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Abstract—In this contribution, novel quickly computable ana-
lytical upper and lower bounds are presented on the symmetric
capacity for flat-faded Rayleigh channels with finite-size quadra-
ture amplitude modulation constellations when perfect channel-
state information at the receiving site is available; the proposed
bounds are asymptotically tight both for high and low signal-to-
noise ratios. Furthermore, an easily computable expression is also
provided for a reasonably tight evaluation of the resulting outage
probability.

Index Terms—Capacity bounds, outage probability, packet
transmission, Rayleigh channel.

I. MOTIVATIONS OF THE WORK AND SYSTEM MODELING

A N EFFECTIVE means to improve the performance of
wireless data systems impaired by fading phenomena

consists in resorting to channel coding combined with
bandwidth-efficient modulation formats [1, Ch. 4]. So, since
the ultimate throughput supported by a coded channel is
dictated by the corresponding capacity, starting from the basic
results of [4], this last parameter has been largely investigated
in literature for faded links. In this regard, several results
about capacity and cutoff rate of faded channels can be found,
for example, in [1, Ch. 4], [10], [12], and [13]; furthermore,
capacity of fading channels has been analyzed, in general,
in [3], [7], and [8], whereas the class of faded links with a
“block-type” memory has been considered in [2], [5], [11],
and [13].

In this contribution, we focus on the capacity and outage
probability of systems for data transmissions with finite-size
quadrature amplitude modulation (QAM) constellations over
flat-faded Rayleigh channels. More in detail, we assume that
the baud-rate sampled baseband complex sequence
received at the output of a flat-faded link impaired by additive
white Gaussian noise (AWGN) is modeled as

(1)

where, under the usual assumption of coherent demodulation,
is a nonnegative generally time-correlated Rayleigh-

distributed gain sequence independent of and ,
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while this last is a zero-mean complex AWGN sequence
with variance per component. The transmitted-ary
complex data stream is a
memoryless zero-mean sequence with equidistributed symbols
with variance Now, assuming ergodic1 and also
maximum-likelihood soft decoding with perfect channel-state
information, the symmetric capacity 2 of the channel in (1)
can be obtained via an application of the chain rule of [1, eqs.
(4.6.11)–(4.6.14)], [2, eqs. (2.5)–(2.9)] as reported below3

(2)

where stands for the average mutual information
functional (thereafter given in nats/channel symbol, unless
otherwise stated) and and are subsequences
of elements picked out from and
respectively. Therefore, as in [1, eqs. (4.6.14), (4.7.13)], [2,
eq. (2.9)] the symmetric capacity can be directly computed
via the following expectation:

(3)

1Under the ergodic assumption onfg(i)g; the channel in (1) is “information
stable” so that the limiting expression in (2) for the capacityC� holds [6,
Sec. I].

2According to a current taxonomy [1, p. 350], we have qualified as “sym-
metric” the capacity in (2) which represents the average mutual information
of the channel (1) for discrete equidistributed input symbols. As it is known
[2, Sec. II-C], [4], the actual capacityCG of the channel is achieved for
continuous Gaussian-distributed coding alphabet and is given by the formula
in (16) of Section IV whereEi(x) is the usual exponential integral function
[9, p. 933].

3As in [1, eqs. (4.6.12), (4.6.13)], the equality (a) in (2) follows from
the independence ofGN from XN , which makes the mutual information
I(XN ;GN) vanish. Furthermore, similarly to [2, eq. (2.7)], the memoryless
assumption on the noisefw(i)g guarantees that the equality (b) of (2) holds
while (c) is a consequence of the stationarity of the channel.
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where is the average signal-to-noise ratio (SNR) per channel
symbol and [1, p. 352, eq. (4.5.18)]4

(4)

is the symmetric capacity of the channel (1)conditionedon
the determination of the channel gain.

Now, as also pointed out in [1, Sec. 4.6.3], for each value
of , the evaluation of the capacity formulas in (3), (4) is
cumbersome and, in principle, it should require numerical
integrations over theoverall complex plane , followed by a
final numerical integration on Furthermore, the behavior
of the outage probability of the systemdoes not clearly stand
out from (3) so that a direct utilization of the latter for system
design purposes does not appear attractive. The analytical
relationship presented in the following two sections allow us
to bypass these drawbacks.

II. THE PROPOSEDUPPER AND LOWER BOUNDS

ON THE SYMMETRIC CAPACITY

In the Appendix, it is shown that the conditional capacity
in (4) can be upper and lower bounded as

(5)

where the following relationships take place:

(6)

(7)

So, by inserting the bounds (6), (7) into (3), it can be proved
(see the Appendix) that the following chain of upper and lower
bounds holds for in (3):

(8)

with the positions below reported

(9)

4The relationship in (4) is the formula for the symmetric capacity of an
unfaded AWGN channel withq-ary QAM input symbols. Equation (4) is
directly obtained from [1, p. 352, eq. (4.5.18)] by exploiting the Gaussianity
of the noisefw(i)g:

(10)

(11)

(12)

In the above expressions, the parameters and
in (11) and (12) are defined as

with and denoting the maximum- and minimum-
squared Euclidean distances between two distinct constellation
points.

Remark 1: All the bounds in (8) areasymptotically exact
both for high and low SNR’s; in fact, they approach zero and

for and respectively.
Remark 2: The computation of the lower bounds in (9)

and (10) is direct. The evaluation of the functions in (11)
and (12) can be quickly accomplished via standard numerical
routines typically based on power-series expansions [9, pp.
1065–1071]. Furthermore, for in (11), the following
simple asymptotic expression holds (see the Appendix):

for (13)

which gives rise to a direct evaluation of the bound for medium
to large SNR’s (see Section IV).

III. ON THE EVALUATION OF THE OUTAGE PROBABILITY

OF THE SYSTEM FOR DATA TRANSMISSIONS

VIA MULTIPLE INTERLEAVED PACKETS

In actual time-division multiple-access systems that operate
on fading environments, to obtain a diversity gain the overall

-long codeword, which encodes a user message, is gen-
erally split in packets of symbols, and these packets
are then transmitted sufficiently spaced in time [2, p. 361,
and references therein]. Thus, by resorting to the common
“block-fading channel model” of [2, Sec. II-A], [5] and [11],
as in the case of the pan-European GSM standard, we can
assume that the fading phenomena are constant over each
packet [2, eq. (2.2)], and a deep interleaving is also used
so as to guarantee independent fadings from one packet to
the other [1, Sec. 4.7.2], [2, Sec. II], [5]. So, by indicating
as , the -variate vector, which collects
the realizations of the channel gains in (1) over thetrans-
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Fig. 1. POUT (in a log10 scale) versus the outage parameter� for BPSK
constellations withK = 4 packets. The actual values ofPOUT (obtained
via Monte Carlo simulations) are marked as ——— and����for 

c
= 15

dB and
c
= 20 dB, respectively. The corresponding values assumed by the

relationship in (14) are plotted as� � � � � � � � � � � � � � and����� for 
c
= 15

dB and
c
= 20 dB, respectively.

mitted packets, the resulting conditional mutual information
[2, eq. (2.11)] is a random
variable whose distribution is
commonly referred as the outage probability of the system [2,
Sec. II-B], [11]. Now, due to the integral form of (4), an exact
analytical computation of is a hard task to be
accomplished;5 so, on the basis of the Chernoff-bound reported
in (A.5) of the Appendix, we have developed the following
expression for an approximate evaluation of :

(14)

where for medium to large SNR’s the Chernoff-type parameter
in (14) is given by the optimized expression reported below

(15)

For , the expression we propose in (14) for the approx-
imate evaluation of the outage probability is asymptotically
tight, and for large , it certainly approaches the actual value
of Furthermore, the numerical results reported
in Figs. 1 and 2 support the conclusion that the presented
analytical formula is able to give rise to reliable evaluations
of even for values of of practical interest that,
for example, range from four to eight for the half-rate and
full-rate GSM standards [2].

5It is part of a quite common (but misleading) folklore the opinion that
outage probability is related to the ergodic behavior of the channel; on the
contrary, capacity-versus-outage is recognized to be a meaningful performance
index when the ergodic assumption falls short, as for the case of block-
fading channels with limitedK [13, p. 2631 and references therein]. In the
interesting contribution [11], Chernoff-type bounds on the outage probability
are presented for continuous Gaussian-shaped coding alphabets; unfortunately,
due to the integral form of (4), the developments of [11] do not seem
applicable in our case.

Fig. 2. The same as in Fig. 1 forK = 8:

Remark: The expression at the right-hand-side (RHS) of
(14) is obtained by introducing the approximate relationship
(A.8) in the Chernoff-bound (A.7), so that it should be
properly regarded as an approximation on .6 The
satisfactory behavior exhibited by this approximation at least
for medium to high SNR’s and values of the outage probability
ranging from to is partially due to the exchange
of the expectation with the exponential function introduced
in (A.8); in fact, in doing so, the weakness of the Chernoff-
bound tends to be partially compensated. Furthermore, it can
be also checked out that the dependence onof the (optimized)
Chernoff-like parameter in (15) significantly improves the
reliability of the RHS of (14), especially in the limit cases
of and 7 (see the last part of the Appendix
for some additional comments on these subjects).

IV. NUMERICAL EXAMPLES AND CONCLUSIVE REMARKS

The tightness of the presented bounds on has been
tested for several QAM constellations and the numerical
results obtained for 4PSK, 8PSK, and 16 QAM modulation
formats are drawn in Figs. 3–5. For comparison purposes on
the same figures, even the actual capacity of the channel
(1) is reported; this last is obtained for continuous Gaussian-
distributed coding alphabet and is given by the usual formula
[2, eq. (2.20)], [4]

(16)

The above can be viewed as the ultimate throughput
supported by the channel in (1) when suitably shaped large-
size QAM constellations are used [1, p. 350 and references
therein].

Now, an examination of Figs. 3–5 shows, indeed, that the
bounds and of (9) and (11)closely approachthe
symmetric capacity for SNR’s below 5 dB and over 15

6For this reason, we have adopted in (14) the symbol “�<” in place of
the standard “� :”

7In fact, the Chernoff-like parameter in (15) approaches infinite and zero
for � ! 0 and� ! LB1; respectively.
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Fig. 3. Behavior ofLB1 ( ���� ); LB2 ( 4���� ); UB1 (�����); UB2

(�� ��); CG (� � � � � � � � � � � � � �), and the asymptotic expression of (13)
(����) for a 4PSK constellation. The actual capacityC� of (3) is marked
by a continuous line (———).

Fig. 4. The same as in Fig. 3 for an 8PSK constellation.

dB. In addition, the reported curves confirm that the simple
asymptotic expression for in (13) gives rise to tight
evaluations of for SNR’s over 10–12 dB. The figures also
show that the simpler bounds and of (10) and (12)
differ from the corresponding and within 1–1.5
dB, and they allow reasonably tight evaluations of for
below 3–5 dB and over 15–17 dB.

Some results about the cases of data channels affected by
Rice and Nakagami fadings are reported in [14].

APPENDIX

DERIVATION OF THE MAIN RESULTS

The bound in (7) can be obtained by rewriting
the conditional capacity in (4) as

and then recognizing that for the conditional en-

Fig. 5. The same as in Fig. 3 for a 16QAM constellation.

tropy the following chain of lower bounds holds:

(A.1)

where (a) in (A.1) arises from an exploitation of the arithmetic-
geometric inequality [9, p. 1126], and (b) is obtained via the
Jensen’s inequality applied to the U-convex function

Then, in (11) is obtained by averaging
over the chi-square pdf of and, thus, resorting to

[9, p. 334, eq. (3.194.5)] for computing the resulting integral.
Furthermore, since

(A.2)
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by averaging the RHS of (A.2) with respect to the pdf of,
we obtain in (12). In addition, we note that for vanishing

, the bound in (7) can be well approximated as

(A.3)

therefore, by averaging again the RHS of (A.3) over the pdf
of , we obtain the asymptotic expression in (13).

The lower bound in (6) on is the cutoff rate of
the AWGN channel in (1) conditioned on it can be directly
obtained from [1, eq. (4.3.37)] by exploiting the assumed
equidistribution of the input symbols. Now, an application
of the Jensen’s inequality to the-convex function

leads to the following lower bound:

(A.4)

so that in (9) is obtained by carrying out the averages in
(A.4). Finally, in (10) directly arises from by noting
that

As far as the outage probability is concerned, an application
of the Chernoff-bound leads to the following exponential
expressions for dominating :

(A.5)

(A.6)

(A.7)

where in (A.6) indicates the Rayleigh-type pdf of the
channel gain in (1). Unfortunately, due to the integral form
of (4), the expectation in the above bound resists analytical
evaluation, so that the computation of the latter requires expen-
sive multiple nested numerical integrations over unbounded
domains [see (4), (A.6)]. In the following, we attempt to
bypass this drawback by resorting to a suitableapproximation.
Toward this end, we simply note that both

and are below the unity; so, at least
for large the following approximaterelationship can be
assumed to hold:

(A.8)

Therefore, from (A.7) and (A.8) the relationship (14) directly
arises. Although the latter should be properly regarded as
an approximation on ; nevertheless, the reported
performance plots support its actual effectiveness, at least for
medium to high SNR’s and values of the outage probability
ranging from – To this regard, we also note that
the relationship (A.8)exactly holds for any finite value of

when the pdf of collapses in a Dirac-delta. This
condition can be assumed approximately met for sufficiently
large SNR’s (that is, for SNR’s bigger than about 13–14 dB);
in fact, in this case the pdf of tends to become a tall
spike of small width and, thus, approaches a Dirac-delta stood
at (see (4) and the remark of Section III).
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