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Tree networks are encountered in river networks, railway networks, 
rural areas, areas where the transportation network primarily consists 
of a main highway, and multiproduct assembly line balancing prob-
lems. In some cases, groups of nodes can be merged to form a result-
ing tree network. A complete description of the occurrence of such 
tree networks, along with some real-world examples, is provided 
elsewhere (1–5).

The capacitated TVRP and all of its variants were shown to 
be NP-hard by Labbé et al. (1) and Hamaguchi and Katoh (6) by 
transformation of the bin-packing problem [shown to be NP-complete 
by Garey and Johnson (7)] to a special case of the TVRP. The main 
complicating factor in TVRPs of all variations is that a vehicle can 
visit a node without actually serving it. For every node in a tree, only 
one path from the root node to that node exists; therefore, a vehicle 
must visit some nodes, even though it does not serve them.

This is not the case with VRPs, in which case, whenever a node 
is visited by a vehicle, it is also served. All TVRPs can be solved as 
VRPs by detection of the all-to-all shortest paths between the nodes. 
Because of their special network structure, TVRPs have been of 
interest to researchers because it is possible to develop customized 
algorithms and faster solution techniques. For example, the integer 
programming (IP) formulations for TVRPs do not contain any sub-
tour elimination constraints, which thereby makes the number of 
constraints in the number of nodes polynomial.

The problem considered in this paper can be briefly defined as 
follows. Given a tree network, nonnegative arc costs, demand at each 
node, and a heterogeneous fixed fleet of vehicles located at a depot, 
find a collection vehicle routes, such that

1.	 The total distance traveled by (total operating cost of) all 
vehicles used is minimized,

2.	 The demand at each node is satisfied by exactly one vehicle,
3.	 The total demand serviced by a vehicle does not exceed its 

capacity, and
4.	 All vehicle routes begin and end at the depot.

This problem is Cap-HTVRP. It is assumed that the arc costs 
remain constant over all vehicle types and that the total fleet mix is 
given and finite. Heuristics for both cases with and cases without 
fixed vehicle costs are presented.

Cap-HTVRP has embedded within it the generalized assignment 
problem (GAP), the bin-packing problem, and the tree traveling 
salesman problem (TTSP). Although the bin-packing problem is 
NP-hard, several efficient heuristics that produce near-optimal 
solutions have been developed (8–11). The four most popular 
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The vehicle routing problem (VRP) is a classical problem in logistics that 
aims to design minimum-cost delivery routes from a centralized depot. 
A special case of the VRP arises in situations in which the network 
has a tree structure (TVRP). Such tree networks arise when the cost 
of road construction and maintenance is much more than the routing 
cost or when the transportation network consists of a main highway 
(e.g., Interstate system) and the customer locations are located off the 
highway. A heuristic for a constrained case of TVRP in which the vehicle 
fleet is capacitated and heterogeneous is proposed. The heuristic first 
determines the customers that will be served by each vehicle by use of 
bin-packing and Lagrangian-based generalized assignment algorithms. 
The individual vehicle routes are then determined by use of a depth-first 
search method. A procedure for further refinement of the heuristic solu-
tion quality is also described. The heuristic algorithm was implemented 
on two real-world networks and on randomly generated networks that 
varied in size from 20 to 120 nodes. The heuristic solution was found to 
be between 2% and 10% for almost all of the 200 instances tested and 
took a fraction of the time taken to find the optimal solution.

The vehicle routing problem (VRP) is a classical problem in logistics 
that aims to design minimum-cost delivery routes from a centralized 
depot or depots to customers at different locations, subject to some 
side constraints. The VRP is known to be NP-hard and is especially 
difficult to solve because of the presence of subtour elimination 
constraints, which are exponential in number.

A special case of the VRP arises in situations in which the network 
has a tree structure (TVRP). The depot is located at the root of the 
tree, and the geographically dispersed customers form the nodes of 
the tree. A constrained case of the TVRP in which the vehicle fleet 
is capacitated and heterogeneous (Cap-HTVRP) is studied in this 
paper. A heuristic algorithm that explicitly considers the tree struc-
ture is presented. To the best of the authors’ knowledge, no heuristic 
techniques for solution of heterogeneous fixed-fleet TVRPs exist.
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approximation algorithms are first fit, best fit, first fit decreasing, and 
best fit decreasing (12). The heuristic for the Cap-HTVRP proposed 
here iteratively finds seed nodes by the use of upper-bound heuristics 
for the bin-packing problem, assigns a vehicle to each seed node, 
and then uses a Lagrangian-based GAP algorithm to assign nodes 
to vehicles located at the seed node. The TTSP is solved to find the 
optimal route for every vehicle used. The TTSP is trivially solvable 
in polynomial time (13). A reforming operation based on the savings 
heuristic (14) is finally employed to further reduce the solution cost.

The rest of this paper is organized as follows. The next section 
describes the relevant past work carried out in the area. Some exact 
solution methods and their relation to GAP and the bin-packing 
problem are then discussed and the heuristic algorithm is presented. 
Finally, the computational results obtained by implementation of 
the heuristic and exact methods are presented.

Literature Review

The TVRP variants that have been studied previously include  
(a) capacitated TVRPs (TCVRPs), (b) distance-constrained TVRPs, 
(c) TVRPs that combine TCVRPs and distance-constrained TVRPs, 
(d) TVRPs with split delivery, (e) TVRPs with pickup and delivery, 
and (f ) TCVRPs with backhauls.

TCVRPs were first introduced by Labbé et al. (1). They provided 
a proof for NP-hardness; conditions for lower bounds; a bin-packing-
based two-approximation algorithm, which was further modified 
by Rennie (15); and an enumerative branch-and-bound scheme. A 
column-generation approach to solve TCVRPs on the basis of the 
depth first search (DFS) properties of TTSPs (12) was developed by 
Mbaraga et al. (16). Chandran and Raghavan (4) and Busch (17) for-
mulated TCVRP as an integer program that uses the DFS properties 
of TTSPs. Chandran and Raghavan further proposed various valid  
inequalities to decrease the search space (4), and they also refined the 
approximation algorithm proposed by Labbé et al. (1) and Rennie (15). 
Basnet et al. developed two heuristics for the TCVRP (3). The first 
heuristic is based on the savings heuristic developed by Clarke and 
Wright (14). The second heuristic first assigns all nodes to a single 
vehicle and then subdivides these nodes into different vehicles such 
that capacity constraints are satisfied.

Apart from the heuristic proposed by Basnet et al. (3), none of the 
heuristics or approximation algorithms explicitly minimizes the 
total distance traveled by the total operating cost of the vehicles; rather, 
they seek to find a feasible solution by packing of the node demands 
into vehicles. Furthermore, none of these heuristics is capable of 
dealing with heterogeneous fleets. The heuristic presented in this 
paper addresses these two issues. Mbaraga et al. developed a heuris-
tic and two exact algorithms for the capacitated and uncapacitated 
versions of the time-constrained VRP on trees (16). Their heuristic is  
an extension of the work of Labbé et al. (1) and converges in linear 
time. One of their exact algorithms is a branch-and-bound technique, 
whereas the other is a column-generation technique. Hamaguchi and 
Katoh developed a 1.5-approximation algorithm for the TVRPs 
with split delivery (6), whereas Asano et al. further refined it to a 
1.35078-approximation algorithm (18). The first step of their algo-
rithms involves performance of a set of seven reforming operations 
to reshape the tree. These reformations are done such that the lower 
bound of the problem remains the same. Some reforming operations 
include contraction of subtrees into a single node, removal of demand 
from all internal nodes, and assurance that all non-grandparent nodes 
have only one child (leaf) node.

Katoh and Yano presented a 2-approximation algorithm for the 
TCVRP with pickup and delivery (19). They assumed splittable 
demand and developed an algorithm that finds a set of feasible vehicle 
tours such that at any time during the tour, the sum of the goods to  
be delivered and picked up does not exceed the vehicle capacity. 
That is, they do not consider all delivery to take place before pickup. 
Their algorithm consists of two main steps. In the first step, they per-
form a set of seven reforming operations similar to those performed 
by Asano et al. (18). In the second step, an appropriate subgraph 
and a serving strategy are chosen. Four subgraph types are defined, 
and for each case a different serving strategy is developed. An exact 
and heuristic solution method for the TVRPs with backhauls was 
proposed by Kumar et al. (5). They proposed a new IP formulation 
that uses some properties and observations that are true of TVRPs 
with backhauls at optimality and a 2-approximation algorithm that 
uses a heuristic two-dimensional bin-packing procedure.

The heterogeneous VRP can be solved to optimality by trivial 
modification of the network flow-based integer formulation for the 
capacitated VRP on general networks first presented by Laporte 
et al. (20) and Fisher and Jaikumar (21). Fisher and Jaikumar also 
provided a cluster-first route-second heuristic based on the GAP 
and traveling salesman problem to solve capacitated VRPs on gen-
eral networks (21). With some modifications, their algorithm can be 
applied to the heterogeneous VRP. An exact solution method based on 
solution of the linear programming relaxation by a column-generation 
method was proposed by Choi and Tcha (22). Heuristics for hetero-
geneous VRPs based on existing VRP techniques have been studied 
by Golden et al. (23), Salhi and Rand (24), Taillard (25), Desrochers 
and Verhoog (26), and Renaud and Boctor (27).

Preliminaries

Consider a tree network rooted at the depot. ND is the set of nodes 
including the depot. Denote the set of nodes excluding the depot 
node as N, that is, N = ND\{depot}. The demand at a node i ∈ N 
is denoted by d(i). The set of edges in the network is represented 
by E; all edges facilitate movement in both directions. The cost of  
traversing edge {i, j} is given by c{i,j}. Replace the set of undirected 
edges by the set of directed arcs A, such that every edge is replaced 
with two arcs, one in each direction, and cij = cji = c{i,j}. A directed arc 
between i and j is represented as arc (i, j). Let |N | equal n, and let 
|E | equal m; m is then equal to n − 1 and |A| is equal to 2m. Let K 
be the set of vehicles, let capk : k ∈ K denote the capacity of each 
vehicle, and let fk : k ∈ K denote the fixed operating cost of each 
vehicle. Assume that the vehicles are indexed in decreasing order of 
their capacities, that is, capk1 ≥ capk2 ≥ . . . ≥ capk|K|−1 ≥ capk|K|. In this 
paper, the number of vehicles in the fleet and the fleet mix are given. 
Although existing VRP techniques can be used to solve this problem 
(quite inefficiently), no heuristics or approximation algorithms for 
TVRPs that deal with either heterogeneous fleets or fixed fleets that 
explicitly take advantage of the tree structure exist in the open lit-
erature. The robustness of the heuristic in dealing with nonfixed and 
homogeneous fleets is demonstrated in the next section.

In compliance with other literature on trees, a leaf node of tree T 
is defined to be a node with degree 1. For notational convenience and 
without a loss of generality, assume that the tree grows downward 
from the root node. That is, all nodes are topologically below the 
root node. Therefore, the ancestors of a node are above it, and its 
descendants are below it. The immediate ancestor of a node is called 
its parent. For a given node i, its parent is denoted by Pi. Every node 
has a single unique parent node. The immediate descendant of a 
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node is called its child. The set of children of node i is given by c(i). 
A node can have many children. For further notational convenience, 
assume that the nodes of the tree are numbered in the DFS order. This 
implies that if {i, j} ∈ E and if i < j, then i is the parent of node j. 
Similarly, if {i, j} ∈ E and if i > j, then i is the child of node j. A 
subtree of tree T (Si) is defined as a tree rooted at a node i, such that 
the nodes i and all of its descendants are part of the subtree. It is a  
connected subgraph of the tree, and all of its nodes and edges are also 
part of tree T. The example shown in Figure 1 shows all the notation 
explained above. The nodes j and k are the children of node i, and the 
subgraph containing the nodes within the shaded region is subtree Si.

The minimal-covering subtree of a tree is defined as follows. Given 
a subset of nodes R ⊂ N, the minimal-covering subtree CSR is the set 
of all of the nodes in the unique paths from each node in R to the depot. 
The minimal-covering subtree will always include the depot and will 
be rooted at the depot. For example, the minimal-covering subtree CSR 
for the tree in Figure 1a with R equal to {j, k} is shown in Figure 1b.

Furthermore, the set of nodes in the unique path from the depot 
to a node i is denoted by PfDi, that is, PfDi = CSR : R = {i}. The 
cumulative demand of the nodes in PfDi (demi) is given by ∑j∈PfDi

dj, 
and the cost of the path from the depot to i (Li) is given by Li = ∑j∈PfDi

 
∑q∈PfDi

 cj,q : (j, q) ∈ A.

Exact Cap-HTVRP Solution Methods

Exact Cap-HTVRP solution methods were developed by Chandran 
and Raghavan (4) and Mbaraga et al. (16). Chandran and Raghavan 
developed two integer programs for solving TCVRPs (4). The first 
one builds off the fact that, once the nodes that are part of a vehicle 
route are determined, nodes will be served in the order of their DFS 
index. A similar IP was also developed by Busch (17). The second 
formulation uses the fact that only one path exists between a node 
and any other node in the depot and that every node has a unique 
parent node. The second formulation, Cap-HTVRP(1), which will 
be further used in the heuristic proposed here, is as follows:

x
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The objective function minimizes the total distance traveled. It is 
multiplied by 2 because each vehicle must return to the depot after 
service. Constraint 2 states that if a vehicle k traverses arc (i, j),  
then it should also have traversed the arc (Pi, i). This ensures that if 
a vehicle traverses an arc, then it must first traverse the parent arc 
to reach that arc. Constraint 3 ensures that if a vehicle decides to 
serve node i, then it should travel along the arc leading to that node i, 
that is, arc (Pi, i). Constraint 4 ensures that every node is serviced 
by only one vehicle, whereas Constraint 5 ensures that the vehicle 
capacity is not exceeded. To further expedite the convergence of 
the IP, some valid inequalities were also proposed by Chandran and 
Raghavan (4). The formulation can easily accommodate fixed costs 
by modification of the objective function as follows:

2 812× +∑∑∑ ∑c x f xij ijk
kji

k k
k

( )

Let the depot be denoted Node 1. Because the depot has a 
degree of 1, all vehicles used will always traverse arc (1, 2). Thus, 
fixed costs can be incorporated into the formulation without the 
need for definition of new variables or constraints. When the arcs 
have asymmetric costs associated with them, a flow conservation 
constraint for every vehicle and for every node must be added to 
the formulation.

x x i Nijk
j P c i

jik
j P c i

D

i i

− = ∀ ∈{ }
∈ ∪ ( ){ } ∈ ∪ ( ){ }
∑ ∑ 0 , ∀∀ ∈k K ( )9

Mbaraga et al. define a set covering-based formulation for Cap-
HTVRP that is solved by the use of column generation (16). The 
master problem of the column-generation scheme solves Cap-HTVRP 
for a subset of variables. These variables are then parsed to the 
subproblem. The subproblem is a capacitated shortest-path problem 
whose arc costs are defined such that the shortest path will generate 
a column with the most negative reduced cost, which will in turn be 
parsed to the master problem. The tree arcs and costs are modified to 
form an acyclic graph for every vehicle as vehicles serve nodes in DFS 
order. The constrained shortest path is then solved on these acyclic 

Pi

Si

i

j k

(a)

Pi

i

j k

(b)

Pi

i

(c)

FIGURE 1    Example of notation: (a) c(i) = {j, k}, Si is subtree rooted 
at i, and Pi is parent of i; (b) minimal-covering subtree with R = {j, k}; 
and (c) set of nodes in PƒDi with R = {i}.
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graphs by use of the algorithm proposed by Desrosiers et al. (28). 
The shortest-path algorithm has a pseudopolynomial running time.

Heuristic for Cap-HTVRP

Let Li,j be the cost of the path between nodes i and j. It is also known 
that, given a vehicle and the nodes that it is going to serve, the least-
cost vehicle route will visit the nodes in increasing order of the 
DFS index (13). Given this, the formulation Cap-HTVRP(1) can be 
rewritten such that the objective function enforces DFS movement, 
whereas the constraints enforce the capacity and service requirements. 
When no fixed costs are given, the new formulation, Cap-HTVRP(2), 
with the depot as Node 1, is given as follows:

minimize

∆ k
k K

( )
∈
∑ ( )10

subject to Constraints 4 to 6, where Δ(k) for every vehicle k ∈ K is 
defined as

∆ k L L Lp i q r
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Objective Function 11 is the sum of the costs required to serve the 
lowest DFS-indexed node from the depot, serve the nondepot nodes 
in DFS order, and traverse from the highest indexed node back  
to the depot for each vehicle. The constraints of the formulation 
Cap-HTVRP(2) are the same as those of a GAP. The objective 
function, however, is more complex. The objective is dependent 
not only on the cost accrued by a vehicle to serve a node but also on 
the order in which the nodes are served. Therefore, it is difficult to 
assign these costs a priori, because costs for every precedence order 
of nodes must be defined. Therefore, Cap-HTVRP(2) cannot be solved 
as a GAP. When fixed costs fk ∀k ∈ K are given, the formulation can be 
modified to the formulation Cap-HTVRP(3), as follows:
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Δ(k) is as defined in Equations 11 to 14. The Constraint Set 16 to 19 
is that of the capacitated facility location problem (CFLP). However, 
the cost function Δ(k) in the objective is not a simple linear cost, 
because of which Cap-HTVRP(3) cannot be solved as a CFLP.

However, current GAP and CFLP methods can be used to find a 
heuristic solution to Cap-HTVRP if Δ(k) can be approximated as a 
linear function of yik. This calculation is done by a method similar to 
the one described by Fisher and Jaikumar (21). First, the concept of 
a seed node for every vehicle is defined. A seed node of a vehicle is a 
node that is assigned to a vehicle a priori. That is, fix nodes ik1, ik2, . . . , 
ik|K|−1, ik|K| that will be served by vehicle k1, k2, . . . , k|K|−1, k|K|, respectively. 
Next, compute a penalty δik associated with insertion of node i into the 
route of vehicle k. Thus, computation of a heuristic solution to Cap-
HTVRP by the GAP or CFLP solution method consists of detection of 
seed nodes or customers and computation of δik ∀i ∈ N, k ∈ K.

Once this is done, solution of GAP or CFLP will result in a set of 
nodes that every vehicle k will serve. Detection of the optimal route 
for these set of nodes is trivial, as it involves detection of the TTSP 
for every vehicle k. Finally, to further reduce the value of the Cap-
HTVRP heuristic solution, a refining operation is also performed, 
as described below.

Computation of dik

δik can be interpreted to be the penalty accrued by vehicle k when 
it serves node i. This vehicle k already serves seed node ik, so δik 
computes the additional cost required to serve i, given that k already 
serves ik. Recall that the set of nodes in the unique path from the 
depot to the node ik is denoted by PfDik. Now, if i ∈ PfDik, then 
this node i will already be visited by vehicle k on its way to serving 
the seed node, ik. Therefore, the penalty associated with serving this 
node i or inserting this node i into the vehicle route will be 0. For any 
node i ∉ PfDik, the penalty associated with inserting that node i into 
the vehicle route k is equal to twice the distance of that node from 
the last common node in PfDik and PfDi. This is explained in detail 
as follows. Consider Figure 2. Let node i be the node to be inserted, 
and let node ik be the seed node. Now, before node i is added, the 
cost of the vehicle route k is twice the cost of traversing from the 
depot to ik, 2 × Lik. However, if node i is added to the route, the cost 
of the route of vehicle k will be the sum of the costs of traversal from 
the depot to ik (Lik) from ik to i (Lik,i) and from i back to the depot (Li). 
The penalty cost δik can now be computed. In more formal terms,

δik

i

i i i i i i
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L L L L i N PfD
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k k k k

=
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When no fixed costs are given, Objective Function 10 can be 
replaced with
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and when fixed costs are given, Objective Function 15 can be 
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k k
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Detection of Seed Customers

Seed nodes must be chosen such that the resulting GAP or CFLP 
solution is as close to the optimal solution as possible. First, seed 
nodes should be selected such that in the resulting GAP solution the 
same vehicle does not serve two seed nodes. Second, seed nodes 
should be located such that the total insertion cost, δik, is minimized. 
Because the vehicle fleet is heterogeneous, the procedure assigns 
vehicles to nodes in decreasing order of capacity. The seed node 
selection procedure defined here has three steps:

Step 1.  Assign vehicle k to seed node ik.
Step 2.  Determine potential nodes that vehicle k will serve; delete 

these nodes.
Step 3.  Select the next seed node ik+1 from the remaining set of 

nodes.

It can be seen that the number of iterations is equal to the number 
of vehicles. First, start with the entire tree, and then at every iteration 
of the procedure delete a subtree, so that the pool of seed node can-
didates keeps decreasing. The node deletion at every stage ensures 
that no two seed nodes are served by the same vehicle. Second, 
delete nodes in such a manner that the resulting GAP solution is 
minimized. This is done with an attempt to guarantee that a vehicle k 
will choose to serve a node i such that δik is equal to 0.

Assume that the node in the tree at iteration k is Nk and that |Nk| is 
equal to nk. This assumption implies that an n − nk number of nodes 
has been deleted by iteration k − 1. Next, it is easy to see that the tree 
at iteration k actually covers a subtree with |R| equal to nk; therefore, 
the tree at an iteration k is denoted by CSRk

. The tree at the first 
iteration is the original tree network, T, with n1 being equal to n + 1 
(the additional node is the depot). Lastly, at iteration k, |K| − (k + 1) 
vehicles are yet to be assigned.

The function used to assign a vehicle to a seed node at iteration k  
is denoted by the parameter VehicleAssign (k). Contractk is the 
function that deletes nodes from the tree CSRk

 such that the next seed 
node, ik+1, that is chosen is not assigned to vehicle k by the GAP. The 
first method, VehicleAssignH1(k), is as follows. At every iteration 
k, the nk nodes are sorted in decreasing order of their cost, Li. The 
function quicksort (Li : i ∈ Nk) performs this function and stores the 
nodes in the array SORTk. The pth element of SORTk is denoted 
SORTk(p). Now, from the first |K | − (k + 1) elements of SORTk, the 
node with the highest cumulative demand, Demi, is selected to be 

seed node ik and is assigned to vehicle k. The details are presented 
in Algorithm 1 in Equation Box 1.

The second method of assignment of seed nodes, VehicleAssignH2(k), 
is a slight modification of the first one. From the first |K| − (k + 1) 
elements of SORTk, instead of selection of the node with the highest 
cumulative demand Demi to be the seed node ik, the node that is the 
farthest away from the seed node ik−1 is selected.

Proposition 1: At every iteration k, seed node ik is a leaf node of 
the covering subtree CSRk.

Proof: Assume that the chosen seed node ik is not a leaf node of 
the tree CSRk. However, any node that is a direct descendant of ik will 
also be in the first |K| − (k + 1) elements of SORTk. Therefore, Step 7 
of Algorithm 1 will always select a leaf node. ◾

The next step in iteration k of the seed node selection procedure 
deletes nodes from the tree CSRk

 that will potentially be served by the 
current vehicle k, which has been assigned seed node ik. Contractk 
contains the set of nodes whose deletion from the tree CSRk

 results 
in the tree for the next iteration k + 1, CSRk−1. Let binUB(Vi) be the 
bin-packing upper bound with bin capacity Capk on the number of 
vehicles required to serve subtree Si. Start at the leaf node ik and 
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EQUATION BOX 1    Algorithm 1 Computation of VehicleAssignH1(k) 
at Iteration k
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move upwards in the tree. A subtree Si is then deleted from the tree 
CSRk

 if binUB(Vi) is less than 2. The reason for this is straightforward, 
as this procedure deletes nodes closest to the seed node that can be 
served by vehicle k. Here, the first fit-decreasing procedure is used 
to calculate binUB(Vi). The steps of this procedure are described in 
Algorithm 2 in Equation Box 2.

Solution of GAP

As stated above, after the seed nodes have been identified, the next 
step involves solution of GAP (CFLP, if fixed costs are given). δik 
is calculated for every seed node and every vehicle. The formulation 
Cap-HTVRP(2) is then used to solve GAP. Because GAP is a well- 
known problem in logistics and operations research, many poly
nomial techniques that provide close to optimal solutions exist in 
the literature. In this paper, the Lagrangian-based lower-bound regret 
and greedy regret developed by Jeet and Kutanoglu (29) are used. It 
is easy to see that after the GAP is solved, a feasible solution to the 
Cap-HTVRP is always obtained.

Refining Operation

A feasible solution to Cap-HTVRP is obtained by solution of GAP 
(or CFLP). This solution can be refined further by performance 
of a myopic savings operation. Let the current best solution value 
obtained by solution of GAP be z–w, and let the current best solution 
be X

–
w, Y

–
w, where w is the number of vehicles used by the solution 

and 1 ≤ w ≤ |K|. The refining operation examines one node at a time. 
Thus, the refining operation has n iterations. First, for every node 
the total savings in cost obtained by removal of that node from the 
current route and placement of it in one of the available (w − 1) 
routes or a new (w + 1) route is calculated, provided that the insertion 

is possible. Next, let the solution cost of removal of node i from the 
current route and placement of it in route k be given by zwki

 for each 
node i. That is, for every node i, the savings (Savi) is

Savi
k

w wz z
ki

= −{ }max ( )23

where k = {1, 2, . . . , w, w + 1}.
LIST is the set of nodes in nonincreasing order of the Savi value. 

LIST(r) denotes the rth element of LIST. Now, if the maximum 
savings, LIST(1), is positive, then the node i that yields this savings 
is inserted into its new location and z–wki

 is the new incumbent best 
solution. If the maximum savings is 0, then the node i that yields this 
zero savings is discarded and the next iteration is initiated. Let z– be 
the best heuristic solution value, and let X

–
, Y

–
 be the best heuristic 

solution obtained at the end of the refining operation. The details 
of the algorithm are presented in Algorithm 3 in Equation Box 3.

Heuristic Cap-HTVRP

The complete heuristic proceeds in the following manner:

Step 1.  Find seed customers by use of the functions Vehicle 
Assign(k) and Contractk until either |K | nodes have been assigned 
or all nodes N have been covered.

Step 2.  Calculate δik for the seed customers ik.
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Step 3.  Solve GAP by Cap-HTVRP(2) with Objective Function 
21, if fixed costs are given, and then solve Cap-HTVRP(3) with 
Objective Function 22.

Step 4.  Calculate the current best heuristic solution X
–

w and Y
–

w 
and the best heuristic solution value z–w.

Step 5.  Perform the refining operation described in Algorithm 
4.4 to obtain X

–
, Y

–
, and z–. The pseudocode for the heuristic is given 

in Algorithm 4 in Equation Box 4.

EQUATION BOX 4    Algorithm 4 Heuristic Algorithm for Cap-HTVRP
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O
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and using Algorithm 313:

The heuristic is explained by means of the example shown in 
Figure 3. The original network is shown on the left. The arc costs 
are shown on the edges, and the demand at every node is shown 
in a box next to the node. It is assumed that three vehicles with 
capacities of 900, 600, and 300 are given. The first step, Step I, 
involves assignment of every vehicle to a seed node in T. Vehicle 
k1 is assigned to Node 8, and vehicle k2 is assigned to Node 4. 
Note that Vehicle 3 remains unused. After the seed nodes have been 
assigned, δik is calculated for the assigned vehicles (Step II). The 
GAP is then solved (Step III) by use of δik, di, and Capk as param-
eters. In the GAP solution, k1 serves Nodes 5, 6, 7, 8, and 9 and 
k2 serves Nodes 1, 2, 3, and 4. The solution cost is 272. The solu-
tion cannot be improved any further and so Step IV is empty. The 
optimal solution to this problem is also 272 and contains the same 
assignment of nodes.

Computational Performance

The solution quality and computational efficiency of the proposed 
algorithm were tested on randomly generated test networks along 
with two real-world networks.

Test Instances

The first real-world network is a tree network in Wyoming (Figure 4).  
Denver, Colorado, was considered the depot, and on the maps, all of 
the markers with letters denote the nodes where supply or demand 
originates. The paths traced in Figure 4 represent the links. A tree net-
work arising in the area of Amarillo, Texas, was considered the second 
test network. The test networks were generated by a procedure simi-
lar to the one described by Labbé et al. (1), Mbaraga et al. (16), and 
Chandran and Raghavan (4). Every node in the tree had between one 
and five children. Without a loss of generality, the depot was forced 

Vehicle 24 

8 

18 16 

5 

9 6 4 

3 

7 

8 90 

140 220 

200 

50 

120 

300 

100 

60 

15 

9 

6 5 3 

Original Network (I) Find seed nodes for the vehicles 

Seed Nodes for k2 

Seed Nodes for k1 

k1 

k2 
K 

N 

1 0 

2 

3 

4 

5 

6 

7 

8 

9 

(II) Computer δik (III) Solve GAP and compute 
cost 

(IV) Check if solution can be 
improved 

0 

36 

42 

0 

0 

0 

0 

12 

0 

0 

0 

0 

32 

42 

72 

90 

44 

k1 k2 
k3 

Capacity 

900 
1 

2 

24 

8 

18 16 

5 

9 6 4 

3 

7 

8 

15 

9 

6 5 3 

1 

2 

600 

300 

Vehicle 

k1 

k2 

k3 

Nodes 

Cost 272 

5,6,7,8,9 

1,2,3,4 

Unused 

FIGURE 3    Illustration of steps in heuristic.



FIGURE 4    Tree network arising in Wyoming with Point A as depot. (Source: Google Maps.)
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to have a degree of 1. The arc costs were uniformly distributed in 
[1 100]. The algorithm was tested on 20-, 40-, 70-, and 120-node 
networks.

Parameter Generation

Each test network was tested for five demand profiles uniformly 
distributed between [1 10], [1 30], [1 100], [20 20], and [20 80]. 
The minimum vehicle capacity for each instance was randomly 
generated to be one to two times the maximum vehicle demand. 
The number of vehicles |K | was the upper bound on the number 
of vehicles required to serve the network when all vehicles have 
minimum capacity. This upper bound can either be a bin-packing 
upper bound or a TCVRP upper bound suggested by Chandran and 
Raghavan (4). Of the vehicles in |K |, 0% to 10% were assumed to 
be four times the minimum capacity, 0% to 20% were assumed to be 
three times the vehicle capacity, and 0% to 20% were assumed to 
be twice the vehicle capacity. The rest of the vehicles were assumed 
to be of minimum capacity. The fixed costs were assumed to be 0. 
The paper studies the effectiveness of the seed node selection and 
the contraction and refining operations, which are not dependent on 
vehicle fixed costs.

Computational Results

For every demand profile and for every node size, 10 instances were 
solved. Thus, in total, the heuristic was tested for its solution quality 
and computational efficiency on 200 networks. The exact formulation, 
along with the valid inequalities, was coded in GAMS (version 22.9) 
and solved with the CPLEX solver on a PC with a 32-bit architecture, 
4 GB of RAM, and a 2.93-GHz processor. In GAMS, the iteration 
limit for branch and bound was set to 100,000, the time limit was set 
to 1,000 s, and the optimality criterion for the mixed IP (relative gap 
between the best found integer solution value and best found linear 
programming value) was set to 0.0001. The heuristic was coded in 
MATLAB. A summary of the computational results is presented in 
Table 1. The summary contains the following information:

•	 Solved: the number of instances (of 10) that were solved to 
optimality within 1,000 s.
•	 TimeOPT: the time taken by CPLEX to solve the mixed IP 

formulation to optimality (reported only for solved instances).
•	 TimeH1 and TimeH2: the time taken to solve the heuristic by use 

of VehicleAssignH1 and VehicleAssignH2, respectively. It is the sum of 
times required to solve VehicleAssign, Contract, GAP, and refinement 
algorithms.
•	 GapH1 and GapH2: the gaps between the heuristic algorithm 

H1 and H2 and the optimal solution (z*), respectively. This gap is 
given by (z– − z*)/z*. It conveys how far off the algorithm solution 
value was from the optimal solution value and is reported only for 
solved instances of mixed IP.
•	 First GapH1 and First GapH2: the gaps between the heuristic 

algorithm H1 and H2 solution value and the first best integer solu-
tion found by the CPLEX solver (zF), respectively. It is computed as 
(z– − zF)/z– and is reported only for unsolved instances.
•	 Last GapH1 and Last GapH2: the gaps between the heuristic 

algorithm solution value and the last best integer solution found by 
the CPLEX solver (zL), respectively. It is computed as (z– − zL)/z– and 
is reported only for unsolved instances.

Solution Quality

Table 1 shows that for solved instances, the gap varied from 2% to 8% 
for heuristic H1 and from 3% to 11% for heuristic H2. On average, H1 
seems to perform better than H2. Also, as the problem size increased, 
the gap did not increase substantially for either H1 or H2. This is 
because the seed node selection depended on the network geometry 
and not on the network size. Moreover, δik was computed on the basis 
of tree geometry and not on the basis of network size. The demand 
distribution [1 10] was the easiest to solve for the heuristic and for 
CPLEX, whereas the networks with demand [20 20] were the hardest 
to solve. The [20 20] demand is such that the linear programming 
relaxation produces many fractional solutions, as a result of which 
the number of branch-and-bound nodes increases substantially. 
Only a few 70-node instances could not be solved to optimality, 
whereas all 120-node instances remained unsolved after 1,000 s. 
This is because the method used to generate |K| results in high |K| 
values for larger problems, and the result thereby increases the num-
ber of variables that need to be branched. The first gaps reported for 
the unsolved instances were at least 53% lower than the best initial 
integer solution found by CPLEX. Therefore, the heuristic can be 
used to initialize the CPLEX solver effectively. Finally, the last gap 
results suggest that the heuristic solutions were close to the best 
last integer solution found by CPLEX at termination. In fact, for 
120-node networks with [20 20] demand, the heuristic solution was 
better than the last CPLEX solution. This reaffirms that for tougher 
problems, the heuristic can be used to find good solutions.

Computational Performance

As expected, the CPLEX solution time increases with problem size. 
For 120-node networks, CPLEX was unable to find a solution within 
1,000 s. The heuristic took much less time to find good solutions 
that were well within 10% of the optimal solution for most cases. 
H1 performed marginally better than H2, because H2 required one 
extra step. The maximum reported time required to solve the heu-
ristic without application of the refining operation was only about 5 s. 
The refinement operation performs |N|2|K| iterations for every net-
work. Therefore, because of their high |K| values, the time taken for 
instances with [20 20] and [20 80] demands was higher than the 
time taken for other demand profiles. Thus, if one wanted to initialize 
CPLEX with a solution, it can be done so extremely quickly.

Conclusions

In this paper, a special case of the VRP in which the network is a 
tree and the vehicle fleet is fixed and heterogeneous was studied. 
Because of this heterogeneity, existing heuristic solution methods 
cannot be used to solve the problem.

The relation of Cap-HTVRP to GAP and CFLP was discussed. 
It was shown that when the nodes were ordered in DFS order, the 
existing IP formulation can be modified to have only GAP constraints. 
A linear approximation to this modified formulation was presented. 
A heuristic was then developed to use this GAP formulation to solve 
the Cap-HTVRP. The heuristic iteratively finds seed nodes by use of 
upper-bound heuristics for the bin-packing problem, assigns a vehicle 
to each seed node, and then uses a Lagrangian-based GAP algorithm 
to assign nodes to vehicles located at the seed node. Two methods 
for detection of seed nodes were also presented.



TABLE 1    Summary of Numerical Results

Network Demand Solved Nodes GapH1 GapH2 TimeOPT (s) TimeH1 (s) TimeH2 (s) First GapH1 First GapH2 Last GapH1 Last GapH2

20-node [1 10] 10 398 0.027 0.029 1.35 0.52 0.51 — — — —
[1 30] 10 202 0.037 0.053 0.95 0.31 0.33 — — — —

Includes the [1 100] 10 339 0.05 0.051 1.67 0.57 0.61 — — — —
    two real-world [20 20] 10 3,790 0.027 0.064 2.93 1.23 1.23 — — — —
    networks [20 80] 10 5,625 0.026 0.059 5.25 0.89 0.93 — — — —

[1 10] 10 4,054 0.033 0.063 5.88 2.13 2.24 — — — —
[1 30] 10 1,259 0.056 0.066 4.98 2.46 2.53 — — — —

40-node [1 100] 10 1,047 0.07 0.056 44.49 2.35 2.97 — — — —
[20 20] 10 3,764 0.026 0.099 32.72 7.82 8.1 — — — —
[20 80] 10 3,256 0.073 0.078 15.74 4.22 4.93 — — — —
[1 10] 10 9,244 0.079 0.103 195.68 11.86 12.54 — — — —
[1 30] 8 30,005 0.07 0.082 358.5 12.42 13.24 −0.65 −0.58 0.047 0.044

70-node [1 100] 10 9,722 0.083 0.113 133.9 7.45 7.79 — — — —
[20 20] 0 19,028 — — — 48.65 53.57 −0.718 −0.564 0.056 0.133
[20 80] 5 33,719 0.085 0.087 585.8 39.65 40.67 −0.525 −0.488 0.133 0.156
[1 10] 0 10,618 — — — 28.45 29.35 −0.574 −0.566 0.104 0.102
[1 30] 0 30,005 — — — 32.46 32.36 −0.589 −0.597 0.123 0.118

120-node [1 100] 0 12,318 — — — 30.23 30.3 −0.749 −0.694 0.081 0.112
[20 20] 0 2,429 — — — 95.67 98.54 −743 −0.615 −0.045 0.029
[20 80] 0 9,327 — — — 79.94 80.59 −0.614 −0.613 0.091 0.091

Note: — = not applicable.
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The heuristic was tested on 200 test networks of various sizes. It 
was found that the heuristic performs consistently well, irrespective 
of problem size, with solutions ranging from 2% to 10% of the 
optimal solution value, whereas it takes much less time than the 
CPLEX solver. It was also shown that significant improvements in 
optimal solution time can be achieved if the heuristic solution was 
used to initialize the CPLEX solver.

Future research will include exploration of other variants of the 
problem, such as the TVRP with time windows and stochastic and 
online versions of TCVRPs. Exploration of other heuristic solution 
techniques that explicitly take advantage of the tree structure must 
also be explored.
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