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A Framework for Analyzing and Designing
Scale Invariant Remote Sensing Algorithms

Zhenglin Hu and Shafiqul Islam

Abstract—The land surface exhibits heterogeneity across a
range of spatial scales. Remote sensors provide integrated in-
formation at the pixel scale, however, there is important spatial
variability at scales smaller than the scale of the sensor. On
the other hand, large scale models that use remotely sensed
data do not require them at the same spatial resolution at
which remote sensors are required to operate. In this paper, a
framework for testing aggregation-disaggregation properties of
remote sensing algorithms is presented. The proposed frame-
work provides a systematic approach for parameterizing the
land surface heterogeneity effects. For the estimation of the
pixel scale response, the lumped response should be modified by
the variance and covariance terms. This representation of land
surface heterogeneity could lead to substantial savings in remote
sensing data storage and management. Using simulated land and
vegetation scenarios, we have successfully parameterized subpixel
scale heterogeneity effects for the estimation of vegetation index,
by modeling the variances and covariance terms with the pixel
scale values.

I. INTRODUCTION

T HE biosphere-atmosphere transfer, ecosystem process,
and biogeochemistry models all require land surface

parameters. Currently, the most feasible way to obtain these
parameters over large areas is through satellite remote sensing.
Land surface parameters including surface temperature, leaf
area index, normalized difference vegetation index, fraction
of photosynthetically active radiation, and soil moisture are
needed at a variety of spatial scales, ranging from meters
to hundreds of kilometers, for different process models. Pro-
cessing global data sets at scales as fine as tens of meters
is prohibitive with the existing computational capability. For
example, over 130 million 1-km pixels would be required to
cover the land surface across the globe, and consequently, use
of remote sensing measurements at 1 km or finer resolution
presents a significant challenge [6].

There are at least two widely debated issues in the use
of satellite multispectral data for the characterization and
representation of land surface and ecosystem parameters. First,
land surface parameters exhibit important spatial and temporal
variability at scales smaller than the scale of measurement.
For instance, in the semiarid region of the Southwest United
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States vegetation density varies at scales (meters) that are
much smaller than the pixel scale of current multispectral
sensors (tens of meters to kilometers). Several studies have
provided substantial information on the spatial variability of
vegetation and other terrain attributes at scales smaller than
100 m [20], [21], [25]. Pixel scale measurements provide
integrated reflectance information, as a result, adisaggrega-
tion methodology is needed to decipher subpixel landscape
characteristics.

Second, large-scale models that use remotely sensed land
surface parameters do not require them at the same spatial
resolution at which the remote sensors are required to operate.
For example, current generation general circulation models
use input levels of hundreds of kilometers, and cannot use
land surface parameters below that spatial resolution. One
outstanding research question critical to the integration of
satellite derived data into global models is how adequately
the inherent spatial heterogeneity is represented at scales
commensurate with current generation global models [10]. To
address this question, anaggregationmethodology is needed
that can bridge the scale gap between the scale of satellite
measurements and large scale model resolution by taking
into account the role of spatial heterogeneity in landscape
parameters and responses.

The characterization of small-scale land surface heterogene-
ity in modeling the land-atmosphere system and in designing
remote sensing algorithms have become a central focus of
many recent studies [2], [26]. There is a considerable debate,
however, over the influence of subgrid scale land surface
heterogeneity on the grid scale response and over how to
parameterize the effects of spatial heterogeneity in remote
sensing algorithms. Bonanet al. [2] found that the hetero-
geneity of land surface is important to the grid level sensible
and latent heat fluxes, whereas Wood and Lakshmi [26] found
that latent heat flux is not particularly sensitive to the land
surface heterogeneity.

An increasingly popular approach attempts to account for
the effect of land surface heterogeneity on landscape re-
sponses by using the so called scale invariant algorithms
or parameterizations. A scale invariant algorithm uses pixel
level mean values of parameters, but promises to account for
subpixel level heterogeneity (disaggregation). It also promises
to provide a solution for the aggregation problem. This notion
of deriving scale invariant land surface parameterizations
and remote sensing algorithms is very appealing. For the
retrieval of remotely sensed land surface parameters, if scale
invariant algorithms could be designed, one would be able
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to use coarser resolution radiance data to infer landscape
properties that need finer resolution radiance data. This would
result in substantial savings in terms of computational and
data storage requirements. Recently, Hallet al. [5] devel-
oped the conditions for scale invariance and have shown
that mathematical structures relating radiation and surface
fluxes to remote sensing parameters are nearly scale invariant
for FIFE [First ISLSCP (International Satellite Land Surface
Climatology Project) Field Experiment] study area. Their
approach has primarily focused on a particular form of surface
parameterizations, especially a product function like reflected
component of shortwave radiation, and incorporated the effect
of heterogeneity in landscape structure. For the chosen form of
the parameterization, effects of heterogeneity was accounted
for only through the covariance between parameters. Sellerset
al. [19] have explored the relationship between surface con-
ductance and spectral vegetation indices using the FIFE data
set and have shown that near-linear relationship between these
two parameters lead to scale invariance for the studied cases.
Wood and Lakshmi [26] showed that the normalized difference
vegetation index (NDVI) is scale invariant at the FIFE experi-
ment site. The relative homogeneity of the FIFE site compared
to a GCM (General Circulation Model) grid block, however,
could prevent the generalization of this conclusion. In fact,
recent results regarding scale invariance over heterogeneous
land surfaces are rather mixed. For example, Pielkeet al.
[14] suggest that heterogeneity in land surface characteristics
could produce significant differences in surface fluxes across
heterogeneous patches. Consequently, they argue that land
surface responses cannot be considered scale invariant. Mahrt
and Sun [11] have reviewed several approaches to represent
spatially averaged surface fluxes over heterogeneous surfaces.
Based on the analysis of three different field experiment data,
they argue that the effective exchange coefficients for spatially
averaged surface fluxes are approximately independent of
averaging scale, except for the case of weak flow over highly
contrasted heterogeneous surfaces.

In order to address some of these questions regarding the
effects of landscape heterogeneity on the performance of
remote sensing algorithms, we will focus on the following
objectives in this paper.

• Develop a framework to test the scaling properties
(aggregation-disaggregation) of remote sensing algo-
rithms.

• Demonstrate the utility of the above framework for the
parameterization of land surface heterogeneity effects for
the disaggregation problem.

Our primary focus in this paper will be on the disaggregation
problem. Specifically, we will use the NDVI as an example
and derive the variances and covariances of subpixel level
radiances, using only pixel level information. The plan of
the paper is as follows: in the next section we define a
few terms that have specific meaning in this paper. In the
following section we formulate a general framework to study
the aggregation-disaggregation properties of remote sensing
algorithms. Subsequently, we elaborate the procedure devel-
oped in Section III for two remote sensing algorithms. In

Fig. 1. Remote sensing algorithm takes a set of input parameters (e.g.,
Radiances) and produces an output (e.g., NDVI).

Section IV, we include a proposed parameterization of NDVI
that accounts for subpixel scale heterogeneity by using only
pixel scale information, and concluding remarks are given in
Section V.

II. DEFINITIONS

A few terms used in this paper have specific meaning, we
define those here. A heterogeneous land surface at the coarser
resolution may be viewed as a collection of land surface
elements at the finer resolution. The land surface at the coarser
resolution is defined as pixel and at the finer resolution as
subpixel here.

Remote sensing algorithm takes a set of parameters
as inputs and produces an output (Fig. 1). For example,
the normalized deviation vegetation index is an algorithm.
This algorithm takes two channels of radiances as input and
produces the vegetation index as output.

In a lumped algorithm, the system is spatially averaged. On
the other hand, the distributed algorithm considers land surface
radiance properties taking place at various points in space and
characterizes the variables as a function of spatial dimensions.

Here, a lumped algorithm takes pixel scale radiances as
input and produces an output at the pixel scale. The output
from a lumped algorithm is lumped output at the pixel scale.
By a lumped algorithm, we mean that the domain is spatially
homogeneous with regard to its inputs, parameters, and outputs
(Fig. 2, right part).

Distributed algorithm calculates the pixel scale response by
first dividing the pixel into a number of subpixels which can
be assumed to be homogeneous. Then the response of each
subpixel is aggregated by a suitable kernel (e.g., areal weighted
average) to get the pixel scale output. Thus, a distributed
algorithm accounts for spatial variability of inputs, parameters,
and outputs within a pixel. The estimation of pixel scale
response from subpixels through a suitable kernel is referred
as aggregation (Fig. 2, left part).

Scale invariant algorithm means that the empirical relation-
ship developed from point observation can be used for larger
areas, e.g., at the pixel scale. A scale invariant algorithm will
produce the pixel scale response if we use average parameters
over the pixel as input. Quasiscale-invariant algorithm means
that the resulting error from using an algorithm to estimate the
pixel scale response would be small.

III. A NALYSIS OF SCALE INVARIANCE: A FRAMEWORK

If a remote sensing algorithm is valid for a point scale or fine
resolution, can we use this algorithm at a coarse resolution?
Under what conditions, is the algorithm scale invariant? In
order to answer these questions, we begin our discussion for
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Fig. 2. Scheme for aggregation and scaling in land surface modeling and remote sensing.

an algorithm at the fine resolution. Then, we will discuss two
requirements for scaling to be valid.

Let be the joint density function of
parameter set over a pixel (for example,
120 m square pixel), then the fractional area that has the
same set of parameters in the range of

will be

(1)

where , and are interval of parameters.
We assume here that each parameter is discretized intoequal
intervals. This is equivalent to dividing a pixel into patches
with fractional area corresponding to the frequency of each
interval as defined by (1).

Let the output from the algorithm at a pointbe having
a parameter set at the point , for a given
remote sensing algorithm

(2)

Then the pixel scale output will be

(3)

The subscript “ ” indicates that the pixel scale output is
aggregated from the output of a distributed model. Taking limit

to the above equation with respect to(this is equivalent to
dividing the pixel into finer elements), we have

(4)

This is a generalized formulation for the estimation of pixel
scale quantities by taking subpixel heterogeneity into account.
Interactions among remote sensing inputs and parameters
within a pixel call for a joint stochastic distribution for these
inputs and parameters. The lack of knowledge of the joint
parameter density function of a remote sensing algorithm,
however, makes practical use of (4) difficult. Nonetheless, (4)
may be used to elucidate some properties of a scale invariant
algorithm.

Let the density function forth parameter be , then the
pixel scale value of this parameter, which is the pixel average
of this parameter, will be

(5)

Let be the pixel scale parameter set. If the
point algorithm is valid at the pixel scale, we can use the
algorithm to get the lumped output over a pixel as

(6)



750 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 3, MAY 1997

If the algorithm is scale invariant, (4) and (6) will lead to
same pixel scale output. In Hu and Islam [8], we have dis-
cussed at least two conditions under which the scale invariant
assumption is appropriate. We briefly review the conditions
here. First,If the parameters are homogeneous over the pixel
scale, then the algorithm is scale invariant.Second,If the
algorithm can be described as a linear combination of inputs
and parameters, then the algorithm is scale invariant.Under
these two conditions, we can show (4) and (6) are equivalent.
Thus for homogeneous land surface or linear algorithms,
remote sensing algorithms can be scaled up or down without
any error.

For the naturally occurring heterogeneous land surfaces,
either of these two conditions would be difficult to satisfy.
Thus, theoretically, there may not be any simple scale invariant
algorithms. However, if the error is very small between the
aggregated output from a distributed algorithm and the output
from a lumped algorithm, a quasiscale-invariant relationship
could still be feasible. Such a quasiscale-invariant algorithm
could be very useful for remote sensing application since it
would greatly reduce the computational and storage require-
ment. Let us divide a pixel into equal size subpixels and

be the parameter set for an algorithm
at the subpixel , and be the average
parameter set for that algorithm over the pixel. Now using the
theory of small perturbation, and neglecting third and higher
order terms, we have

(7)

Similar linearization approach using Taylor series has been
used before in hydrologic and ecological literature [1], [3].
Most of these studies, however, considered one parameter at a
time and have described the effects of heterogeneity in terms
of variance of parameters. Using (7), we get the aggregated
output over the pixel from a distributed algorithm as

(8)

Note that in (8) accounts for the effects of the surface
heterogeneity. To get the lumped output over the pixel,,
usually pixel level average parameters are used:

(9)

The difference between aggregated response from a distributed
algorithm and lumped response can be estimated by

(10)

Expanding (10), we have following equation which includes
variance of parameters, covariance between parameters, and
derivative terms that account for the degree of nonlinearity:

(11)

The conditions described before are still valid for (11). If
the parameters are homogeneous, then is zero; for
linear , the derivatives of are zero, thus the
scale invariance holds. If the algorithm is weakly nonlinear
or the parameters are mildly inhomogeneous over the pixel,
a quasiscale-invariant relationship may still be found because
under such conditions, the right hand side of (11) will be small.
In (11), the correlation between the remote sensing inputs
and parameters also plays an important role in the nonlinear
algorithms.

If the algorithm is not scale invariant, (11) would still
provide a method to parameterize the pixel scale output from
an algorithm. In order to estimate the pixel scale output, the
lumped output should be modified by the algorithm parameter
heterogeneity. For a given algorithm, the derivatives of an
algorithm to its parameters are known. Thus, if we can
parameterize the variances and covariances of parameters by
their corresponding pixel scale mean values, (11) can be used
to estimate the pixel scale response by taking into account
the parameter heterogeneity. Furthermore, (11) can also be
used to design scale invariant remote sensing algorithms. For
naturally occurring land surfaces, homogeneity assumption
would almost never be appropriate. Thus, in designing scale
invariant remote sensing algorithms, one should look for linear
combination of inputs and parameters.
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IV. A PPLICATIONS

Equation (11) provides a systematic and generic framework
for examining scale invariant properties of different algo-
rithms. Here, we demonstrate the utility and effectiveness of
(11) to determine scale invariant characteristics of two com-
monly used remote sensing algorithms: NDVI and TM-derived
sensible and latent heat fluxes. We also use this framework to
explain some findings from recent field experiments.

A. Normalized Difference Vegetation Index (NDVI)

The NDVI is usually calculated by using channel 1 (red)
and channel 2 (infrared) data sensed by Advanced Very High
Resolution Radiometer (AVHRR) or Thematic Mapper (TM):

NDVI (12)

where represents channel 1, and represents channel 2
reflectance or radiance. The reflectance or radianceis often
referred to as the red and the near-infrared band. The NDVI
is perhaps one of the most widely used vegetation index and
the utility of NDVI for satellite assessment and monitoring
of the global vegetation cover has been demonstrated over
a decade [9]. The NDVI data have been related to physical
properties of vegetation [16], [18], [23] and seasonal integrals
of the NDVI have been correlated with the accumulation of
above ground biomass [4], [24]. The NDVI data have been
used in the studies of ecosystem structure and function, land
cover classification, and carbon and biogeochemistry cycle of
the earth [17], [22].

Substituting (12) into (11), we have the difference between
aggregated normalized difference vegetation indexNDVI ,
and a lumped estimate of the normalized difference vegetation
index NDVI as

NDVI NDVI

(13)

We recall thatNDVI is estimated from a distributed NDVI
algorithm while NDVI is calculated from a lumped NDVI
algorithm. The relative difference between these two estimates
may be found as

NDVI NDVI

NDVI

(14)

From (13) and (14), we see that the relative error between
the lumped and distributed NDVI algorithms depends on the
variances of the red and near-infrared band radiances from
the surface and the covariance between these two radiances.
If the distribution of red and near-infrared band radiances is
highly heterogeneous, then a simple scaling relationship for
NDVI algorithm might not be found because in such cases
the variances of the red or near-infrared band radiance would
be large. Thus, for NDVI algorithm, we need to determine
on what scale, the red and near-infrared bands are nearly
homogeneous in order to use the scaling algorithm of NDVI. A
hypothetical example is provided in Section IV-D to illustrate
the effect of surface heterogeneity on the NDVI algorithm.

B. TM-Derived Sensible and Latent Heat Fluxes

Sensible and latent heat fluxes can be estimated using the
TM thermal band (10.45–12.5m, with a resolution of 120
m) aboard Landsat following a procedure suggested by Holwill
and Stewart [7]. The relationship between surface radiometric
temperature and emittance is given for the Landsat thermal
channel by Markham and Barker [12] as

(15)

where is surface emittance inWm Sr m
and are constant coefficients. At the FIFE site,

Wm Sr m and K after atmo-
spheric calibration for August 15, 1987 [26].

In order to estimate the sensible heat flux, the exchange
coefficient should be determined. Holwill and Stewart [7]
presented a procedure to estimate the exchange coefficient by
combining the surface station data with TM satellite thermal
data. A TM-derived surface temperature is estimated for each
location of surface flux stations. The TM surface temperature
estimates and the station sensible heat flux measurements can
be combined to provide an exchange coefficient at each station
from the TM data in the following form:

(16)

where is the observed station sensible heat and subscript
“ ” is for station. is the observed station air temperature,
and the TM-derived surface temperature.is the air density
and is the specific heat of air at constant pressure.

The exchange coefficients at all flux stations, , are
interpolated across the field experiment site through geosta-
tistical kriging. We indicate this exchange coefficient field as

. Similarly, is also interpolated across the site. Using
exchange coefficient and air temperature fields and the
TM-derived surface temperature (all at a 120-m resolution),
the sensible heat flux can be estimated over the domain by
inverting (16). That is

(17)
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where is the sensible heat flux field derived from TM
data. Subscript “” is for remote sensing. Substituting (17)
into (11), we have the difference of the aggregated sensible
heat flux from a distributed sensible heat flux algorithm and
the lumped sensible heat flux from a lumped sensible heat
flux algorithm as

(18)

where

The first term on the right hand side of (18) is due to the
nonlinearity of sensible heat flux to the surface emittance,
the second term in (18) is due to the correlation between the
exchange coefficient and the surface emittance, and the last
term in (18) is due to the correlation between the exchange
coefficient and the air temperature at the observation level.
A higher air temperature will lead to a more stable atmos-
phere, and more stable the atmosphere is, smaller will be the
exchange coefficient. Thus, the exchange coefficient and air
temperature are negatively correlated. The first two terms in
(18) are essentially due to the correlation between exchange
coefficient and surface temperature. Because the exchange
coefficient and surface temperature are positively correlated,
the right hand side of (18) is positive. Thus the heterogeneity
of surface emittance, exchange coefficient, and air temperature
at observation level would introduce errors in scaling up of
sensible heat flux in the remote sensing algorithm.

The TM-derived latent heat flux can be estimated by as-
suming that the sum of the averaged latent and sensible heat
fluxes for the station data and the TM-derived fluxes would
be equal. Based on analyzes of the remote sensing algorithm
for the sensible heat flux, we can infer that the heterogeneity
of land surface would also introduce errors in scaling up of
latent heat flux in the remote sensing algorithm.

C. An Illustration for Comparing Lumped, Distributed,
and Proposed NDVI Algorithms

Here, we compare and contrast three approaches to estimate
NDVI over a heterogeneous pixel consisting of a mixture of
totally vegetated area () with fraction area , and nonvege-
tated area () with fractional area . Following Price [15],
we assume that the different surfaces are completely resolved
by the sensor, and use

Fig. 3. Comparison of NDVI estimates from three approaches for a hypo-
thetical example of heterogeneous land surface conditions.

, and . The lumped normalized difference
vegetation index at the pixel scaleNDVI is calculated by
using (12) with pixel level average radiances and and

. The aggregated normalized difference vegetation index
over the pixel scale from the distributed algorithmNDVI is
calculated by first applying (12) to get normalized vegetation
index from each subpixel, then averaging over the pixel.
Our proposed framework estimates the normalized difference
vegetation index over the pixel by adding a correction term to
the lumped estimate of the normalized difference vegetation
index. That is

NDVI NDVI correction term. (19)

The correction term accounts for the effect of surface hetero-
geneity. From (13), it can be expressed as

correction term

(20)

Fig. 3 compares and contrasts NDVI from these three ap-
proaches. Lumped algorithm always overestimates the NDVI
when the surface heterogeneity exists. NDVI from our pro-
posed algorithm is quite close to the distributed algorithm.
This demonstrates that our proposed framework for including
the effects of surface heterogeneity performs well and higher
order heterogeneity effects may be neglected.

D. A Proposed Parameterization to Account
for the Subpixel Heterogeneity

In the above example, we take advantage of the assumption
that subpixel radiances are available. In reality, subpixel
level radiances would be rarely available. Consequently, for
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the practical use of our proposed framework, variances and
covariance of and must be known in advance. In
the absence of a probability distribution function (or second
order statistical moments), a parameterization of the variances
and covariance of and by the pixel scaleradiances is
desirable.

For the example of Section IV-C, we find that the relation-
ship between the normalized standard deviation of radiance
( ): for or and the normalized mean radiance over
the pixel ( ) is a half ellipse (Fig. 4). That is

(21)

where

(22a)

(22b)

where is for the standard deviation of reflectance or radiance.
The bar on the symbol is for the pixel level values or
average, and subscripts and are for the minimum and
maximum possible values over pixels. The above relationship
can be derived analytically by using the definitions of average
radiance and variance of radiance over a pixel. For example,
average radiance for channel 2 radiance can be expressed as:

(23)

Since is the lowest radiance and is the highest
radiance for channel 2, from (23), we have

and

(24)

Then the normalized pixel average radiance for channel 2 is

(25)

The variance of channel 2 radiance can be calculated as
follows:

(26)

Using (23)–(25), one finds that the variance can be rewritten as

(27)

The variance reaches its maximum when the normalized pixel
average radiance is 0.5. Thus, the maximum variance is

(28)

Fig. 4. Relationship between normalized standard deviation and the normal-
ized average radiance.

From (25), (27) and (28), the relationship between standard de-
viation of radiance and the normalized pixel average radiance
is expressed as

(29)

Because the minimum standard deviation of radiance is zero,
we can rewrite(29) as

(30)

which is (21) for the channel 2 radiance.
The covariance between the radiances of the channels 1

and 2 can be written as

Cov

(31)

By using (22a), (23), and (28), one can rewrite (31) as

Cov

(32)

Thus, the covariance between the radiances of the channels
1 and 2 is only related to the pixel averages through the
normalized average radiances.

Combining (19), (20), (29), and (32), one has the following
expression for our proposed algorithm for estimating pixel
NDVI while accounting for the surface heterogeneity:

NDVI NDVI

(33)
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Since this formula is derived directly from the definitions of
variances and covariance, the plot ofNDVI versus vegetation
fraction should be exactly the same as in Fig. 3. However, the
beauty of (33) is that we only need the information at the
pixel scale for estimating the NDVI that includes subpixel
scale heterogeneity effects. This will substantially reduce the
computation and storage requirements. The above relationships
between the average, standard deviation, and covariance of
radiances need to be validated from the observed radiance
and NDVI data. For our illustration, we have used the most
commonly used NDVI algorithms. Many studies, however,
have found the NDVI to be sensitive to soil, atmospheric
conditions, sun-view geometry, and the presence of dead
material [13]. We hope future studies would seek to utilize
our approach to analyze improved version of the NDVI by
correcting for soil and atmospheric sources of variances.

V. CONCLUDING REMARKS

A method has been developed to test aggregation-
disaggregation properties of remote sensing algorithms. This
analytical framework permits identification of two conditions
under which upscaling or downscaling of remote sensing
algorithms can be performed without incurring significant
errors. These two conditions are existence of homogeneous
land surface or linear representation of remote sensing
algorithms. For commonly encountered land surface and
remote sensing algorithms, these two conditions would often
be violated.

To account for effects of heterogeneity and nonlinearity, we
propose a new representation by parameterizing the variance
and covariance terms with pixel scale mean values of param-
eters. This representation could lead to substantial savings in
remote sensing data processing and management. We have
demonstrated the utility of this framework by analyzing remote
sensing algorithms for the estimation of sensible heat flux and
vegetation index. Our preliminary analysis suggests that TM-
derived sensible heat flux and normalized difference vegetation
index cannot be scaled up or down without introducing error.
Here, we have only used two commonly used remote sensing
algorithms to demonstrate the utility and effectiveness of our
proposed approach. We hope future studies would utilize
the proposed framework to test aggregation-disaggregation
properties of other remote sensing algorithms.

To parameterize the effects of subpixel scale heterogeneity
in the estimation of NDVI, we have developed an explicit
functional relationship between pixel scale mean radiance
and correction terms involving variance and covariance of
radiances. Although this framework can provide a reasonably
accurate estimation of NDVI over heterogeneous surfaces, we
must emphasize here that to keep the analytical framework
tractable, we have neglected third and higher order correction
terms. Before extending the framework to include higher order
correction terms, future studies should seek to validate the
proposed functional relationship between pixel scale values
and correction terms by using remotely sensed data. To test
whether we can infer subpixel scale land surface properties by
using only pixel scale information, we need remote sensing

measurement from at least two sensors, one with a very fine
resolution and the other with a coarser resolution, for the
same region. We are currently analyzing data sets from several
sensors and hope to present our findings in the future.
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