use of two dif-
ferent views for road detection purposes has been studied. It
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(a) (b)

(c) (d)

Fig. 7. (a) Part of the SAR view of San Francisco (pixel spacing 5 m) and (b) the automatic extraction using two views. The color legend for figure (c) is ( blue)
the network detected on both views, (green) the one detected on the south view only, and (pink) the one detected on the north view only. (d) Network detected on
both views.

has been shown that whatever the configurations [perpendicular
(i.e., complementary information) or antiparallel, i.e., (redun-
dant)], the road detection is improved. In the first case, the net-
work can be completed, since some of the roads are only vis-
ible in one view. In the second case, the detection quality is im-
proved, since the parts of the network that are not reliable can
be pointed out.

One of the remaining problems is that the user has to choose
the model to use. Particularly, the model proposed in this paper
favors 90 crossroads, which will not be adapted for historic Eu-

ropean towns for instance. A possible solution, subject of further
work, is to have many models corresponding to different labels
(one for river, one for roads in urban areas, one for “country-
side” roads, etc.) and make them compete in the same optimiza-
tion process.

Other works include the use of the extracted network for
different applications. One of them is the use of the roads
for urban characterization and classification (delimitation of
interest areas, city planning indicators, etc.). In the same way, it
could be used for data mining for which the network attributes
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(a)

(b)

Fig. 8. (a) Image of San Francisco (size is 4000� 1500 pixels) and (b) result of the road extraction process.

could be a characterization of the towns. Other applications
are the automatic registering of images using the extracted net-
works (the main difficulty being the displacement of the roads
due to the lay-over effects), and the automatic determination of
the ground elevation with stereo or interferometric data [17].
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