On Algorithms for Decomposable Constraints

Kostas Stergiou

Glasgow University, Glasgow, Scotland. kostas@dcs.strath.ac.uk

Abstract. Non-binary constraints are present in many real-world con-
straint satisfaction problems. Certain classes of these constraints, like the
all-different constraint, are “decomposable”. That is, they can be repre-
sented by binary constraints on the same set of variables. For example, a
non-binary all-different constraint can be decomposed into a clique of bi-
nary not-equals constraints. In this paper we make a theoretical analysis
of local consistency and search algorithms for decomposable constraints.
First, we prove a new lower bound for the worst-case time complexity of
arc consistency on binary not-equals constraints. We show that the com-
plexity is O(e), where e is the number of constraints, instead of O(ed),
with d being the domain size, as previously known. Then, we compare
theoretically local consistency and search algorithms that operate on the
non-binary representation of decomposable constraints to their counter-
parts for the binary decomposition. We also extend previous results on
arc consistency algorithms to the case of singleton arc consistency.

1 Introduction

Many problems in the real world can be efficiently modelled as constraint sat-
isfaction problems and solved using constraint programming techniques. Some
examples are scheduling, planning, machine vision, temporal reasoning, car se-
quencing, vehicle routing, belief maintainance, and frequency allocation. Most of
these problems can be naturally modelled using n-ary (or non-binary) constraints
like the “all-different” and “global cardinality” constraints. Certain classes of
these non-binary constraints are decomposable [6] as they can be represented
by binary constraints on the same set of variables. For example, an all-different
constraint can be decomposed into a clique of binary not-equals constraints. As
a second example, a monotonicity constraint can be decomposed into a sequence
of ordering constraints on pairs of variables. Not all non-binary constraints are
decomposable into binary constraints on the same set of variables. For exam-
ple, the constraint (z7 + 22 < x3) cannot be represented by binary constraints
without the introduction of additional variables.

In this paper we make a theoretical analysis of some local consistency and
search algorithms for decomposable constraints. In Section 2 we introduce the
neccessary definitions from constraint satisfaction. In Section 3 we prove a new
lower bound for the worst-case time complexity of arc consistency on binary not-
equals constraints. We show that the complexity is O(e), where e is the number
of constraints, instead of O(ed), with d being the domain size, as previously

I.P. Vlahavas and C.D. Spyropoulos (Eds.): SETN 2002, LNAT 2308, pp. 65-[1], 2002.
© Springer-Verlag Berlin Heidelberg 2002



66 K. Stergiou

known. This new complexity bound is lower than the corresponding complexity
bound for the non-binary representation of not-equal constraints (i.e. the all-
different constraint). However, as we discuss in Section 4, this does not mean that
the binary decomposition is more efficient than the non-binary representation.
In Section 4 we compare theoretically local consistency and search algorithms
that operate on the non-binary representation of decomposable constraints to
their counterparts for the binary decomposition. We show that the non-binary
representation is more powerful than the binary one, and this makes up for the
worse complexity bound. Finally, we extend previous results on arc consistency
algorithms to the case of singleton arc consistency.

2 Formal Background

A constraint satisfaction problem (CSP) P is defined by a triple (X, D,C). X is
a set of n variables. Each variable z; € X takes values from a domain D; € D.
C is a set of e constraints. Each k-ary constraint is defined over an ordered set
of variables {x1,...,2;} by a subset of the Cartesian product Dy X ... x Dy
that specifies the set of allowed value combinations (tuples). A constraint can
be either defined extensionally by the set of allowed tuples or intensionally by a
predicate or arithmetic function.

A value a in the domain D of variable z is consistent with a constraint ¢ if
x is not included in the variables of the constraint, or if it is included and there
exists a valid tuple 7 in ¢ where x = a. In the latter case we say that 7 is a
support for a in c¢. Checking whether a tuple is a support for a variable value
pair (z,a) is called a consistency check. A solution to a CSP is an assignment
of values to variables that is consistent with all constraints. Many lesser levels
of consistency (usually called local consistencies) have been defined for binary
constraint satisfaction problems. A problem is (i,j)— consistent iff it has non-
empty domains and any consistent instantiation of i variables can be extended
to a consistent instantiation involving j additional variables. A problem is arc
consistent (AC) iff it is (1, 1)-consistent. A problem is path consistent (PC) iff it
is (2,1)-consistent. A problem is strong path consistent iff it is (j, 1)-consistent
for j < 2. A problem is path inverse consistent (PIC) iff it is (1,2)-consistent.
A problem is neighbourhood inverse consistent (NIC) iff any value for a variable
can be extended to a consistent instantiation for its immediate neighbourhood.
A problem is restricted path consistent (RPC) iff it is arc consistent and if a
value assigned to a variable is consistent with just a single value for an adjoining
variable then for any other variable there exists a value compatible with these
instantiations. A problem is singleton arc consistent (SAC) iff it has non-empty
domains and for any instantiation of a variable, the problem can be made arc
consistent. Some of the above local consistencies have been extended to the case
of non-binary CSPs. The generalizations of AC and SAC to non-binary CSPs are
called generalized AC (GAC) and singleton generalized AC (SGAC) respectively.
For example, a (non-binary) CSP is generalized arc consistent iff for any variable
in a constraint and value that it is assigned, there exist compatible values for all
the other variables in the constraint.



On Algorithms for Decomposable Constraints 67

Many search algorithms enforce a certain level of consistency at every node in
a search tree. For example, the forward checking algorithm (FC) maintains a re-
stricted form of AC which ensures that all values of the uninstantiated variables
are consistent with the most recent variable instantiation. Various generaliza-
tions of FC for non-binary constraints have been proposed. These algorithms,
starting from nFCO up to nFC5 enforce increasingly higher levels of consistency
(see [1]). Even higher levels of consistency can be maintained at each node in
the search tree. For example, the maintaining arc consistency algorithm (MAC)
enforces AC at each node in the search tree. For non-binary constraints, the al-
gorithm that maintains generalized arc consistency (MGAC) on a (non-binary)
constraint satisfaction problem enforces GAC at each node in the search tree.

Following [2], we call a local consistency property A stronger than B iff for
any problem enforcing A deletes at least the same values as B, and strictly
stronger iff it is stronger and there is at least one problem where A deletes
more values than B. We call A equivalent to B iff they delete the same values
for all problems. Similarly, we call a search algorithm A stronger than a search
algorithm B iff for every problem A visits at most the same search tree nodes as
B, and strictly stronger iff it is stronger and there is at least one problem where
A visits less nodes than B. A is equivalent to B iff they visit the same nodes for
all problems.

3 Arc Consistency on Binary Not-equals Constraints

In this section we correct a result given in [10] regarding the complexity of achiev-
ing AC in a network of binary not-equals (#) constraints. In [I0] it is claimed
that AC can be optimally achieved with O(ed) worst-case time complexity, where
e is the number of constraints and d the domain size of the variables. We will
describe an algorithm that achieves AC in networks of binary not-equals con-
straints with O(e) worst-case complexity. In [I0] it is claimed that O(ed) is the
optimal worst-case complexity of AC for any subclass of constraints, since, as
they say, “it is reasonable to assume that we need to check each value in each do-
main at least once”. We show that this is not the case for not-equals constraints,
and as a result, the worst-case complexity is actually O(e).

First, we start from the observation that for a not-equals constraint between
variables x; and z; AC may remove a value from the domain of variable z; or
x; only if the other variable has a unary domain. This is also mentioned in [10)].
In general, a not-equals constraint between two variables x; and z; with domain
sizes of more than one is always AC, since every value in the domain of z; will
have a support in the domain of z;, and vice versa. Whenever a variable xz; is
instantiated to a value a, AC will remove a from the domains of the variables
adjacent to x; and will only continue the propagation if some other variable
has only one value in its domain. In other words, an optimal implementation
of an AC algorithm will never process edges between variables that both have
non-unary domains.



68 K. Stergiou

We now describe the steps of the AC algorithm with O(e) worst-case com-
plexity.

— For each edge (z;,x;), such that z; has a unary domain mark the edge and
put it in a queue.

— Extract the first edge (z;,2;) from the queue. Assuming that a is the unique
value in the domain of z;, if a is present in the domain of z;, remove it.

— If the domain of x; becomes empty, stop. The network is inconsistent.

— If x; is left with a unary domain mark all the unmarked edges connected to x;
and put them in the queue. Checking whether a variable has only one value
in its domain can be done in constant time through careful implementation.
For example, using a flag that is set to 1 when the domain becomes singleton.

— Take the next edge out of the queue and continue in the same way. The
algorithm will stop when a domain wipe-out occurs or the queue becomes
empty.

Having described the algorithm, we can now prove the following proposition.

Proposition 1. Arc consistency can be achieved with O(e) worst-case time com-
plexity on a network of e binary not-equals constraints.

Proof. We need to show that each of the e edges will be processed at most once,
and that the processing can be done in constant time. Consider a not-equals
constraint between variable z; with the singleton domain {a} and z; with the
domain {a,...,z}. When this edge is extracted from the queue, AC will remove
a from the domain of z;. If at some point later z; is left with a singleton domain,
the algorithm we described will insert all edges that involve x; into the queue.
However, there is no point in including edge (x;,2;), since AC cannot remove a
value from either variable. This was done earlier when (x;, x;) was first processed.
Thus, an edge that has been processed once needs not to be processed again.
This means that each of the e edges is made AC at most once. As mentioned,
making an edge AC is equivalent to removing a value from a domain (if present)
and checking whether the resulting domain has size of 0, 1 or more, both of
which can be done in constant time with careful implementation. Therefore, AC
can be achieved with O(e) worst-case complexity.

As a result, if we have an all-different constraint on k variables the decom-
position of this constraint into binary not-equals constraints can be made arc
consistent with O(k?) worst-case complexity. This is a significant gain over the
O(k?d?) complexity of a generic optimal AC algorithm like AC-7. Also, the O(k?)
complexity of AC is significantly lower than the O(k?d?) complexity of Regin’s
algorithm for all-different constraints. However, as we discuss in the next sec-
tion, this does not mean that we should decompose all-different constraints into
binary.

4 Local Consistency and Search Algorithms

In this section we review some results from [93] where local consistency and
search algorithms for non-binary decomposable constraints are compared to the



On Algorithms for Decomposable Constraints 69

corresponding algorithms for the binary decomposition. [3] first compared the
level of consistency achieved by FC on the decomposition to the levels of con-
sistency achieved by the various generalizations of FC on the constraints of the
n-ary representation. A lower bound on the performance of FC applied to the
binary decomposition was first identified. It was proved that for a decompos-
able non-binary constraint satisfaction problem, the forward checking algorithm
FC on the binary decomposition is strictly stronger than the generalized algo-
rithm nFCO0. [3] also gives a simple upper bound on the performance of FC on
the binary decomposition. For a decomposable non-binary constraint satisfac-
tion problem the generalized algorithm nFC1 is strictly stronger than FC on the
binary decomposition.

[3] also investigated and compared the pruning efficiency of AC on the bi-
nary decomposition and GAC on the n-ary representation of decomposable con-
straints. They first gave a lower bound on the level of consistency achieved by
GAC on decomposable constraints with respect to the binary decomposition.
It was proved that GAC on decomposable constraints is strictly stronger than
AC on the binary decomposition. As a result, an algorithm that maintains GAC
on the non-binary representation of a set of decomposable constraints is strictly
stronger than an algorithm that maintains AC on the binary decomposition. So,
although we showed that AC on the decomposition can be achieved faster that
GAC on the non-binary representation, it does not pay off because it is a weaker
level of consistency. This is also demonstrated by the empirical results presented
in [9]3].

Having established that GAC is stronger than AC, [3] compared GAC to
stronger levels of consistency than AC in the binary decomposition. They showed
that, in the general case, NIC on the binary decomposition, as well as all the lev-
els of consistency between strong PC and RPC, are incomparable to generalized
arc-consistency.

Another result from [3] is that an algorithm that maintains GAC on decom-
posable constraints strictly is stronger than the strongest generalized forward
checking algorithm nFC5. Naturally, this means that it is also stronger than
algorithms nFC0-nFC4 and also FC applied to the binary decomposition.

5 Singleton Arc Consistency

We now extend the analysis of [3] to the case of SAC and its generalization
SGAC. As shown in [7], these very high levels of consistency can be very effective
in certain classes of CSPs. First we prove that SGAC on on the non-binary
representation is strictly stronger than SAC on the binary decomposition.

Theorem 1. Singleton generalized arc consistency on decomposable constraints
18 strictly stronger than singleton arc consistency on the binary decomposition.

Proof. SGAC ensures that every variable in the problem can be instantiated to
any of the values in its domain and the resulting problem will be GAC. Since
GAC on decomposable constraints is strictly stronger than AC on the binary



70 K. Stergiou

decomposition, for any instantiation of a variable, the binary decomposition of
the resulting problem will be AC. Hence, the binary decomposition of the original
problem is SAC.

To prove strictness, consider a problem with three all-different constraints
on {z1,x9,x3}, on {1,292, 24}, and on {x1, 3,24}, in which all variables have
the domain {1,2,3}. The binary decomposition of this problem is SAC, but
enforcing SGAC on the original problem shows that it is insoluble. For example,
if we assign 1 to xo then GAC on the all-different constraint {x,x3, x4} detects
inconsistency and, therefore, the resulting problem is not GAC. So 1 is removed
from the domain of x5. With similar arguments, values 2 and 3 are also removed
from the domain of x5 resulting in a domain wipe-out.

A corollary of this theorem is that SGAC is strictly stronger than PIC and
RPC on the binary decomposition.

Corollary 1. Singleton generalized arc consistency on decomposable constraints
1s strictly stronger than path inverse consistency and restricted path consistency
on the binary decomposition.

Proof. Tt trivially follows from Theorem [[Jand the results of [2] where it is proved
that SAC is strictly stronger than PIC and RPC.

The following theorem shows that NIC and strong PC on the binary decom-
position are incomparable to SGAC on the n-ary representation of decomposable
constraints.

Theorem 2. Singleton generalized arc consistency on decomposable constraints
18 incomparable to neighbourhood inverse consistency and to strong path consis-
tency, on the binary decomposition.

Proof. For an example where NIC is stronger than SGAC, consider a prob-
lem with five variables {x1,z9, 3,24, 25} and six all-different constraints on
{x1, 22,23}, on {x1, 23,24}, on {z1, 24,25}, on {x1, 22,25}, on {x9, 3,24}, and
on {x3, x4, x5 }. All variables have the domain {1,2,3,4}. This problem is SGAC
because any instantiation of every variable results in a problem that is GAC. En-
forcing NIC, however, shows that the problem is insoluble. Now, for an example
where strong PC is stronger than SGAC, consider a problem with three variables
{z1,x2, 23} and three not-equals constraints, 1 # xa2, ©1 # x3, x2 # 3. The
domain of 7 is {1,2} and the domains of xo and x3 is {1,2,3}. This problem
is SGAC but enforcing strong PC adds the constraint that either x5 or x3 must
be 3.

For an example where SGAC is stronger than NIC, consider the following
2-colouring problem. We have 5 variables, z1 to x5 which are arranged in a ring.
Each variable has the same domain of size 2. Between each pair of neighbouring
variables in the binary decomposition, there is a not-equals constraint. In the
non-binary representation, we post a single constraint on all 5 variables. This
problem is NIC, but enforcing SGAC on the non-binary representation shows
that the problem is insoluble. Finally, for an example where SGAC is stronger



On Algorithms for Decomposable Constraints 71

than strong PC, consider an all-different constraint on 4 variables, each with the
same domain of size 3. The binary representation of the problem is strong PC
but enforcing SGAC shows that it is insoluble.

6 Conclusions

We made a theoretical analysis of local consistency and search algorithms for
decomposable constraints. We proved a new lower bound for the worst-case time
complexity of arc consistency on binary not-equals constraints. We showed that
the complexity is O(e) instead of O(ed), as previously known. We compared the-
oretically local consistency and search algorithms that operate on the non-binary
representation of decomposable constraints to their counterparts for the binary
decomposition. We also extended previous results on AC and GAC algorithms
to the case of SAC and SGAC. In general we showed that the representation
of problems can have a very large impact on the efficiency of search. Also, a
non-binary representation can offer considerable advantages over a binary rep-
resentation in certain classes of constraints, such as decomposable constraints.

Acknowledgements. The author is a member of the APES research group and
would like to thank Ian Gent, Patrick Prosser, and Toby Walsh.

References

1. C. Bessiere, P. Meseguer, E. Freuder, and J. Larrosa. On forward checking for
non-binary constraint satisfaction. In Proceedings CP-99, pages 88-102.
2. R. Debruyne and C. Bessiére. Some practicable filtering techniques for the con-
straint satisfaction problem. In Proceedings of IJCAI-97, pages 412-417.
3. 1. Gent, K. Stergiou, and T. Walsh. Decomposable Constraints. Artificial Intelli-
gence, 123:133-156, 2000.
4. C. P. Gomes and B. Selman. Problem structure in the presence of perturbations.
In Proceedings of AAAI-97, pages 221-226.
5. C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed probability distributions in
combinatorial search. In Proceedings of CP-97, pages 121-135.
6. U. Montanari. Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Science, 7:95-132, 1974.
7. P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In Proceedings of
CP-2000.
8. J. C. Régin. A filtering algorithm for constraints of difference in csps. In Proceedings
of AAAI-9, pages 362-367.
9. K. Stergiou, and T. Walsh. The difference all-difference makes. In Proceedings of
ILJCAI-99.
10. P. Van Hentenryck, Y. Deville, and C. Teng. A Generic Arc Consistency Algorithm
and its Specializations. Artificial Intelligence, 57:291-321, 1992.



	Introduction
	Formal Background
	Arc Consistency on Binary Not-equals Constraints
	Local Consistency and Search Algorithms
	Singleton Arc Consistency
	Conclusions

