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Abstract This paper presents a multiresolution sys-

tem for volumetric texture analysis. The originality of

this system partially originates from its use of combi-

nations of perceptual texture features that correspond

to adjectives commonly used by humans to describe

textures. To approximate these features, we use a com-

bination of different families of texture analysis meth-

ods rather than a single texture analysis model. This

choice is necessary to obtain a good perceptual feature

approximation and allows our system to be robust and

generic. Moreover, by using our human-understandable

features (HUF), it is convenient for a user to manipulate

and select the features that are, according to the user,

relevant for a given application. Two experiments are

presented: the first experiment demonstrates the strong

correspondence between our features and a human’s de-
scription of textures, and the second demonstrates the

performance of our proposed method. Finally, the pro-
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de Tours
E-mail: jean-yves.ramel@univ-tours.fr

Jean-Marc Gregoire
UMR INSERM U930, CNRS ERL 3106, équipe 5, Université
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posed HUF are integrated into an interactive segmen-

tation system and are compared to previously proposed

descriptors through analysis of several segmentation re-

sults of 3D ultrasound images.

Keywords Volumetric texture · Segmentation ·
Multiresolution · Human-understandable features · 3D

ultrasound images

1 Introduction

Texture analysis is widely studied aspect of image anal-

ysis and computer vision. Research about this topic

continually progresses and concerns a great number of

applications in image segmentation and classification.

Several methods have been proposed to analyse tex-

tures. They are usually classified in four categories [1],

statistical methods [2,3], geometrical methods [4], filter

based methods [5] and model-based methods [6].

When designing texture analysis techniques, researchers

take great care to develop efficient methods but often

do not consider the potential user’s comfort regarding

the term used. Indeed, not everyone can understand

the significance of a power spectrum or a bank of fil-

ters, for example. Thus, for human-aided applications,

it is better to have a set of features that corresponds to

those used by humans for describing textures. To obtain

general texture measures, some authors [7,8] have pro-

posed understandable 2D texture features. These meth-

ods, which are inspired by human texture descriptions,

represent a fifth category of texture analysis methods.

This last category has been neglected and must be in-

vestigated further. New types of images and applica-

tions are created often, so methods should be adaptable

and interactive.
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(a) 2D textures (b) 3D textures

(c) Volumic textures (d) Volumetric textures

Fig. 1: Illustration of different representation types of textures: a) represents three different 2D textures, b) shows

3D textures of a same piece of grass viewed from different angles, c) are volumic textures from Neyret homepage

[9] and d) represents three different solid/volumetric textures.

Technological advances (including magnetic resonance

imaging, digital radiography and ultrasound images)

have generated an increasing need for dedicated tools

for processing 3D textured images in the medical imag-

ing domain. Consequently, many texture analysis meth-

ods for the analysis of volumetric textures have been

proposed [10,11,12]. Sometimes referred to as solid tex-

tures, volumetric textures can be considered as a set of

patterns in a volume (Figure 1 (d)). They represent the

external and internal appearance of 3D objects [13].

Solid texture is different from 3D texture or volumetric

texturing [14]: 3D texture [15] refers to the observed 2D

texture of a 3D object viewed from a particular angle

and under different lighting conditions (i.e., photos of

the same object under variable conditions), volumet-

ric texturing [16] refers to the rendering of repetitive

geometries and reflectance into voxels and is used for

modelling complex repetitive geometries such as grass,

fur or foliage. 3D textures can also be used to design

dynamic textures [17], i.e., sequences of images taken

from moving scenes (video).

Our research presents a different approach to the

analysis and segmentation of volumetric textures. We

propose a set of efficient human understandable features

(HUF) to be used in the analysis of different types of

volumetric textures. The reason for using perceptual

features are numerous and especially concern the inter-

actions with the operator (such as feature selection and

contents interpretation). Our initial approach is briefly

described in [18]. An improved computation method for

geometric features, some additional features and com-

plementary experiments are presented in this work. The

most interesting aspect of this work is the proposed

multiresolution framework for the computation of per-

ceptual features. This framework allows for the combi-

nation and exploitation of different approaches used for

texture analysis (i.e., statistical, geometrical and signal

processing methods).

Section 2 presents a survey of volumetric texture analy-

sis methods and provides some elements concerning our

proposition.

Section 3 describes the framework we propose to com-

pute seven perceptual texture features, each of which

is computing using what we considered to be the most

appropriate method.

Section 4 presents psychological experiments that demon-

strate the correspondence between our texture attributes

and human descriptions of textures. Based on these ex-

perimental results, additional tests of the correspon-

dence of the proposed texture attributes with human

descriptions are proposed.

In section 5, the perceptual features are compared with

classical features, known for their efficiency, to validate

the performance of our proposed features and to demon-

strate their applicability for various problems. Segmen-

tation results for synthetic data and 3D ultrasound im-

ages are presented. These results are compared with re-

sults obtained using state-of-the-art methods. We con-

clude with a summary of our research and prospects for

future work.
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2 Characterization of volumetric textures

2.1 Related work

Much research concerning 2D texture analysis has been

conducted, and, some of the proposed methods have

also been applied to volumetric textures. In [10], Suzuki

et al propose extending the higher order local autocor-

relation method (HLAC) to three dimensions. 3D data

are treated using a 3D HLAC mask which is a solid

cube divided into a 3× 3× 3 grid. In this method, the

texture is analysed locally. However, one problem with

the method is that for larger grids (for example 5×5×5

or 7 × 7 × 7), the number of HLAC mask patterns in-

creases greatly and analysing a texture with a distance

greater than 1 becomes difficult.

In [19] Kovalev et al propose two approaches to char-

acterise volumetric textures. Their first method uses

a 3D orientation histogram that is computed by count-

ing gradient vectors in various orientation bins, whereas

their other method is a 3D extension of Chetverikov’s

co-occurrence matrix method. These two methods are

applied to synthetic data that include various levels of

noise and to medical images to specifically quantify and

monitor the progress of pathologies. The two methods

precisely characterise the anisotropy of textures, but in

the context of a classification problem, these features

should be associated with other texture descriptors.

Additionally, there are many proposed methods that

use the 3D grey-level co-occurrence matrix proposed by

Haralick [20,21,22,23,24,25]. In [23] Mahmoud-Ghoneim

et al consider brain tumour classification and compute

2D and 3D Haralick features to compare their respec-

tive performances. The 3D Haralick texture features are

demonstrated to systematically improve tumour char-

acterisation in comparison with the 2D features, which

highlights the importance of the third dimension. In-

deed, 3D-based methods provide better information about

both the grey-level distribution and the voxels’ sur-

roundings. Likewise, in [25] Showalter et al use 3D Har-

alick texture features to predict the micro-architectural

properties of bones. For the classification of subcellular

location patterns, in [24], Chen and Murphy propose a

combination of 3D texture features, 3D Haralick tex-

ture features and 3D morphological and edge features.

The conclusion of this paper is clear: the combination of

different texture analysis methods can improve results.

To analyse volumetric textures, frequency methods have

also been used as in [26] where the authors attempt to

obtain characteristics of the hippocampus from mag-

netic resonance images. To do so, they calculate the

average energy features using a 2D wavelet transform

of each slice of the hippocampus and the energy features

produced by a 3D wavelet transform of the hippocam-

pus volume. The authors claim that the 2D wavelet

transform provides higher separability compared with

3D wavelet decomposition. In [27], Zhang and Shen

present a deformable model to segment 3D ultrasound

images. Texture features are computed through the use

of two banks of 2D Gabor filters located in two orthogo-

nal planes to reduce the computional time and number

of filters required, which can be large for a 3D method.

Nevertheless, comparing with a 3D method, using two

banks of 2D Gabor filters results in information loss:

this is a recurrent problem when two-dimensional meth-

ods are extended into 3D. Despite the computational

cost required, some authors propose using 3D Gabor

filters to segment medical and seismic 3D images [28,

29,12]. In [11], Reyes-Aldasoro and Bhalerao propose

characterising volumetric textures by extracting tex-

tural measurements from the Fourier domain via sub-

band filtering using an oriented pyramid. This method

has been tested on synthetic volumetric images and

magnetic resonance images and provides satisfactory

results. Their technique demonstrates the usefulness of

multiresolution systems and it would be interesting to

apply the method to more complex medical images,

such as 3D ultrasound images.

The previously presented methods are primarily based

on grey-level statistical techniques or filter-based tech-

niques. None of the methods use a system based on

human-understandable features. Moreover, the previ-
ously presented volumetric texture characterisation meth-

ods are primarily used for medical imaging or in do-

mains that require a human-aided applications. Thus,

a system that includes human-understandable percep-

tual features seems particularly relevant because these

features should enable significant interactions with an

operator (regardless of the operator’s technical knowl-

edge concerning image analysis) and efficient feature

selection and content interpretation. Similar techniques

have been developed [7,8] for 2D texture analysis, but

the lack of comparisons with other existing computa-

tional methods makes it difficult to evaluate their per-

formance. Moreover, these methods do not consider the

multiresolution aspects of textures. These techniques

seem to be pertinent, and it would be interesting to at-

tempt to correct the deficiencies of the previously pro-

posed methods. This goal is the purpose of the proposed

work which presents a multiresolution system that com-

bines human-understandable features. In the next sub-

section, we describe the perceptual features used.
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Roughness Contrast

Granularity Regularity

Compactness
Volume

Directionality

Table 1: Example of extreme textures for each of the proposed features. Textures on the left obtain a high value

for each textural properties and textures on the right a very low value.

2.2 Definitions and considerations regarding the

proposed features

We define seven complementary texture features that

are inspired by human descriptions of textures. The

feature selection was based on the expertise in image

analysis acquired from previous research [7,8]. Below,

we propose a definition for each of the texture features

and we describe their classical approximations. Table

1 presents examples of extreme textures for each of

the proposed features. The seven perceptual features

we propose are the following:

1) Roughness: A rough texture is a surface or a

volume that has some sharpness (i.e., an uneven sur-

face). Roughness can be described as a set of fast spa-

tial transitions with varying amplitude. The notion of

roughness is the opposite of the notion of homogeneity

which characterises uniform regions.

Several methods, including the fractal dimension [30],

the Fourier transform [31], and statistical methods [32,

7,8,33,34], have been proposed to analyse and compute

roughness.

2) Directionality: This information describes the

prevalence of a privileged direction.

Many methods to measure texture anisotropy, such as

second order statistical methods [3,35,7], the Radon

transform [36,37], the autocorrelation function [38], the

Hough transform [39], and the wavelet transform [40],

have been proposed. The wavelet transforms seems to

be the most robust and simplest method to obtain in-

formation about direction.

3) Contrast: This feature is defined as the ratio

between the darkest parts and the brightest parts of an

image. The contrast is measured by evaluating the grey-

level dispersion in an image. In [7], the authors de-

fine 4 factors that influence contrast: the range of grey-

levels, the ratio of black and white areas, the sharpness

of edges, and the period of repetition of patterns.

This feature is often computed using statistical infor-

mation about the distribution of grey-level intensity [3,

41,7,8,42].

4) Granularity: A granular texture is composed of

small patterns. This feature is associated with the num-

ber of elementary patterns within a texture.

Several methods allow one to estimate this character-

istic. It is possible to use the autocorrelation function

[43], fractal methods using the lacunarity feature [44]
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and techniques based on connected component extrac-

tion [45].

6) Compactness: This measure describes the shape

of patterns and indicates whether the shapes are circu-

lar or elongated.

A geometric study of texture patterns enables an ade-

quate approximation of compactness. Researchers have

proposed analysing the connected components inside

textures to compute this feature [46,47,48,49].

5) Regularity: This measure characterises the repet-

itive nature of a texture.

A texture’s regularity can be measured by studying the

repartition and evolution of intensities and by using in-

formation about the variation of patterns within the

texture. To quantify this feature, methods such as the

autocorrelation function [50], the co-occurrence matrix

[51] and the binary co-occurrence matrix [52] have been

proposed.

7) Volume: This feature describes the 3D size of

the patterns contained in a volumetric texture.

As for compactness, the volume characterization is of-

ten based on the geometric study of patterns [46,47,48,

49].

The first three textural features are related to fre-

quency or statistical analysis of the image, whereas the

other four features are computed using information re-

garding the repetitive patterns that potentially define

the texture (these patterns are most often called ”tex-

tons” [53] and are usually analysed using geometrical

methods). By using different families of texture analy-

sis methods, we aim to obtain a good perceptual feature

approximation and a robust and generic system that is

not limited to only one kind of problem.

These textural properties correspond to adjectives widely

used by humans to describe textures. By proposing

these texture features, we do not suggest that an op-

timal description of a given texture is limited to these

seven proposed features; additional features could pos-

sibly be defined to improve the system. One of our

objectives is to address a human-aided approach for

classification and segmentation purposes. By using un-

derstandable features, it is possible for the user to se-

lect the more pertinent features according to the images

processed.

3 Definition of computational modes

Texture features that allow one to describe a texture

directly depend on the observed resolution. Thus, it

is important to use a multiresolution approach to in-

crease the robustness of the framework. The proposed

approach uses a multiresolution scheme obtained using

a 3D discrete wavelet transform (Figure 2). Separable

wavelets are used because they enable one to perform

a very fast decomposition by applying a given wavelet

function to each of the possible directions. The wavelet

function is first applied along the X-axis, then applied

along the Y-axis and finally applied along the Z-axis.

Non-separable wavelets also exist, but they are less fre-

quently used in image analysis [54]. These wavelets al-

low for the analysis of several directions, but their com-

putational complexity is greater. The discrete wavelet

transform scheme proposed by Mallat [5] uses

different types of filters: a highpass filter allows

one to obtain detail coefficients, whereas a low-

pass filter yields the approximation coefficients.

In 3D, eight images are generated for one level of

decomposition: one image for the approximation

coefficients and seven images for the detail coef-

ficients. These latter images yield a description

of the high frequencies in an image for a given

direction. As illustrated in Figure 2, all of the fea-

tures are computed for different resolutions to correctly

characterise both the macro and micro textures. In our

proposed method, the initial image is decomposed us-

ing a 3D wavelet transform and the texture features are

computed using wavelet sub-bands according to the de-

sired information. The detail coefficients of the wavelet

decomposition allow us to compute the roughness and

directionality attributes, whereas the other proposed

features are computed using the initial image and ap-

proximation coefficients of the wavelet decomposition.

Similar to most of texture analysis methods, the fea-

tures are computed for a given neighbourhood (region).

To compute a feature, only the voxels located in a cube

of size N3 centred at the coordinates (x, y, z) are con-

sidered. This cube defines the region around the (x, y, z)

voxel that is considered (Figure 3).

In the following subsection, the different methods used

to compute the proposed volumetric texture features

are presented. Different families of texture analysis meth-

ods (i.e., statistical, geometrical, and signal processing

methods) are exploited to propose a robust system that

provides a complete description of textures.

3.1 A geometric characterization of textures

To geometrically characterise textures, the concept of

connected components is used. We assume that con-

nected components represent the patch patterns in a

texture i.e., the patterns that can be isolated inside a

binary texture. Similar to 2D images, the connected
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Fig. 2: Multiresolution scheme for texture analysis. Approximation and detail coefficients are computed using a

3D discrete wavelet transform.

components of a 3D image are obtained by assigning

the same label to each connected voxel in a black and

white image. Figure 4 shows the black and white con-

nected components extracted from a volumetric texture

using a global binarisation.

Consider two points A and B that are included in a

subset S of an image I. These two points are connected

in S if and only if there exists a connecting path in

S that links A and B. All of the points inside a con-

nected component satisfy this condition. To extract the

connected components, it is necessary to analyse binary

images. Several algorithms have been proposed for two-

dimensional images; the main ones are presented by

Chassery and Montanvert in [55]. From these methods,

we choose to adapt to 3D images an algorithm that

only requires two scans to process an image. This two

pass algorithm [56] operates in three distinct phases: a

scanning phase to assign provisional labels, an analysis

phase to determine the label equivalence information

and a labelling phase to assign the final labels. For this

algorithm, the complexity depends on the size of the

image, whereas for a sequential algorithm, the number

of iterations depends on the complexity of the objects.

To obtain connected components that are as rep-

resentative of the texture as possible, the grey-level

image is decomposed into a sequence of successive bi-

nary images. A similar approach has been proposed

by Shoshany in [45] but it was proposed only for tex-

ture classification. His method constructs a binary se-

quence using all of the possible grey-level values (256

values); however, for segmentation applications, the re-

sulting number of binary images is intractable. More-

over, Shoshany uses three features that are based on

the connected components obtained for each binary im-

age (256 × 3 features). Our purpose is different be-

cause we intend to extract the geometrical features of

a 3D texture from the connected components. Thus,

it is more interesting and efficient to detect the pri-

mary grey-level classes of an image to identify a set of

optimised binarisation. A clustering algorithm is used

to determine the primary grey-level classes within 3D

images. The proposed method uses the k-means

algorithm with a high value for k to obtain the

voxel clusters that are the most representative

in the processed image. Figure 5 shows grey-

level histograms of the clustered image obtained

after replacing the voxel values in each cluster

by the centroid values. Only maxima upper than

the average pixel repartition are considered and

thresholds ti are selected between all the pairs of

these maxima. By this way, non-representative

clusters are ignored and the obtained threshold

values (for different values of k) are very stable

as illustrated Figure 5(a) and Figure 5(b). The

threshold selection is important because it significantly

increases the robustness of the proposed features. This

component of our segmentation framework, which ge-

ometrically characterises volumetric textures, another

contribution of this work. Using a classical global or
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(a) Texture features are computed using the
entire image

(b) Texture features are computed using a
part of the image

Fig. 3: Examples of two regions in a same volumetric texture.

local binarisation algorithm or the Shoshany method

does not allow one to compute stable geometrical fea-

tures because a single binary image does not provide

enough information about the structure of an image.

When considering the 256 possible thresholds, most in-

formation is lost, and it is very difficult to compute

geometrical features from such a large set of binary im-

ages.

A grey-level texture is then decomposed into a succes-

sion of binary images using progressive thresholding.

The connected components and the associated texture

features (granularity, volume, compactness and regu-

larity) are computed for each binary image produced.

Formally, we consider a grey-level image Iβ at resolu-

tion β and the set of corresponding 3D binary images

Bβ . The Qβ binary images Bi,β , where i = {1..Qβ},
are composed of a set of connected components CCi,β
where Pi,β is the number of connected components in

Bi,β . A set of 4 structural features

EFi,β = {fgrani,β , fcompi,β , fregi,β , fvoli,β} which corre-

spond to the granularity, the compactness, the regular-

ity and the volume, is then associated with each CCi,β .

Some of the binary images generated contain a great

number of connected components and therefore pro-

vide important structural information. Conversely, a

binary image with a unique connected component pro-

vides very little structural information. To emphasise

the most interesting binary images, texture features

computed using the sequence of binary images are weighted

using the number of connected components considered.

The values of the geometric features associated with

the voxel (x, y, z) for the resolution β are computed as

follows:

fgranβ (x, y, z) =

Qβ∑
i=1

Pi,β
maxi(Pi,β)

fgrani,β (x, y, z) (1)

fcompβ (x, y, z) =

Qβ∑
i=1

Pi,β
maxi(Pi,β)

fcompi,β (x, y, z) (2)

fregβ (x, y, z) =

Qβ∑
i=1

Pi,β
maxi(Pi,β)

fregi,β (x, y, z) (3)

fvolβ (x, y, z) =

Qβ∑
i=1

Pi,β
maxi(Pi,β)

fvoli,β (x, y, z) (4)

Pi,β represents the number of connected components in

the binary image Bi,β .

fgrani,β is computed for each binary image i and cor-

responds to the number of connected components per

unit volume:

fgrani,β (x, y, z) =
Pi,β
N3

(5)

Only the connected components located in a cube of

size N3 centered at the coordinates (x, y, z) (regionality

around one voxel) are considered.

The volume corresponds to the size occupied by the
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(a) (b) (c)

Fig. 4: a) A volumetric texture, b) White connected components after a global binarisation, c) Black connected

components after a global binarisation. Connected components are used in our framework to compute granularity,

compactness, volume and regularity features (see sub-section 3.1 for more details).

(a) (b)

Fig. 5: Histograms of a clustered image obtained using a k-means on 3D image voxels and after replacing the voxel

values in each cluster by the centroid values. For high values of k, one can observe the stability of the obtained

histograms (in (a) k = 20 and in (b) k = 40). An histogram allows to select the thresholds ti and then to construct

a sequence of successive binary images (see the sub-section 3.1 for more details).

patterns that constitute the volumetric textures. It is

computed as follows [46,47,48,49]:

fvoli,β (x, y, z) =
1

Pi,β

Pi,β∑
α=1

Vα,i,β (6)

where Vα,i,β corresponds to the volume of a connected

component CCi,β .

The compactness of connected components provides in-

formation about the shape of the patterns that consti-

tute the texture. For a pattern, this feature can be com-

puted using the ratio between its surface and its volume

[46,47,48,49]. A texture with an elongated shape has

low compactness. To obtain the compactness feature of

a texture, we compute the average compactness of the

patterns inside the texture. In a 3D domain, the com-

pactness can be computed as follows:

fcompi,β (x, y, z) =
1

Pi,β

Pi,β∑
α=1

S
3
2

α,i,β

Vα,i,β
(7)

where Sα,i,β is the surface of a connected component

CCi,β .

To obtain an approximation of the regularity of the tex-

ture, the variance of the compactness is used. Because

the compactness is invariant under any transformation

[57], the variations in shape are the only elements that

affect the variance feature. We wish to study the pat-

tern shape stability. For a given texture, if the variance

is low, the patterns are very similar and the texture is

very regular. The regularity is given by the following
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formula:

fregi,β (x, y, z) = variance
α

(
S

3
2

α,i,β

Vα,i,β
) (8)

3.2 Statistical and frequency based methods for

measuring roughness and contrast

Filter-based methods are known to be efficient and to

provide local and global information about the textures

studied. In [5,54], Mallat suggested the use of pyramid-

structured wavelet transform for texture analysis. This

decomposition scheme uses different types of filters: a

highpass filter allows one to obtain detail coefficients,

whereas a low-pass filter yields the approximation coef-

ficients. In 3D, eight images are generated for one level

of decomposition: one image for the approximation co-

efficients and seven images for the detail coefficients.

These latter images yield a description of the high fre-

quencies in an image for a given direction.

The decomposition process presented in Figure 2

provides a set of detail sub-bands that are used to com-

pute the roughness and directionality features. In an

image, roughness can be described as a set of fast spatial

transitions with different amplitudes. The image sharp-

ness in the spatial domain correspond to the presence

of high frequencies. Knowing the detail coefficients of a

wavelet transform enables the identification of high fre-

quencies. The roughness feature is computed as follows:

frghβ (x, y, z) =

M∑
l=1

(

N∑
i,j,k=1

|wl,β(i, j, k)|)/M (9)

where wl,β(i, j, k) corresponds to the set of detail coef-

ficients for the voxel (x, y, z) (cube of size N3) for the

sub-band l. M is the number of detail coefficient sub-

bands for a given resolution.

Likewise, detail sub-bands can provide information

about directionality. In 3D, the seven detail sub-bands

describe seven different directions. To incorporate the

directionality feature in our framework, the following

formula is used:

fdirβ (x, y, z) = max
l

(

N∑
i,j,k=1

|wl,β(i, j, k)|)−frghβ (x, y, z)

(10)

In [2,3], Haralick proposes an estimation of contrast

that uses second order statistics. The moment of in-

ertia is computed from the main diagonal of the co-

occurrence matrix. However, the construction of a co-

occurrence matrix for the sole estimation of the con-

trast can be computationally expensive. In [7], Tamura

identifies four factors that influence the contrast dif-

ference between two textures. To approximate the con-

trast, they propose a measure that incorporates the two

first factors: the range of grey-levels and the ratio of

black and white areas.

To obtain a measure of polarisation, they use the kur-

tosis α4. This enables a measurement of the disposition

of probability mass around their center.

α4,β =
µ4,β

σ4
β

(11)

where µ4 is the fourth central moment and σ2 is the

variance of grey-levels for the resolution β. To take into

account the dynamic range of grey-levels, they combine

the kurtosis with the standard deviation of grey-levels

as follows:

fcontβ (x, y, z) =
σβ
αn4,β

(12)

where n is a positive value. In their paper, Tamura et al.

compare psychological experiments and their operators

and conclude that the value n = 1/4 yields the best

approximation. As for the other features, the values of

σβ and αn4,β are computed in a cube of size N3 around

the considered voxel (x, y, z).

Finally, we obtain seven perceptual features that

correspond to adjectives commonly used to describe

textures (fcont, fgran, frgh, fcomp, fvol, freg, fdir). In

the next section, psychological experiments are pre-

sented to demonstrate the strong correspondence be-

tween human characterization of textures and the HUF

(human-understandable feature) description provided

by our framework.

4 Psychological experiments

The proposed visual features are inspired by manner

in which humans describe textures. It is thus necessary

to study the correspondence between values assigned

automatically to these features and the estimation of

these textures through human vision. For verification,

psychological experiments were performed. A question-

naire, that contained 12 volumetric textures of size 1283

voxels with 256 grey-levels was created and distributed

to a group of 26 persons. The questionnaire contained

textures that were constructed using methods presented

in [58,59], except for textures (j) and (l) which corre-

sponded to ultrasound images (Figure 6). To obtain an

adequate resolution, these questionnaires were printed
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6: Set of Solid textures used for psychological experiments. These textures of size 1283 voxels with 256 gray-

levels have been printed on a questionnaire and distributed to a group of 26 persons. For each feature, the images

were ranked by the human subjects for a comparison with our computational ranking.

using a high quality colour printer.

For each feature, the images were ranked by the human

subjects in descending order, e.g., from the roughest

to the smoothest, from the most regular to the most

irregular and so forth. Before the questionnaire was ad-

ministered, the features defined above and the purpose

of these experiments were explained to the human sub-

jects. A ranking of the twelve textures was defined for

each feature based on the answers to the questionnaire.

For a given feature, a score was assigned to a texture

according to its rank. For example, the most compact

texture was assigned the value +12 (for the compact-

ness feature), the second most compact texture +11

and finally the least compact texture received a score

of +1. All features were scored in the same manner.

The addition of the questionnaires’ scores for each tex-

ture resulted in a final ranking for a given feature. A

similar feature ranking was also generated using the

proposed framework. Texture attributes were computed

for a region corresponding to the entire image, and each

3D image was then described using the seven features.

Texture features were generated for the first resolution

(i.e., the highest resolution) and the second resolution

(β = 1 and β = 2) as depicted in Figure 2 to analyse

the possible variation in the correlation with resolution.

Tests of the correlation were then generated using the

seven texture features for the first resolution (Table 2)

and the seven texture features for the second resolution

(Table 3).
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4.1 Comparison between human and feature rankings

To compare the computational ranking with the hu-

man ranking, the degree of correspondence between the

rankings was computed. For this purpose, Spearman’s

rank correlation coefficient was used. The coefficient is

given by:

rs = 1− 6

n3 − n

n∑
i=1

d2i (13)

where n is the number of individuals and di is the dif-

ference between the ranks assigned to the ith object

in the two measurements. This coefficient has a value

between −1 and 1: a value of 1 indicating a complete

correlation between the two types of ranking whereas

value −1 indicates complete disagreement.

Tables 2 and 3 present the rank correlation between

the feature ranking and the representative human rank-

ing for each textural property. The results (Table 2)

indicate an important correlation between the human

and feature rankings (for the features computed at the

first resolution). The best correspondence is obtained

for the compactness feature, which has a Spearman’s

coefficient value of 0.9; this result indicates a strong

link between the two rankings with a confidence rate of

100 percent. Unsurprisingly, the lowest correspondences

was obtained for the volume, which is most likely the

feature that is the most difficult for a human to evalu-

ate. Nevertheless, Spearman’s coefficient indicates that

there is a link between the human ranking and the fea-

ture ranking with a confidence rate between 95 and 98

percent.

In Table 3, the rank correlations coefficients between

the human and feature rankings are presented for the

features computed only at the second resolution. The

correlations between the two rankings are less than for

the higher resolution, but they are sufficiently strong.

The texture size in the images printed in the question-

naire corresponds to the texture size of the first resolu-

tion analysed using our framework. When observing the

volumetric texture of the images on the questionnaire,

the subjects had a perception of textures that was very

similar to the highest resolution used in our framework.

Indeed, the subjects observed the volumetric textures

at the highest resolution possible. The correspondence

of the resolution of the printed images with the highest

resolution used in our framework is the reason the cor-

relation between the human and feature rankings is the

highest for the first resolution. If we had asked the sub-

jects to analyse the questionnaire from a greater phys-

ical distance, the results would most likely change; the

correlation between the human ranking and the feature

fgran fcomp fvol freg frgh fcont fdir
fgran 0.83 0.63 −0.48 0.28 0.66 0.01 −0.01
fcomp 0.66 0.90 −0.39 0.59 0.63 −0.30 −0.15
fvol −0.57 −0.49 0.61 −0.48 −0.56 0.43 −0.22
freg 0.41 0.44 −0.37 0.82 0.55 0.23 0.47
frgh 0.70 0.57 −0.50 0.45 0.75 0.07 0.25
fcont −0.09 −0.38 0.48 −0.29 0.24 0.65 0.35
fdir −0.36 −0.28 0.29 −0.07 −0.02 0.29 0.70

Table 2: Rank correlation coefficients between human

and feature rankings (resolution 1).

fgran fcomp fvol freg frgh fcont fdir
fgran 0.73 0.48 −0.19 0.16 0.49 −0.06 0.16
fcomp 0.51 0.66 −0.32 0.18 0.49 −0.21 0.11
fvol −0.37 −0.1 0.42 −0.27 −0.4 0.38 −0.3
freg 0.29 0.3 −0.39 0.61 0.45 −0.24 0.12
frgh 0.43 0.47 −0.5 0.38 0.71 0.12 0.18
fcont 0.02 −0.36 0.42 −0.2 0.33 0.45 0.3
fdir 0.06 −0.3 0.18 −0.15 0.21 0.32 0.60

Table 3: Rank correlation coefficients between human

and feature rankings (resolution 2).

ranking for the second resolution would likely increase.

Table 4 illustrates the correlations between each feature

computed using the feature ranking. Table 5 shows the

correlations computed using the human ranking. There

are correlations between roughness, compactness and

granularity in both the feature and human rankings.

This is also the case in Tables 2 and 3. A granular tex-

ture, i.e., texture with a greater number of patterns,

can, in some cases, have some irregularities and can

thus appear rough. However, the correlation is not suf-

ficiently significant to eliminate one of these texture

attributes. Moreover, it is possible to find a set of vol-

umetric textures with a high compactness value and a

low roughness value (and vice versa). The directional-

ity has a weak correlation with the other features; it

is most strongly correlated with the contrast (which

was expected because: if a texture is anisotropic then a

strong contrast reinforces the directional module).

By considering these results, and knowing that

the user will have to select a subset of the pro-

posed features, we have decided to keep all these

features in our framework even if there is some

correlation between some of them.

5 Quantitative evaluation of the proposed

combination of features

The previous section demonstrates the perceptual as-

pects of the proposed features that result in a robust

qualitative description of volumetric textures. In this

section, we propose a quantitative evaluation of the ro-
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frgh fcomp fvol freg fcont fdir
fgran 0.67 0.63 −0.53 0.47 −0.01 −0.02
fdir 0.29 0.18 −0.13 0.29 0.34 −
fcont −0.17 −0.25 0.47 −0.23 − −
freg 0.57 0.59 −0.52 − − −
fvol −0.42 −0.45 − − − −
fcomp 0.59 − − − − −

Table 4: Rank correlation coefficients between the dif-

ferent feature rankings (resolution 1).

frgh fcomp fvol freg fcont fdir
fgran 0.73 0.67 −0.39 0.52 0.13 −0.35
fdir −0.17 −0.24 −0.32 0.08 0.42 −
fcont 0.28 −0.24 0.12 −0.03 − −
freg 0.52 0.50 −0.25 − − −
fvol −0.55 −0.48 − − − −
fcomp 0.60 − − − − −

Table 5: Rank correlation coefficients between the dif-

ferent human rankings.

bustness of the proposed framework using segmentation

experimentations. Our framework (the HUF method)

is compared with previously proposed texture analy-

sis methods, the 3D grey-level co-occurrence matrix of

Haralick (3DGLCM), a 3D extension of the local bi-

nary pattern method (3DLBP) [60] and the 3D discrete

wavelet transform (3D DWT) [5,26].

These tests of segmentation were performed using a set

of synthetic volumetric textures. We present quantita-

tive evaluations obtained using recognised evaluation

criteria. To perform these experiments, because of the

lack of an existing database, it was necessary to con-

struct a volumetric texture database. This contribution

is described in the following subsection.

5.1 A solid texture database for segmentation and

classification experiments

Among the existing databases, the most well-known are

specifically two-dimensional: the Brodatz database [61],

the Randen database [62] and the Meastex database

[63] have often been used because of their richness.

Databases of 3D textures and volumic textures are also

available. Among the 3D databases, PMTex [64], CURet

[65] and OUTex [66] are considered references. Several

volumic textures are available on the Neyret’s home-

page [9]. Johannes Kopf also proposes some examples

of solid textures in [67] but currently, there are too few

images to perform significant classification or segmen-

tation experiments.

Three different types of textures have been identified

in previous research [68]: deterministic textures, which

are characterised by the repetition of similar patterns;

stochastic textures, which are identified by their irregu-

larity; and observable textures, which are a mix of tex-

tures from the two previous categories. To construct a

complete database, synthetic images that are represen-

tative of these three classes were created using four sim-

ple methods. To limit memory and processing time re-

quired, the volumetric textures have a size of 643. Con-

sidering the classification tests performed in previous

research, this size seems to be sufficient for classifica-

tion experiments. Currently, 95 classes of solid textures

are available in our database and each class contains 50

examples that include transformations. To enable seg-

mentation experiments, we also provide 3D images of

size 1283 that contain several classes of volumetric tex-

tures. Finally, it is important to note that the purpose

of this database is not to provide volumetric textures

that are as realistic as possible but to provide solid

textures of many classes to allow an evaluation of the

properties and performance of volumetric texture anal-

ysis methods. This database is freely available at [69]

and additional information can be found in [59].

5.2 Evaluation for segmentation purpose

Our HUF method was compared with three methods

of volumetric texture analysis: the 3D grey-level co-

occurence matrix of Haralick [2,3] (3D GLCM), the 3D

LBP method [60] and the 3D Discrete Wavelet Trans-

form (3D DWT) [5,26]. The segmentation results were

produced using fifteen different 3D images (Figure 7)

generated using volumetric textures from our database.

Five of the 3D images contained two classes of textures,

five of the 3D images contained three classes of tex-

tures and the remaining five contained four classes of

textures. The 3D GLCM method requires two parame-

ters to be adjusted: the distance between two voxels, d,

and a parameter of grey-level quantification, q. Using

the co-occurrence matrix, the following texture features

were computed: the angular second moment, the vari-

ance, the contrast, the correlation, the entropy, the ho-

mogeneity, the sum average, the sum entropy, and the

uniformity. As in [70], LBP riu2P ′,R operator was tested

using three different spatial resolutions and three an-

gular resolutions. For a given radius, if the number of

vertices is too small, then the probability of obtain-

ing a uniform pattern decreases. The three operators

LBP riu226,1 , LBP riu298,2 and LBP riu2218,3 were computed where

V ∈ {2, 3}. The LBP methods allow one to characterise

a texture using the LBP histogram, which contains the

statistical repartition of local binary patterns in a tex-

ture. For the DWT and HUF methods, the wavelets

of Haar and Daubechies [71,72] were used with dif-

ferent resolutions. For the DWT method, the norm-1
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energy [73] was computed for each sub-band of the de-

composition (detail coefficients and approximation co-

efficients). For the HUF method, the set of texture fea-

tures presented in section 3 was used: granularity, vol-

ume, compactness, regularity, contrast, roughness, and

directionality. Finally, different values of region size N

(which defines the neighbourhood around each voxel)

were tested.

5.2.1 Exploiting the multiresolution schema for texture

segmentation

As explained in section 3, the proposed approach en-

ables one to obtain a set of seven features for each

resolution. A 3D discrete wavelet transform is used to

compute the HUF using the detail and approximation

coefficients of the generated sub-bands. For segmenta-

tion, the features are computed for each voxel of the

processed image. To maintain the same number of tex-

ture attributes, for any resolution, an upsampling step

is necessary (Figure 8). A voxel is then described by a

vector that contains 7n texture features, where n is the

number of resolutions and 7 is the number of proposed

perceptual features: the granularity (fgran), the shape

information of patterns (fvol and fcomp), the regularity

of these patterns (freg), the contrast (fcon), the rough-

ness (frgh) and the directionality (fdir). To produce

the segmentation, a clustering of the voxels was per-

formed. the k-means algorithm [74] was used to classify

the voxels in subsets according to their texture char-

acteristics. The processing time for volumetric textures

can sometimes be very long, and the primary advan-

tages of the k-means method are its speed and its low

memory requirements. In terms of performance, the k-

means algorithm does not guarantee that a global opti-

mum will be found, but it yields an efficient clustering

of voxels in a low execution time. Because this method

requires a number of expected classes as input, we use

a large number of classes to obtain an initial segmenta-

tion as a first solution to the problem. Then, a merging

of classes can be achieved by using an ascendant hier-

archical classification and the two most similar regions

are merged at each step. The distances between the re-

gions are computed using the features that correspond

to the centroid of each class. Using a simple interface,

the user of the software can decide when to stop the

merging process to obtain the desired segmentation.

5.2.2 Presentation of segmentation results

In the proposed evaluation, the combination between

the k-means algorithm and the ascendant hierarchical

classification is also used for the GLCM, DWT and LBP

methods. For each segmentation generated, the user

chooses the number of necessary merges to obtain the

segmentation that is most similar to the ground truth.

To evaluate the segmentation, the generic discrepancy

measure [75] is used as the performance measure. This

measure computes a distance between partitions that

was defined by Gusfield [76] as follows:

Definition 1 Given two partitions P and Q of S, the

partition distance is the minimum number of elements

that must be deleted from S, such that the two induced

partitions (P and Q restricted to the remaining ele-

ments) are identical.

The generic discrepancy measure corresponds to the

normalised partition distance. If two partitions P and

Q are considered, then the generic discrepancy measure

dgdm is defined as follows:

dgdm = dsym(P,Q)/(N − 1) (14)

where N is the number of voxels and dsym is the par-

tition distance that corresponds to the number of mis-

classified voxels. Moreover, dsym has the following prop-

erties [75]:

– dsym(P,Q) >= 0,

– dsym(P,Q) = 0 if and only if P = P ′,

– dsym(P,Q) = dsym(Q,P ),

– dsym(P,null partition) = N − (the maximal cluster

size in P ),

– dsym(P, infinite partition) = N − (the number of

clusters in P ),

– dsym(null partition, infinite partition) = N − 1.

A ”null partition” is a partition that contains only one

cluster and the ”infinite partition” is the partition that

contains N clusters. If dgdm is equal to 0, the segmen-

tation is ideal. An inverse segmentation generates the

value 1 which is only possible if P corresponds to the

null partition and Q corresponds to the infinite parti-

tion or vice versa.

Segmentation results are presented in three tables:

Table 6 shows the evaluation results computed using

3D images with two classes of volumetric textures, Ta-

ble 7 presents the results computed using segmentation

of 3D images with three classes, and Table 8 illustrates

the quality of the segmentation obtained using 3D im-

ages with four classes. Table 9 shows the mean and the

standard deviation of the normalised partition distance

obtained for the segmentation results in Tables 6, 7 and

8 where different parameters of the LBP, DWT, HUF

and GLCM methods are tested. To make the results

more readable, the results of the generic discrepancy

measure have been multiplied by 100.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Fig. 7: Solid texture images used in the segmentation experiments section 5: [a-e] 2 classes of textures, [f-j] 3 classes

of textures, [k-o] 4 classes of textures.

For all of the segmentations presented in the tables 6,

7 and 8, the segmentation results obtained with the

3D GLCM method are lower than those obtained by

the 3D LBP, 3D DWT and HUF methods. The 3D

LBP, 3D DWT and HUF methods obtained the best

segmentation results and the HUF and 3D DWT meth-

ods performed best if all of the processed 3D images are

considered. For textures that are relatively easy to seg-

ment i.e., those with two classes, the 3D LBP method

obtained good results, which are similar to the results
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Fig. 8: Using the HUF framework for segmentation: on the left we can observe our multiresolution scheme to

compute the HUF features, on the right we have a step of feature upsampling and a clustering algorithm to obtain

a segmentation.

Methods (a) (b) (c) (d) (e)
LBP riu226,1 , N=5

LBP riu226,1 , N=7

LBP riu226,1 , N=9

LBP riu298,2 , N=5

LBP riu298,2 , N=7

LBP riu298,2 , N=9

DWT, db2, β = 1, N=5
DWT, db2, β = 1, N=7
DWT, db2, β = 1, N=9

DWT, db2, β = 2, N={5,7}
DWT, haar, β = 1, N=5
DWT, haar, β = 1, N=7
DWT, haar, β = 1, N=9

DWT, haar, β = 2, N={5,7}
HUF, db2, β = 1, N=5
HUF, db2, β = 1, N=7
HUF, db2, β = 1, N=9

HUF, db2, β = 2, N={5,7},
HUF, haar, β = 1, N=5
HUF, haar, β = 1, N=7
HUF, haar, β = 1, N=9

HUF, haar, β = 2, N={5,7}
GLCM, q = 8, d = 1, N=5
GLCM, q = 8, d = 1, N=7
GLCM, q = 8, d = 1, N=9
GLCM, q = 8, d = 2, N=5
GLCM, q = 8, d = 2, N=7
GLCM, q = 8, d = 2, N=9

0.88
0.74
2.23
1.23
1.33
6.87
2.49
2.20
2.24
3.25
2.55
2.33
2.40
3.35
0.91
0.71
1.12
1.30
2.52
2.00
5.96
4.25
0.87
1.14
1.00
1.24
4.10
18.46

0.60
0.50
0.72
0.78
0.51
0.46
0.54
0.52
0.50
1.85
0.64
0.57
0.51
2.25
1.73
0.60
0.50
0.87
1.26
1.30
2.57
2.39
9.75
3.95
0.87
54.16
33.91
42.33

2.96
1.18
1.43
3.74
2.48
2.06
1.91
1.94
1.98
2.54
2.22
2.32
2.34
4.01
8.31
8.42
2.09
1.87
16.78
8.26
2.60
9.17
17.50
3.83
9.29
21.30
13.82
22.13

2.36
0.95
0.97
3.32
2.35
0.76
2.53
0.50
0.52
2.42
2.60
0.61
0.55
2.45
2.07
2.00
1.04
0.72
2.34
2.76
1.51
1.98
3.40
2.60
2.99
12.33
43.08
12.34

30.82
21.49
20.25
31.88
20.88
19.68
15.35
18.62
31.74
13.06
16.93
20.26
32.30
14.81
27.35
16.70
16.18
12.45
27.82
17.31
30.32
14.65
36.66
31.28
32.23
29.83
32.46
33.63

Table 6: Evaluation of solid texture segmentations using the normalized partition distance (texture with 2 classes).

For each texture, the bold values show the best evaluation values (the best segmentation).

obtained using the HUF and 3D DWT methods. How-

ever, for complex volumetric textures (those that con-

tain more classes), such as textures (m) and (n), the

3D LBP method was outperformed by the HUF and

3D DWT methods. Indeed, the HUF and 3D DWT

methods yielded accurate results for all of the processed

textures, and for the complex textures, the segmenta-

tion results were very satisfactory in comparison with
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Methods (f) (g) (h) (i) (j)
LBP riu226,1 , N=5

LBP riu226,1 , N=7

LBP riu226,1 , N=9

LBP riu298,2 , N=5

LBP riu298,2 , N=7

LBP riu298,2 , N=9

DWT, db2, β = 1, N=5
DWT, db2, β = 1, N=7
DWT, db2, β = 1, N=9

DWT, db2, β = 2, N={5,7}
DWT, haar, β = 1, N=5
DWT, haar, β = 1, N=7
DWT, haar, β = 1, N=9

DWT, haar, β = 2, N={5,7}
HUF, db2, β = 1, N=5
HUF, db2, β = 1, N=7
HUF, db2, β = 1, N=9

HUF, db2, β = 2, N={5,7}
HUF, haar, β = 1, N=5
HUF, haar, β = 1, N=7
HUF, haar, β = 1, N=9

HUF, haar, β = 2, N={5,7}
GLCM, q = 8, d = 1, N=5
GLCM, q = 8, d = 1, N=7
GLCM, q = 8, d = 1, N=9
GLCM, q = 8, d = 2, N=5
GLCM, q = 8, d = 2, N=7
GLCM, q = 8, d = 2, N=9

9.76
9.72
14.07
9.26
9.80
9.51
6.00
6.67
8.09
7.21
5.85
6.41
8.45
7.92
8.10
4.84
8.48
6.52
8.19
3.90
9.04
6.90
10.27
9.11
9.75
11.79
36.31
39.44

6.19
5.51
1.57
13.21
25.50
1.68
7.05
6.98
6.81
4.93
8.10
8.70
8.35
6.93
23.50
7.61
5.91
7.64
10.00
10.02
5.84
7.01
10.69
9.18
7.05
14.35
17.81
15.93

6.71
3.01
3.21
20.62
21.33
2.61
2.59
14.22
11.87
3.86
3.41
4.80
12.77
12.64
21.76
24.29
2.38
6.88
26.23
23.96
8.94
10.70
20.13
22.06
16.85
35.53
22.04
26.68

29.69
15.08
39.55
21.27
3.45
14.97
6.72
5.06
4.84
6.24
11.26
8.98
7.08
8.40
8.16
8.77
9.52
8.60
13.72
8.48
12.07
9.03
47.10
29.99
21.94
65.26
25.63
39.58

11.18
17.31
13.73
14.14
8.88
7.89
24.73
19.14
16.41
16.18
22.87
19.30
17.12
16.28
15.82
20.80
20.37
15.67
25.52
24.82
22.59
15.61
18.51
19.51
17.01
24.61
36.27
26.08

Table 7: Evaluation of solid texture segmentations using the normalized partition distance (texture with 3 classes).

For each texture, the bold values show the best evaluation values (the best segmentation).

Methods (k) (l) (m) (n) (o)
LBP riu226,1 , N=5

LBP riu226,1 , N=7

LBP riu226,1 , N=9

LBP riu298,2 , N=5

LBP riu298,2 , N=7

LBP riu298,2 , N=9

DWT, db2, β = 1, N=5
DWT, db2, β = 1, N=7
DWT, db2, β = 1, N=9

DWT, db2, β = 2, N={5,7}
DWT, haar, β = 1, N=5
DWT, haar, β = 1, N=7
DWT, haar, β = 1, N=9

DWT, haar, β = 2, N={5,7}
HUF, db2, β = 1, N=5
HUF, db2, β = 1, N=7
HUF, db2, β = 1, N=9

HUF, db2, β = 2, N={5,7}
HUF, haar, β = 1, N=5
HUF, haar, β = 1, N=7
HUF, haar, β = 1, N=9

HUF, haar, β = 2, N={5,7}
GLCM, q = 8, d = 1, N=5
GLCM, q = 8, d = 1, N=7
GLCM, q = 8, d = 1, N=9
GLCM, q = 8, d = 2, N=5
GLCM, q = 8, d = 2, N=7
GLCM, q = 8, d = 2, N=9

38.05
40.27
33.06
39.01
32.09
22.41
25.36
19.99
17.45
18.27
32.08
22.90
21.08
22.00
31.16
30.77
19.12
22.03
40.23
33.30
30.54
20.02
34.63
38.80
36.76
43.30
40.38
41.77

12.19
15.27
1.57
13.21
4.76
16.41
9.82
10.10
11.99
13.93
13.11
10.78
12.22
13.09
8.60
9.88
1.14
2.41
10.56
8.54
4.43
3.36
13.39
12.59
14.76
19.25
17.04
15.75

58.12
53.08
52.25
43.36
32.47
42.02
30.10
29.19
26.40
29.73
38.67
34.36
31.15
31.48
41.66
26.35
24.81
13.43
34.50
28.79
10.92
15.44
39.92
46.18
40.39
32.25
49.05
43.00

57.72
47.10
51.42
51.09
46.52
48.51
34.54
27.66
25.55
25.58
31.78
29.09
27.70
31.41
51.81
40.22
32.22
40.17
59.80
50.30
29.90
40.34
54.53
49.98
45.80
61.31
55.69
57.89

43.08
27.92
30.32
44.26
40.07
28.18
28.72
29.22
29.06
21.90
28.63
22.61
25.03
20.00
31.23
20.47
10.19
20.10
34.35
16.16
26.34
17.75
41.50
34.46
33.88
46.40
48.89
46.27

Table 8: Evaluation of solid texture segmentations using the normalized partition distance (texture with 4 classes).

For each texture, the bold values show the best evaluation values (the best segmentation).
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Methods (a) (b) (c) (d) (e)

LBP
mean
std

2.21
2.24

0.59
0.13

2.31
0.96

1.78
1.04

24.17
5.60

DWT
mean
std

2.60
0.44

0.92
0.70

2.53
0.79

1.52
1.04

20.38
7.52

HUF
mean
std

2.34
1.85

1.40
0.77

7.18
5.00

1.78
0.67

20.34
6.95

GLCM
mean
std

4.46
6.96

24.16
22.28

14.64
7.14

12.79
15.53

32.68
2.32

(f) (g) (h) (i) (j)

LBP
mean
std

10.35
1.83

8.94
9.15

9.58
8.94

20.67
12.63

12.18
3.54

DWT
mean
std

7.07
0.99

7.23
1.18

8.27
5.00

7.32
2.14

19.00
3.24

HUF
mean
std

6.99
1.83

10.77
6.42

15.61
9.35

9.78
2.00

20.15
4.07

GLCM
mean
std

19.44
14.33

12.50
4.18

23.88
6.53

38.25
16.14

23.66
7.12

(k) (l) (m) (n) (o)

LBP
mean
std

34.14
6.62

10.56
6.00

46.88
9.35

50.33
4.11

35.63
7.65

DWT
mean
std

22.39
4.65

11.88
1.50

31.38
3.70

29.16
3.18

25.64
3.74

HUF
mean
std

28.39
7.35

6.11
3.68

24.48
10.72

43.09
10.16

22.07
8.05

GLCM
mean
std

39.27
3.21

15.46
2.44

41.79
5.82

54.20
5.56

41.90
6.45

Table 9: Mean and standard deviation of the normalized partition distance obtained with segmentation results in

Tables 6, 7 and 8 where different parameters of the LBP, DWT, HUF and GLCM methods are tested.

the results of the 3D GLCM and 3D LBP methods.

Different neighborhoods (N = {5, 7, 9}) were tested

and no single neighbourhood was best for all types of

textures. The data in the tables 6, 7 and 8, indicate

that the neighbourhood parameter is the parameter

that produces the most significant performance vari-

ation independently of the texture method used. To

obtain good segmentation performance, this parame-

ter must be adapted to include the patterns inside a

texture. It is necessary to use a large neighbourhood to

segment macro-textures and a smaller neighbourhood

to segment micro-textures. When the neighbourhood

is adapted to the image content, we can observe, for

the HUF method, low variations of segmentation re-

sults according to the type of wavelet used (i.e. Haar or

Daubechies). Another parameter of our method is the

number of decomposition levels. In table 6, 7 and 8,

some segmentations were realized using 2 levels of de-

composition. The results obtained using 2 levels were

not always the best, but they were often of good quality.

If for one level of decomposition a good segmentation

was obtained, then the contribution of a second level of

decomposition was not always significant. However, for

some complex textures, the second level of decomposi-

tion did improve the results.

In this section, the performance of the proposed sys-

tem has been demonstrated through segmentation ex-

periments. The results obtained using the HUF method

are similar to the DWT and superior to those obtained

using the LBP method, which are known to be very effi-

cient. The advantages of using the HUF method,

in comparison to DWT or LBP, come from the
proposed perceptual features that enable an in-

teraction between the segmentation system and

an operator. This possibility is crucial in our

opinion. To provide a more generic framework,

it seems essential to develop understandable fea-

ture to facilitate feature selection and contents

interpretation. In the following section, the proposed

multiresolution framework is tested on a real-world prob-

lem.

6 Usability of the HUF framework in a

real-world application

As describe in the introduction, our objective

is to provide an interactive system that enables

the user to combine human understandable fea-

tures for the segmentation and characterisation

of volumetric textures. In this section, we first

describe the architecture of an interactive seg-
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mentation system based on HUF features. Then,

to demonstrate the usefulness and adaptability

of this framework, different application scenar-

ios are presented to extract the regions of inter-

est in 3D ultrasound images of the skin.

The objective of this section is not to validate

the superiority of HUF, but rather to demon-

strate the usefulness of understandable features

when letting the user choose the ones he consid-

ers the most appropriate for a specific problem.

The different segmentation scenarios presented

in this section have been defined in collabora-

tion with three specialists in sonography that

have accepted to evaluate the proposed frame-

work.

6.1 Architecture of the segmentation system

Fig. 9: The different interactive steps of a segmentation

process using our software.

The architecture of the system is composed of three

primary modules (Figure 9). The first module allows

one to compute the HUF features depending on user

defined parameters. HUF features are then used by

the second segmentation module and the resulting seg-

mented image can be exploited by a 3D visualisation

and manipulation module. The segmentation results

can then be visualised and improved in an interactive

way. It is also possible to represent segmented regions

using a mesh and to compute volume information to

help specialists in their diagnostic.

Before the segmentation, the user must select the fea-

tures relevant to be processing of a 3D image. It is also

necessary to define supplementary parameters such as

the regionality ( the neighborhood of a voxel) and the

number of resolutions to consider during the HUF fea-

ture extraction. A graphic interface allows the user to

define these choices. The selected features, the parame-

ters and the processed volumetric image are then used

during the feature computation. For each voxel, the se-

lected textural features are computed for the specified

region size and the number of resolutions. The segmen-

tation module receives the set of computed feature vec-

tors for each voxel and, then, a first segmentation is gen-

erated using the k-means algorithm [74]. By default, a

large number of classes is generated (k=15 to obtain an

over-segmentation), but this number can be modified by

the user. An interactive step allows the user to refine

the initial segmentation results. Two region merging

operations are available: one uses a hierarchical ascen-

dant classification applied to the centroid of each initial

class, and the other operation uses a graph representa-

tion of the segmented image. As we have seen subsec-

tion 5.2.1, the hierarchical ascendant classification uses

the texture feature centroid values of each class. In each

step, the two most similar classes are merged. In this

manner, the user can improve the current segmentation

by increasing or decreasing the number of classes. By

exploiting a region adjacency graph representation of

the segmentation, the user can also improve the initial

segmentation (Figure 12 and Figure 13). The vertices

of the graph are positioned using the centre of gravity

of each region in the segmented image. Two vertices are

connected if the two corresponding regions are adjacent.

The merging operation using the graph is manual and

allows the user to merge two regions by clicking on the

corresponding edge. The motivation for using a graph in

the segmentation process is that it provides the ability

to focus on a particular region of a 3D image. Moreover,

each vertex contains information (such as the average

of the features of a region and, the volume of a region)

that aids the sonography specialist in perfecting a di-

agnostic. Using this graph, it is then possible to merge

the selected regions, but it is also possible to split re-

gions into subparts. The user can choose a vertex and

re-run, a segmentation (a k-means clustering) only on

the voxels of the corresponding region.
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6.2 Ultrasound images of the skin

Fig. 10: Example of a three-dimensional image of the

skin obtained with 20 MHz ultrasound scanner (Atys

Medical France).

Currently, manufacturers produce echographic sys-

tems with resolution ranging from 30 to 100 µm. These

resolutions require ultrasonic frequencies that range from

20 to 60 MHz. The resolution provided by high fre-

quency ultrasounds enables one to perfectly observe

the skin, especially the dermis which has an average
thickness between 1 and 2 mm. While it is also pos-

sible to similarly explore part of the hypodermis, the

available resolutions are insufficient to properly observe

the epidermis (Figure 10). The thickness of the epi-

dermis varies between 0.05 and 0.3 mm, thus, ultra-

sound frequencies greater than 80 MHz are required.

Sonography of the skin enables the visualisation of tu-

mours (cysts, nevi, melanomas, and basal cell carci-

nomas (BCC), for example), inflammatory pathologies

and scars. Discriminating among the different types of

lesions is not always easy, and cutaneous sonography

is undeniably helpful for detection and diagnosis. The

possibility of segmenting and characterising a lesion in

3D is very useful for establishing therapeutic strategies.

3D sonography of the skin is rarely used because of the

lack of three-dimensional image analysis tools, but the

recent evolution of 3D probes should enable the devel-

opment of new techniques. Using 3D acquisition, it is

possible to obtain features that are inaccessible in 2D.

Moreover, 3D sonography is well adapted for supervis-

ing the evolution of a structure or a lesion, notably by

using volume measures.

Ultrasound techniques have several advantages com-

pared with other types of methods, such as magnetic

resonance imaging (MRI), X-ray computed tomogra-

phy (CT). Ultrasounds do not involve any form of ioni-

sation (and are thus harmless to the patients), and the

results can be displayed in real time using relatively in-

expensive equipment. Nevertheless, current diagnostics

are operator-dependent, and the complexity of image

interpretation, necessitates the involvement of sonogra-

phy specialists.

The segmentation of ultrasound images depends on the

quality of the acquisition process [77]. The images con-

tain artefacts and variations (speckles, signal attenu-

ation, absence of boundaries, for example) related to

the ultrasound propagation phenomena that complicate

the segmentation process. The distribution of scatter-

ers and their volumes relative to the wavelength of the

incident ultrasound pulse produces various 3D texture

patterns. Echogenicity is the ability of a cellular tissue

to create an echo. In an echographic image, echogenic

zones contain a large number of white 3D patterns,

which are an important characteristic used by special-

ists to identify pathologies. This characteristic is the

reason why sonography specialists use the echogenicity

(which corresponds to texture information) to describe

the structures inside ultrasound images.

6.3 Interest of a user-guided segmentation

To segment an image, different scenarios can be con-

ceived. Here we present two examples for a 3D ultra-

sound image of skin with a nevus. In the first scenario

(Figure 12), the first step of the segmentation process

is a splitting operation of the image into two different

classes (Figure 12(a)). The image is then divided into

two classes in which several regions can be identified.

Inside this first segmentation, different areas of the skin,

including a part of the nevus, are identified. To obtain

a complete representation of the nevus, a new split-

ting operation is run on the region around the nevus.

A second area appears in the central part of the seg-

mentation (Figure 12(b)). Next, a splitting operation is

performed by the user, which allows the extraction of

the external part of the nevus (Figure 12(c)). To yield

an exact representation of the nevus, a merging oper-

ation is required to regroup the two identified regions

(Figure 12(d)).

In the second scenario, the user starts the segmentation

by performing an over-segmentation using the splitting

operation with six classes (Figure 13(a)). As demon-

strated by the first segmentation (Figure 13(a)), the
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nevus is composed of three different regions. To extract

the nevus as one unique region, two successive merg-

ing operations are performed by the user (Figure 13(b)

and Figure 13(c)). It is then possible to extract the ne-

vus inside the ultrasound image (Figure 11(b) and Fig-

ure 11(c)). The two resulting meshes are very similar.

This similarity was found in most of our experiments

and demonstrates the robustness of the proposed seg-

mentation system.Using the Dice coefficient [78], Table

10 compares the segmentation of the images in Figure

11(a), 14 and 19 obtained using two different scenarios.

Images 11(a) 14 19
Dice coefficient 0.934 0.948 0.979

Table 10: Comparison of different segmentation scenar-

ios with the Dice coefficient.

The Dice coefficient is a similarity measure

that is defined for two sets X and Y as follows:

Dice coefficient =
2 |X ∩ Y |
|X|+ |Y |

(15)

Its value is 1 if the two sets are similar. The re-

sults presented in Table 10 show that segmenta-

tions obtained with different scenarios are very

similar and demonstrate the robustness of our

system.

6.4 Interest of a user feature selection

This system has been proposed to three specialists in

sonography in order to segment various pathologies, or-

gans, etc. The segmentation results obtained for three

different 3D ultrasound images are presented Figure

[15,17,18,20,22,23,24]: Image Figure 14 contains a ne-

vus, Image Figure 19 a histiocytofibroma, and Image

Figure 24(a) a tendon. As for images Figure 14 and Fig-

ure 19, segmentations have been generated using the

features introduced in the previous section: the HUF

method, the 3D LBP algorithm and the 3D Haralick

features. For the Nevus and Histiocytofibroma images,

the best segmentation results and the extracted patholo-

gies are presented using a mesh representation. The

following parameters were used: the LBP riu226,1 opera-

tor was used for the 3D LBP algorithm, the 3D GLCM

method used the parameters d = 1 and q = 8 and the

HUF method used the Daubechies wavelet (db2) for

one level of decomposition. For all these texture anal-

ysis methods, the proposed graph representation was

used to enable interactive improvement of the segmen-

tation. The set of methods used a region size N = 7

which allows one to obtain accurate results for this type

of image. The results demonstrate the capacity of our

software to isolate different types of pathologies accord-

ing to the choices made by users.

To obtain the segmentations presented in image Figure

15 and image Figure 20, four systems were presented

to three sonography specialists: system 1 used all of

the HUF features except the directionality (because the

zones of interests have no anisotropic properties), sys-

tem 2 used only the contrast and volume of the HUF

features, system 3 used the GLCM features, and sys-

tem 4 used the LBP features. To evaluate the segmen-

tations, we asked the specialists to rank the best seg-

mentations (see Table 11) obtained with the different

methods: HUF using all of the features except direc-

tionality (HUFa), HUF using only the contrast and the

volume features (HUFb), LBP and GLCM.

HUFa HUFb LBP GLCM
Image 14 1 3 4 2
Image 19 1 3 4 2

Table 11: Ranking of different segmentations obtained

by using different set of features: HUF using all the

feature expect directionality (HUFa), HUF using only

the contrast and the volume (HUFb), LBP and GLCM.

For the two segmented images, the 3D LBP method

ranked worst because the regions of interest (nevus or

histiocytofibroma) were not identified. Intensity varia-

tion is essential information in this type of image, and

the LBP method is not sensitive to this property; this

deficiency caused unsatisfactory results. When all of the

discriminant features in the ultrasound images (which

were well selected according to a priori knowledge) were

used, the HUF method obtained the best ranking, fol-

lowed by the GLCM method. When features that are

discriminating for a given image are omitted, the qual-

ity of the obtained segmentation is not as good. This

was the case when only the contrast and volume fea-

tures of the HUF framework were used for segmenta-

tion of images Figure 14 and 19.

Figure 24 shows a 3D ultrasound image of a tendon. Dif-

ferent images of the results yielded by the HUF method

are shown: Figure 24(b) was generated using all of the

HUF features except the directionality, and the results

shown in Figures 24(d), 24(e) and 24(f) were obtained

using all seven perceptual features, including the direc-

tionality. One level of decomposition (β = 1) was used

to obtain the segmentation shown in Figure 24(d), two

levels of decomposition (β = 2) were used for the seg-
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(a) 3D ultrasound image
with a nevus

(b) Mesh representation of
the nevus segmented with
the scenario proposed in Fig-
ure 12.

(c) Mesh representation of
the nevus segmented with
the scenario proposed in Fig-
ure 13.

Fig. 11: Segmentation results of a 3D ultrasound image of the skin using two different scenarios.

(a) Splitting, 2 classes (b) Splitting, 2 classes (c) Splitting, 2 classes (d) Merging

Fig. 12: Scenario 1: Figure 11(a) is segmented using four operations: three splitting operations and one merging

operation. Vertices represent regions that have been identified during the segmentation process and an edge links

two vertices if their corresponding regions are adjacent. The users perform merging and splitting operations by

clicking on specific vertices or edges in the graph (see sub-section 6.1 for more details).

(a) Splitting, 6 classes (b) Merging (c) Merging

Fig. 13: Scenario 2: Figure 11(a) is segmented using three operations: one splitting operation and two merging

operation. Vertices represent regions that have been identified during the segmentation process and an edge links

two vertices if their corresponding regions are adjacent. The users perform merging and splitting operations by

clicking on specific vertices or edges in the graph (see sub-section 6.1 for more details).

mentation shown in Figure 24(e) and three levels of

decomposition (β = 3) were used for the segmentation

shown in figure 24(f). Figure 24(c) demonstrates that

it was not possible to isolate the tendon without using

the directionality feature. Indeed, directionality is the

main property that distinguishes a tendon which con-

tains an important anisotropy. Using the information

about directionality, and one level of decomposition,

the segmentation shown in Figure 24(d) was obtained;

this enabled the isolation of the tendon (figure 24(g)).

When the number of resolutions was increased, the seg-

mentations obtained were more accurate: with two res-
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olutions, the tendon is more uniform (Figure 24(h)) and

with three resolutions, the segmentation is cleaner and

only the tendon is isolated (Figure 24(i)). For the im-

ages presented in Figures 14 and 19, it was unnecessary

to use several resolutions because the quality of the ob-

tained segmentation was sufficient when only one reso-

lution was used. The contribution of several resolutions

is thus demonstrated to be insignificant.

To conclude, we note the very interesting perfor-

mance of our HUF method indicated by the qualita-

tive analysis of the results. The classical GLCM method

is an efficient method for the processing of ultrasound

textures [77]; however, according to the specialists, our

system obtained superior results. In this section, the

results were qualitatively evaluated by sonography spe-

cialists through visual comparisons between different

segmentations. The reason is that it is very difficult

to produce a 3D ground truth because of construction

difficulties in 3D ultrasound images which are too time-

costly and generate precision issues. Without a suitably

precise ground truth, it is impossible to produce a per-

tinent quantitative evaluation.

From a functional point of view, the perceptual fea-

tures are very interesting for feature selection and con-

tent interpretation. Moreover, the proposition of a re-

gion adjacency graph representation of the segmented

image enables significant interaction with the operator.

According to the specialists, the splitting and merging

operations allow the user to efficiently guide the seg-

mentation process. Consequently, the proposed system

is robust regardless of the type of processed image.

7 Conclusion

The primary contribution of this paper is the propo-

sition of a multiresolution system that combines per-

ceptual features for the analysis of 3D textured images,

also known as volumetric or solid textures. We have

proposed a set of perceptual features that are easily un-

derstandable by humans: granularity, contrast, volume,

compactness, regularity, directionality and roughness.

To define this set of features, we tried to select simple

yet complementary features from those commonly used

by humans. The computational process from the pro-

posed descriptors combines frequency methods with the

discrete wavelet transform and a geometrical method

that uses 3D connected component extraction. Con-

nected components are identified using a succession of

binary images that are determined using a clustering

approach; this method significantly increases the ro-

bustness of the proposed geometrical features. By com-

bining several families of texture analysis methods, the

HUF framework provides a rich and robust multires-

olution description of textures that requires a reason-

able computation time. To analyse the pertinence of

our perceptual features and their correspondence with

human descriptions of volumetric textures, psychologi-

cal experiments have been presented; the experiments

demonstrates a significant correlation between human

and feature rankings. Using segmentation experiments,

the performance of the proposed system has been com-

pared with the performance of other methods proposed

in the literature, including the 3D GLCM, 3D DWT

and 3D LBP methods. Whereas the 3D LBP method,

the 3D DWT method and the HUF method obtain

similar results when processing relatively simple solid

textures, the HUF and 3D DWT methods produce seg-

mentations of higher quality as the volumetric textures’

complexity increases. The usability of the proposed frame-

work has been illustrated for the medical field. A soft-

ware system that use our HUF features to segment 3D

ultrasound images has been presented to sonography

specialists. The proposed system allows the user to in-

teract with and manipulate a graph representation of

the 3D image using information provided by the initial

segmentation. This graph enables the user to consider-

ably improve the segmentation and offers different pos-

sibilities to the users, who can thus merge regions of

interest or focus their attention on a given region. Us-

ing understandable features is very important because

it enables the user to select or unselect pertinent or non

pertinent features according to the content of the im-

ages. To the best of our knowledge, no other work has

presented a comparably sophisticated combination of

perceptual texture features for volumetric texture anal-

ysis. We hope that this proposition, the data provided

and the experimental results will be useful for future

work.

Of course, several improvements could be made in

future work. To complete our segmentation system, we

might exploit a priori knowledge (such as atlas and

topological information). Using graphs, it could be in-

teresting to compare the obtained segmentation to a

priori knowledge to revisit the segmentation and to be

more conventional to the supposed image content. Im-

provement of the user interaction using the region ad-

jacency graph is also conceivable.
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(a) (b)

Fig. 14: 3D ultrasound image of the skin with a nevus. Segmentation of this image are presented Figure 15,16,17

and 18 where different segmentation methods have been used.

(a) (b) (c)

Fig. 15: Best segmentation of the image in Figure 14 obtained with system 1: the HUF method with all the HUF

features except the directionality. Each region is represented by a specific gray-level value.

(a) (b) (c)

Fig. 16: Best segmentation of the image in Figure 14 obtained with system 2: the HUF method with only the

Contrast and the Volume features. Each region is represented by a specific gray-level value.

(a) (b) (c)

Fig. 17: Best segmentation of the image in Figure 14 obtained with system 3: 3D GLCM features. Each region is

represented by a specific gray-level value.

(a) (b)

Fig. 18: Best segmentation of the image in Figure 14 obtained with system 4: 3D LBP features. Each region is

represented by a specific gray-level value. The nevus has not been identified (see sub-section 6.4 for more details).
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(a) (b)

Fig. 19: 3D ultrasound image with a histiocytofibroma. Segmentation of this image are presented Figure 20,21,22

and 23 where different segmentation methods have been used.

(a) (b) (c)

Fig. 20: Best segmentation of the image in Figure 19 obtained with system 1: the HUF method with all the HUF

features except the directionality. Each region is represented by a specific gray-level value.

(a) (b) (c)

Fig. 21: Best segmentation of the image in Figure 19 obtained with system 2: the HUF method with only the

Contrast and the Volume features. Each region is represented by a specific gray-level value.

(a) (b) (c)

Fig. 22: Best segmentation of the image in Figure 19 obtained with system 3: 3D GLCM features. Each region is

represented by a specific gray-level value.

(a) (b)

Fig. 23: Best segmentation of the image in Figure 19 obtained with system 4: 3D LBP features. Each region is

represented by a specific gray-level value. The histiocytofibroma has not been identified (see sub-section 6.4 for

more details).
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(a) 3D ultrasound image with a ten-
don.

(b) Segmentation obtained using all
the HUF features except the direc-
tionality.

(c) Mesh representation obtained
with the segmentation Figure 24(b).

(d) Segmentation obtained using all
the HUF features for one level of de-
composition.

(e) Segmentation obtained using all
the HUF features for two levels of
decomposition.

(f) Segmentation obtained using all
the HUF features for three levels of
decomposition.

(g) Mesh representation obtained
with the segmentation Figure 24(d).

(h) Mesh representation obtained
with the segmentation Figure 24(e).

(i) Mesh representation obtained
with the segmentation Figure 24(f).

Fig. 24: Segmentation set of a 3D echographic image with the HUF method (tendon localization).
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51. K. Selkäinaho, Jussi Parkkinen, and Erkki Oja. Com-
parison of χ2 and κ statistics in finding signal and pic-
ture periodicity. In ICPR ’88: Proceedings of the 9th
International Conference on Pattern Recognition, pages
1221–1224, Rome, Italy, October 1988.

52. Valery V. Starovoitov, Sang-Yong Jeong, and Rae-Hong
Park. Texture periodicity detection: Features, properties,
and comparisons. IEEE Transactions on Systems, Man,
and Cybernetics, 28(6):839–849, November 1998.

53. Thomas Leung and Jittendra Malik. Representing and
recognizing the visual appearance of materials using
three-dimensional textons. International Journal of
Computer Vision, 43(1):29–44, February 2001.
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Texture analysis anno 1983. Computer Vision, Graphics,
and Image Processing, 29(3):336–357, 1985.

http://www.texturesynthesis.com/meastex/meastex.html
http://www.texturesynthesis.com/meastex/meastex.html
http://www.taurusstudio.net/research/pmtexdb/compare.htm
http://www.taurusstudio.net/research/pmtexdb/compare.htm
http://www.cs.columbia.edu/CAVE/software/curet/index.php
http://www.cs.columbia.edu/CAVE/software/curet/index.php
http://www.outex.oulu.fi/index.php?page=outex_home
http://www.outex.oulu.fi/index.php?page=outex_home
http://johanneskopf.de/publications/solid/textures/index.html
http://johanneskopf.de/publications/solid/textures/index.html


28 Ludovic Paulhac et al.

69. Ludovic Paulhac. A solid texture database, 2009.
http://www.rfai.li.univ-tours.fr/fr/ressources/

3Dsynthetic_images_database.html.
70. Timo Ojala and Matti Pietikäinen. Multiresolution gray-
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