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A Framework for Analyzing and Designing
Scale Invariant Remote Sensing Algorithms

Zhenglin Hu and Shafiqul Islam

Abstract—The land surface exhibits heterogeneity across a States vegetation density varies at scateméters) that are
range of spatial scales. Remote sensors provide integrated in-much smaller than the pixel scale of current multispectral
formation at the pixel scale, however, there is important spatial sensors (tens of meters to kilometers). Several studies have

variability at scales smaller than the scale of the sensor. On . L . . L
the other hand, large scale models that use remotely sensedProvided substantial information on the spatial variability of

data do not require them at the same spatial resolution at vegetation and other terrain attributes at scales smaller than
which remote sensors are required to operate. In this paper, a 100 m [20], [21], [25]. Pixel scale measurements provide
framework for testing aggregation-disaggregation properties of ntegrated reflectance information, as a resuldisaggrega-

remote sensing algorithms is presented. The proposed frame- tion methodology is needed to decipher subpixel landscape
work provides a systematic approach for parameterizing the .

land surface heterogeneity effects. For the estimation of the characteristics.
pixel scale response, the lumped response should be modified by Second, large-scale models that use remotely sensed land

the variance and covariance terms. This representation of land surface parameters do not require them at the same spatial
surface heterogeneity could lead to substantial savings in remote resolution at which the remote sensors are required to operate.
sensing data storage and management. Using simulated land and’:Or example, current generation general circulation models

vegetation scenarios, we have successfully parameterized subpixe . :
scale heterogeneity effects for the estimation of vegetation index, Us€ input levels of hundreds of kilometers, and cannot use

by modeling the variances and covariance terms with the pixel land surface parameters below that spatial resolution. One
scale values. outstanding research question critical to the integration of
satellite derived data into global models is how adequately
I. INTRODUCTION the inherent spatial heterogeneity is represented at scales
) commensurate with current generation global models [10]. To
T HE b|gsphere-atmosphere transfer, egosystem PrOC&s¥dress this question, aggregationmethodology is needed
and biogeochemistry models all require land Surfa‘fﬁat can bridge the scale gap between the scale of satellite

parameters. Currenty, the ”?OSt feasible way to obtain thei"ﬁ%asurements and large scale model resolution by taking
parameters over large areas is through satellite remote sens;

Land ; t includi ‘ " i I| ' account the role of spatial heterogeneity in landscape
and surface parameters including surface temperature, Igat 1o o 204 responses.

rea index, normaliz ifference v ion index, fraction o
area index, normalized difference vegetatio dex, fract The characterization of small-scale land surface heterogene-

of photosynthetically active radiation, and soil moisture arif;ysin modeling the land-atmosphere system and in designing

needed at a variety of spatial scales, ranging from meu?emote sensing algorithms have become a central focus of

to hundreds of kilometers, for different process models. Prr%-any recent studies [2], [26]. There is a considerable debate,

cessing global data sets at scales as fine as tens of meﬁ%(/?/ever over the influence of subgrid scale land surface
is prohibitive with the existing computational capability. Fohe '

o . : terogeneity on the grid scale response and over how to
example, over 130 million 1-km pixels would be required tQ . . L
parameterize the effects of spatial heterogeneity in remote
cover the land surface across the globe, and consequently, Use . .
. . sensing algorithms. Bonaet al. [2] found that the hetero-
of remote sensing measurements at 1 km or finer resolution ™. o . .
T geneity of land surface is important to the grid level sensible
presents a significant challenge [6].

. . . and latent heat fluxes, whereas Wood and Lakshmi [26] found
There are at least two widely debated issues in the use . . -
. . L at latent heat flux is not particularly sensitive to the land
of satellite multispectral data for the characterization an )
urface heterogeneity.

representation of land surface and ecosystem parameters. F?rs1&

land surface parameters exhibit important spatial and tempotal n increasingly popular approach attgmpts to account for
t'}&e effect of land surface heterogeneity on landscape re-

variability at scales smaller than the scale of measureme N b ing th lled le invariant algorithm
For instance, in the semiarid region of the Southwest Unitg§onses by using the so cafled scaie ariant aigorithms
or parameterizations. A scale invariant algorithm uses pixel
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to use coarser resolution radiance data to infer landscape

properties that need finer resolution radiance data. This would input E > output

result in substantial savings in terms of computational and

data storage requirements. Recently, Hatllal. [5] devel-

oped the conditions for scale invariance and have shoyvi- 1. Remote sensing algorithm takes a set of input parameters (e.g.,
that mathematical structures relating radiation and surfagéiances) and produces an output (€.g., NDVI).

fluxes to remote sensing parameters are nearly scale invariant

for FIFE [First ISLSCP (International Satellite Land Surfac&ection 1V, we include a proposed parameterization of NDVI
Climatology Project) Field Experiment] study area. Theithat accounts for subpixel scale heterogeneity by using only
approach has primarily focused on a particular form of surfapéxel scale information, and concluding remarks are given in
parameterizations, especially a product function like reflect&kction V.
component of shortwave radiation, and incorporated the effect

of heterogeneity in landscape structure. For the chosen form of

the parameterization, effects of heterogeneity was accounted

for only through the covariance between parameters. Salters A few terms used in this paper have specific meaning, we
al. [19] have explored the relationship between surface coefine those here. A heterogeneous land surface at the coarser
ductance and spectral vegetation indices using the FIFE deggolution may be viewed as a collection of land surface
set and have shown that near-linear relationship between thelsanents at the finer resolution. The land surface at the coarser
two parameters lead to scale invariance for the studied cadésolution is defined as pixel and at the finer resolution as
Wood and Lakshmi [26] showed that the normalized differen&éibpixel here.

vegetation index (NDVI) is scale invariant at the FIFE experi- Remote sensing algorithMLGO takes a set of parameters
ment site. The relative homogeneity of the FIFE site compar@d inputs and produces an output (Fig. 1). For example,
to a GCM (General Circulation Model) grid block, howeverthe normalized deviation vegetation index is an algorithm.
could prevent the generalization of this conclusion. In facthis algorithm takes two channels of radiances as input and
recent results regarding scale invariance over heterogeneBiduces the vegetation index as output.

land surfaces are rather mixed. For example, Pigkal. !N @lumped algorithm, the system is spatially averaged. On
[14] suggest that heterogeneity in land surface characteristi@§ other hand, the distributed algorithm considers land surface
could produce significant differences in surface fluxes acrdg¥liance properties taking place at various points in space and
heterogeneous patches. Consequently, they argue that isharacterizes the vanablgs as afunctlgn of spatial dl'mensmns.
surface responses cannot be considered scale invariant. MahHere, @& lumped algorithm takes pixel scale radiances as
and Sun [11] have reviewed several approaches to repred8Rpt and produces an output at the pixel scale. The output
spatially averaged surface fluxes over heterogeneous surfall@&n @ lumped algorithm is lumped output at the pixel scale.
Based on the analysis of three different field experiment dafy & lumped algorithm, we mean that the domain is spatially
they argue that the effective exchange coefficients for spatiajlfMegeneous with regard to its inputs, parameters, and outputs
averaged surface fluxes are approximately independent (p{g: 2+ right part).

averaging scale, except for the case of weak flow over higI}ly?'Ztr'%mdtﬁlgo_”thlm (;alculatesbthe [?lxeLspalle reipor? se by
contrasted heterogeneous surfaces. Irst dividing the pixel into a number of subpixels which can

In order to address some of these questions regarding H? agsumed to be homogengous. Then the response c.)f each
effects of landscape heterogeneity on the performances pixel is aggregated by a suitable kernel (e.g., areal weighted

remote sensing algorithms, we will focus on the followin vere_lge) to get the plxel_scale_ ogt_put. _Thus, a distributed
- : . Igorithm accounts for spatial variability of inputs, parameters,
objectives in this paper.

) _and outputs within a pixel. The estimation of pixel scale
* Develop a framework to test the scaling properti§ggsnonse from subpixels through a suitable kernel is referred
(_aggregatlon-dlsaggregatlon) of remote sensing alggQs aggregation (Fig. 2, left part).
rithms. 3 Scale invariant algorithm means that the empirical relation-
+ Demonstrate the utility of the above framework for thephin developed from point observation can be used for larger
parameterization of land surface heterogeneity effects fgfeas, e.g., at the pixel scale. A scale invariant algorithm will
the disaggregation problem. produce the pixel scale response if we use average parameters
Our primary focus in this paper will be on the disaggregatiogver the pixel as input. Quasiscale-invariant algorithm means
problem. Specifically, we will use the NDVI as an examplénat the resulting error from using an algorithm to estimate the
and derive the variances and covariances of subpixel leyg@kel scale response would be small.
radiances, using only pixel level information. The plan of
the paper is as follows: in the next section we define a
few terms that have specific meaning in this paper. In the !l ANALYSIS OF SCALE INVARIANCE: A FRAMEWORK
following section we formulate a general framework to study If a remote sensing algorithm is valid for a point scale or fine
the aggregation-disaggregation properties of remote sensiagolution, can we use this algorithm at a coarse resolution?
algorithms. Subsequently, we elaborate the procedure devéhder what conditions, is the algorithm scale invariant? In
oped in Section Il for two remote sensing algorithms. lorder to answer these questions, we begin our discussion for

II. DEFINITIONS
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Distributed Inputs / Parameters Aggregated Inputs / Paramters

Distributed
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Coarse Resolution Output from Coarse Resolution Output from
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equivalent ?

Fig. 2. Scheme for aggregation and scaling in land surface modeling and remote sensing.

an algorithm at the fine resolution. Then, we will discuss twim the above equation with respect@(this is equivalent to

requirements for scaling to be valid. dividing the pixel into finer elements), we have
Let f(P, Ps, ---, P,) be the joint density function of
parameter se{ P, P», ---, P,} over a pixel (for example, Gp = / / / ALGO(Py, Py, ---, B,)
120 m square pixel), then the fractional area that has the P1 Iz
same set of parametefsP;, P, ---, P,} in the range of [P, Py, oy Po) - dP1dPy - - - dP,. 4)

P, AP, .-, AP, ill b
(AP, AFy, o, AP} will be This is a generalized formulation for the estimation of pixel

f(PL, Py, ooey Po) - APLAP, -+ AP, (1) scale quantities by taking subpixel heterogeneity into account.
Interactions among remote sensing inputs and parameters
within a pixel call for a joint stochastic distribution for these
inputs and parameters. The lack of knowledge of the joint

rameter density function of a remote sensing algorithm,

owever, makes practical use of (4) difficult. Nonetheless, (4)

may be used to elucidate some properties of a scale invariant
algorithm.

Let the density function foith parameter b¢;( P, ), then the
pixel scale value of this parameter, which is the pixel average

where AP, AP,, ---, and AP, are interval of parameters.
We assume here that each parameter is discretize@ietqual
intervals. This is equivalent to dividing a pixel iné patches
with fractional area corresponding to the frequency of ea
interval as defined by (1).

Let the output from the algorithm at a poigbe GG, having
a parameter set at the poipt{p, p2, -- -, pn b4, fOr a given
remote sensing algorithm

G, = ALGO{ Py, P, -+, Py }q). (2)  of this parameter, will be
Then the pixel scale output will be _
. Pi= [ RAR)aP. ©)
_ P;
Gp =Y ALGO({Py, Py, -+, P}y o o .
=1 Let{Py, P2, ---, P,} be the pixel scale parameter set. If the

fUPL, Py, -y P} APLAPy - AP,. (3) point algorithm is valid at the pixel scale, we can use the

) o . _algorithm to get the lumped output over a pixel as
The subscript D” indicates that the pixel scale output is

aggregated from the output of a distributed model. Taking limit G = ALGO(Py, Py, -+, P,,). (6)
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If the algorithm is scale invariant, (4) and (6) will lead toNote thatGp in (8) accounts for the effects of the surface
same pixel scale output. In Hu and Islam [8], we have diketerogeneity. To get the lumped output over the pikal,
cussed at least two conditions under which the scale invariarstually pixel level average parameters are used:

assumption is appropriate. We briefly review the conditions

here. First,If the parameters are homogeneous over the pixel Gp = ALGO(Py, Py, ---, P,). (9)
scale, then the algorithm is scale invariarfecond,If the

algorithm can be described as a linear combination of inputfq gifference between aggregated response from a distributed

and parameters, then the algorithm is scale invariddhder algorithm and lumped response can be estimated by
these two conditions, we can show (4) and (6) are equivalent:

Thus for homogeneous land surface or linear algorithms, m o 9
remote sensing algorithms can be scaled up or down withod, — G ~ — Z — (P =Pk =
an m 2 8P1

y error. k=1

For the naturally occurring heterogeneous land surfaces, _ 9 _ 9 1?2
either of these two conditions would be difficult to satisfy. + (P2 — P2 op, + oo (Po = P 9P,
Thus, theoretically, there may not be any simple scale invariant N — "

y Y y simp . ALGO(Py, Py, ---, Py). (10)

algorithms. However, if the error is very small between the
aggregated output from a distributed algorithm and the output
from a lumped algorithm, a quasiscale-invariant relationshfp<Panding (10), we have following equation which includes
could still be feasible. Such a quasiscale-invariant algorithw@riance of parameters, covariance between parameters, and
could be very useful for remote sensing application since derivative terms that account for the degree of nonlinearity:
would greatly reduce the computational and storage require-

ment. Let us divide a pixel inten equal size subpixels and — — 1 “L9? — = —
{P1, P, -+, P,}x be the parameter set for an algorithm Gp-Grrg z_; oP? ALGO(Py, Py, -+, Pu)
at the subpixelk, and {Py, Ps, ---, P,} be the average . "
parameter set for that algorithm over the pixel. Now using the L Z (P, —P)i+ 1 Z
theory of small perturbation, and neglecting third and higher m.- 2 =
order terms, we have =1
o2 — — _
ALGO({P,, Py, -+, P.}1) E)EN) ALGO(Py, Pa, «++, Pp)
~ ALGO(Fl, Fg, ey Fn) 1 m _ _
— 9 _ g > (P = Pi)i (P = Py (11)
+|:(P1—P1)ka—Pl+(P2—P2)ka—P2+"' k=1
+ (P, _pn)k i}ALGO(?b Po, ___7pn) The conditions described before are still_valid for (11). If
or, the parameters are homogeneous, tiien- P; is zero; for
1 p_P 7] p_P linear ALGO, the derivatives ofALGO are zero, thus the
Ty (Pr =P apP, + (P2 = P oP, T scale invariance holds. If the algorithm is weakly nonlinear
B 2 o B or the parameters are mildly inhomogeneous over the pixel,
+ (P — Ppi W} ALGO(Py, Py, --+, P,). (7) a quasiscale-invariant relationship may still be found because
" under such conditions, the right hand side of (11) will be small.

In (11), the correlation between the remote sensing inputs

Similar linearization approach using Taylor series has begag parameters also plays an important role in the nonlinear
used before in hydrologic and ecological literature [1], [3]algorithms.

Most of these studies, however, considered one parameter at g e algorithm is not scale invariant, (11) would still

time qnd have described the effects of heterogeneity in ter%vide a method to parameterize the pixel scale output from
of variance of parameters. Using (7), we get the aggregated gigorithm. In order to estimate the pixel scale output, the
output over the pixel from a distributed algorithm as lumped output should be modified by the algorithm parameter
heterogeneity. For a given algorithm, the derivatives of an
algorithm to its parameters are known. Thus, if we can
parameterize the variances and covariances of parameters by
their corresponding pixel scale mean values, (11) can be used
to estimate the pixel scale response by taking into account

o 1 m
Gp=— > ALGO({Py, Ps, .-+, P.}z)

k=1
%ALGO(?l, Fg, Ty Fn)

n 1 zm: 1 [(P _p )‘ﬁ the parameter heterogeneity. Furthermore, (11) can also be
m i~ 2 ! Lk aP; used to design scale invariant remote sensing algorithms. For

- 9 naturally occurring land surfaces, homogeneity assumption

+ (Po—Py)gy = + (P — P 9 would almost never be appropriate. Thus, in designing scale
P, b, invariant remote sensing algorithms, one should look for linear

-ALGO(Py, Py, -+, P). (8) combination of inputs and parameters.
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IV. APPLICATIONS From (13) and (14), we see that the relative error between

Equation (11) provides a systematic and generic framewdfi€ lumped and distributed NDVI algorithms depends on the
for examining scale invariant properties of different algo/@riances of the red and _near-lnfrared band radlances_ from
rithms. Here, we demonstrate the utility and effectiveness ¢ surface and the covariance between these two radiances.
(11) to determine scale invariant characteristics of two corf]-the distribution of red and near-infrared band radiances is
monly used remote sensing algorithms: NDVI and TM-derive9hly heterogeneous, then a simple scaling relationship for

sensible and latent heat fluxes. We also use this framewori Y5V! algorithm might not be found because in such cases
explain some findings from recent field experiments. the variances of the red or near-infrared band radiance would

be large. Thus, for NDVI algorithm, we need to determine
A. Normalized Difference Vegetation Index (NDVI) on what scale, the red and near-infrared bands are nearly
omogeneous in order to use the scaling algorithm of NDVI. A

The NDVI'is usually calculated by using channel 1 (reaﬁxpothetical example is provided in Section IV-D to illustrate

and channel 2 (infrared) data sensed by Advanced Very Hi : :
Resolution Radiometer (AVHRR) or Thematic Mapper (TM)&e effect of surface heterogeneity on the NDVI algorithm.

NDVI = —=— -1 12 . -Derived Sensible and Latent Heat Fluxes
?ﬁ? (12) B. TM-Derived Sensible and Latent Heat FI
where R, represents channel i arR]le represents channel 2 Sensible and latent heat fluxes can be estimated using the
reflectance or radiance. The reflectance or radidncis often 1™ thermal band (10.45-12.6m, with a resolution of 120
referred to as the red ai®, the near-infrared band. The NDVI m) aboard Landsat foIIowmg a procedure suggested by_ HOIW'.”
is perhaps one of the most widely used vegetation index aﬂlad Stewart [7]. The _relat|0n_sh|p_ between surface radiometric
the utility of NDVI for satellite assessment and monitorin emper?tgre an?(hemlttandce |skg|ven2for the Landsat thermal
of the global vegetation cover has been demonstrated oy8A™€! by Markham and Barker [12] as
a decade [9]. The NDVI data have been related to physical T — K,
properties of vegetation [16], [18], [23] and seasonal integrals g I K
of the NDVI have been correlated with the accumulation of "\R ¥1
above ground biomass [4], [24]. The NDVI data have been ] . . el
used in the studies of ecosystem structure and function, laf{iére £, is surface emittance ifWm=“Sr" um™), K,
cover classification, and carbon and biogeochemistry cycle®¥id K2 are Lonstant coefficients. At the FIFE sitk; =
the earth [17], [22]. 607.76 Wm~—2Sr* um~! and K, = 1260.56 K after atmo-
Substituting (12) into (11), we have the difference betwediheric calibration for August 15, 1987 [26].
aggregated normalized difference vegetation inG&VI In order to estimate the sensible heat flux, the exchange

and a lumped estimate of the normalized difference vegetatipefficient should be determined. Holwill and Stewart [7]
index NDVT, as presented a procedure to estimate the exchange coefficient by

N N combining the surface station data with TM satellite thermal
NDVIp — ﬁDVIL . data. A TM-derived surface temperature is estimated for each
2R 1 « — 2R i i
2 Z (Ri — R1)> 1 location of surface flux stations. The TM surface temperature
k=1

(15)

(Ra+ Ry)? m £

1 m o
- — 2(32—32)i+
m
k=1

B (Ry+ Ry)3 estimates and the station sensible heat flux measurements can
be combined to provide an exchange coefficient at each station

2(Hp — Bu) from the TM data in the following form:

f o) Hi (16)
< Ist = —~ 7
1 R R Cp(L, =T,
o Z (B1— Rp)y - (B2 — Ra)i. (13) pCp(Ty )
=t where H,; is the observed station sensible heat and subscript

We recall thatNDVI 5 is estimated from a distributed NDVI “st” is for station.T, is the observed station air temperature,
algorithm whileNDVT , is calculated from a lumped NDVI @ndZy the TM-derived surface temperatuges the air density

algorithm. The relative difference between these two estimafdd Cj, is the specific h?e}t of air at constant pressure.
may be found as The exchange coefficients at all flux stationg,, are

NDVI »» — NDVT interpolated across the field experiment site through geosta-
D L tistical kriging. We indicate this exchange coefficient field as

NDVI L o . g-. Similarly, T, is also interpolated across the site. Using
B 2R, 1 Z (R - R0)? exchange coefficiery,. and air temperaturé;, fields and the
T (R2+R)?(R:-R)m — ! Lk TM-derived surface temperatufg (all at a 120-m resolution),

o 1_m the sensible heat flux can be estimated over the domain by
1 5 \2 i i i
- S AR ~ kz (Ry — Ry)? inverting (16). That is
=1

2 1 m . o K2
—_— " — - .t - e H’I’ = C ' — s <~ - Ta 17
Tt T m 2 (B = Fu (Bo = Bl S (a7

k=1 In{—+1
(14) R,
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where H,. is the sensible heat flux field derived from TM g4
data. Subscript+” is for remote sensing. Substituting (17) x
into (11), we have the difference of the aggregated sensiblé o5-
heat flux from a distributed sensible heat flux algorithm ancE
the lumped sensible heat flux from a lumped sensible he@o4
flux algorithm as

>
@
2 0.3
1 T,\* 1 5
I T o = g o ¥l =
H?’d_HT _§p0pg7<f> (2Tg—K2—2Rg)E %02
) N
m T 1 I}
_ 2 ‘g £ 0.1
2 (Rg — Rg)j. + pCh D m S
= 0 ' ’ ' ‘ l ' ’ 1 .
m _ _ 1 0 01 02 03 04 05 06 07 08 09 1
(gr — gr) o ( Rg — Rg) L= pCp - Fraction of Vegetated Area
k=1
m
- Lumped — Distributed - Proposed
(91 -9 )k (Ta - Ta)k (18)
k=1 Fig. 3. Comparison of NDVI estimates from three approaches for a hypo-
thetical example of heterogeneous land surface conditions.
where
T,= L‘;{ 0.18, and 1, = 0.20. The lumped normalized difference
ln <_ L ) vegetation index at the pixel scaDVI, is calculated by
Ry +1 using (12) with pixel level average radiances afRgd and
D =K,R, +§§_ Rs. The aggregated normalized difference vegetation index

over the pixel scale from the distributed algorititDVI pis
The first term on the right hand side of (18) is due to thealculated by first applying (12) to get normalized vegetation
nonlinearity of sensible heat flux to the surface emittancdex from each subpixel, then averaging over the pixel.
the second term in (18) is due to the correlation between togir proposed framework estimates the normalized difference
exchange coefficient and the surface emittance, and the lasgetation index over the pixel by adding a correction term to
term in (18) is due to the correlation between the exchangfe lumped estimate of the normalized difference vegetation
coefficient and the air temperature at the observation levgldex. That is
A higher air temperature will lead to a more stable atmos- N _
phere, and more stable the atmosphere is, smaller will be the NDVIp = NDVIy, + correction term. (19)
exchange coefficient. Thus, the exchange coefficient and fife correction term accounts for the effect of surface hetero-
temperature are negatively correlated. The first two terms daneity. From (13), it can be expressed as
(18) are essentially due to the correlation between exchange
coefficient and surface temperature. Because the exchangeCorrection term

coefficient and surface temperature are positively correlated,  _ 2R, 1 zm: (Ri — Ry)? — 2R
the right hand side of (18) is positive. Thus the heterogeneity =~ (R, + R,)3 m — ! Lk (Ry + Ry)?
of surface emittance, exchange coefficient, and air temperature T 2Ry — Ry)
at observation level would introduce errors in scaling up of - Z (Ry — Rp)i + = 274
sensible heat flux in the remote sensing algorithm. ma (R + Ry)?
The TM-derived latent heat flux can be estimated by as- 1 & - -
suming that the sum of the averaged latent and sensible heat T Z (Ri— Rk - (B2 — B2 (20)
fluxes for the station data and the TM-derived fluxes would k=1

be equal. Based on analyzes of the remote sensing algoritAig. 3 compares and contrasts NDVI from these three ap-
for the sensible heat flux, we can infer that the heterogenefijoaches. Lumped algorithm always overestimates the NDVI
of land surface would also introduce errors in scaling up @fhen the surface heterogeneity exists. NDVI from our pro-

latent heat flux in the remote sensing algorithm. posed algorithm is quite close to the distributed algorithm.

This demonstrates that our proposed framework for including
C. An lllustration for Comparing Lumped, Distributed, the effects of surface heterogeneity performs well and higher
and Proposed NDVI Algorithms order heterogeneity effects may be neglected.

Here, we compare and contrast three approaches to estimate
NDVI over a heterogeneous pixel consisting of a mixture ¢f- A Proposed Parameterization to Account
totally vegetated area) with fraction areaf, and nonvege- foF the Subpixel Heterogeneity
tated areaq) with fractional areal — f. Following Price [15], In the above example, we take advantage of the assumption
we assume that the different surfaces are completely resoltbdt subpixel radiances are available. In reality, subpixel
by the sensor, and usf;, = 0.12, Ry, = 0.48, R;, = level radiances would be rarely available. Consequently, for
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the practical use of our proposed framework, variances and,
covariance ofR; and R, must be known in advance. In
the absence of a probability distribution function (or second®?]
order statistical moments), a parameterization of the variancecsa
and covariance oR; and R, by the pixel scaleadiances is 8 07
desirable.

For the example of Section IV-C, we find that the reIanon%
ship between the normalized standard deviation of radlam?ces
(NS): for Ry or Ry and the normalized mean radiance ovqo4
the pixel (VA) is a half ellipse (Fig. 4). That is

m
£ 0.3
NS =\/1-4(NA—05)? (1) 2
0.21
where 0.1
R—R.. 0 : v v . . : ; . "
NA= M (22a) 0O 01 02 03 04 05 06 07 08 09 1
Riax — Ruin Normalized Average Radiance
NS = S = Stmin (22b) Fig. 4. Relationship between normalized standard deviation and the normal-

Stmax — Smin ized average radiance.

whereS is for the standard deviation of reflectance or radiance. _ _

The bar on the symbol is for the pixel level values ofrom (25), (27) and (28), the relationship between standard de-
average, and subscripisin andmax are for the minimum and Viation of radiance and the normalized pixel average radiance
maximum possible values over pixels. The above relationshfpexpressed as

can be derived aljalyncally by_ using the deﬂmuons of average Sy = S5 \/1 “A(NA, —05). (29)
radiance and variance of radiance over a pixel. For example,
average radiance for channel 2 radiance can be expressedBagause the minimum standard deviation of radiance is zero,
we can rewrite(29) as

Ry = Ra, f + Rog(1 = f). (23)
NSy =+/1-4(NAy —0.5)2 (30)
Since Ry, is the lowest radiance and», is the highest S )
radiance for channel 2, from (23), we have which is (21) for the channel 2 radiance.
- The covariance between the radiances of the channels 1
Ry min = Ry and 2 can be written as
and 1 & _ _
Cov (Ry, Rp) = o kz_l (Ry — Ry - (R2 — Ra)i
B e = Bz @4 = f(B1, = Ru) (Reo = Ro) + (1= f)
Then the normalized pixel average radiance for channel 2 is “(Rig — R1) (Rey — Ra). (31)
— Ry By using (22a), (23), and (28), one can rewrite (31) as
NAy = w = f. (25)
RQ max — RQ min Cov (Rl, RQ) = —4571 maxS2 max(]- - NAl) (1 - NAQ)
The variance of channel 2 radiance can be calculated as (32)
follows: Thus, the covariance between the radiances of the channels
1 & — 1 and 2 is only related to the pixel averages through the
V2= m Z (B2 = Ra)i normalized average radiances.
k=1 _ _ Combining (19), (20), (29), and (32), one has the following

_ 2 2
= [(Ray = R2)” + (1 = [)(Ray — R2)". (26) expression for our proposed algorithm for estimating pixel

Using (23)—(25), one finds that the variance can be rewritten 'E{QVI while accounting for the surface heterogeneity:

y NDVIp =NDVI,
Vo = F max _F min 2 ﬂ 2F
2 ( 2 2 ) RQ max — RQ min + =2 _ S% ma.x[l - 4(NA1 - 05)2]
_ (Ry+ Ry)?
RQ - RQ min
U7z Romm)’ @7 2B a(N Ay - 0.5)]
max min - = = 5 maxlt — — V.0
2 2 (R2 + R1)3 2 2
The variance reaches its maximum when the normalized pixel 5 B
) . ; . , £y — 1)
average radiance is 0.5. Thus, the maximum variance is ————> (—4) 51 maxS2 max
(Fz + R1)?

‘/2 max — %L (FQ max — F? min)2- (28) . (1 - NAl)(]. - NAQ) (33)
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Since this formula is derived directly from the definitions ofmeasurement from at least two sensors, one with a very fine
variances and covariance, the ploNIDVI p versus vegetation resolution and the other with a coarser resolution, for the
fraction should be exactly the same as in Fig. 3. However, thame region. We are currently analyzing data sets from several
beauty of (33) is that we only need the information at thgensors and hope to present our findings in the future.
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