
Detecting Depression with Audio/Text Sequence Modeling of Interviews

Tuka Alhanai1, Mohammad Ghassemi2, and James Glass1

1Computer Science and Artificial Intelligence Laboratory
2Institute for Medical Engineering and Science

Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{tuka,ghassemi,glass}@mit.edu

Abstract
Medical professionals diagnose depression by interpreting the
responses of individuals to a variety of questions, probing
lifestyle changes and ongoing thoughts. Like professionals,
an effective automated agent must understand that responses to
queries have varying prognostic value. In this study we demon-
strate an automated depression-detection algorithm that models
interviews between an individual and agent and learns from se-
quences of questions and answers without the need to perform
explicit topic modeling of the content. We utilized data of 142
individuals undergoing depression screening, and modeled the
interactions with audio and text features in a Long-Short Term
Memory (LSTM) neural network model to detect depression.
Our results were comparable to methods that explicitly mod-
eled the topics of the questions and answers which suggests
that depression can be detected through sequential modeling of
an interaction, with minimal information on the structure of the
interview.
Index Terms: medical speech signal processing, depression,
neural networks, computational paralinguistics, question an-
swering

1. Introduction
Individuals suffering from depression are beset by debilitating
sadness for weeks to years on end [1]. To treat depressed in-
dividuals, they must first be diagnosed. To obtain a diagnosis,
depressed individuals must actively reach out to mental health
professionals. In reality, it can be difficult for the depressed
to attain professional attention due to constraints of mobility,
cost, and motivation. Passive automated monitoring of human
communication may address these constraints and provide bet-
ter screening for depression [2].

The standard method for screening and diagnosing depres-
sion is the Patient Health Questionnaire (PHQ), which has been
designed by the American Psychological Association [3]. The
questionnaire packages the DSM-IV depression criteria into a
brief self-report instrument which asks whether the individual
finds pleasure in doing things, feels down, tired, has a poor ap-
petite, trouble concentrating, is slow or fidgety, and/or struggles
to sleep [4].

Methods to automate this screening process have pursued
two approaches. The first approach models a subject’s outcome
based on responses to specific questions (e.g. ‘Do you have
a history of depression?’), while the second approach models
outcomes based on responses that are independent of the ques-
tion asked (e.g. speaking rate). In the first approach, Arroll et
al. explored asking key sets of questions that optimized for in-
creased accuracy and minimized time spent screening [5]. An-
other example of this approach, manually selects questions of

which responses are most predictive of a subject’s state and as-
sign weights according to the text-based illicited response [6].
In a similar spirit, Yang et al. (2016) and Sun et al. modeled
depression by structuring questions and responses in the form a
decision tree [7, 8], while Gong et al. developed an ensemble
of audio, text, and video features as a function of the question
type asked [9]. Utilizing a deep learning framework, Yang et al.
(2017) combined multiple modalities conditioned on manually
selected questions [10].

The second approach to modeling depression attempts to
exploit global and/or time varying statistics, independent of the
question that prompted the response. Williamson et al. utilized
correlations of formants and spectral information across differ-
ent time scales [11], Syed et al. developed audio and video
features to capture temporal variations [12], while Pampouch-
idou et al. and Nasir et al. fused low and high-level features
[13, 14]. Utilizing emerging techniques, Ma et al. used audio
to model depression by allowing deep neural networks to learn
such associations rather than perform feature engineering [15].

Given the question-answer nature of depression screening
tests, we were interested in modeling depression via sequences
of responses, without the need to formally condition on the type
of questions being asked. Such a system has the advantage of
being data-driven with minimal need for a-priori knowledge of
the structure of an interview or interaction. Furthermore, for
a model to be truly data-driven, it needs to have minimal fea-
ture engineering. Current developments due to more affordable
computational and storage infrastructure, as well as increased
data streams, have allowed deep learning based methods to be-
come accessible [16]. Their strengths lie in their ability to rep-
resent information through non-linear transforms, at varying
spatial and temporal resolution, and from multiple modalities
[17, 18]. While work in the domain of detecting depression
has looked at fusing features from multiple modalities together
[9, 13, 14, 19], and utilizing neural networks to model single
sequences [10, 15], there remains to explore the sequence mod-
eling of depression that utilizes deep learning approaches.

To this end we conducted our work on the same dataset (the
distress analysis and interview corpus) that most of the above
mentioned studies utilized, which allowed us to compare meth-
ods and performance results [20].

2. Objective
In this study our objective was to detect depression by modeling
audio and text sequences of an interaction between a human
subject and a virtual agent. We were motivated to perform this
modeling in a data-driven manner, without the need to formally
condition on the question being asked, given the potential utility
of such techniques.



3. Data
3.1. Audio and Text

We utilized the audio and text transcriptions of 142 individuals
undergoing depression screening through a human-controlled
virtual agent. The virtual agent prompted each individual with
a subset of 170 possible queries that included direct questions
(e.g. ‘How are you?’, ‘Do you consider yourself to be an intro-
vert?’), and dialogic feedback ( e.g. ‘I see’, ‘that sounds great’).
The data was from the publicly available distress analysis and
interview corpus (DAIC) and contains audio and text transcrip-
tions of the spoken interactions [21, 20]. The data was split into
a training (57%, 107 subjects), development (19%, 35 subjects),
and test (25%, 47 subjects) sets as specified by [21, 20]. The test
set annotations were not provided in the DAIC public release so
all models were evaluated on the development set.

3.2. Outcomes of Interest

We were interested in modeling (1) the binary state of a subject
(depressed or not), as well as (2) the severity of their depression.
The severity of depression ranged from 0 to 27 with a score
from 0-4 considered none or minimal, 5-9 mild, 10-14 moder-
ate, 15-19 moderately severe, and 20-27 severe. A soft cutoff
within the moderate and moderately severe range resulted in bi-
nary outcomes. These outcomes were pre-defined in the DAIC
dataset, and were derived from the PHQ-8 depression question-
naire screening the subjects underwent [22]. Within the dataset,
28 out of 142 subjects (20%) were labeled as depressed.

4. Experimental Approach
In this study, we sought to model sequences of 142 interactions
in order to detect whether individuals were depressed. We con-
ducted three sets of experiments using features extracted from
the audio and text data to predict depression.

Exp 1 A regularized logistic regression model without condi-
tioning on the type of questions asked.

Exp 2 A regularized logistic regression model with condition-
ing on the type of questions asked.

Exp 3 An LSTM model using the sequences of responses,
and without knowledge of the type of questions that
prompted the response.

Details of the experiments are outlined below. Our code is
available in an online repository 1

4.1. Experiment 1: Context-free Modeling

4.1.1. Model

We were interested in assessing the predictive performance of
several audio and text features (described below), when consid-
ered independently of the type of question asked, and time it
was asked during the interview session (i.e. what we term as
‘context-free’ modeling). For this analysis, we provided 279
audio and 100 text features to a logistic regression model with
L1 regularization.

4.1.2. Text Features

Using Doc2Vec of the Python Gensim library, we generated em-
beddings of individual responses to all queries and the queries

1https://github.com/talhanai/
redbud-tree-depression

themselves, for a total of 8,050 training examples, 272,418
words, and a vocabulary size of 7,411 [23]. These embed-
dings were trained with the following explored hyperparame-
ters: minimum word count of {1, 2, 3, 4, 5, 7, 10}, a con-
text window of {3, 5, 7, 10, 12, 15} words, dimensions
of {50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 350,
400}, downsampling threshold of 1e-04, hierarchical
sampling, using the distributed memory training al-
gorithm (akin to Continuous Bag of Words in Word2Vec), ran-
dom generator seed of 1, and training epochs of {15, 25, 35,
50}. We selected the value of the hyperparameters that opti-
mized the model’s performance on the training set. The opti-
mum embedding dimension was found to be 100, with a mini-
mum word count of 3, context window size of 3, and 50 training
epochs.

4.1.3. Audio Features

We extracted an initial set of 553 features representing each sub-
ject response. The features were higher-order statistics (mean,
maximum, minimum, median, standard deviation, skew, and
kurtosis) of 79 COVAREP features provided with the DAIC
dataset [20]. The COVAREP features were frame-level (20
ms window, 10 ms shift) features composed of spectral (Mel-
frequency cepstral coefficients 0-24, harmonic model and phase
distortion mean 0-24 and deviations 0-12) prosodic (pitch, voic-
ing probability, formants 1-5), and voice quality (normalized
amplitude quotient, quasi open quotient, difference in amplitude
of the first two harmonics of the differentiated glottal source
spectrum, parabolic spectral parameter, maxima dispersion quo-
tient, spectral tilt/slope of wavelet responses, and shape parame-
ter of the Liljencrants-Fant model of the glottal pulse dynamics)
features. Zero-mean and variance normalization was applied to
all features, and any segments without audio information were
set to zero. From the initial set of 553 features, we excluded
all features without a statistically significant univariate correla-
tion with outcomes on the training set (|ρ| < 1e-01, p > 1e-02)
nor a significant L1 regularized logistic regression model coef-
ficient (|β| < 1e-04), thus resulting in a subset of 279 features
and 8,050 examples (responses).

4.2. Experiment 2: Weighted Modeling

4.2.1. Model

We were interested in assessing the predictive performance of
several audio and text features (described previously), when
conditioning on the type of question asked, and independent of
the time it was asked during the interview session (i.e. what
we term as ‘weighted’ modeling). For this analysis, we pro-
vided 279 audio and 100 text features to a logistic regression
model with L1 regularization, and weighted the model proba-
bilities based on the predicitive power of the question found in
the training set.

4.2.2. Assigning Question Value

In our dataset, each subject i, was asked a subset of queries qi
from a set of Q possible queries. We represented the responses
to the queries as a matrix Vi ∈ Rqi×m, where m was the num-
ber of features (m = 100 for text, and 279 for audio). Each
response matrix Vi, had a corresponding binary outcome vector
indicating depression yi ∈ Rqi×1.

To train the model, we horizontally concatenated sub-
ject response matrices into a training and development matrix,
Atrain ∈ Rn×m and Adev ∈ Rd×m where n was the num-
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ber of training examples and d was the number of development
examples. Atrain was then used to train the model.

Next, let c(j) represent the performance of the trained
model when evaluated using only the rows ofAtrain that corre-
sponded to a specific query, j ∈ {1 : Q}. We identified the set
of k informative queries with predictive performance above a
particular threshold θ on the training set: k = {j | c(j) >= θ}.

For the subset of queries in k, we assigned query weights
equal to the training set performance w(j) = c(j). These
weights were used in conjunction with the logistic regression
model f to provide a question-weighted probability p of de-
pression:

p =
1

|k|

|k|∑
j=1

f ∗ w(j)

4.3. Experiment 3: Sequence Modeling

4.3.1. LSTM Model

The strength of neural networks lies in their ability to extract
feature representations through non-linear transforms of the
input data, yielding stronger discriminative power than clas-
sical models. Since we were interested in modeling tempo-
ral changes of the interview, we utilized a bi-directional Long
Short-Term Memory (LSTM) neural network since it has the
additional advantage of modeling sequential data. To find the
optimum topology of the LSTM model we explored the follow-
ing hyperparameter space: number of layers {1, 2, 3, 4},
number of hidden nodes in each layer {4, 8, 16, ..., 256},
‘tanh’ activation function, and hard sigmoid recurrent ac-
tivation function, input and recurrent dropout rates of {0,
0.1, 0.2, 0.4, 0.6, 0.8, 0.8}, merge mode of {sum, mul, con-
cat, ave}, and batch size of {32, 64, 128, ..., 4096}. For
the loss function we used ‘binary crossentropy’ to model bi-
nary outcomes, and {‘categorical crossentropy’, ‘mean squared
error’, ‘mean absolute error’} for multi-class outcomes. The

Figure 1: Diagram of network topology. Each modality (audio
and text) were trained separately as bi-directional LSTMs with
differing hyperparameters capturing the characteristics of each
feature set. A multi-modal model that combined both audio and
text was also trained through concatenation into feedforward
layers.

optimizer algorithm was stochastic gradient descent with
learning rates of {1e-01, 1e-02, ..., 1e-06}, momentum
{0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 0.99 }, and step
decay rates {0.9, 0.99, 1}. The training early stopping cri-
terion was set for a minimum loss change of 1e-4 for a duration
of 25 epochs. For the input data we explored timesteps (re-
sponses) of [2, 30], and strides (contiguous responses) of
[1, 3]. We trained an LSTM model for each of the audio and
text modalities separately, utilizing the response-level features
of Experiment 1.

The audio-based LSTM model had 3 bi-directional LSTM
layers, each with 128 hidden nodes, multiplicative merge mode,
and input and recurrent dropout rates of 0.2. The inputs to the
model had a timestep of 20, and stride of 1. The learning rate
was 1e-06, the momentum was 0.8, decay rate was 0.99, with
a batch size of 128. The text-based LSTM model had 2 bi-
directional LSTM layers, each with 4 hidden nodes, concate-
nated merge mode, and input and recurrent dropout rates of 0.1
and 0.8 respectively. The inputs to the model had a timestep of
7, and stride of 3. The learning rate was 1e-01, the momentum
was 0.85, no decay, with a batch size of 64.

4.3.2. Multi-modal LSTM Model

Audio and text features may contain not only discriminative and
temporally varying information about a subject’s state, but also
complementary information. Therefore we trained a model that
combined these two modalities in the form of a multi-modal
model. The model was composed of two LSTM branches, one
for each of the modalities, with their outputs merged into a final
feedforward network. The branches were composed of different
topologies, and were optimized with respect to the character-
istics and information content of each modality. The weights
of the branches were fixed, their outputs were concatenated,
and the final feedforward network topology and weights were
trained according to the explored hyperparameter space defined
earlier, with an additional hyperparameter of activations
{‘tanh’, ‘sigmoid’, ‘relu’}. The optimum feedforward network
was composed of 2 layers, with 128 hidden nodes, and‘tanh’
activations. The learning rate was 1e-05, with momentum 0.8,
no decay, and a batch size of 32.

The audio and text inputs for each LSTM branch had differ-
ent strides and timesteps yielding a different number of training
(and development) examples, therefore we needed to equalize
the number of examples (Audio was 30 timesteps, with stride
1. Text was 7 timesteps, and stride 3). This step was performed
by padding the number of training examples in the smaller set
(text) to match that larger set (audio) by mapping examples to-
gether that appeared in the same window of the interview. For
this experiment we utilized the Keras library and Tensorflow
back-end [24, 25].

4.4. Baselines

We compared our methods with the DAIC dataset baseline [20]
as well as three other reported methods that utilized the same
dataset, and were either the best performing or whose experi-
mental approach most closely related to our work. To summa-
rize, the DAIC baseline utilized an ensemble of features (audio,
text, and video) in a Support Vector Machine (SVM) model,
Ma et al. applied a convolutional neural network followed
by an LSTM on the audio in a given sequence segment [15],
Williamson et al. applied both unsupervised word represen-
tation techniques as well as context/topic modeling (weighted
Glove embeddings) on the text [6], while Gong et al. modeled



the ensemble of features while conditioning on the topic [9].

4.5. Evaluation Metrics

Following the structure of the DAIC baseline [20], we reported
the results of the development set for the binary classification
task using F1 score, precision, and recall. For the multi-class
classification task (categorical range of 0-27) we reported the
subject-level mean absolute error (MAE) and subject-level root
mean squared error (RMSE). We also performed an evaluation
according to the ‘fusion scoring’ metric utilized by Williamson
et al. [6], whereby the topN (in our caseN = 3) most predicted
depression class(es) among all the segments of a subject were
selected as the subject’s predicted outcome.

5. Results
The results of the experiments, as well as the baselines, are dis-
played in Table 1.

5.1. Experiment 1: Context-free Modeling

When conducting context-free modeling of the interviews, text
features performed better than audio features when classifying
for a binary outcome (F1 0.59 vs. 0.50), with a higher recall rate
(0.50 vs. 0.38), and equivalent precision (0.71). However, au-
dio features were more accurate in determining the multi-class
depression score (MAE 5.01 vs. 7.02).

5.2. Experiment 2: Weighted Modeling

When weighting the model according to the questions asked of
the subject, audio features performed better than text features
(F1 0.67 vs. 0.44) with perfect rates of precision (1.00), but at
the cost of recall (0.50 and 0.29 for audio and text). The over-
all performance of audio improved when conditioning on the
question being asked (F1 0.67 vs. 0.50). The overall MAE and
RMSE for both modalities decreased compared to the previous
experiment.

5.3. Experiment 3: Sequence Modeling

Sequence models utilizing text features performed better (F1
0.67) than the context-free and were on par with the weighted
models, while sequence models utilizing audio features per-
formed better (F1 0.63) than the context-free model. The re-
call rates of the sequence models were higher than the previous
models (0.56 and 0.80 for audio and text). Combining both
modalities into a multi-modal model yielded the highest perfor-
mance (F1 0.77, recall 0.83). Sequence models also displayed
the best multi-class classification performance. Conducting fu-
sion scoring on the multi-modal model, resulted in the best
multi-class classification score (MAE 4.97, RMSE 6.27). A ma-
jority of our models out-performed the baseline results, and our
multi-modal model performed better than previous work with
respect to F1 score (sans the fusion scoring baseline).

6. Summary
In this study, we sought to model sequences of 142 interactions
in order to detect whether individuals was depressed during the
course of their interview. We conducted three sets of experi-
ments where audio and text modalities were modeled (1) with-
out the question that prompted the response, (2) with the context
by conditioning on the question asked, and (3) with respect to
the sequence of the responses (and without conditioning on the

Table 1: Results. Baselines and our approach. Best in bold.

Model Features F1 Prec. Rec. MAE RMSE
Baseline Approaches

Baseline [20] (Ensemble) .50 .60 .43 6.62 5.52
Williamson et al. [6] (Audio) .50 / / 5.36 6.74
Ma et al. [15] (Audio) .52 .35 1.00 / /
Gong et al. [9] (Ensemble) .70 / / 2.77 3.54
Williamson et al. [6] (Text) .76 / / / /
†Williamson et al. [6] (Text) .84 / / 3.34 4.46

Our Approach
Context-free (Audio) .50 .71 .38 5.31 6.94
Context-free (Text) .59 .71 .50 7.02 9.43
Weighted (Audio) .67 1.00 .50 7.60 10.03
Weighted (Text) .44 1.00 .29 7.32 8.85
Sequence (Audio) .63 .71 .56 5.13 6.50
Sequence (Text) .67 .57 .80 5.18 6.38
Multi-modal (Audio+Text) .77 .71 .83 5.10 6.37
†Multi-modal (Audio+Text) .43 .43 .43 4.97 6.27
†Fusion scoring.

question asked).

6.1. Information over Time and Across Modalities

We observed that while context-free modeling does provide
some discriminative power, sequence modeling is more accu-
rate (highest binary F1 score) and/or robust (lowest multi-class
MAE, RSME) for predicting depression. This indicates that the
model was capturing information across sequences. We also
observed that the optimum input parameters for each modality
were different. Text was provided to the model in timesteps of
7 and a stride of 3, while the audio was provided in timesteps
of 30 and stride 1. This indicates that temporally varying and
discriminative information of the way a depressed person may
speak as contained in the audio, exists at longer time intervals
relative to the syntactic and semantic information contained in
the text. The multi-modal model yielded the best performance
which shows that not only did a combination of modalities pro-
vide additional discriminative power, but that they contained
complementary information.

6.2. Model Calibration

If a model is to be deployed as a screening tool, then how well a
model is calibrated becomes important for its utility [26]. In this
study, we defined a model to be well calibrated if it had a rela-
tively low MAE and RMSE in its multi-class performance. We
noticed that the text-based weighted model performed worse
than the context-free model (0.44 from 0.59 F1, albeit with pre-
cision). This may be because the text-based context-free model
was not as well calibrated, as indicated by its relatively high er-
ror in the multi-class result (MAE 7.02), as a result, the discrim-
inative power of conditioning on the question may have been
too noisy. Further evidence to this behavior can be observed
in the audio-based model, whereby the context-free model that
was relatively better calibrated at the multi-class level (MAE
5.31), yielded a weighted model with improved performance
(0.50 to 0.67 F1). Moreover, applying fusion scoring improved
multi-class performance at the cost of binary classification per-
formance. We also hypothesize that this was due to relatively
poor calibration. While some of the baselines performed better
in the classification task, it is important to note that they both ap-
plied model calibration techniques. Gong et al. had performed
cross-validation on both the training and development set for
hyperparameter optimization [9], while Williamson et al. - who
explicitly modeled the the topic of the question, whereas we did
not - applied probability scaling to their model predictions [6].
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