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Abstract

Digital imaging in pathology has undergone an exponential period of
growth and expansion catalyzed by changes in imaging hardware and
gains in computational processing. Today, digitization of entire glass
slides at near the optical resolution limits of light can occur in 60 s.
Whole slides can be imaged in fluorescence or by use of multispectral
imaging systems. Computational algorithms have been developed for
cytometric analysis of cells and proteins in subcellular locations by use
of multiplexed antibody staining protocols. Digital imaging is unlocking
the potential to integrate primary image features into high-dimensional
genomic assays by moving microscopic analysis into the digital age. This
review highlights the emerging field of digital pathology and explores
the methods and analytic approaches being developed for the applica-
tion and use of these methods in clinical care and research settings.
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DIGITAL PATHOLOGY AND
WHOLE-SLIDE IMAGING
SYSTEMS: AN OVERVIEW

Since the development of the first automated,
high-resolution whole-slide imaging (WSI)
system by Wetzel and Gilbertson in 1999
(described in Reference 1), interest in using
WHSTI for different applications in pathology
practice has steadily grown (1-3). All current
WHSI systems consist of illumination systems,
microscope optical components, and a focusing
system that precisely places an image on a
camera. The final product, or virtual slide, can
be assembled in various ways, depending on the
particular scanner being used (tiling, line scan-
ning, dual sensor scanning, dynamic focusing,
or array scanning) (3). The result is a com-
prehensive digital rendering of an entire glass
slide, visible at resolutions of less than 0.5 um,
that can be examined with interactive software
on a computer screen (4). The viewing software
closely emulates the performance characteris-
tics of a light microscope in that the pathologist
can freely navigate a digital image of a histolog-
ical section over a complete range of standard
magnifications (including oil immersion) and
perform functions that have historically been
carried out with a light microscope. WSI tech-
nology holds tremendous promise with respect
to the digitization of pathology because it avoids
many of the limitations imposed by earlier
methods such as photomicroscopy (the cap-
turing of selected representative images) and
robotic microscopy (5). These approaches were
limited by several factors, including subopti-
mal image quality, the inability of the viewing
pathologist to see a high-resolution overview of
the entire slide or to have control over its nav-
igation, and the need for an extended amount
of time to adequately review a slide (1, 3, 6-8).

Pathology, as with most medical specialties,
is currently facing a growing demand to
improve quality, patient safety, and diagnostic
accuracy because there is an increasing empha-
sis on subspecialization. These factors, coupled
with economic pressures to consolidate and
centralize diagnostic services, are driving the
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development of systems that can optimize
access to expert opinion and highly specialized
pathology services. Digital pathology networks
based on WSI systems provide a potential
solution to all of these challenges and will
undoubtedly play a critical role in this regard
in the future (2). As with digital radiology, it is
now believed that transformation to a soft-copy
reading environment is possible for pathology
as well. The emergence of more than 10 differ-
ent WSI vendors over the past 5 years further
indicates that pathology will eventually be-
come a digital specialty. To date, however, the
adoption of digital platforms by the pathology
community as a whole has been slow, and the
applications of WSI systems in pathology have
been limited to education, research, and specific
niches in clinical practice. Much work remains
to be done before WSI technology for diag-
nostic purposes can be widely adopted (8-10).
Arguably, the most important limiting factor
is the perception among pathologists that WSI
systems are inferior in terms of performance
when compared with light microscopes. Given
that pathologists have carried out their work
with light microscopes for more than 100 years,
WSI is considered a disruptive technology.

In this review, we focus primarily on the
factors that currently facilitate or impede the
adoption of WSI systems in pathology. We
also review the limited but growing literature
that describes the validation of WSI systems
for diagnostic purposes and the use of this tech-
nology for actual patient care, multidisciplinary
patient conferences (tumor boards), quality-
assurance (QA) activities, and education.

ADOPTION OF DIGITAL
PATHOLOGY SYSTEMS BY
PATHOLOGISTS: FACILITATORS
AND BARRIERS

One can easily identify advantages and disad-
vantages to switching from glass slides and light
microscopes to WSI platforms. The adoption
of digital technology by the pathology com-
munity has been slower than in radiology for
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various reasons (11). Although pathology can
learn lessons from radiology concerning the
switch to digital reporting, there are key dif-
ferences that prevent pathologists from sim-
ply reapplying the digital radiology template.
These differences include our need for color
images and the data-storage challenges that are
created when large volumes of slides are com-
pletely digitized (12). In addition, radiology was
able to eliminate films and all of the hazardous
chemicals associated with producing them (13).
The same cannot be said for pathology, wherein
glass slides must still be produced and stored as
well as scanned, which adds an extra step to the
prediagnostic work flow.

Facilitators

Facilitators for the adoption of digital pathol-
ogy can be considered in terms of cost savings,
performance, work-flow efficiency, and access
to pathology services in underresourced lo-
cations. The cost of replacing single-purpose
microscopes with multipurpose computers
and monitors can be shared among various
departments as the number of WSI applica-
tions increases within and between institutions,
which should stimulate growth in investment
in this area over the next few years (7, 10,
14, 15). Digital pathology systems are also
likely to be more ergonomically friendly than
light microscopes, a factor that led a group in
Kalmar, Sweden, to adopt the former technol-
ogy to keep one of its members functioning
as a pathologist (16). WSI systems can now be
integrated with laboratory information systems
to reduce errors related to specimen-patient
mismatching. In terms of work-flow efficiency,
WSI systems allow for more-streamlined
navigation of slides at all magnifications by
eliminating disruptions that can occur when a
pathologist bumps a slide on the microscope
stage (particularly when viewing a slide at high
magnification). Computer-aided diagnostic
tools will undoubtedly make pathologists
more efficient and precise at quantifying
histoprognostic factors such as mitotic figures.

Because relatively little is known about the
cognitive factors that affect human perfor-
mance in pathology practice, human-factor
studies using digital pathology platforms have
been performed. These studies have focused
primarily on understanding the diagnostic
pathways used by virtual slide readers in order
to develop more usable interfaces for visual-
ization of virtual slides, design more efficient
digital reading environments, and improve the
accuracy of digital slide interpretations (17, 18).
It is more efficient to review virtual slides with
residents in sign-out situations that involve
more than one or two trainees. Residents can
also have access to annotated online education
modules, which is particularly advantageous for
the independent study of rare or unusual cases
without the need for a staff pathologist. Time
and motion studies have convincingly shown
that pathologists spend up to 15% of their
professional time matching slides to paper req-
uisitions and looking for glass slides for signing
out, second opinion, tumor boards, research,
and resident teaching. WSI systems with
online digital archives have the potential to
greatly reduce these inefficiencies and improve
pathologist productivity (19, 20). Finally, WSI
systems have tremendous potential to provide
access to subspecialty pathology services for
remote locations that have limited or no on-site
pathology support. The digital approach obvi-
ates both the costs and time delays associated
with shipping glass slides between centers and
the risk of valuable slides being lost or dam-
aged during transport. These potential benefits
certainly make WSI systems an attractive alter-
native to traditional microscopy for a complete
spectrum of activities in clinical pathology (2).

Barriers

Despite the numerous advantages outlined
above, many technical and practical issues must
be overcome before pathology can follow radi-
ology’s example in terms of going digital (11).
These barriers can be considered in terms of
cost and required infrastructure, image quality
and speed of acquisition, data management,

www.annualreviews.org o Digital Imaging in Pathology

333



Annu. Rev. Pathol. Mech. Dis. 2013.8:331-359. Downloaded from www.annualreviews.org

by Case Western Reserve University on 11/12/13. For personal use only.

334

standards, and regulatory approval, as well as
pathologists’ concerns with respect to inferior
performance.

The cost of purchasing, implementing, and
maintaining a WSI system can be prohibitive,
depending on the scope of the digital pathology
service under consideration, and especially
for small pathology groups in nonacademic
institutions or in situations where a compelling
business case cannot be made. Apart from the
cost of scanners (in excess of US$100,000—
150,000 apiece), one must consider the cost
associated with training of pathology staff
and lab personnel, service contracts, tech-
nical support during the installation phase
and ongoing use, digital slide storage and
retrieval, and regulatory or licensure issues
that may have to be addressed. There is also
the possibility that labs will have to retrofitted
with bar-code tracking systems, particularly if
the WSI platform is to be integrated with a
departmental laboratory information system.

Although robust, high-throughput slide
scanners are now commercially available, their
scanning speed and the acquisition of consis-
tently well-focused digital slides are shortcom-
ings (1, 4). Vendors in the digital pathology

Mounting media
with dirt

Figure 1

space are acutely aware of the need for fast WSI
systems that provide image quality that matches
or exceeds the visual experience obtained with
light microscopy, and there has been progress
in this area. Today’s scanners can be loaded
with 400 or more slides and can scan slides con-
tinuously; however, round-the-clock operation
of multiple scanners is required to completely
digitize the slide volumes of a typical academic
pathology department (12), and rescanning is
required for a variable percentage of slides.
More than 1 min is still required to scan a typi-
cal 1.5 x 1.5 cm section at 20 x magnification.
Most image-quality problems are focus related,
and many can be traced back to the quality of the
histologic section that was placed in the scan-
ner. With current WSI technology, the quality
of the slides to be scanned must be optimized in
terms of uniform section thickness, placement
of the section in the center of the slide such
that it is completely covered by the coverslip,
avoiding the creation of chatter artifact and tis-
sue folds during microtomy, and avoiding the
creation of air bubbles during coverslipping.
All of these irregularities can adversely affect
the focus and image quality of adjacent areas
on the resulting virtual slide (Figures 1 and 2).

Representative examples showing the limitations imposed by suboptimal slide quality on the quality of images
produced by whole-slide imaging devices. (#) Excess mounting media (with attached dirt) on the top of the
coverslip adversely affect the focus of adjacent tissue. Dirty slides, such as this section from a seminoma,
should be cleaned prior to scanning. (») The coverslip on this kidney section has shifted, leaving the left edge
of the section uncovered and out of focus. The coverslip should be reapplied and the slide rescanned.

Ghaznavi et al.
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Figure 2

Representative examples showing the limitations on image quality imposed by suboptimal histologic
processing of frozen sections read by whole-slide imaging. (#) A prominent tissue fold in this frozen section
has adversely affected the focus of the top half of the image. Depending on the slide scanner being used, one
must pay careful attention to avoiding the inclusion of tissue folds in the focus map that is generated prior to
the scanning process. The alternative is to get a recut section without tissue folds. (#) Air bubbles likewise
cause the affected area to be completely out of focus, rendering that portion of the slide unsuitable for

assessment.

A recent study by Bautista & Yagi (21) investi-
gated an automated method for detecting and
avoiding these suboptimal areas during the
focus-mapping stage of scanning; however,
more work is required before this process
can become successfully integrated into WSI
scanners. Not all WSI systems can perform
real-time multiplanar focusing to compensate
for suboptimally focused areas. Although vir-
tual focusing is now technically feasible, slides
need to be scanned at multiple focal planes,
which generates enormous image files (22, 23).
For these reasons, current WSI systems are not
suitable for reading cytology slides, wherein
multiplanar focusing is frequently required to
examine three-dimensional details of cells and
cell clusters (24).
Development of an data-
management system that can handle huge
amounts of data (terabytes to petabytes),
provide a streamlined image-retrieval process,

effective

and ensure security with currently available
medical information systems remains an area of
concern (9, 15, 25). Due to rapid technological
advances in the area of digital processing and
storage and the availability of effective com-
pression algorithms, current difficulties related

to the management of digital slide archives can
be overcome. To illustrate this point, Huisman
et al. (12) digitally archived all of the cases
reported since November 2007 at University
Medical Center in Utrecht, Netherlands. They
undertook this project primarily to aid patholo-
gists in their preparation for clinicopathological
conferences. Three 120-slide scanners were
used to continuously scan slides at 20 x magni-
fication with a JPEG compression ratio of 70.
More than 2,000 slides were scanned per week,
on average, and the file sizes for individual
slides ranged between 5 MB and 3.9 GB.
This process generated roughly 40 TB of data
annually, and by April 2009, the digital archive
contained approximately 150,000 slides.

The increasing emphasis on quality and
accuracy in pathology has created a growing
need for pathology departments to follow
best-practice standards and standard operating
procedures, particularly when introducing new
technologies such as WSI. The CLIA (Clinical
Laboratory Improvements Act) requires all
laboratory tests to be validated; however, it is
not clear what part of examining a hematoxylin
and eosin (H&E)-stained slide with a WSI
system constitutes “the test” (5). The US Food

www.annualreviews.org o Digital Imaging in Pathology



Annu. Rev. Pathol. Mech. Dis. 2013.8:331-359. Downloaded from www.annualreviews.org

by Case Western Reserve University on 11/12/13. For personal use only.

336

and Drug Administration (FDA) has not yet
approved the use of WSI systems for H&E
diagnosis, although the approval process has
been initiated by several WSI vendors. Guide-
lines on monitor resolution and image quality
and standards, such as the Digital Imaging
and Communications in Medicine [DICOM,
Supplements 122 (26) and 145 (27)], to create
interoperability between WSI platforms, com-
pression (JPEG 2000), and retention of digital
slides used for diagnostic purposes are only
beginning to appear (28). In addition, medi-
colegal and licensure guidelines governing the
use of WSI systems for providing diagnostic
services across jurisdictional boundaries have
not yet been established. Because we are only
just entering the digital era in pathology,
it is not surprising that there is a paucity
of guidelines. It is also not surprising that
the pathology community is guarded about
adopting a technology that lacks best-practice
benchmarks.

Today’s pathologists are under increasing
pressure to handle large volumes of cases in a
timely manner while providing an increasingly
large amount of histoprognostic information in
their consultation reports (especially in cancer
cases). The stakes are high in that definitive
surgical and medical treatments are based on
the information provided by pathologists. In
such an environment, pathologists are naturally
wary about adopting digital systems that they
think could both slow them down and increase
the possibility of diagnostic error (11). Another
key performance factor that remains to be eval-
uated is the possibility of visual fatigue (over and
above that encountered with light microscopes)
caused by signing out cases ata monitor for pro-
longed periods of time (29). Computerized sim-
ulations of a high-volume histology laboratory
work flow carried out by McClintock et al. (30)
provide a quantitative assessment of the feasi-
bility for the full adoption of WSI in pathology
practice. These authors’ results, together with
those from a study by Isaacs etal. (31), show that
implementing WSI into high-volume pathol-
ogy work flows has significant implications in
terms of extra work, cost, and time.

Ghaznavi et al.

OVERCOMING THE
PERCEPTION OF INFERIOR
PERFORMANCE: THE ROLE OF
VALIDATION STUDIES

Even if most of the barriers are overcome,
widespread adoption of WSI for primary diag-
nosis will not occur as long as pathologists be-
lieve that the performance of digital pathology
systems is inferior to that of light microscopy
(11, 32). The information required to surmount
this important barrier can be obtained only
by collecting objective data from well-designed
validation studies that demonstrate the diag-
nostic equivalence (if not the superiority) of
WHSI systems to the light microscope. Such in-
vestigations will be necessary to gain regulatory
approval from agencies such as the FDA, as well
as to ensure pathologists’ confidence in the di-
agnoses they make with these systems. In an
effort to standardize the validation process, the
College of American Pathologists has drafted
recommendations on how to structure valida-
tion studies (33).

There is a relative paucity of peer-reviewed
literature on validation studies for making
primary diagnoses with WSI; however, new
studies are steadily appearing in abstract form.
In terms of published papers, Jukic et al.
(34) investigated intrapathologist diagnostic
discrepancy rates and diagnostic certainty
between glass and digital slides by having three
pathologists review 101 cases (900 slides in
total from neoplastic and nonneoplastic cases)
by both methods. They concluded that the use
of WSI technology would not have adversely
affected patient care or the diagnostic certainty
of each pathologist.

A recent study by Mooney et al. (35) as-
sessed the diagnostic accuracy and acceptability
of virtual slides in dermatopathology. Ten
pathologists and dermatopathologists were
presented with a randomized series of 20 glass
and virtual slides. These investigators found no
significant differences in the diagnostic ability
of the participants between the two modalities
(0.85 for digital versus 0.81 for conventional
microscopy; p = 0.286). Chargari et al. (36)
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compared assessments of pathological features
in a series of 816 prostate needle biopsy
cores from 69 consecutive patients by using
optical microscopy and digital means. Their
results showed no significant difference in the
percentage of biopsies in which cancer was
detected (34.8% for conventional slides versus
33.4% for digital slides). Gilbertson et al.
(4) demonstrated that WSI can be used for
making routine diagnoses on genitourinary and
dermatology cases. Although the three study
pathologists raised concerns about areas on
specific virtual slides that were suboptimally fo-
cused, this study reported complete agreement
between WSI consensus diagnoses and gold
standard diagnoses based on light microscopy.
In a retrospective study by Fine et al. (37),
five reviewers examined 30 diagnostically chal-
lenging prostate needle biopsies that required
the use of immunohistochemical stains. The
diagnostic performance of a WSI system was
compared with that of light microscopy based
on intra- and interobserver k values, the time
required to examine the cases, and information
gathered from poststudy focus group discus-
sions. Intraobserver agreements were reported
as perfect for one reviewer, substantial for
three reviewers, and moderate for the remain-
ing reviewer. Although diagnostic agreement
between each pathologist and the gold standard
ranged from 0.52 to 0.73, agreement was in the
excellent range (x = 0.817) when comparing
consensus WSI diagnoses with interpretation
based on light microscopy.

A pilot study of 15 cases in Kyoto, Japan,
conducted by Tsuchihashi et al. (38) sug-
gested that rapid and accurate frozen-section
diagnoses can be made by WSI. Fallon et al.
(39) had two pathologists examine virtual
slides created from 52 consecutive ovarian
tumor frozen-section cases that covered
benign, malignant, and borderline tumors.
Although the reviewing pathologists did not
have the full clinical information when they
reviewed the virtual slides, they reported 96%
concordance between WSI and the original
light-microscopy diagnoses issued at the time

of surgery. Interestingly, in some cases the
WHI diagnoses were more accurate than those
given at the time of surgery. Importantly,
the discrepant cases were associated with
well-known interobserver variability issues and
were not considered to be a function of WSL
Recently, Nielsen et al. (40) reported the di-
agnostic performance of virtual microscopy for
routine histological diagnosis of skin tumors.
Four pathologists who had limited experience
in the use of virtual slides rendered diagnoses on
96 cases based on glass and digital sides (scanned
at 20 x magnification). They reported an over-
all diagnostic accuracy of 89.2% for virtual mi-
croscopy and 92.7% for light microscopy; the
k values were in the very good range for both
intra- and interobserver agreement. Diagnos-
tic discrepancies between WSI and light mi-
croscopy were attributed to the pathologists’
lack of experience with the digital platform.
These investigators concluded that it is feasi-
ble to use WSI systems to make diagnoses on
the skin tumor types represented in the study.
A series of recent abstracts presented at the
2011 US and Canadian Academy of Pathology
meeting has also provided encouraging valida-
tion data. Ramey at al. (41) reported complete
diagnostic concordance of 91% between WSI
and the original light-microscopy diagnoses
issued for 72 consecutive frozen sections that
were scanned at 20 x magnification and subse-
quently reviewed by eight pathologists on both
desktop and laptop computers. The overall k
value was 0.84. All the discrepancies were mi-
nor in nature and would have had no impact on
intraoperative management. The type of frozen
section had no influence on performance. In
a companion abstract, the Ramey group (42)
reported essentially identical results in terms of
concordance when virtual slides of these frozen
sections were reviewed on a high-resolution
mobile device (an iPad). Finally, Reyes et al.
(43) had three pathologists examine 103 breast
needle biopsies by WSI (20 x magnification
scans) and light microscopy. These authors
reported no disagreements with respect to
distinguishing benign from malignant diseases.
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All disagreements were associated with cases
diagnosed as duct hyperplasia or atypical duct
hyperplasia.

The validation studies summarized above
indicate that WSI platforms can be used to
make diagnoses that are as accurate as those
made by light microscopy. The emerging
theme from all of them is that when discrep-
ancies between WSI and light-microscopy
diagnoses arise, they tend to involve entities
that are known to be plagued by interobserver
variability. However, the problems with these
studies are that they are limited to specific
applications and that the results cannot be
generalized to all areas of surgical pathology.
Validation studies that cover the entire spec-
trum of cases and tissue types encountered in
surgical pathology have not been performed,
but will be required. A key issue, for which there
are currently no guidelines, is how to design the
ideal validation study. How many cases should
there be? What about the mix of cases? How
many pathologists should there be? Is the end
point diagnostic concordance, feature recogni-
tion, or a combination of the two? What is an
appropriate washout period between reviewing
cases with WSI and light microscopy? How
does one control for intra- and interobserver
variability? In how many different centers do
these studies need to be performed? These are
only some of the issues that need to be consid-
ered, although it will probably be impossible
to design a single perfect validation study (44).

VALIDATION OF WHOLE-SLIDE
IMAGING FOR USE IN
CONSULTATION MODELS

WHSTI technology is an obvious way to provide
rapid consultation services to hospitals that
lack on-site pathologists (45). The same would
apply to solo pathologists in remote locations,
who could benefit from expert consultations
without having to incur courier costs, time
delays, and the risks of losing or damaging
slides if they are shipped to a referral center
(37, 39). The number of studies evaluating
WHSI in consultation models is small; however,
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available data are encouraging. Rodriguez-
Urrego et al. (46) recently published the results
of an inter- and intraobserver agreement study
in which four urologic pathologists compared
WSI with light microscopy with respect to
assigning Gleason scores and identifying
other useful histoprognostic parameters in 50
challenging prostate biopsies in a consultation
setting. Interobserver agreement in both
methods was similar; the « values ranged from
0.35 to 0.65 for all parameters. Intraobserver
agreement was very good to excellent; the «
values for primary Gleason grade and Gleason
score were >0.73. Tumor quantitation and
perineural invasion also showed a high level of
inter- and intraobserver concordance. These
investigators concluded that WSI platforms
would be sufficient for providing reliable
consultation diagnoses on prostate biopsies.

A study by Wilbur et al. (47) looked at the
feasibility of using WSI systems to provide con-
sultation diagnoses for challenging cases from
various anatomic sites. Fifty-three cases were
assessed by two subspecialty pathologists, one
using light microscopy and the other using
WSI. They reported an overall concordance of
91% between WSI and light microscopy; neo-
plastic cases showed better concordance (93 %)
than did nonneoplastic cases (88%). Impor-
tantly, these investigators noted difficulties with
navigation at high magnifications and in the in-
terpretation of inflammatory or infectious le-
sions when using WSIL.

USE OF WHOLE-SLIDE IMAGING
FOR ACTUAL PATIENT CARE
OUTSIDE OF VALIDATION
STUDIES

Given the barriers described above, it should
not be surprising that the literature describ-
ing the use of WSI systems for actual patient
care, so-called off-label use, is sparse. Isolated
abstracts have been presented that describe the
use of WSI in a subspecialty consultation net-
work in the United States (48) and for making
primary diagnoses in the setting of a small group
pathology practice in Kalmar, Sweden (16).
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Starting in late 2006, Evans et al. (7) at Uni-
versity Health Network (UHN) in Toronto,
Canada, have used WSI to make primary
frozen-section diagnoses in the absence of
an on-site pathologist. UHN is a three-site
academic institution in downtown Toronto.
The pathology department is consolidated in
one site, leaving two sites without regular on-
site pathologists for frozen-section coverage.
One site is located approximately 1 mile from
the consolidated department; it generates a low
volume of frozen sections (typically fewer than
10 per week), the vast majority of which come
from neurosurgery. WSI telepathology was im-
plemented to deal with the inefficiencies as-
sociated with sending a single pathologist to
cover frozen sections and the quality issues
that may arise when a lone pathologist is faced
with challenging cases in the absence of sup-
port from a colleague. This program is the first
of its kind to use WSI for real-time diagno-
sis in patient care. On the basis of experience
with more than 2,000 cases as of December
2011, single-block frozen sections are routinely
reported with a total turnaround time of 14
to 16 min, with a deferral rate of <5% and a
discrepancy rate of <2% (when comparing in-
traoperative WSI diagnoses with the diagnoses
provided by light microscopy at final sign-out).
This program has leveraged the ability of WSI
to enable real-time consultation on all cases in
which the primary pathologist is considering
deferring a frozen-section diagnosis. Patholo-
gists have used WSI to make reliable interpre-
tations of smears (or squash preps), which are
often important in intraoperative neuropathol-
ogy. Ithas been their experience that 20 x mag-
nification scans are sufficient for assessing both
frozen sections and smears, and image quality is
not a problem if well-prepared slides are placed
in the scanner (Figure 3). Figure 4 shows
an approach to scanning intraoperative smear
slides that minimizes the area of the smear that
needs to be scanned and optimizes the focus
of cells at the diagnostic (thinnest) end of the
smear.

The WSI telepathology program at UHN
has recently been expanded to provide primary

frozen-section support, without incident, to a
hospital 400 miles north of Toronto when there
is no on-site pathologist (A. Al Habeeb, A.
Evans, S. Serra & R. Vajpeyi, unpublished ob-
servations). This system also facilitates the in-
troduction of quality measures, such as rapid
consultation between colleagues, when there is
an on-site pathologist (3, 7).

MULTIDISCIPLINARY PATIENT
CONFERENCES

Multidisciplinary  conferences, or tumor
boards, play a central role in decision making
for quality cancer care. Although tumor boards
may seem an obvious application for WSI
technology, there is, once again, a paucity of
literature on the subject. Spinosa (49) provided
a comprehensive overview of a pilot project
investigating the effectiveness of using WSI for
tumor boards at Scripps Memorial Hospital
La Jolla in California. This study demonstrates
benefits such as increased efficiency for pathol-
ogists when preparing cases for presentation,
improved quality in terms of information
that is presented to clinical colleagues, and
increased satisfaction on the part of all who

attend these meetings.

QUALITY ASSURANCE

All medical specialties face increasing pressure
to improve quality and patient safety. In pathol-
ogy, the public attitude has shifted toward
expectations of faster and more patient-centric
subspecialty service that minimizes diagnostic
errors (50-52). QA plays a central role in this
process, and indeed, a growing number of
institutions are adopting QA policies whereby
a given percentage of cases must be indepen-
dently reviewed by a second pathologist before
sign-out (1, 50). Several studies, using different
approaches, have investigated the incidence
and characteristics of discrepancies between
original and second reviews when both are
performed using only glass slides. Manion et al.
(53) reviewed 5,629 surgical pathology cases at
the University of Iowa Hospitals and Clinics
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Figure 3

Representative examples of the image quality that can be obtained from 20 x magnification scans of
well-prepared frozen sections and intraoperative smears. (2,5) A meningioma frozen section and a paired
smear, respectively. (c,d) A low-grade astrocytoma frozen section and a paired smear, respectively.

and found 132 (2.3%) major disagreements,
of which 68 resulted in changes in clinical
management. In a nonconcurrent cohort study
by Raab et al. (54), pathologists reviewed glass
slides from a total of 7,824 in-house cases, of
which 7,444 were selected using a targeted 5%
random review process and 380 were chosen
for focused review. The total number of dis-
crepancies detected by random review was 222,
of which 27 (12%) were considered major (p <
0.001). Through the use of focused review, 12
of 62 (19.4%) discrepant cases were considered
major (p < 0.001). Published results based on
reviews of outside material report discrepancy
rates ranging from 1.4 to 11.3%; almost 60%
of major discrepancies resulted in changes in
clinical management (55).

QA is an area in which WSI technology can
play a critical enabling role. Digital pathology

Ghaznavi et al.

networks can avoid costs and potential diffi-
culties associated with transporting glass slides
between facilities. They can also be set up in
such a way that potential second-reviewer bias,
in favor of or against the original diagnosis,
can be minimized (1, 56).

One of the first pilot studies demonstrating
the potential of using WSI for QA purposes
came from the University of Pittsburgh
Medical Center in 2006. In this study by
Ho et al. (1), 24 full genitourinary pathology
cases with significant diagnostic complexity
(comprising 47 separate parts and 391 slides)
were rereviewed by three pathologists using
WSI and traditional light microscopy. All of
the reviewers had prior experience in reading
digital slides. Four clinically insignificant
discrepancies were found, two of which were
based on the WSI review and two on light
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Figure 4

An approach to handling intraoperative smears (squash preps) by whole-slide imaging, as illustrated with a
high-grade astrocytoma. (#) An overview of the entire smear. The area adjacent to the location where the
tissue was placed on the slide prior smearing is thick (Jeff), whereas the distal portion of the smear is much
thinner (right). (b) Including the thick portion on the smear in the area to be scanned creates a much larger
digital slide file, prolongs the scanning time, and produces a suboptimally focused image (in the absence of
the ability to perform real-time multiplanar focusing). (¢) Limiting the scanned area to the thinner, distal
portion of the smear reduces scanning time and maximizes the image quality in terms of cytological detail at

the diagnostic end of the slide.

microscopy. No significant concerns were
raised by the study pathologists with respect to
image quality, and all of them agreed that WSI
is a viable foundation on which to build a QA
program in a multisite health care facility.
Inarecently published review, Graham etal.
(56) described a WSI-enabled QA program
at the University of Arizona. This system is
used to provide same-day QA reviews between
two hospitals located 6 miles apart in Tucson.
One of these sites is a high-volume center
staffed by several pathologists, whereas the
other has a considerably lower volume of work
and is staffed by a single part-time pathologist.

During daily QA conferences, all new cancer
cases and other difficult cases encountered at
the low-volume site are scanned and rereviewed
by staff pathologists and pathology residents
at the larger site. This study has nicely shown
that the vast majority (>95%) of QA work
between two or more centers can be performed
using WSI without having to transport glass
slides. On the basis of QA of 329 cases between
March 2006 and September 2008, there was
complete diagnostic agreement in 91.8% of
them. Minor discrepancies that would have
had no impact on patient care were noted in
3% of the cases, and major discrepancies that
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would have resulted in different treatment
were found in 1.5%. In 1.8% of the cases, the
QA diagnoses were deferred pending review of
the original glass slides.

Another study conducted at the University
of Arizona (51) described the performance of
a WSI-based same-day second-opinion service
for 154 newly diagnosed breast cancers in a
four-site institution. As with the earlier report
from Graham et al. (56), the vast majority
(>95%) of QA work could be accomplished
using digital slides. The breast cancer QA
program identified a small number (1.9%) of
minor discrepancies. Major discrepancies that
would have resulted in different treatment
were found in 2.3% of rereviewed cases, 1.9%
of cases were deferred for further immunohis-
tochemical staining, and 1.3% were deferred
pending review of the original glass slides.

CLINICAL EDUCATION AND
COMPETENCY ASSESSMENT
IN PATHOLOGY

Because of efforts to satisfy the demand for
high-quality pathology services, there is a grow-
ing need for systems that can efficiently assess
the diagnostic proficiency of pathology trainees
and staff pathologists (57, 58-60). WSI is a
logical platform on which to build such educa-
tion and proficiency-testing programs (61, 62).
Importantly, WSI platforms ensure that exactly
the same slides can be simultaneously reviewed
by all participants. WSI provides an effective
means of annotating images for instructional
purposes and creating digital slide archives
that can easily be coupled with the relevant
clinical and/or radiological information. These
approaches improve teaching efficiency and
increase pedagogic versatility (14). The experi-
ence at the University of Oklahoma Health Sci-
ences Center (63) shows that integrating WSI
into their online pathology education program
has enabled content such as annotated digital
slides and an online WSI atlas. van den Tweel
& Bosman (64) recently reported on the bene-
fits of incorporating virtual slides into a system
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known as EUROPALS (European Pathology
Assessment and Learning System) to assess
the diagnostic skills and theoretical knowledge
of pathology trainees across Europe. Despite
technical challenges from both server and user
sides, the use of virtual slides provided greater
flexibility than did selected static images.
Several institutions, including the Uni-
versity of Towa in the United States (14),
the University of Basel in Switzerland, and
the University of Saarland in Germany, have
successfully implemented digital technology in
their undergraduate medical curricula (65, 66).
Emerging data suggest that today’s medical
trainees prefer teaching modules based on WSI
systems to those based on light microscopy
and glass slides (65). To assess the effectiveness
of virtual microscopy for teaching purposes,
Collier et al. (67) interviewed 12 teaching
assistants from an undergraduate human
anatomy course. They found that the majority
of interviewees cited ease of use, universal
access to teaching material, and increased
student collaboration as advantages of the new
technology. Fonyad et al. (59) summarized
their 4-year experience of using digitalized
histology labs in graduate student education at
Semmelweis University in Hungary. Between
2007 and 2009, their digital histology lab served
928 students with a virtual slide set comprising
predominantly H&E slides scanned at 20 x
magnification. These authors reported high
user satisfaction with the WSI approach. The
University of Pittsburgh has successfully im-
plemented a Web-based digital teaching model
for genitourinary pathology (60). Bruch et al.
(58) have similarly developed a WSI-based
tool for assessing the competency of pathology
residents at the University of Iowa. This
program allows them to follow an individual
resident’s progress throughout the course of
his or her training. These authors concluded
that their model can be applied across multiple
pathology residency programs. A survey con-
ducted at the University of Queensland School
of Dentistry in Australia (68) indicated that
undergraduate students were reluctant to use
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traditional light microscopes and were heavily
in favor of learning through virtual microscopy.
A majority of students (>88%) felt that the vir-
tual slide method increased their engagement
with course content. Finally, two Web-based
virtual microscopy applications in breast
pathology and Gleason grading of prostate
biopsies indicated that WSI systems provide
a robust platform for educational purposes

(69, 70).

CYTOMETRIC ANALYSIS OF
PATHOLOGY MATERIALS:
BACKGROUND

For decades, pathologists have been using
immunohistochemistry (IHC) as an adjunctive
tool to evaluate protein-expression patterns
in tissue. This process assists in diagnosis by
finding protein-expression patterns that cor-
relate with the type of tumor (e.g., carcinoma,
sarcoma, lymphoma, or melanoma) or, more
specifically, the site of a primary tumor when
an occult metastasis is identified. Although
few single proteins define a site of origin,
combinations of stains often allow pathologists
to predict the probable site of a tumor’s origin.
More recently, immunohistochemical stains
have been used to quantitate biomarkers to
assist in therapeutic drug selection. Perhaps
the best-known example of this application
is in breast cancer management. Expression
of hormone receptors for estrogen (ER) and
progesterone (PR) are semiquantitatively mea-
sured using THC. The resulting Allrad score can
then be used to select hormone targeted ther-
apy in tumors that are ER positive. In addition,
overexpression of the epidermal growth factor
receptor (EGFR)-family protein HER-2/neu
is also measured semiquantitatively to evaluate
for protein overexpression (usually associated
with gene amplification) for a selection of pa-
tients who may respond to antibody therapy to
the Her-2 gene product, such as trastuzumab.
Although such visual, analog, pathologist-
driven scoring systems have been used for
decades to evaluate protein expression, recent

advances in WSI, multispectral imaging, and
immunofluorescence microscopy, combined
with automated image-analysis tools, have
begun to allow pathologists to consider new
paradigms for automated scoring of IHC
studies. Importantly, these new technologies
allow pathologists to consider adopting new
staining protocols, including multiplexed
antibody studies, which are very difficult, if
not impossible, to accurately quantitate using
historical analog-driven approaches. These
new digital methodologies also allow for the
broader adoption of immunofluorescence,
rather than THC, as a primary diagnostic tool.
Immunofluorescence has many advantages
over IHC, including the ability to develop
high-order multiplexing. Immunofluorescence
is also linearly related to the amount of anti-
body bound to the tissue, which renders it more
suitable for reproducible quantitative studies.
A significant limitation of immunofluorescence
studies is the need for the end-user pathologist
to spend time in dark rooms at a fluorescence
microscope. New digital imaging platforms
obviate the need for the pathologist to drive a
fluorescence scope and allow imaging techni-
cians to perform the primary image capture and
automated analysis; the pathologist reviews and
integrates the information from these systems
with the morphology to create a comprehensive
disease report. If this paradigm sounds familiar,
it should. It is the exact paradigm used in the
practice of hematopathology, in which a techni-
cian performs multiplexed immunofluorescent
stains (four to six stains at a time) by using a
flow cytometer. (It is a rare hematopathologist
who has time to run the flow cytometer in
today’s busy clinical environment.) The tech-
nician returns the resulting flow scatter plots to
the hematopathologist for interpretation and
integration into the hemepath report. If data
need reanalysis, the hematopathologist directs
the technician how to perform the reanalysis.
This is the future of cytometric analysis of
tissue sections, which will be enabled with the
advent of the technologies discussed in the next
section, namely multispectral histocytometric
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image analysis and immunofluorescence
histocytometric image analysis.

MULTISPECTRAL IMAGING:
BACKGROUND

Spectral microscopic imaging refers to the cap-
ture of spectrally resolved information at each
pixel in an image—in essence, spatial spec-
trophotometry. The number of wavelengths of
the information captured distinguishes multi-
spectral (10-30 bands of data) from hyperspec-
tral (hundreds to thousands of bands of data)
imaging systems. Spectral microscopy, there-
fore, is a specialized form of digital microscopy
designed to capture spatially resolved spectral
information (using bright field, fluorescence,
or even a combination of the two). Although
it is feasible to capture a multispectral image
of a whole slide, this is not routinely done be-
cause only a few dozen fields of information
are required to create a statistically meaning-
ful sample of a tissue slide. The resulting spec-
tral information captured by a spectral imag-
ing system is a data cube that comprises x and
y coordinates of information from the charge-
coupled device (CCD) sensor; each z plane in
the data cube provides information about in-
tensity at each pixel as a function of wavelength
(z axis of the data cube). Figure 5 illustrates the
creation of a spectral data stack.

Whole-slide digital imaging systems cur-
rently on the market use red-green-blue
(RGB)-based imaging methods. Spectral
imaging systems offer advantages over RGB
systems, including the ability to analyze pathol-
ogy slides stained with multiple antibodies (in
either bright-field or fluorescence mode). Spec-
tral imaging systems also permit the use of fluo-
rescence imaging by overcoming autofluores-
cence, which is very commonly observed in
formalin-fixed paraffin-embedded tissue. Au-
tofluorescence removal is accomplished by
directly measuring autofluorescence spectrally
and then unmixing (by using a curve-fitting
algorithm to separate the spectral fluorescence
curve attributed to autofluorescence from the
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spectral curve associated with a specific fluo-
rophore). Although both the autofluorescence
and the fluorophore may appear green, they
are spectrally different. Through the removal
of autofluorescence, spectral imaging allows
pathologists or researchers to use single or mul-
tiplexed fluorescence imaging methodologies
in routine surgical pathology. Finally, spectral
imaging enables computer analysis of routine
stains (H&E- or Papanicolaou-stained sam-
ples) in order to develop automated machine
classification systems to predict disease types or
outcomes (71-73). Like fluorescence imaging,
the application of multispectral imaging in
bright field-based IHC application allows for
the use of multiplexed immunohistochemical
stains that are in spatially overlapping cellular
compartments (74-77). The ability of whole
slide-based RGB imaging systems to resolve
more than three colors of information is, in
practice, impossible. RGB imaging systems are
not able to adequately deconvolve or separate
the chromogens for analysis. In contrast, spec-
tral imaging systems can resolve three of more
chromogens. Figure 6 shows a multispectral
data stack of breast carcinoma stained with
DAPI (4,6-diamidino-2-phenylindole) and
EGFR, comparing (#) conventional fluores-
cence imaging with monochrome band passes
without autofluorescence removal with () the
same field of view imaged using a spectral sys-
tem with autofluorescence removal. Multiplex-
ing more than two antibody labels is not done in
routine pathology practice at present; however,
the ability to simultaneously label more than
two proteins in a single slide will allow for the
development of cellularly resolved information
about pathways (e.g., an antibody to phos-
phorylated ERK, a member of the mitogen-
activated protein kinase signaling pathway), cell
fate (e.g., a second antibody to Ki-67) and cell
types (e.g., a third antibody to cytokeratin to
find tumor cells in a field of view versus nontu-
mor stromal areas). Roysam and colleagues (78,
79) have developed a system for the analysis of
cytometrically resolved multiplexed THC or im-
munofluorescence. This slide-based system is
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Figure 5

A muldspectral imaging system and the resulting spatially aligned image stack are illustrated for a carcinoma stained with DAPI

(4 ,6-diamidino-2-phenylindole) and three fluorescently labeled antibodies. In this case, a liquid-crystal tunable filter multispectral
imaging system from CRI, Inc. (Nuance™) was used to capture the data from 420 to 720 nm. The spectral profiles of the four
fluorochromes are shown: (#) DAPI, (b) Alexa 488, (c) Alexa 594, and (d) Alexa 660. With a known spectral library of the pure
fluorochromes, linear unmixing allows the individual fluorochromes to be separated from the complex mixture in the original starting
image, shown as a red-green-blue (RGB) image.

analogous to flow cytometry and is aptly named = MULTISPECTRAL HARDWARE
quantitative histocytometry. Applications of
quantitative histocytometry are explored
further below. However, the implications of
quantitatively measuring cell-signaling path-

Spectral imaging requires specialized imag-
ing hardware that is different from WSI
systems. A means of generating spectrally
s ) ” encoded information is required. There are
ways anq linking them to cell f.ate (prol.lfer.atlon, multiple methods for creating the spectral
apoptosis, or autophagy) will be significant

: ) data, including liquid-crystal tunable filters
as pathologists enter the era of personalized

(LCTFs) and tunable light sources, acousto-

) ) ) optical methods, diffraction gradients, and
diagnostics for pharmacologic agents that 4o o 4 o0 (80). Three of these
target signaling pathways, of which there are

diagnostics and the development of companion

systems are commercially available: the LCTF

hundreds in various stages of clinical trials. (CRI, Inc; see htep:/ cri-inc.com),
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Detecting EGFR in breast tissu

Figure 6
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A breast carcinoma case stained for DAPI (4 ,6-diamidino-2-phenylindole), epidermal growth factor receptor (EGFR) (Alexa 594), and
estrogen receptor (Alexa 547) is (2) shown as a red-green-blue image and then analyzed (b) by conventional monochrome band-pass
filters without autofluorescence removal or (¢) after autofluorescence is removed following multispectral image acquisition. The removal
of autofluorescence, followed by unmixing of the two antibodies, allows for precise measurement of the EGFR membrane signal.
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the prism-based method (Lightform; see
http://www.lightforminc.com/), and the
fixed- or diffraction methods filter (Zeiss; see
http://zeiss-campus.magnet.fsu.edu/articles/
spectralimaging/index.html).

In general, spectral imaging systems allow
for the capture of spectrally resolved infor-
mation across the visible range and into the
near-IR bands (1-nm band passes between 420
nm and 900 nm). These systems allow transmis-
sion of saturated colors within narrow spectral
bands that can be electronically and randomly
changed (or tuned) to any wavelength. Spectral
imaging systems typically couple the spectral
imaging hardware (LCTF or a prism or
diffraction system) with coupling optics and
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a cooled, scientific-grade monochrome CCD
into an integrated imaging platform. Software
coordinates the image-acquisition process.
These systems are capable of fluorescence-
based analysis or bright field-based projects
for chromogen-based assays. Image acquisition
is accomplished via a software interface that
can be automated. The resulting data cube (x
and y coordinate position on a CCD sensor;
the z axis represents intensity data at different
wavelengths) is then stored for further analysis.

SOFTWARE (ANALYSIS OF
SPECTRAL IMAGES)

Images acquired using a spectral imaging sys-
tem can be either further analyzed by unmixing
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(multianalyte assays or for object classification
systems) or used in classification projects in
which the spectral signature of different object
classes is used to discriminate cells or tissue on
the basis of routine sample preparation (H&E-
or Papanicolaou-stained materials). The use of
spectral images to classify disease processes has
shown promise in some disease states. El Diery
and colleagues (81) have used spectral spectral
imaging to distinguish benign from neoplastic
melanocytic lesions, with good success. In
cytopathology, Rimm and colleagues (71-73)
have used multispectral imaging to classify
bladder cytology samples for the identification
of high-grade dysplastic cells and thyroid cy-
tology samples for thyroid neoplasia, with very
good success. Classification of these different
disease states may occur according to simple
differences in the spectral signatures of the
different disease states, or it may require more
complex analysis of the spectral patterns inher-
ent within different disease classes (described
below in the section titled Image Analysis).

In addition to the application of multispec-
tral imaging for disease classification, a more
common use of spectral imaging is in the analy-
sis of tissue stained with one or more antibodies,
either in fluorescence or bright-field imaging
applications. Analyses of multianalyte problems
begin by unmixing or spectrally separating the
individual stains into their individual spectra.
Unmixing begins with pure spectra of the indi-
vidual stains, which are obtained by staining the
tissue with one antibody or counterstain alone
before applying them in combination. The in-
dividual spectra of each stain can then be di-
rectly measured and used to build a spectral li-
brary. Through the use of the individual pure
spectra, unmixing is based on a least-squares
curve fitting for linear unmixing (77). The re-
sulting unmixed spectra then show the intensity
contribution of each stain at every pixel in the
image, thereby allowing for additional image
analysis and classification schemas (described
in detail below). In addition to linear unmix-
ing, some applications are best performed using
alternative algorithms, including nonlinear un-
mixing approaches such as spectral waveform

cross-correlation analysis (81). These alter-
nate spectral unmixing algorithms are especially
valuable when linear unmixing approaches fail
[i.e., when stains do not obey Beer’s law (82)].

STAINING LIMITATIONS PLUS
AUTOFLUORESCENCE

The use of fluorescent dyes in formalin-fixed
paraffin-embedded tissues has not been widely
adopted in clinical practice. It is mostly seen
in research settings. A major limitation of
using fluorescent dyes has been the challenge
of autofluorescence. Different tissues from
different people have variable amounts of
autofluorescence. Autofluorescence may be
so intense that it overwhelms the signal from
antibodies labeled either directly or indirectly
to fluorochromes. Removal of autofluores-
cence can be accomplished by independently
measuring the autofluorescence of the tissue
and subtracting it from the combined signal of
autofluorescence plus specific fluorochrome(s).
Use of a least-squares fit algorithm to re-
move autofluorescence leads to between 100-
and 1,000-fold suppression of autofluores-
cence, allowing visualization of underlying
fluorescently labeled antibodies (Figure 6).
Other approaches use nonspectral imaging
approaches and provide similar amounts of au-
tofluorescence suppression (83). The additional
advantages of fluorescence compared with stan-
dard chromogenic IHC include a more linear
relationship between antibody binding and
fluorescence signal intensity, which makes
quantitation and calibration much more uni-
form and reproducible (84, 85). Fluorescence
also allows for the development of multiplexed
antibody studies in tissues. One can use multi-
ple antibodies with chromogenic IHC when the
dyes do not spatially overlap. However, when
two or more antibody stains overlap in the same
spatial compartment (i.e., there are two nuclear
signals), it can be challenging to separate the
individual signals when they are chromogenic.
Whereas two stains can be separated from
each other (using color deconvolution for
standard RGB-based systems, or using spectral
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unmixing), the addition of a third or fourth
antibody in the same spatial cellular compart-
ment causes these separation techniques to fail
because color deconvolution uses only three
data channels (RGB channels) to unmix mul-
tiple colors. Also, the aggregation of multiple
chromogens causes the role of chromogens to
change from light absorber to stronger light
scatterer, and at very strong stain intensities, the
scattering properties of the chromogens pre-
vent light from passing through the aggregated
chromogens.

HISTOCYTOMETRIC ANALYSIS
OF MULTISPECTRAL IMAGES

Antibody staining to reveal specific molecular
biomarkers is increasingly being used to
improve cancer diagnosis and classification,
establish prognosis, and determine therapy.
Although molecular biomarkers play an in-
creasingly large role in this process, the scoring
of stained specimens (immunohistochemically
or immunofluorescently) remains largely
visually subjective: Cells are scored as positive
or negative or are graded for degree of antigen
staining, the percentage of positive cells is
estimated, and overall scores are binned or
scaled using semiquantitative approaches.
This process requires considerable expertise
and is susceptible to interobserver variability,
despite standardization efforts (86-88). The
use of semiquantitative scoring (e.g., 0, 1+,
2+, 3+ staining) and H-scores acknowledges
the inherent imprecision and subjectivity
involved.

Computer-automated methods to quantify
antigen expression in tissue images have
been developed (89-92); these methods offer
objectivity, reproducibility, and quantifica-
tion on a continuous scale. Most operate by
measuring the number of pixels stained for
one or more antigens and by quantifying the
colocalization of stains. These methods can
quantify at the level of individual pixels, groups
of pixels, or image regions. Although such
pixel-based approaches offer improvements
in quantitation and reliability over manual

Ghaznavi et al.

scoring methods, they are not performed
on a cytometric basis (i.e., individual cell
analysis). The HistoRx platform (see http://
www.historx.com/launch/index.html) is per-
haps the most advanced pixel-level automated
image-analysis system available today; multiple
studies have shown the advantage of automated
quantitation using this platform compared with
the manual scoring of pathology samples (84,
85, 89, 93, 94). Cells, rather than pixels, are the
fundamental units in which many biological
processes occur. Sufficiently reliable automated
methods to segment (delineate) individual cells,
identify subcellular compartments within cells,
and quantify biomarkers within the subcellular
regions have only recently been developed.
Roysam and colleagues (79) have developed an
open source-based cytometric analysis system
(Farsight; see http://farsight-toolkit.org)
for the analysis of cells in surgical pathology
samples. Using tissues stained with hema-
toxylin and DAB (diaminobenzidine) or DAPI
and fluorochromes, Farsight uses the nuclear
channel (either DAPI or hematoxylin) to
perform a nuclear segmentation process by
converting the image into a binary map,
then finding and refining the center of nuclei
to segment the nuclear contours. Following
nuclear segmentation, a cell-membrane marker
in another spectral channel is used to define
the cell membrane (e.g., E-cadherin is used
for breast carcinoma). The resulting nuclear
and membrane boundaries are then utilized
to define the cytoplasmic area by use of an
adaptive algorithm that switches between dif-
ferent cell-based models on a cell-by-cell basis.
The resulting cellular segmented maps with
associated subcellular localization can then be
used to associate additional staining informa-
tion from additional analyte channels from
the multispectral assay on a cell-by-cell basis
with subcellular localization to the nucleus,
cytoplasm or cell membrane. The resulting
output data set resembles a list-mode data file
from a flow cytometer in that each row of data
represents a cell and each column a marker of
interest within a subcellular compartment of

the individual cell (Figure 7).
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The inForm ™ machine learning and classification system is used to score a breast carcinoma case stained for progesterone receptor.
(@) A pathologist shows inForm a few areas of tumor (red ) and a few areas of tumor stroma (green). On the basis of these training
regions, (b) inForm learns the remaining areas with high accuracy and classifies the remainder of the image into tumor regions (red ) and
nontumor regions ( green). (c) The system finds the nuclei only within the tumor region. (4) The system displays a list-mode data file for
the optical density of diaminobenzidine for each tumor cell nucleus it finds. If more than one stain was applied to the tissue, each stain
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and its component intensity are associated with each cell and its subcellular localization.

In addition to open-source applications,
commercial vendors are entering the quan-
titative analytic space. Industrial applications
from Aperio, Definiens, and Perkin Elmer
(formerly CRI, Inc.) have been developing
cytometric image-analysis solutions. Although
the software from Aperio is designed to work
on whole slides, Aperio has extended its
analytic platform to fluorescent images as well
as spectral images that have been unmixed
into spectral component planes. The software
from Aperio, Definiens, and Perkin Elmer also
includes region segmentation algorithms that
are designed to classify regions on the basis of
a user-training paradigm. During training, an
experienced end user trains the segmentation
algorithm by showing the software a few exam-
ple regions of different disease classes (invasive
tumor, in situ tumor, stroma, etc.); the algo-

rithm then classifies the remaining image, as
well as additional images that might be needed
for analysis in a batch-mode study. The Aperio
platform uses a genetic algorithm (Genie®)
licensed from Los Alamos National Labo-
ratory. Perkin Elmer has developed its own
learn-by-example algorithm, which uses a pro-
prietary advanced machine learning algorithm
(inForm™) similar to Genie’s, and Definiens
has developed another proprietary train-by-
example paradigm. Figure 7 illustrates a
typical training session with inForm in which
a breast carcinoma was stained for ER and the
tumor counterstained with hematoxylin.

IMAGE ANALYSIS

Background

WHSI has led to substantial growth in the
number of researchers and companies seeking
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to utilize computer-based image analysis for
pathology images and to develop new software
tools to assist pathologists. Prior to WSI, the
field of pathology image analysis was limited by
pathologists’ need to select fields of view upon
which computer image-analysis routines could
run. WSI allows the entire slide to be available
for analysis; field selection can then be auto-
mated, allowing the pathologist to act as final
interpreter and analyzer of the resulting data,
rather than as a field selection technologist.

In general, image analysis is a multistep pro-
cess that involves feature extraction, feature se-
lection, dimensionality reduction, and classifi-
cation steps. These steps are discussed in the
following sections.

Feature Extraction

Research on useful features for cancer classi-
fication and diagnosis has often been inspired
by grading features determined by clinicians
to be particularly important for the diagnosis.
The vast majority of these features are nuclear
features, and many have been established as
useful in the analysis of both cytopathology
and histopathology imagery. Other features
that assume discriminatory importance in-
clude the margin and boundary appearance
of ductal, stromal, tubular, and glandular
structures. Although a compilation of features
for cytopathology imagery exists (95), there is
relatively little such work for histopathology
imagery.

Human observers’ (pathologists’) concept
of the world is inherently object based, as op-

Figure 8

Automated segmentation of nuclei on a prostate histology image from a fully
digitized virtual slide. In this image, the nuclei are mathematically identified by
use of a combination of color, shape, and texture information. The resulting

mathematical model can accurately trace out the nuclei of each cell on the basis

of its digital information. Although a human can easily trace out the same
nuclei, once trained a computer can perform this task in seconds; a human

would take hours.
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posed to the largely pixel-based representation
of computer vision. As such, pathology experts
describe and understand images in terms of
such objects. For pathologists, diagnostic crite-
ria are inevitably described by using cytologic
terms, such as nucleus and cell, and by the
relationship of larger objects to one another
and to benign adjacent tissue, arrangement of
glands, invasion of tissues, and desmoplastic
reactions. It is therefore important to develop
computer vision methods that are capable of
such object-level analysis. Figure 8 shows
an automated algorithm for nuclear identi-
fication, known as nuclear segmentation in
image-processing parlance.

In addition to cytologic features (cells, nu-
clei, cell membranes), spatial relationships are
used by pathologists to classify diseases. To cre-
ate a set of mathematical features that relate to
the spatial information that pathologists use, re-
searchers have utilized the mathematical tech-
nique of graph theory as an effective means of
representing structural and spatial information
by defining a large set of topological features.
Real-world graphs of various types and scales
have been extensively investigated in techno-
logical, social (96), and biological (97) systems.
Use of the mathematical principle of graph the-
ory has allowed for the development of addi-
tional features from digital pathology images
that can be used to model tissues and disease
states. These graph-based features are quanti-
fied by definition of computable metrics. The
use of graph-based spatial arrangement of his-
tological entities (generally at low resolutions)
is relatively new, especially in comparison to
the wealth of research on nuclear features (at
higher resolutions) that has accumulated dur-
ing the same time frame. Graph-based feature
extraction methods have allowed for the addi-
tion of approximately 150 new features for all
graph structures (98).

Graph-based metrics can be defined and
computed on a graph created by connecting the
nuclei of cells to each other (i.e., a cell graph)
to create a rich set of descriptive features that
can be used for tissue classification. These fea-
tures provide structural information about the



tissue organization, such as the distribution of
local and global information around a single cell
cluster or the global connectivity information
of a graph. The end result of these feature ex-
traction algorithms is a set of features that can
be used for image classification. Figure 9 il-
lustrates graph-related features based on two
computational tools: the Delaunay triangula-
tion (Figure 9¢) and the minimum spanning
tree (Figure 9d).

Interestingly, although pathologists do
not compute succinct graph-based features,
pathologists often observe information about
objects relative to one another, in effect using
observation graph networks to understand
the relationships among nuclei (for instance:
Are the nuclei overlapping? Are they uni-
formly spaced? Are they basally oriented?) or
the arrangement of glandular patterns (e.g.,
defining a normal lobule from an infiltrative
acinar pattern). Therefore, it is unsurprising
that the use of mathematically derived graph

Figure 9

networks yields informative data about spatial (5 Hematoxylin and eosin—stained image of breast carcinoma. (b)) Nuclei of
breast carcinoma cells identified by automated algorithm based on color
deconvolution. (¢) Delaunay triangulation calculation applied to breast cancer
nuclei. (4) Minimum spanning tree (MST) computed on the tumor nuclei
identified in panel 4. To understand the general nature of the tissue
architecture, we construct graphs such as the Delaunay triangulation and the
MST. Statistics such as those related to triangle area, triangle perimeter, and
MST edge length are calculated to quantify the spatial arrangement of the

information within digital pathology images.

Feature Selection

Although humans have innate abilities to
process and understand imagery, explaining
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how they reach their decisions is more difficult;
pathologists often rely on a small set of features
that occur at a high frequency within an image
scene to classify disease states and patterns. As
such, image-analysis applications often begin
with large feature sets that are generated in the
hopes that some subset of features incorporates
the information used by the human expert for
analysis. Therefore, many of the generated fea-
tures could be redundant or irrelevant. Feature
selection is a way to extract the relevant and
important features from a large set of features.

Feature selection in histopathological image
analysis provides several benefits in addition
to improving accuracy. Because images tend
to be relatively large, one should calculate a
small subset of features, which reduces the
computational complexity of classification
algorithms. A smaller number of features also

nuclei in the image.

makes it easier to explain the underlying model
and to improve the chances of generalization of
the developed system. Additionally, in a mul-
tiresolution framework (e.g., a whole digital
slide with varying levels of magnification), a set
of features that are useful at a given resolution
may not be relevant at another resolution, even
within the same image. A feature selection
algorithm helps determine which features
should be used at a given resolution. This
fact is intuitively obvious to the practicing
pathologist, who uses scale-based information
naturally and seamlessly. Who hasn’t opened
a slide tray and moved immediately to the
diagnostic slide by looking for the bluest slide?
At very low magnification (scale), color infor-
mation is very informative, whereas at higher
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magnification, other features of architecture
and nuclear morphology become important.
An optimal feature selection method re-
quires an exhaustive search, which is not prac-
tical for a large set of features generated from a
large data set. Therefore, several heuristic algo-
rithms that use classification accuracy as the op-
timality criterion have been developed and used
in various image-processing strategies. (14-16,

99-101).

Dimensionality Reduction

Whereas feature selection aims to choose those
features (and reduce the feature dimensionality)
that best optimize some criterion related to the
class labels (i.e., that separate different classes or
states of disease) of the data (e.g., classification
performance), dimensionality reduction tech-
niques aim to reduce the overall dimensionality
of the data set from thousands of features to
a smaller set of features on the basis of some
other criterion. A well-known and commonly
used method of linear dimensionality reduction
is principal components analysis (PCA).

PCA (103) attempts to find a new coordi-
nate system that shows the first three axes that
define the maximum variance of the data. The
first feature (eigenvector) is incorporated in the
first dimension, the next-largest eigenvector
holds the next-largest amount of variance in
the starting high-dimensional data set, and so
forth. By reducing the dimensionality of the
starting problems from a feature space with
thousands of features to three features, one
can more easily visualize the data and their
relationship to the outcome variable. In this
lower-dimensional feature space, classification
algorithms can be run to separate clinical or
biological conditions. Thus, when only the
first few dimensions of the PCA transform are
retained, the sources of the largest amount of
variation in the data are maintained.

Recently, nonlinear dimensionality reduc-
tion (NLDR) methods have become popular
in learning applications. These methods over-
come a major limitation of linear dimension-
ality reduction methods, such as PCA, which

Ghaznavi et al.

assume that the geometrical structure of the
high-dimensional feature space is a linear or
straight-line relationship. PCA is a linear trans-
formation that transforms the data to a new
coordinate system such that the direction with
the greatest variance lies on the first coordinate
(termed the first principal component), the sec-
ond greatest variance on the second coordinate,
and so on. In reality, high-dimensional feature
spaces are often composed of highly nonlin-
ear structures, and locality-preserving dimen-
sionality reduction methods are highly sought.
Several manifold learning algorithms have been
constructed to deal with different types of data
(104-108). Graph embedding is one such al-
gorithm that aims to nonlinearly project high-
dimensional data into a reduced dimensional
space while preserving object adjacencies (109—
111). The high-dimensional feature space is sig-
nificantly reduced, in terms of the number of di-
mensions, to a lower-dimensional feature vec-
tor space. A key value of NLDR methods is that
they preserve object adjacencies. Thus, if two
objects (e.g., pathology images) are close to one
another in the original high-dimensional fea-
ture space, they will likewise be embedded close
to one another in the lower-dimensional sub-
space. This preservation of feature adjacency
suggests that the two objects are similar to one
another, perhaps in terms of biological or clin-
ical potential (survival, nuclear grade, etc.).

Classification

Following feature selection extraction, feature
selection, and dimensionality reduction, clas-
sification schema can be run on image data to
classify the features into clinical classes (such
as different histologic states, different tumor
grades, and different outcome measures).
Alternately, classification can be performed on
the large feature space, but doing so makes for a
computationally challenging problem. Unlike
some other applications of image analysis, in
histopathology imagery a primary considera-
tion in the choice of a classifier is its ability to
deal with large, highly dense data sets. Also,
due to multiple image scales at which relevant
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information may be extracted from histological
imagery, use of an ensemble (combination) of
classifiers as opposed to a single classifier has
been proposed. Following feature extraction,
selection, and dimensionality reduction, differ-
ent schemas for classification may be applied
to the histopathologic images.

Multiclassifier Ensemble Schemes

Both theoretical and empirical results have
established that, in terms of accuracy, en-
sembles of classifiers generally outperform
monolithic solutions. Learning ensembles or
multiple classifier systems are methods for
improving classification accuracy through
aggregation of several similar classifiers’
predictions and, thereby, reducing either the
bias or the variance of the individual classifiers

(112-114).

Support vector machines Support vector
machines (SVMs) project a set of training data,
E, that represents two different classes into a
high-dimensional space by means of a kernel
function, K. In this transformed data space,
nonlinear data are transformed so thata flatline
can be generated (a discriminating hyperplane)
to separate the classes so as to maximize the class
separation. Testing data are then projected
into the high-dimensional space via K, and the
test data are classified on the basis of where
they fall with respect to the hyperplane. The
kernel function K defines the method in which
data are projected into the high-dimensional
space. A commonly used kernel known as the
radial basis function has been employed to
distinguish among three different classes of
prostate tissue (115), as well as to differentiate
colon adenocarcinoma histopathology images
from benign histopathology images (116) and
to classify four different subtypes of menin-
giomas from their histopathology images

(117).

AdaBoost The AdaBoost algorithm for classi-
fication is used to combine a number of weak
classifiers (image features that do not individ-

ually sort images into different object classes)
to generate a strong classifier (a combined clas-
sifier made by linearly combining and weight-
ing weak classifiers). A study by Doyle et al.
(118) presented a hierarchical boosted cascade
scheme (a linear combination of features cre-
ated through the selected weighting of individ-
ual features to best classify an image) for de-
tecting suspicious areas on digitized prostate
histopathology. Efficient and accurate analysis
is performed by first detecting those areas found
to be suspicious only at lower scales (low mag-
nification). Analysis at subsequent, higher mag-
nifications is limited to those regions deemed to
be suspicious at lower scales. Pixels classified as
nontumor at a lower magnification (scale) are
discarded at the subsequent higher scale, which
reduces the number of pixels needed for analy-
sis at higher scales. The process is repeated us-
ing an increasingly large number of image fea-
tures and an increasing classification threshold
at each iteration.

Case Study: Prostate Carcinoma
Grading

Classification of histopathology images is often
the ultimate goal in image analysis, particularly
in cancer applications. Features derived from
segmented nuclei and glands from histopathol-
ogy are usually a prerequisite to extraction of
higher-level information regarding the state of
the disease. For instance, the grading of prostate
cancer by Jafari-Khouzani & Soltanian-Zadeh
(119) yielded 97% accuracy for H&E-stained
imagery on the basis of features derived from
nuclear structures in histopathology. Tabesh
et al. (120) found 96.7% accuracy in discrim-
inating between prostate tissue slides with can-
cer and without cancer, and they found 81%
accuracy in the discrimination between low and
high Gleason grades. Using nonlinear dimen-
sionality and SVMs, Madabhushi et al. (121)
demonstrated 95.8% classification accuracy be-
tween Gleason grade 3 and grade 4, 96% accu-
racy between Gleason grade 3 and benign, and
100% accuracy between Gleason grade 4 and
benign.
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Case Study: Predicting Breast
Carcinoma Outcomes

In contrast to prostate cancer grading, in which
a computer is trained to mimic the effort of a
pathologist (i.e., to identify and grade cancer by
using predefined human categories), Beck et al.
(122) used an unbiased image-analysis solution
that they developed, named C-Path, to identify
a feature set that predicted 5-year survival of
breast carcinoma patients. Tissue microarrays
(TMAs) of breast carcinoma were analyzed in
the Definiens Developer XD'™ software plat-
form, and a feature set of some 6,000 image
features were defined and measured. This fea-
ture set included both epithelial and stromal
features. Using a machine learning algorithm
(L1 logistic regression), Beck et al. developed a
prediction model that accurately predicts good-
versus poor-prognosis patients and is indepen-
dent of molecular subtype, stage, ER status,
and pathology grade. This model was trained
on a TMA from the Netherlands Cancer In-
stitute and was validated on a separate breast
cancer TMA from Vancouver General Hospi-
tal. One of the unique features of this study
was the identification of stromal features that
are strongly prognostic, are not routinely ex-
amined, and are scored in routine pathologic

DISCLOSURE STATEMENT

analysis of breast cancer samples. This study
underscores the power of automated and unbi-
ased image-analysis and machine learning sys-
tems and points toward an exciting opportunity
for future studies in this area.

CONCLUSIONS

From its genesis as an interesting idea in the late
1990s, digital pathology has become a useful
and valuable toolin clinical and research pathol-
ogy. This transition was initially fueled by the
development of digital slide scanners, fluores-
centslide scanners, multispectral imaging hard-
ware, and computational horsepower. Today,
integrated systems with increasingly complex
and functional software tools are being devel-
oped and will become part of our diagnostic
toolbox as we move into personalized medicine.
Of the various barriers to widespread adoption
that were described above, comprehensive
validation of this technology for diagnostic
purposes across the complete spectrum of sur-
gical pathology represents the most important.
As this process unfolds, digital pathology will
undoubtedly open up new avenues for compu-
tational exploration of individual disease tissues
and will transform the practice of pathology.
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