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Abstract. Betweenness centrality ranks the importance of nodes by their participation in all shortest
paths of the network. Therefore computing exact betweenness values is impractical in large networks.
For static networks, approximation based on randomly sampled paths has been shown to be signifi-
cantly faster in practice. However, for dynamic networks, no approximation algorithm for betweenness
centrality is known that improves on static recomputation. We address this deficit by proposing two
incremental approximation algorithms (for weighted and unweighted connected graphs) which provide
a provable guarantee on the absolute approximation error. Processing batches of edge insertions, our al-
gorithms yield significant speedups up to a factor of 104 compared to restarting the approximation. This
is enabled by investing memory to store and efficiently update shortest paths. As a building block, we
also propose an asymptotically faster algorithm for updating the SSSP problem in unweighted graphs.
Our experimental study shows that our algorithms are the first to make in-memory computation of a
betweenness ranking practical for million-edge semi-dynamic networks. Moreover, our results show that
the accuracy is even better than the theoretical guarantees in terms of absolutes errors and the rank of
nodes is well preserved, in particular for those with high betweenness.

Keywords: betweenness centrality, algorithmic network analysis, graph algorithms, approximation al-
gorithms, shortest paths

1 Introduction

The algorithmic analysis of complex networks has become a highly active research area recently. One
important task in network analysis is to rank nodes by their structural importance using centrality
measures. Betweenness centrality (BC) measures the participation of a node in the shortest paths
of the network. Let the graph G represent a network with n nodes and m edges. Naming σst the
number of shortest paths from a node s to a node t and σst(v) the number of shortest paths from
s to t that go through v, the (normalized) BC of v is defined as [9]: cB(v) = 1

n(n−1)
∑

s 6=v 6=t
σst(v)
σst

.
Nodes with high betweenness can be important in routing, spreading processes and mediation of
interactions. Depending on the context, this can mean, for example, finding the most influential
persons in a social network, the key infrastructure nodes in the internet, or super spreaders of a
disease.

The fastest existing method for computing BC is due to Brandes [4]. It requires Θ(nm) opera-
tions for unweighted graphs and Θ(nm+ n2 log n) for graphs with positive edge weights. This time
complexity is prohibitive for large-scale graphs with millions of edges, though. Recent years have
seen the publication of several ap proximation algorithms that aim to reduce the computational ef-
fort, while finding BC values that are as close as possible to the exact ones. Good results have been
obtained in this regard; in particular, a recent algorithm by Riondato and Kornaropoulos (RK) [21]
gives probabilistic guarantees on the quality of the approximation, and we build our algorithms on
this method.

Motivation. Large graphs of interest, such as the Web and social networks, evolve continuously.
Thus, in addition to the identification of important nodes in a static network, an issue of great
interest is the evolution of centrality values in dynamically changing networks. So far, there are
no approximation algorithms that efficiently update BC scores rather than recomputing them from
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scratch. A few methods have been proposed to update the BC values after a graph modification,
which for some of the algorithms can only be one edge insertion and for others can also be one edge
deletion. However, all of these approaches are exact and have a worst-case time complexity which is
the same as Brandes’s algorithm (BA) [4] and a memory footprint of at least O(n2).

Contribution. In this paper, we present the first approximation algorithms for BC in evolving net-
works. They are the first incremental algorithms (i. e. they update the betweenness values of all
nodes in response to edge insertions or weight decrease operations in the graph) that can actually
be used in large streaming graphs. Our two algorithms IA (for incremental approximation) and IAW
(for IA weighted) work for unweighted and weighted networks, respectively. Even though only edge
insertions and weight decreases are supported as dynamic operations, we do not consider this a
major limitation since many real-world dynamic networks evolve only this way and do not shrink.
The algorithms we propose are also the first that can handle a batch of edge insertions (or weight
decrease operations) at once. After each batch of updates, we guarantee that the approximated BC
values differ by at most ε from the exact values with probability at least 1 − δ, where ε and δ can
be arbitrarily small constants. Running time and memory required depend on how tightly the error
should be bounded. As part of our algorithm IA, we also propose a new algorithm with lower time
complexity for updating single-source shortest paths in unweighted graphs after a batch of edge
insertions.

Our experimental study shows that our algorithms are the first to make in-memory computation
of a betweenness ranking practical for large dynamic networks. For comparison, we create and
evaluate the first implementation of the dynamic BC algorithm by Nasre et al. [18] and observe its
lack of speedup and scalability. We achieve a much improved scaling behavior, enabling us to update
approximate betweenness scores in a network with 16 million edges in a few seconds on typical
workstation hardware, where previously proposed dynamic algorithms for betweenness would fail
by their memory requirements alone. More generally, processing batches of edge insertions, our
algorithms yield significant speedups (up to factor 104) compared to restarting the approximation.
Regarding accuracy, our experiments show that the estimated absolute errors are always lower than
the guaranteed ones. Also the rank of nodes is well preserved, in particular for those with high
betweenness.

2 Related work

Static BC algorithms - exact and approximation. The fastest existing method for the exact BC
computation, BA, requires Θ(nm) operations for unweighted graphs and Θ(nm+n2 log n) for graphs
with positive edge weights [4]. The algorithm computes for every node s ∈ V a slightly-modified
version of a single-source shortest-path tree (SSSP tree), producing for each s the directed acyclic
graph (DAG) of all shortest paths starting at s. Exploiting the information contained in the DAGs,
the algorithm computes the dependency δs(v) for each node v, that is the sum over all nodes t of
the fraction of shortest paths between s and t that v is internal to. The betweenness of each node
v is simply the sum over all sources s ∈ V of the dependencies δs(v). Therefore, we can see the
dependency δs(v) as a contribution that s gives to the computation of cB(v). Based on this concept,
some algorithms for an approximation of BC have been developed. Brandes and Pich [5] propose
to approximate cB(v) by extrapolating it from the contributions of a subset of source nodes, also
called pivots. Selecting the pivots uniformly at random, the approximation can be proven to be an
unbiased estimator for cB(v) (i.e. its expectation is equal to cB(v)). In a subsequent work, Geisberger
et al. [13] notice that this can produce an overestimation of BC scores of nodes that happen to be
close to the sampled pivots. To limit this bias, they introduce a scaling function which gives less
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importance to contributions from pivots that are close to the node. Bader et al. [1] approximate the
BC of a specific node only, based on an adaptive sampling technique that reduces the number of
pivots for nodes with high centrality. Different from the previous approaches is the approximation
algorithm of Riondato and Kornaropoulos [21], which samples a single random shortest path at
each iteration. This approach allows theoretical guarantees on the quality of their approximation:
For any two constants ε, δ ∈ (0, 1), a number of samples can be defined such that the error on the
approximated values is at most ε with probability at least 1− δ. Because of this guarantee, we use
this algorithm as a building block of our new approach and refer to it as RK.

Exact dynamic algorithms. Dynamic algorithms update the betweenness values of all nodes in re-
sponse to a modification on the graph, which might be an edge insertion, an edge deletion or a
change in an edge’s weight. The first published approach is QUBE by Lee et al. [15], which relies on
the decomposition of the graph into connected components. When an edge update occurs, QUBE
re-computes the centrality values using BA only within the affected component. In case the update
modifies the decomposition, this must be recomputed, and new centralities must be calculated for all
affected components. The approach proposed by Green et al. [14] for unweighted graphs maintains
a structure with the previously calculated BC values and additional information, like the distance
of each node v from every source s ∈ V and the list of predecessors, i.e. the nodes immediately
preceding v in all shortest paths from s to v. Using this information, the algorithm tries to limit
the recomputations to the nodes whose betweenness has actually been affected. Kourtellis et al. [17]
modify the approach by Green et al. [14] in order to reduce the memory requirements. Instead of
storing the predecessors of each node v from each possible source, they recompute them every time
the information is required. Kas et al. [16] extend an existing algorithm for the dynamic APSP
problem by Ramalingam and Reps [19] to also update BC scores. The recent work by Nasre et
al. [18] contains the first dynamic algorithm for BC (NPR) which is asymptotically faster than re-
computing from scratch on certain inputs. In particular, when only edge insertions are allowed and
the considered graph is sparse and weighted, their algorithm takes O(n2) operations, whereas BA
requires O(n2 log n) on sparse weighted graphs. Among other things, our paper contains the first
experimental results obtained by an implementation of this algorithm.

All dynamic algorithms mentioned perform better than recomputation on certain inputs. Yet,
none of them has a worst-case complexity better than BA on all graphs since all require an update
of an APSP problem. For this problem, no algorithm exists which has better worst-case running
time than recomputation [22]. In addition, the problem of updating BC seems even harder than the
dynamic APSP problem. Indeed, the dependencies (and therefore BC) might need to be updated
even on nodes whose distance from the source has not changed, as they could be part of new shortest
paths or not be part of old shortest paths any more.

Dynamic SSSP algorithms. Since our algorithms require the update of an SSSP solution, we briefly
review also the main results on the incremental SSSP problem (i.e. the problem of updating distances
from a source node after an edge insertion or a batch of edge insertions). The most well-known
algorithms for single-edge updates are RR [20] by Ramalingam and Reps, and FMN [11] by Frigioni
et al. The two approaches are implemented and compared in [10], showing that RR is the faster
one. For the batch problem, the authors of [19] propose a novel algorithm named SWSF-FP. In [12]
a batch variant of FMN is presented. The experimental analysis by Bauer and Wagner [3] reports
the results of the two algorithms and of some tuned variants of SWSF-FP. The recent study by
D’Andrea et al. [7] compares the performances of the algorithms considered in [3] with those of a
novel approach [6]. In particular, for batches of only edge insertions, the tuned variant T-SWSF has
shown significantly better results than other published algorithms. Therefore we use T-SWSF as a
building block of our incremental BC approximation algorithm.
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3 RK algorithm
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Fig. 1: Sampled paths and score up-
date in the RK algorithm

In this section we briefly describe the algorithm by Riondato
and Kornaropoulos (RK) [21], the foundation for our incre-
mental approach. The idea of RK is to sample a set S =
{p(1), ..., p(r)} of r shortest paths between randomly sampled
source-target pairs (s, t). Then, RK computes the approximated
betweenness centrality c̃B(v) of a node v as the fraction of sam-
pled paths p(k) ∈ S that v is internal to, by adding 1

r to the
node’s score for each of these paths. Figure 1 illustrates an ex-
ample where the sampling of two shortest paths leads to 2

r and
1
r being added to the score of u and v, respectively. Each pos-
sible shortest path pst has the following probability of being
sampled in each of the r iterations:

πG(pst) =
1

n(n− 1)
· 1

σst
(1)

The number r of samples required to approximate BC scores with the given error guarantee is
calculated as

r =
c

ε2

(
blog2 (V D(G)− 2)c+ 1 + ln

1

δ

)
, (2)

where ε and δ are constants in (0, 1), c ≈ 0.5 and V D(G) is the vertex diameter of G, i.e. the number
of nodes in the shortest path of G with maximum number of nodes. In unweighted graphs V D(G)
coincides with diam(G) + 1, where diam(G) is the number of edges in the longest shortest path. In
weighted graphs V D(G) and the (weighted) diameter diam(G) (i. e. the length of the longest shortest
path) are unrelated quantities. The following error guarantee holds:

Lemma 1. [21] If r shortest paths are sampled according to the above-defined probability distribution
πG, then with probability at least 1− δ the approximations c̃B(v) of the betweenness centralities are
within ε from their exact value: Pr(∃v ∈ V s.t. |cB(v)− c̃B(v)| > ε) < δ.

To sample the shortest paths according to πG, RK first chooses a node pair (s, t) uniformly at random
and performs an SSSP search from s, keeping also track of the number σsv of shortest paths from
s to v and of the list of predecessors Ps(v) for any node v. Then one shortest path is selected:
Starting from t, a predecessor z ∈ Ps(t) is selected with probability σsz/

∑
w∈Ps(t)

σsw = σsz/σst.
The sampling is repeated iteratively until node s is reached. Algorithm 2 in the Appendix is the
pseudocode for RK. Function computeExtendedSSSP is an SSSP algorithm that keeps track of the
number of shortest paths and of the list of predecessors while computing distances, as in BA [4].

Approximating the vertex diameter. The authors of RK propose two upper bounds on the vertex
diameter that can both be computed in O(n +m), instead of solving an APSP problem. For con-
nected unweighted undirected graphs, they compute a SSSP from a randomly-chosen node s and
approximate V D as the sum of the two shortest paths starting from s with maximum length. For the
remaining graph classes (directed and/or weighted), the authors approximate V D with the size of
the largest weakly connected component, which, in case of connected graphs, is equal to the number
of nodes, an overestimation for complex networks. It is important to note that, when the graph is
connected and only edge insertions are allowed, the size of both approximations cannot increase as
the graph evolves. This is the key observation on which our method relies.
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4 Incremental approximation algorithms

4.1 Update after a batch

s

t

s

t

− 1
r

v v

Fig. 2: Updating shortest paths and
BC scores

Our incremental algorithms are composed of two phases: an
initialization phase, which executes RK on the initial graph,
and an update phase, which recomputes the approximated BC
scores after a sequence of edge updates. Figure 2 shows an ex-
ample to illustrate the basic idea: Several shortest (s, t)-paths
exist, of which one has been sampled. An edge insertion short-
ens the distance between s and t, making the shortest path
unique and excluding the node v, from whose score 1

r must
be subtracted. From this point on, we give a formal descrip-
tion and only consider edge insertions. We suppose the graph
is undirected, but our results can be easily extended to weight
decreases and directed graphs. A batch β = {e1, ..., ek} of edges
ei = {ui, vi} is inserted into a connected graph G and we show
how the approximated BC scores can be updated. Let G′ = (V,E ∪ β) be the new graph, let d′s(t)
denote the new distance between any node pair (s, t) and let σ′st be the new number of shortest
paths between s and t. Let Sst and S ′st be the old and the new set of shortest paths between s and
t, respectively. A new set S′ = {p′(1), ..., p′(r)} of shortest paths has to be sampled now in order to let
Lemma 1 hold for the new configuration; in particular, the probability Pr(p′(k) = p′st) of each shortest
path p′st to be sampled must be equal to πG′(p′st) =

1
n(n−1) · 1

σ′
st
. Clearly, one could rerun RK on the

new graph, but we can be more efficient: We recall that the upper bound on the vertex diameter,
and therefore the number r of samples, cannot increase after the insertion if the graph is connected.
Given any old sampled path pst, we can keep pst if the set of shortest paths between s and t has
not changed, and replace it with a new path between s and t otherwise. Then, the following lemma
holds:

Lemma 2. Let S be a set of shortest paths of G sampled according to πG. Let P be the procedure
that creates S′ by substituting each path pst ∈ S with a path p′st according to the following rules:

1. p′st = pst if d′s(t) = ds(t) and σ′st = σst
2. p′st selected uniformly at random among S ′st otherwise.
Then, p′st is a shortest path of G′ and the probability of any shortest path p′xy of G′ to be sampled at
each iteration is πG′(p′xy), i.e.

Pr(p′(k) = p′xy) =
1

n(n− 1)
· 1

σ′xy
, k = 1, ..., r .

The proof can be found in Section A of the Appendix. Since the set of paths is constructed according
to πG′ , Theorem 1 follows directly from Lemma 1.

Theorem 1. Let G = (V,E) be a connected graph and let G′ = (V,E ∪ β) be the modified graph
after the insertion of the batch β. Let S be a set of r shortest paths of G sampled according to πG
and r = c

ε2

(
blog2 (V D(G)− 2)c+ 1 + ln 1

δ

)
for some constants ε, δ ∈ (0, 1). Then, if a new set S′

of shortest paths of G′ is built according to procedure P and the approximated values of betweenness
centrality c̃′B(v) of each node v are computed as the fraction of paths of S′ that v is internal to, then

Pr(∃v ∈ V s.t. |c′B(v)− c̃′B(v)| > ε) < δ,

where c′B(v) is the new exact value of betweenness centrality of v after the edge insertion.
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Algorithm 1 shows the update procedure based on Theorem 1. For each sampled node pair (si, ti), i =
1, ..., r, we first update the SSSP DAG, a step which will be discussed in Section 4.2. In case the
distance or the number of shortest paths between si and ti has changed, a new shortest path is
sampled uniformly as in RK. This means that 1

r is subtracted from the score of each node in the old
shortest path and the same quantity is added to the nodes in the new shortest path. On the other
hand, if both distances and number of shortest paths between si and ti have not changed, nothing
needs to be updated.

Considering edges in a batch allows us to recompute the BC scores only once instead of doing it
after each single edge update. Moreover, this gives us the possibility to use specific batch algorithms
for the update of the SSSP DAGs, which process the nodes affected by multiple edges of β only
once, instead of for each single edge.

Algorithm 1: BC update after a batch β of edge insertions
Input : Graph G = (V,E), source node s, number of iterations r, batch β
Output: New approximated BC values of nodes in V

1 for i← 1 to r do
2 doldi ← dsi(ti);
3 σold

i ← σsi(ti);
4 (dsi , σsi , Psi)←UpdateSSSP(G, dsi , σsi , Psi , β);

// If the shortest paths between si and ti have changed, we sample a new one
5 if dsi(ti) < doldi or σsi(ti) 6= σold

i then
// We subtract 1/r from all nodes in the old shortest path and we add 1/r to all nodes

in the new shortest path
6 foreach w ∈ p(i) do
7 c̃B (w) ← c̃B(w)− 1/r;
8 end
9 v ← ti;

10 p(i) ← empty list;
11 while Psi(v) 6= {si} do
12 sample z ∈ Psi(v) with Pr = σsi(z)/σsi(v);
13 c̃B(z)← c̃B(z) + 1/r;
14 add z to p(i);
15 v ← z;
16 end
17 end
18 end
19 return {(v, c̃B(v)), v ∈ V }

4.2 SSSP Update Algorithms

In Line 4 of Algorithm 1, we need an algorithm UpdateSSSP to update the information about dis-
tances, predecessors and number of shortest paths. This is an extension to the problem of updating
a SSSP tree, for which some approaches have been proposed in the literature (see Section 2). For
weighted graphs, we build our UpdateSSSP algorithm upon T-SWSF [3]; given that no existing al-
gorithm for the dynamic SSSP is asymptotically better than recomputing from scratch, we base
our choice on the results of the experimental studies [3,7]. The difference between our UpdateSSSP
for weighted graphs (UpdateSSSPW) and T-SWSF is that we also need to update the list of prede-
cessors and the number of shortest paths in addition to the distances. For unweighted graphs, our
UpdateSSSP is a novel batch SSSP update approach which is in principle similar to T-SWSF but has
better time bounds. In particular, naming ||A|| the sum of the number of nodes affected by the batch
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(i. e. nodes whose distance or number of shortest paths from the source has changed) and the num-
ber of their incident edges and naming β the size of the batch, our algorithm for unweighted graphs
requires O(|β| + ||A|| + dmax) for an update, where dmax is at most equal to the vertex diameter.
The time required by UpdateSSSPW (and T-SWSF) is instead O(|β| log |β|+ ||A|| log ||A||). Our two
algorithms UpdateSSSPW and UpdateSSSP lead to two incremental BC approximation algorithms:
IAW, which uses UpdateSSSPW, and IA, which uses UpdateSSSP.

SSSP update for weighted graphs. Now we briefly describe UpdateSSSPW (Algorithm 3 in Section B),
which is responsible for updating distances, list of predecessors and number of shortest paths in
weighted graphs after a batch of edge insertions. We say we relax an edge {u, v} when we compare
d(v) with d(u) + w({u, v}) and, in case d(v) > d(u) + w({u, v}), we insert v in a priority queue
Q with priority pQ(v) = d(u) + w({u, v}) (and the same swapping u and v). Our algorithm (and
T-SWSF) can be divided into two parts: In the first part (Lines 2 - 10), it relaxes all the edges of
the batch. In the second part (Lines 11 - 23), each node w in Q is extracted, d(w) is set to pQ(w)
and all the incident edges of w are relaxed. The algorithm continues until Q is empty and therefore
no node needs to be updated.

In this high-level structure, our algorithm is equal to T-SWSF. However, our UpdateSSSPW
algorithm needs to recompute also the information about the shortest paths. This is accomplished
during the scan of the incident edges: In Lines 14 - 22, we recompute the list of predecessors of node
w as the set of neighbors whose distance is lower than the distance of w. The number of shortest
paths is then recomputed as the sum of the number of shortest paths of the predecessors. To study
the complexity of UpdateSSSPW, we denote by β the set of edges of the batch and by A the set of
affected nodes (i.e. vertices whose distance or number of shortest paths from the source has changed
as a consequence of the batch). Let |A| and |β| represent the cardinality of A and β, respectively.
Moreover, let ||A|| represent the sum of the nodes in A and of the edges that have at least one
endpoint in A. Then, the following theorem holds.

Theorem 2. The time required by UpdateSSSPW to update the distances, the number of shortest
paths and the list of predecessors is O(|β| log |β|+ ||A|| log ||A||).

Proof. In Lines 2 - 10 of Algorithm 3, we scan all |β| elements of the batch and perform at most
one heap operation (insertion or decrease-key) for each of them, consequently requiring O(|β| log |β|)
time. In the main loop (Lines 11 - 23), each affected node is extracted from Q exactly once and its
neighbors are scanned (and possibly inserted/updated within Q). This leads to a O(||A|| log ||A||)
complexity for the main loop. The total time required by the algorithm is therefore O(|β| log |β| +
||A|| log ||A||).

A new SSSP update algorithm for unweighted graphs. In case of unweighted graphs, we present a new
algorithm (Algorithm 4 of Section B) that can update the data structures with less computational
effort than updateSSSPW. Since in unweighted graphs the distances from the source can only be
discrete, we can see these distances as levels, which range from 0 (the source) to the distance dmax
of the furthest node from the source. Therefore, we can replace the priority queue Q of Algorithm 3
with a list of FIFO queues containing, for each level k, the affected nodes that would have priority k
in Q. As in Algorithm 3, we first scan all the edges of the batch (Lines 2 - 10), inserting the affected
nodes in the queues. Then (Lines 12 - 29), we scan the queues in order of increasing distance from the
source, in a similar way to the extraction of nodes from the priority queue. Also in this case, we scan
the incident edges to find the new predecessors (and therefore update the list of predecessors and
the number of shortest paths) (Lines 20 - 22) and to detect other possibly affected nodes (Lines 23
- 25). In order not to insert a node in the queues multiple times, we use colors. At the beginning,

7
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all the nodes are white; then, the first time a node is scanned and inserted into a queue, we set its
color to gray, meaning that the node should not be inserted into a queue any more. However, the
target nodes of the batch might need to be inserted in a queue more than once. Indeed, it is possible
that we initially insert node v at level ds(u) + 1, but then we find a shorter path during the main
loop (or afterwards in the batch). For this reason, we also define another color, black, meaning that
the node should not be processed any more, even if it is found again in a priority queue. Using the
same notation introduced with UpdateSSSP for weighted graphs, the following theorem holds.

Theorem 3. The time required by UpdateSSSP to update the distances, the number of shortest paths
and the list of predecessors is O(|β|+ ||A||+ dmax).

Proof. The complexity of the initialization step (Lines 2 - 10) of Algorithm 4 is O(dmax + |β|), as
we initialize a vector of empty lists of size dmax and scan the batch. In the main loop, we scan again
the list of queues of size dmax and, for every node w in one of the queues, we scan all the incident
edges of w. Therefore, the complexity of the main loop is the sum of the number of nodes in each
queue plus the number of edges that have one endpoint in one of the queues. Using the coloring,
each affected node which is not the target of an edge of the batch is inserted in Q exactly once. The
affected target nodes v, instead, can be inserted at most nv + 1 times, where nv is the number of
edges in β whose target is v. The reason of the +1 is that v can be inserted in a queue at most
once during the main loop, as then color[v] will be set to gray. The complexity of the algorithm is
therefore O(|β|+ ‖A‖+ dmax).

5 Experiments

5.1 Experimental setup

Implementation and settings. For an experimental comparison, we implemented our two incremental
approaches IA and IAW, as well as the static approximation RK, the static exact BA, the dynamic
exact algorithms GMB [14] and KDB [17] for unweighted graphs and the dynamic exact algorithm
NPR [18] for weighted graphs. We chose to implement NPR because it is the only algorithm with
a lower complexity than recomputing from scratch and no experimental results have been provided
before. In addition, we also implemented GMB and KDB because they are the ones with the best
speedups on unweighted graphs. We implemented all algorithms in C++, building on the open-
source NetworKit framework [23]. In all experiments we fix δ to 0.1 while the error bound ε varies.
The machine used has 2 x 8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz, of which we use only one,
and 256 GB RAM. All computations are sequential to make the comparison to previous work more
meaningful.

Data sets. We use both real-world and synthetic networks. In case of disconnected graphs, we extract
the largest connected component first. The properties of real-world networks are summarised in
Table 1. We cover a range from relatively small networks, on which we test all the implemented
algorithms, to large networks with millions of edges, on which we can execute only the most scalable
methods, i.e. RK and our incremental approach. In particular, the introduction of approximation
allows us to approach graphs of several orders of magnitude larger than those considered by previous
dynamic algorithms [17]. Our test set includes routing/transportation networks in which BC has a
straightforward interpretation, as well as social networks in which BC can be understood as a
measure of social influence. Most networks are publicly available from the collection compiled for
the 10th DIMACS challenge1 [2]. Due to a shortage of actual dynamic network data with only edge
1 http://www.cc.gatech.edu/dimacs10/downloads.shtml
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dynamics, we simulate dynamics on these real networks by removing a small fraction of random
edges (without separating the connected component) and adding them back in batches. To study
the scalability of the methods, we also use synthetic graphs of growing sizes obtained with the
Dorogovtsev-Mendes generator, a simple and scalable model for networks with power-law degree
distribution [8]. Since NPR and our IAW perform best on weighted graphs, we also generate weighted
instances of Dorogovtsev-Mendes networks, by adding random weights to the edges according to a
Gaussian distribution with mean 1 and standard deviation 0.1.

Graph Type Nodes Edges Diameter
PGPgiantcompo social / web of trust 10 680 24 316 (24, 24)
as-22july06 power grid 22 963 48 436 (11, 12)
caidaRouterLevel internet 192 244 609 066 (26, 28)
email-Enron social / communication 36 692 183 831 (13, 14)
coAuthorsCiteseer social / coauthorship 227 320 814 134 (33, 36)
coAuthorsDBLP social / coauthorship 299 067 977 676 (24, 26)
citationCiteseer citations 268 495 1 156 647 (36, 38)
belgium.osm street 1 441 295 1 549 970 (1987, 2184)
Texas84.facebook social / friendship 36 371 1 590 655 (7,7)
netherlands.osm street 2 216 688 2 441 238 (2553, 2808)
coPapersCiteseer social / coauthorship 434 102 16 036 720 (34, 36)
coPapersDBLP social / coauthorship 540 486 15 245 729 (23, 24)

Table 1: Overview of largest components of real graphs used in the experiments.

5.2 Accuracy

We consider the accuracy of the approximated centrality scores both in terms of absolute error
and, more importantly, the preservation of the ranking order of nodes. Our incremental algorithm
has exactly the same accuracy as RK. The authors of [21] study the behavior of the algorithm
also experimentally, considering the average and maximum estimation error on a small set of real
graphs. We study the absolute and relative errors (i. e. ratio between the approximated and the
exact score) on a wider set of graphs. For our experiments we use PGPgiantcompo, as-22july06
and Dorogovtsev-Mendes graphs of several sizes. Our results confirm those of [21] in the sense that
the measured absolute errors are always below the guaranteed maximum error ε and the measured
average error is orders of magnitude smaller than ε. We observe that the relative error is almost
constant among the different ranks and increases for high values of ε. We also study the relative
rank error introduced by Geisberger et al. [13] (i. e. max{ρ, 1/ρ}, denoting ρ the ratio between the
estimated rank and the true rank), which we consider the most relevant measure of the quality of
the approximations. Figure 3 shows the results for PGPgiantcompo, a similar trend can be observed
on our other test instances as well. On the left, we see the errors for the whole set of nodes (ordered
by exact rank) and, on the right, we focus on the top 100 nodes. The plot show that for a small
value of ε (0.01), the ranking is very well preserved over all the positions. With higher values of
ε, the rank error of the nodes with low betweenness increases, as they are harder to approximate.
However, the error remains small for the nodes with highest betweenness, the most important ones
for many applications.
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Fig. 3: Relative rank error on PGPgiantcompo for nodes ordered by rank. On the left, relative errors
of all nodes. On the right, relative errors of the 100 nodes with highest betweenness.

5.3 Running times

In this section, we discuss the running times of all the algorithms, the speedups of the exact in-
cremental approaches (GMB, KDB and NPR) on BA and the speedups of our algorithm on RK. In
all of our tests on unweighted graphs, KDB performs worse than GMB, therefore we only report
the results of GMB. Figure 4 shows the behavior of the four algorithms for unweighted graphs on
PGPgiantcompo. Since GMB can only process edges one by one, its running time increases linearly
with the batch size, becoming slower than the static algorithm already with a batch size of 64. Our
algorithm shows much better speedups and proves to be significantly faster than recomputation even
with a batch of size 1024. The reasons for our high speedup are mainly two: First, we process the
updates in a batch, processing only once the nodes affected by multiple edge insertions. Secondly,
our algorithm does not need to recompute the dependencies, in contrast to all dynamic algorithms
based on BA (i. e. all existing dynamic exact algorithms). For each SSSP, the dependencies need to
be recomputed not only for nodes whose distance or number of shortest paths from the source has
changed after the edge insertion(s), but also for all the intermediate nodes in the old shortest paths,
even if their distance and number of shortest paths are not affected. This number is significantly
higher, since for every node which changes its distance or increases its number of shortest paths, the
dependencies of all the nodes in all the old shortest paths are affected.

Results on synthetic unweighted graphs are analogous to those shown in Figure 4 and can be
found in the Appendix (Figure 6a in Section C). We did the same comparison on synthetic weighted
graphs (described in Section 5.1), using NPR instead of GMB. We observed that, even though NPR
is theoretically faster than recomputing from scratch, its speedups are very small (see Figure 6b in
Section C). Figure 6c in Section C shows the speedups of IAW on NPR and IA on GMB. Both NPR and
GMB have very high memory requirements (O(n2 +mn)), which makes the algorithms unusable on
networks with more than a few thousand edges. The memory requirement is the same also for all other
existing dynamic algorithms, with the exception of KDB, which requires O(n2) memory, impractical
for large networks. Since the exact algorithms are not scalable, for the comparison on larger networks
we used only RK and our algorithms. Figure 5 (left) shows the speedups of our algorithm IA on
coPapersCiteseer. In this case, the average running time for RK is always approximatively 420 seconds,
while for IA it ranges from 0.02 seconds (for a single edge update) to 6.2 seconds (for a batch of 1024
edges). Figure 5 (right) summarises the speedups obtained in the networks of Table 1. The red dots
represent the average speedup among the networks for a particular batch size and the shaded areas
represent the interval where the different speedups lie. The average speedup is between 103 and 104

for a single-edge update and between 10 and 102 for a batch size of 1024. Even for graphs with
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the worst speedups (basically the smallest ones), a batch of this dimension can always be processed
faster than recomputation.

Graph Time RK [s] Time IA [s] (b = 1) Time IA [s] (b = 1024) Speedup (b = 1) Speedup (b = 1024)
PGPgiantcompo 3.894 0.009 1.482 432.6 2.6
as-22july06 3.437 0.020 0.520 171.8 6.6
caidaRouterLevel 64.781 0.023 2.193 2816.5 29.5
email-Enron 82.568 0.016 0.750 5160.5 110.0
coAuthorsCiteseer 65.474 0.009 1.008 7274.8 64.9
coAuthorsDBLP 109.939 0.009 1.201 12215.4 91.5
citationCiteseer 192.609 0.030 4.229 6420.3 45.5
belgium.osm 666.144 1.049 48.370 635.0 13.7
Texas84.facebook 344.075 0.147 21.829 2340.6 15.7
netherlands.osm 878.148 1.292 31.802 679.6 27.6
coPapersCiteseer 427.142 0.025 6.186 17085.6 69.0
coPapersDBLP 497.617 0.009 3.027 55290.7 164.3

Table 2: Average running times and speedups on real graphs for batch size b. All the algorithms were
run with ε = 0.05 and δ = 0.1 and averaged over 10 runs.
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Fig. 4: Running times and speedups on PGPgiantcompo, with ε = 0.05 and with batches of different
sizes. On the left, running times of the four algorithms: static exact (BA), static approximation (RK),
incremental exact (GMB) and our incremental approximation IA. On the right, comparison of the
speedups of GMB on BA and of IA on RK.

6 Conclusions

Because betweenness centrality considers all shortest paths between pairs of nodes, its exact com-
putation is out of reach for the large complex networks that come up in many applications today.
However, approximate scores obtained by sampling paths are often sufficient to identify the most
important nodes and rank nodes in an order that is very similar to exact BC. Since many applica-
tions are concerned with rapidly evolving networks, we have explored whether a dynamic approach
– which updates paths when a batch of new edges arrives – is more efficient than recomputing BC
scores from scratch. Our conclusions are drawn from experiments on a diverse set of real-world net-
works with simulated dynamics. We introduce two dynamic betweenness approximation algorithms,
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Fig. 5: On the left, speedups of IA on RK on the coPapersCiteseer network, run with ε = 0.05. On
the right, geometric mean of speedups over all real networks.

for weighted and unweighted graphs respectively. Their common method is based on the static RK
approximation algorithm and inherits its provable bound on the maximum error. Through reimple-
mentation and experiments, we show that previously proposed dynamic BC algorithms scale badly,
especially due to an O(n2) memory footprint. Combining a dynamic approach with approximation,
our method is more scalable and is the first dynamic one applicable to networks with millions of
edges (without using external memory).

As an intermediate result of independent interest, we also propose an asymptotically faster
algorithm for updating a solution to the SSSP problem in unweighted graphs. The dynamic updating
of paths implies a higher memory footprint, but also enables significant speedups compared to
recomputation (e. g. factor 100 for a batch of 1024 edge insertions). The scalability of our algorithms
is primarily limited by the available memory. Each sampled path requires O(n) memory and the
number of required samples grows quadratically as the error bound ε is tightened. This leaves the
user with a tradeoff between running time and memory consumption on the one hand and BC score
error on the other hand. However, our experiments indicate that even a relatively high error bound
(e. g. ε = 0.1) for the BC scores preserves the ranking for the more important nodes well.

We studied sequential implementations for simplicity and comparability with related work, but
parallelization is possible and can yield further speedups in practice. Our implementations are based
on NetworKit2, the open-source framework for high-performance network analysis, and we plan to
publish our source code in upcoming releases of the package.
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A Proof of Lemma 2

Proof. To see that p′st is a shortest path of G′, it is sufficient to notice that, if d′s(t) = ds(t) and
σ′s(t) = σs(t), then all the shortest paths between s and t in G are shortest paths also in G′.

Let p′xy be a shortest path of G′ between nodes x and y. Basically, there are two possibilities for
p′xy to be the k-th sample. Naming e1 the event {Sxy = S ′xy} (the set of shortest paths between x
and y does not change after the edge insertion) and e2 the complementary event of e1, we can write
Pr(p′(k) = p′xy) as Pr(p′(k) = p′xy ∩ e1) + Pr(p′(k) = p′xy ∩ e2).

Using conditional probability, the first addend can be rewritten as Pr(p′(k) = p′xy∩e1) = Pr(p′(k) =

p′xy|e1) Pr(e1). As the procedure P keeps the old shortest path when e1 occurs, then Pr(p′(k) =

p′xy|e1) = Pr(p(k) = p′xy|e1) = 1
n(n−1)

1
σx(y)

, which is also equal to 1
n(n−1)

1
σ′
x(y)

, since σx(y) = σ′x(y)

when we condition on e1. Therefore, Pr(p′(k) = p′xy ∩ e1) = 1
n(n−1)

1
σ′
x(y)
· Pr(e1).

Analogously, Pr(p′(k) = p′xy ∩ e2) = Pr(p′(k) = p′xy|e2) Pr(e2). In this case, Pr(p′(k) = p′xy|e2) =
1

n(n−1) · 1
σ′
x(y)

, since this is the probability of the node pair (x, y) to be the k-th sample in the
initial sampling and of p′xy to be selected among other paths in S ′xy. Then, Pr(p′(k) = p′xy ∩ e2) =

1
n(n−1) · 1

σ′
x(y)
· Pr(e2) = 1

n(n−1) · 1
σ′
x(y)
· (1− Pr(e1)). The probability Pr(p′(k) = p′xy) can therefore be

rewritten as

Pr(p′(k) = p′xy) =
1

n(n−1)
1

σ′
x(y)
· Pr(e1)+ 1

n(n−1)
1

σ′
x(y)
·(1-Pr(e1)) =

1

n(n− 1)

1

σ′x(y)
.

ut

B Pseudocode of RK, UpdateSSSP and UpdateSSSPW.

Algorithm 2: Computation of the approximated betweenness centralities on the initial graph
G (RK algorithm)

Input : Graph G = (V,E), ε, δ ∈ (0, 1)
Output: A set of approximations of the betweenness centrality of the nodes in V

1 foreach node v ∈ V do
2 c̃B (v)← 0;
3 end
4 VD (G)←getVertexDiameter(G);
5 r ← (c/ε2)(blog2(VD(G)− 2)c+ ln(1/δ));
6 for i← 1 to r do
7 (si, ti)← sampleUniformNodePair(V );
8 (dsi , σsi , Psi)← computeExtendedSSSP(G, si);

// Now one path from si to ti is sampled uniformly at random
9 v ← ti;

10 p(i) ← empty list;
11 while Psi(v) 6= {si} do
12 sample z ∈ Psi(v) with Pr = σsi(z)/σsi(v);
13 c̃B(z)← c̃B(z) + 1/r;
14 add z → p(i); v ← z;
15 end
16 end
17 return {(v, c̃B(v)), v ∈ V }
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Algorithm 3: UpdateSSSPW
Input : Graph G = (V,E), source node s, old values of ds, σs and Ps, batch of edge insertion β = e1, ..., ek
Output: Updated values of ds, σs and Ps

1 Q← empty min-based priority queue;
2 foreach e = {u, v} ∈ β do
3 insert e into E;
4 if ds(v) ≥ ds(u) + w(e) then
5 insert v in Q with pQ(v) = ds(u) + w(e) or, if already in Q and pQ(v) > ds(u) + w(e), set

pQ(v)← ds(u) + w(e);
6 end
7 if ds(u) ≥ ds(v) + w(e) then
8 insert u in Q with pQ(u) = ds(v) + w(e) or, if already in Q and pQ(u) > ds(v) + w(e), set

pQ(u)← ds(v) + w(e);
9 end

10 end
11 while Q 6= ∅ do
12 (w, p)← extractMin (Q);
13 ds(w)← p; Ps(w)← ∅; σs(w)← 0;
14 foreach incident edge {z, w} do
15 if ds(w) = ds(z) + w({z, w}) then
16 add z to Ps(w);
17 σs(w)← σs(w) + σs(z);
18 end
19 if ds(z) ≥ ds(w) + w({w, z}) then
20 insert z in Q with pQ(z) = ds(w) + w({z, w}) or, if already in Q and pQ(z) > ds(w) + w({z, w}),

set pQ(z)← ds(w) + w({z, w});
21 end
22 end
23 end
24 return (ds, σs, Ps)
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Algorithm 4: UpdateSSSP
Input : Graph G = (V,E), source node s, old values of ds, σs and Ps, batch of edge insertion β = e1, ..., ek,

maximum distance dmax

Output : Updated values of ds, σs and Ps

Assume: color[v] = white for all v ∈ V
1 Q[]← array of empty queues of size dmax;
2 foreach e = {u, v} ∈ β do
3 insert e into E;
4 if ds(u) < ds(v) then
5 k ← ds(u) + 1; enqueue v → Q[k];
6 end
7 if ds(v) < ds(u) then
8 k ← ds(v) + 1; enqueue u→ Q[k];
9 end

10 end
11 k ← 1;
12 while k < dmax do
13 while Q[k] 6= ∅ do
14 dequeue w ← Q[k];
15 if color(w) =black then
16 continue;
17 end
18 color(w)← black; ds(w)← k; Ps(w)← ∅; σs(w)← 0;
19 foreach incident edge (z, w) do
20 if ds(w) = ds(z) + 1 then
21 add z to Ps(w); σs(w)← σs(w) + σs(z);
22 end
23 if color[z] =white and ds(z) ≥ ds(w) + 1 then
24 color[z]← gray; enqueue z → Q[k + 1];
25 end
26 end
27 end
28 k ← k + 1;
29 end
30 Set to white all the nodes that have been in Q;
31 return (ds, σs, Ps)
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C Additional experimental results
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(a) Running times and speedups on Dorogovtsev-Mendes synthetic graphs (m = 40k), with ε = 0.05 with batches of
different sizes. Left: running times of the four algorithms: static exact (BA), static approximation (RK), incremental
exact (GMB) and IA. Right: comparison of the speedups of GMB on BA and of IA on RK.
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(b) Running times and speedups on weighted synthetic graphs (m = 40k), with ε = 0.05 with batches of different sizes.
Left: running times of the four algorithms: static exact (BA), static approximation (RK), incremental exact (NPR)
and IAW. Right: comparison of the speedups of NPR on BA and of IAW on RK.
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(c) Left: speedups of IA on GMB on unweighted synthetic graphs (m = 40k). Right: speedups of IAW on NPR on
weighted synthetic graphs. IA and IAW run with ε = 0.05.

Fig. 6: Additional experimental results
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