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Abstract

This paper presents a procedure for the design of a fuzzy logic controller for the garag-
ing of a wheeled mobile robot, with non-holonomic constraints and discrete control signal
levels. The design procedure is based on the virtual fuzzy magnet principle, which implies
the definition of fictive points in the garage surroundings, and which, in an appropriate man-
ner, by robot attraction, provides an efficient garaging process. The proposed fuzzy logic
controller has four input variables: two represent the robot’s distancing from fictitious fuzzy
magnets, and two are angles that define the orientation of the vehicle. The output variables
are related to voltages sent to motors in charge of propelling the left and right wheel of
the robot. The efficiency and shortfalls of the proposed algorithm are analyzed by means
of both detailed simulations and multiple re-runs of a real experiment. Special attention is
devoted to the analysis of different initial robot configurations and the effect of an error in
the estimation of the current position of the robot on garaging efficiency.

Keywords: bidirectional garaging, fuzzy controller, fictitious fuzzy magnets, non-holonomic
mobile robot, real-time control

1 Introduction

The process of designing algorithms for the control of Wheeled Mobile Robot(WMR) is a big
challenge, as it brings along all the problems that can be encountered in control theory. In
the first place, there are non-linear and non-stationary phenomena characteristic of these ve-
hicles, and then there are the complexity of real time control, reliable communication with
appurtenant sensors, and the extraction of precise information from measurements provided by
these sensors. These problems contain a high level of uncertainty regarding the surroundings
of autonomous robots, and an efficient control algorithm is expected to have a reaction highly
correlated to the status of those surroundings [1]. Finally, each of the algorithms endeavors,
more or less, to model and formulate human behavior in the process of solving these problems.
In line with the described problems and challenges arising from the algorithms for control of
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autonomous robot systems, literature offers various approaches to their solution. There are ap-
proaches which do not target imitation of human behavior but instead choose implementation
of simple or well-known control forms. These are time-varying controllers, usually character-
ized by low convergence speed [2, 3], or time-invariant controllers with discontinuities which
provide exponential convergence speed [4, 5]. The approaches to multi-level controllers use, at
a lower level, the traditional proportional, integral and differential laws of control, whereas the
higher, intelligent level, most often deals with an imitation of human behavior, in order to avoid
constraints imposed by the surroundings [6, 7], or with adequate selection of the desired robot
trajectory [8].
From a mobile robot control perspective, robot garaging can be solved as a stabilization problem
or as a problem of following an a priori generated garaging trajectory, on the one hand, or as
a vision problem, on the other hand. Robot control methods based on vision do not require
the identification of the position or localization of the robot within the work area [9], contrary
to other approaches which require accurate localization of the controlled object, whether by
posture stabilization control methods [10, 11, 12], trajectory stabilization [13] or path following
methods [14, 15], i.e. path tracking methods [16, 17].
Garaging by following a trajectory introduces another problem, that of generating the garaging
trajectory itself. The characterization and/or generation of mobile robot trajectories, along with
different constraints and/or optimizations, are described in [18, 19, 20, 21, 22].
In presenting the idea behind fuzzy logic, Zadeh [23] illustrates its application in car parking.
In [24], Zadeh sets forth four rationales in cases where it is prudent to apply a fuzzy-logic-
based methodology. To illustrate the case where a rationale is not needed, he mentions parking
problems and states: "In this case, there is a tolerance for imprecision that can be exploited
to achieve tractability, robustness, low solution cost, and better rapport with imprecision is an
issue of central importance in computing with words".
In the literature, the fuzzy method is generally used to address WMR parking/garaging problems
of the following three types of vehicles: car-like mobile robots, WMRs with one or more trailers,
and differential drive mobile robots.
Reference [25] reports on an experimental study of the Fuzzy Logic Controller (FLC) for garag-
ing car models. The fuzzy control design is based on the fuzzy conclusion of the Takagi –
Sugeno (T-S) type [26], used to model drivers’ garaging experiences. In [27], the hardware
for car model garaging was similar to that used in [25] and a fuzzy controller was designed
for fourteen oral instructions. The fuzzy point stabilization control of a car model, with two
FLCs (the first for the steering angle and the second for the acceleration or deceleration force)
is discussed in [12]. Although simulation results are presented, the constraints of the proposed
system are not addressed.
In [28], FLCs were designed for the tasks of parallel parking and backward garaging. The num-
ber of fuzzy rules was reduced in the originally designed heuristic FLC, based on pre-defined
criteria, and the FLC was then tuned applying an evolutionary strategy. In [29, 30], parking con-
trol using visual sensors by means of neuron networks and an FLC are discussed. The control
strategy has been verified by an autonomous mobile robot experiment. Reference [31] proposes
an intelligent garage parking system based on a fuzzy target and reinforcement learning. A
navigation methodology based on a sub-optimal reference trajectory, which is independent of
the vehicle model is treated in [32]. The approach is along which the vehicle is guided with
minimal error by means of an FLC and testing involved parallel parking in reverse.
A hierarchical fuzzy drive control system for differential-drive WMR control is presented in
[33]. Positioning with respect to the surroundings was based on data obtained from a TV cam-
era. The core of the system is a fuzzy drive expert system, which uses these data and two sets
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of rules to control the speed and orientation of the WMR. Experiments conducted with straight
and circuitous trajectories, using a real WMR, show that the results are comparable to human
driving skills under these conditions. In [34], the fuzzy drive expert system was enhanced using
predictive fuzzy control with a forecast learning function. WMR experiments with a straight
trajectory and two obstacles confirm the advantages of forecast learning fuzzy control relative
to predictive fuzzy control and basic fuzzy control.
Reference [35] discusses a fuzzy control system used to navigate a mobile robot with five and
ten trailers, in reverse, which is presented by a T-S fuzzy model. A stability criterion derived
from the Lyapunov approach and linear matrix inequalities guarantees stability of the fuzzy
controller for a simplified non-linear model. Simulations are used to illustrate the efficiency of
the system and they corroborate a good match of the results obtained from fuzzy models and
original models. A discrete fuzzy controller with a unit transport delay is analyzed in [36], and
computer simulations of a backward – driven WMR with a single trailer confirm its advantage
over models which do not address a transport delay.
This paper proposes a new methodology for differential-drive mobile robot garaging based on
fuzzy logic and a new fictitious fuzzy magnet concept. The proposed approach can be applied
in cases where the level of the control variable is discrete and where the number of quantization
levels is relatively small. Compared to other algorithms which address this type of problem,
the proposed algorithm is very simple, it does not rely on a WMR model, and it has twelve
fuzzy rules whose parameters have a clear physical meaning. The proposed FLC is of the T-S
type, it is generated manually (in a manner similar to human driving skills), and it relies on two
fictitious fuzzy magnets, one of which is located in front of the parking garage and the other in
the center of the parking garage. The fictitious fuzzy magnets contain fuzzy control rules which
allow for bidirectional single-stage garaging, which is characteristic of only a few solutions
available in the literature [18, 21].
This paper addresses in detail the sensitivity of the system to noise and systematic errors of
sensors used in the estimation of the WMR position, and the sensitivity to any change in the
parameters of the FLC membership function. A large number of computer simulations and
repeated real experiments were used to systematically test the characteristics and constraints
of the proposed fictitious fuzzy magnet concept. The second section of this paper describes
the posed problem. The third section is dedicated to the FLC design methodology. It defines
the fictitious fuzzy magnet concept, the controller structure, the input and output variables,
the corresponding membership functions, and the fuzzy rules. The fourth section deals with
simulation and experimental results of the application of a designed FLC. Garaging results
are presented for a large number of different initial positions of the robot, accompanied by
an estimate of final positioning error. The results obtained indicate the high efficiency of the
proposed method and the possibility of its application in a large number of different situations.
The concluding section of the paper contains a summary of the main features of the proposed
algorithm and of its applicability, constraints, and possible areas of improvement so that it can
be used to address a broader range of problems.

2 Garaging Problem

The garaging/parking problem implies that a mobile robot is guided from an initial configura-
tion (xr(0),yr(0),ψr(0)) to a desired one (xG, yG, ψG), such that it does not collide with the garage.
Figure 1 shows the garage and robot parameters; the position of the garage is defined by the co-
ordinates of its center – Cm, while its orientation is defined by the angle of the axis of symmetry
of the garage – Sg relative to the y axis, identified as β in the figure. The width of the garage
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is designated by Wg and the length by Lg, and it is understood that garage dimensions enable
the garaging of the observed object. The implication is that point (xG,yG) is inside the garage
and is set to coincide with the center of the garage Cm, such that Cm(xG,yG). In the case of bidi-
rectional garaging, the targeted configuration is not uniquely defined because the objective is
for the longitudinal axis of symmetry of the robot to coincide with that of the garage, such that
δ = 0 or δ = π , meaning that there are two solutions for the angle ψG : ψG1 = β , ψG2 = β +π .
For reasons of efficiency, the choice between these two possibilities should provide the shortest
travel distance of the mobile robot. The controller proposed in this paper does not require a
priori setting of the angle ψG, because it has been designed in such a way that the mobile robot
initiates the garaging process from the end closer to the garage.

Figure 1: Garage
and robot pa-

rameters.
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The bidirectional garaging problem is similar to the stabilization problem, also known as the
"parking problem", formulated in [37]: "the robot must reach a desired configuration xG, yG, ψG

starting from a given initial configuration (xr(0),yr(0),ψr(0))". The differences are that there
are two solutions for the desired configuration in bidirectional garaging problems and that the
stabilization problem need not necessarily involve constrains imposed by the presence of the
garage.
Although the bidirectional garaging problem is addressed in this paper as a stabilization prob-
lem, the proposed solution can also be used as a garaging trajectory generator because it includes
non-holonomic constraints of the mobile robot.

3 Fuzzy Controller Desing

3.1 Fictitious fuzzy magnets concept
A given point A(xA,yA), is assumed to be in the Cartesian coordinate system and to represent
the position of the fictitious fuzzy magnet FM. The fictitious fuzzy magnet FM is defined as
a arranged pair comprised of its position A and an added sub-set of fuzzy rules, FRsS (Fuzzy
Rules subSet):

FM = (A,FRsS) (1)

The input variables of the FRsS are the WMR distance and orientation relative to point A, while
its output variables are the speeds of the left and right wheels of the WMR. Point (xr,yr) is
the center of the mobile robot (Figure 2). The angle between the longitudinal axis of symme-
try of the robot Sr and the segment which connects points (xr,yr) and A is denoted by α . If

4



(xr(k),yr(k)) denote the coordinates of the WMR center at the sample time k, then the distance
of the robot from the position of the fictitious fuzzy magnet dA(k) is:

dA(k) =
√

(xA− xr(k))2 +(yA− yr(k))2 (2)
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Figure 2: Mutual spatial positions of ficti-
tious fuzzy magnet and vehicle.

The speed of the left and right wheels of the WMR is denoted by vL(k) and vR(k), respectively.
The FRsS of r control rules is defined as follows for the discrete T-S fuzzy system:

Control Rule i : If dA(k) is Mi1 and α(k) is Mi2

then vL(k) =Ci1 and vR(k) =Ci2
i = 1, 2, . . . ,r (3)

where dA(k) and α(k) are premise variables. The membership function which corresponds to
the ith control rule and the jth premise variable is denoted by Mi j, and Ci j are constants. System
outputs are vL(k) and vR(k), obtained from:

[
vL(k)
vR(k)

]
=

r
∑
i=1

Mi1(dA(k)) ·Mi2(α(k)) · [Ci1 Ci2]
T

r
∑
i=1

Mi1(dA(k)) ·Mi2(α(k))
(4)

where Mi j(x j(k)) is the degree of membership of x j(k) in Mi j.
From a human control skill perspective, the garaging of a vehicle is comprised of at least two
stages: approach to the garage and entry into the garage. The adjustment of the vehicle’s
position inside the garage might be the third stage, but the need for this stage depends on the
success of the second stage (i.e., driver skills). Similarly, the FLC proposed in this paper uses
two selected points, called fictitious fuzzy magnets: one immediately in front of the garage and
the other inside the garage. However, the algorithm is not executed in stages. Instead, the first
point is used to approach the garage and while the vehicle is entering the garage, it serves as a
reference point for proper orientation, similar to human driving skills. The second point is both
a target and a reference point. The entire algorithm is executed in a single stage. Other than
human steering skills, the results shown in [21] for the minimum wheel travel distance were
used to define the rules and membership functions.
The fictitious fuzzy magnets, created according to (1), are denoted by FMFm and FMCm . Their
positions are identified by Cm and Fm (Figure 3). The fuzzy rule subsets FRsSFm and FRsSCm

will be determined at a later stage. The point Fm lies on the garage axis of symmetry Sg at a
distance dF from the front line. Let us imagine that these points are fictitious fuzzy magnets with
attraction regions around them, and if the mobile object/vehicle finds itself in that region, the
attraction force will act on it. The activity of these fictitious fuzzy magnets will be neutralized
in point Cm, thus finishing the garaging process.
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Figure 3: Locations of ficti-
tious fuzzy magnets Cm and Fm. / 2
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Implementation of this concept implies the definition of interaction between fictitious fuzzy
magnets and the vehicle. Figure 4 presents parameters which define mutual spatial positions of
fictitious magnets and the vehicle. The distance from the vehicle to the fictitious fuzzy magnet
Cm is marked as dCm , whereas the distance to the fictitious magnet Fm is marked as dFm .

Figure 4: Mutual spatial positions of
fictitious fuzzy magnets and vehicle.
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The key step in the design of such an approach is the observation of these two distances as
fuzzy sets which need to be attributed appropriate membership functions in an unusual way
(Figure 5). Each of these variables is attributed only one linguistic variable, and these do not
cover the complete set of possible values. However, such a concept fully complies with the idea
of fictitious fuzzy magnets. The membership function ′near′ (µnear (dCm)), which pertains to the
distance from the vehicle to the fictitious fuzzy magnet Cm, enables the action of this fictitious
magnet only in its immediate vicinity, whereas the membership function ′ f ar′(µ f ar(dFm)) does
not enable the action of the fictitious magnet Fm in the immediate vicinity of its location. In this
way, the vehicle is at all times in the attraction region of at least one fictitious magnet; a detailed
procedure for the selection of parameters and fuzzy rules will be provided in the next section.
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tion of membership
functions for dis-
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Distances from fictitious fuzzy magnets to the vehicle are not sufficient input variables for
a proper vehicle control system. It is also necessary to know the vehicle orientation to the
fictitious fuzzy magnets. The simplest way to introduce this orientation is by angles α1 and α2

presented in Figure 4. If angle α1 is close to zero, then the vehicle’s front end is oriented toward
the fictitious fuzzy magnet Fm, whereas for the value of angle α1 close to angle π , the vehicle’s
rear end is oriented toward Fm. This fact is important, as will be shown further in this text, from
the aspect that the objective of vehicle control will be to reduce the angles α1 and α2 to a zero
or π level, depending on initial positioning conditions.
Linguistic variables α1 and α2 are commonly called Direction, and are described by the same
membership functions which indicate the vehicle orientation to the fictitious fuzzy magnets.
The linguistic variable Direction is defined through following membership functions:

Direction{Front,FrontLe f t,FrontRight,Back,BackLe f t,BackRight} (5)

or abbreviated as:
D{F,FL,FR,B,BL,BR} (6)

as presented in Figure 6.

/ 2π−

/ 2π
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Figure 6: Illustration of member-
ship functions for variable D.

In order to enable bidirectional garaging, the variable Direction is strictly divided into two
groups – the angles related to orientation at the front {F,FL,FR}, which are grey in Figure 6,
and the angles related to orientation at the rear {B,BL,BR}. The method proposed in this paper
analyzes mobile objects with an equal ability of maneuvering by front and rear pace; therefore,
the objective of defined membership functions and fuzzy rules is to provide identical garaging
performance in both cases. For this reason, the membership function B (Back) is divided into
two sub-functions B′ and B′′, in the following manner:

B = S(B′,B′′) (7)
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where S represents the operator of S− norm, which corresponds to the fact that the union of
sets B′ and B′′ makes set B. The B′ and B′′ sets being disjunctive, the calculation of S−norm is
not important [38]. Consequently the linguistic variable Direction becomes attributed to seven
membership functions D{F,FL,FR,B′,B′′,BL,BR}, as shown in Figure 7.
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Figure 7: Membership functions of the linguistic variable Direction.

A conflict occurs when the orientation angles exactly equal π/2 or−π/2. Assuming that mem-
bership functions BL and BR, or FL and FR, are completely symmetrical, the controller will
not produce any control command because this case is, from the aspect of a decision on vehicle
garaging by front or rear pace, totally undefined. Although the probability of the occurrence of
such a situation equals zero, it is overcome by the introduction of insignificant asymmetry by a
slight overlapping of membership function pairs (FL, BL) and (FR, BR).

3.2 Output variables
The definition of output variables of the FLC requires a clear definition of the object of control.
The algorithm described in this paper is applied to the control of a Hemisson robot. This
is a mobile vehicle of symmetrical shape, with two wheels and a differential drive. Wheels
are independently excited, and their speeds may be defined independently from each other.
Guidance is controlled by the difference in wheel speeds. Each of these speeds can be set as
one of the integer values in the interval [−9,9], (Figure 8), where a negative value means a
change in the direction of wheel rotation. The dependence between the command and wheel
speed is not quite linear causing some additional problems in the process of vehicle control.
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Figure 8: Wheel speed of the Hemisson robot as a function of wheel speed command.
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Specifically, for the subject case, the selected output variables of the FLC are the speed com-
mands of the left and right wheels: V L and V R, respectively. Accordingly, this discrete set
of integer values from the interval [−9,9] is selected as the domain of membership functions
attributed to the output variables.

3.3 Fuzzy rules and fuzzy rule adjustment
Fuzzy rules are defined based on the following principles:

• As the distance from the vehicle to the garage grows, the total speed of the vehicle should
increase;

• As the distance from the vehicle to the garage shrinks, the total speed of the vehicle should
drop;

• The difference between the wheel speeds causes turning, which must depend on the
robot’s orientation toward the garage;

• In the case of good orientation, the robot speed may be maximal.

The set of rules is comprised of two subsets: FRsSFm and FRsSCm , which correspond to the
fictitious fuzzy magnets FMFm and FMCm , respectively. The first six rules in Table 1 are FRsSFm

and the last six rules are FRsSCm . The rules are shown in the form of (3), but instead of wheel
speeds vL and vR, speed commands V L and V R, whose inter-dependency is shown in Figure 8,
are used for a more straightforward presentation.

Rule dFm α1 dCm α2 V L V R
1 f ar B −9 −9
2 f ar BL −3 −9
3 f ar FL 3 9
4 f ar F 9 9
5 f ar FR 9 3
6 f ar BR −9 −3
7 near B −9 −9
8 near BL 0 −3
9 near FL 0 3
10 near F 9 9
11 near FR 3 0
12 near BR −3 0

Table 1: FLC I – fuzzy rules base.

For T − norm, the minimum method was selected, for S− norm the maximum method was
selected. Membership functions of input variables dFm and dCm independently activate particular
rules, an action which results in a considerable reduction in the number of rules. The rule which
produces zero commands on both wheels does not exist; this might lead to the wrong conclusion
that the vehicle never stops and does not take a final position. Since the points Cm and Fm are on
the garage axis of symmetry, when the vehicle finds itself near its final position the difference
between orientation angles α1 and α2 is close to ±π . In this case, at least two rules generating
opposite commands are activated, and their influence becomes annulled. However, with regard
to the endless set of possible combinations of input variables, such a selection of fuzzy rules
does not guarantee that the vehicle will stop at the desired position. It is therefore, necessary to
pay close attention to the selection of parameters dFm , M, N, Ci, i = 1,2,3,4 and Fi, i = 1,2.
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With regard to the large number of parameters, in the first iteration the parameter dFm should be
adopted, observing the following limitation:

dFm >
√

(Wr/2)2 +(Lr/2)2 (8)

where Wr represents the robot width, and Lr the robot length, with the recommendation dFm ≈
Wr.
The selection of parameters M and N, in their geometrical sense as presented in Figure 7,
influences the nature of the maneuver (curve and speed of turning) performed by the vehicle
during garaging, especially at the beginning of the garaging process when the robot is at some
distance from the garage. When the values of M and N are low, the vehicle rotates with a
very small curve diameter; as these values increase, the arches circumscribed by the vehicle
also increase. During the selection of these values, a compromise must be made to maintain
the maneuvering capabilities of the vehicle, as well as the constraints imposed by geometry,
namely, the ratio between the vehicle dimensions and the width of the garage. Generally, these
parameters are adjusted in such a way that the vehicle circumscribes larger arches when distant
from the garage, whereas more vivid maneuvers are needed in the vicinity of the garage.
As such, in the second iteration, parameters M and N related to input α1 are adjusted, followed
by those related to the input α2, with the following constraints:

π/2 > M ≥ N > 0 (9)

Coefficients C3,C4,F1 and F2 enable gradual activation of fictitious magnet Cm and the deacti-
vation of fictitious magnet Fm, as the robot approaches its final garaging point. The selection of
these parameters has a critical impact on the performance of the entire fuzzy controller, and the
following constraints must be strictly observed:

C4 >C3,F2 > F1 ≥ 0 (10)
F1 > 0⇒C4 > Lg/2+dFm +F1 (11)
F1 = 0⇒C4 > Lg/2+dFm−F2 (12)

The constraints specified ensure that the vehicle stays within the attraction region of at least
one fictitious magnet at all times. The dominant impact on vehicle garaging is obtained by
overlapping fictitious fuzzy magnet attraction regions, and proper vehicle garaging is achieved
through the adjustment of the region in which both fictitious fuzzy magnets are active.
The selection of the above parameters might enable vehicle stopping near point Cm. The si-
multaneous adjustment of the garaging path and stopping at the target position, due to a large
number of free parameters, requires a compromise which may have considerable impact on the
quality of the controller. The introduction of parameters C1 and C2 enables unharnessed adjust-
ment of vehicle stopping. The selection of parameters C1 and C2, enabled by theoretical exact
stopping of vehicles at point Cm, will cause oscillations in movement around point Cm due to
the dynamics of the vehicle, a factor which was neglected in the process of controller design.
Accordingly, the selected desired final point of garaging is in the immediate vicinity of the
fictitious magnet Cm location. Coefficients C1 and C2 take into account the neglected dynam-
ics of the vehicle, and their adjustment is performed experimentally, observing the following
constraints:

dCm < Lg/2⇒ dFm ≤ Lg/2+dF (13)

The above relation ensures that at least two rule – generating opposed commands are always
activated around point Cm. If the variable dFm , should take on a value larger than Lg/2+ dF ,
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which means that the vehicle has practically surpassed the target point, angles α1 and α2 will
become nearly equal, which results in the activation of rules that generate commands of the
same sign, which in turn causes oscillations around point Cm.
The experimentally – determined values of these parameters, for the observed example of the
Hemisson robot, are presented in Table 2.

Coeff. Value Coeff. Value
M (α1) 2π/9 C1 5/13
N (α1) π/12 C2 3.2 cm
M (α2) 5π/18 C3 16 cm
N (α2) π/18 C4 40.0 cm

F1 4.0 cm dF 12.0 cm
F2 44.5 cm

Table 2: FLC I - coefficient values.

4 Analysis of Simulation and Experimental Results

In order to test the applicability and efficiency of the above-described method for different ad-
justments of the fuzzy controllers and in cases where an error is introduced in setting the angles,
a test set of N initial conditions was created. This set of initial configurations (xi,(t=0),yi,(t=0),
and ψi,(t=0)), i = 1 : N, was formed such that the robot is placed at equidistant points on the
x and y axes at distances of 1cm, while the angle ψi,(t=0) was a uniform-distribution random
variable in the interval [−π2/,π/2]. The test configuration set was divided into two sub-sets:
the first satisfies the condition that the robot in its initial configuration is at an adequate distance
from the garage and contains Nd elements, while the other includes initial configurations near
the garage and contains Nc = N−Nd elements.
Garaging performance was measured by the distance of the robot from the target position dCm

(Fig. 4), and the angle δ , which showed that the robot and garage axes of symmetry did not
coincide:

δ = |ψG−ψ| (14)

An approximate dynamic model of the Hemisson robot was used for the simulations. The inertia
of the kinematic model given in [8] was described by the presence of a lowpass Butterworth
filter, with cutoff frequency at 1.225Hz. The sampling period of the FLC was Ts = 0.2s. The size
of the garage was 16cm×20cm, and the size of the robot was 10cm×12cm. FLC I was designed
to conform to the constraints defined in the previous section, with the objective of ensuring
successful garaging. The results of simulations with FLC I, for the set of initial conditions Nd

(Tables 1 and 2), are shown in Fig. 9.
In all Nd cases, the garaging process was completed with no collision occurring between the
robot and the garage. In view of the non-linear setting of the speeds and the long sampling
period, the conclusion can be drawn that the results of garaging were satisfactory. The average
deviation in Nd cases was dCm = 1.07cm, while the average angle error was δ = 3.18◦.
FLC I was modified based on the results obtained by [21], relating to minimum wheel travel.
The rules were modified such that when the robot is some distance away, it rotates around its
wheel roughly in the direction of point Fm. Both the parameters and the membership function
were altered and the new system was named FLC II. The differences between FLC I and FLC
II are shown in Tables 3 and 4.
The results of FLC II simulations with the set of initial conditions Nd are shown in Fig. 10.

11



0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

189

574

826
663

228

  4
0

10

20

30

40

50

60

70

[cm]
Cm

d

N[%] a)

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

 162 202

 405

1415

 238
51 11

N[%]

[deg]δ

b)

Figure 9: FLC I in Nd simulations: a) histograms of robot distances from final position, b)
deviations from final orientation.

Table 3: FLC II - Modified fuzzy rules. Rule dFm α1 dCm α2 V L V R
2 f ar BL 0 −9
3 f ar FL 0 9
5 f ar FR 9 0
6 f ar BR −9 0

Figures 9 and 10 suggest that FLC II exhibits better final orientation characteristics ( δ = 1.37◦

on average), while the error in the distance of the robot from its final position is greater than
that obtained with FLC I (dCm = 1.1cm on average).

4.1 Robustness of the system
Since the system was designed for use with a real vehicle, its efficiency needed to be examined
under less-than-ideal conditions. To operate the system, the positions and orientations of the
robot for each selection period must be determined, whereby a robot position and orientation
need not necessarily coincide with the real position and orientation. Since inputs into the system
consist of two distances and two angles whose accuracy depends directly on the accuracy of the
determination of the position of the robot during the garaging process, the effect of inaccuracies
of the vehicle coordinates on the efficiency of the garaging process were analyzed. The set
of experiments was repeated for FLC I and FLC II with Nd initial conditions, and the vehicle
coordinate determination error was modeled by noise with uniform distribution within the range
[−1cm, 1cm ]. Figure 11 shows histograms of distance and orientation deviations from the
targeted configuration, under the conditions of simulated sensor noise, for FLC I. It was found
that the system retained its functionality but that the deviations were greater than those seen in
the experiment illustrated in Fig. 9.

Table 4: FLC II - coefficient values. Coeff. Value Coeff. Value
M (α1) 7π/36 C1 20/63
N (α1) π/12 C2 4.3 cm
M (α2) π/4 C3 16 cm
N (α2) π/18 C4 40.0 cm

F1 4.0 cm dF 11.0 cm
F2 44.5 cm
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Figure 10: FLC II in Nd simulations: a) histograms of robot distances from final position,
b) deviations from final orientation.
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Figure 11: FLC I with simulated sensor noise in Nd simulations: a) histograms of robot
distances from final position, b) deviations from final orientation.

The average distance deviation for Nd cases was dCm = 1.82cm, while the average angle error
was δ = 2.08◦. Figure 12 shows the results of repeated experiments with FLC II.
Table 5 shows extreme and mean values obtained from the garaging experiments. The subscript
N denotes that the simulations were conducted under simulated sensor noise conditions. The
sensor noise mostly affected the maximum distances from the target position dCm max; the mean
values of angle error δ were unexpectedly lower under simulated sensor noise conditions.

δ [◦] δmax [
◦] dCm [cm] dCm max [cm]

FLC I 3.18 6.83 1.07 1.88
FLCN I 2.01 7.17 1.82 4.59
FLC II 1.37 2.35 1.10 2.41
FLCN II 1.19 9.52 1.93 4.80

Table 5: Extreme and mean val-
ues obtained from garaging exper-
iments.

4.2 Limitations of the proposed FLC

Simulations were conducted for the sub-set Nc of initial conditions, under which the robot was
not at a sufficient distance from the garage and was placed at the points of an equidistant grid,
at 0.25cm distances, where the initial orientation of the robot ψi,(t=0) was a uniform-distribution
random variable in the interval [−π/2,π/2]. Figure 13 shows the regions of initial conditions
where the probability of collision of the robot with the garage is greater than zero. Full lines
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Figure 12: FLC II with simulated sensor noise: a) histograms of robot distances from final
position, b) histograms of deviations from final orientation.

identify the limits of the region under ideal conditions, while dotted lines denote simulated
sensor noise conditions.
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It follows that FLC II has a smaller restricted area and, in view of the results shown in Table 5,
its overall characteristics are better than those of FLC I. Figure 13 shows that sensor noise has
little effect on the restricted area of initial conditions, which is an indicator of the robustness of
the system to sensor noise.

4.3 Experiment with a real robot

An analogous experiment was performed with a real mobile vehicle (mobile Hemisson robot)
and a real garage whose dimensions are 16cm×20cm. A block diagram of the garaging experi-
ment is shown in Fig. 14. A personal computer with a Bluetooth interface (d) and web camera
( f ) – resolution 640×480 pixels, were used during the experiment. The initial conditions were
determined prior to the initiation of the garaging process, namely (a): the position and orienta-
tion of the garage qG, and the position and orientation of the robot qr(0). Based on the position
of the robot and the position and orientation of the garage, in block (b), input variables dCM ,
dFm , α1 and α2 were calculated for the FLC (c). FLC outputs were wheel speed commands for
the Hemisson robot (V L and V D), which were issued to the robot via the Bluetooth interface.
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Figure 14: Block diagram of real – time experiment.

The web camera performed a successive acquisition of frames in real time, with a 200 mil-
liseconds repetition time, which dictated the sampling period for the entire fuzzy controller. In
block (g), web camera frames were used to determine the position of the robot and compute
its orientation. During the garaging process, wheel speed commands were different from zero.
When both commands became equal to zero, garaging was completed and block (h) stopped
the execution of the algorithm.
Figures 15a and 15b show twelve typical trajectories obtained during the process of garaging
of a Hemisson robot in a real experiment. Figure 15a contains illustrative trajectories where
there is a significant deviation of real trajectories (dotted line) from trajectories based on a FLC
II controller simulation (full line). These differences are mainly the result of robot wheel eccen-
tricity and the ultimate resolution of the camera used to assess the robot position and orientation.
Figure 15b shows trajectories obtained during the course of garaging from "difficult" initial po-
sitions (initial angle between the axis of symmetry of the robot and the axis of symmetry of the
garage near π/2 ). These trajectories were obtained equally under front- and back-drive condi-
tions (the front of the robot is identified by a thicker line). All of the illustrated trajectories are
indicative of good performance of the proposed garaging algorithm.
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5 Conclusion

This paper proposes and analyses a new WMR garaging algorithm founded upon on a basic
FLC. Compared to algorithms which address similar problems, the proposed system uses a
new concept referred to as "fictitious fuzzy magnets". This concept allows for navigation to the
target in a single maneuver, without changing the direction of WMR travel. The symmetry of the
differential-drive WMR is utilized fully, such that the algorithm provides a bidirectional solution
to the WMR garaging problem. The robot is automatically parked from the end of the robot
which is closer to the garage entrance. The algorithm can be applied when the control variable
is of the discrete type and where there are relatively few quantization levels. A detailed analysis
of simulation and experimental results illustrates the efficiency of the proposed algorithm and
its robustness in the case of a random or systematic WMR position estimation error, as well as
its limitations (or shortfalls). The most significant shortfall of the proposed algorithm is that
it does not provide a solution which will ensure that regardless of initial conditions the garage
parking process is completed with no collision with the garage. The geometrical position of
the initial conditions which lead to a collision of the robot with the garage is a compact, finite
area which is discussed in the paper. Some of the constraints mentioned in this paper could be
overcome in further research aimed at improving the proposed algorithm through a higher level
of FLC complexity. Additionally, if a larger number of fictitious fuzzy magnets are introduced,
the concept could be used to perform more intricate garage parking tasks. Re-configuration
of controller outputs would render the proposed algorithm applicable for garage parking of a
broader class of car-like mobile robots.
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