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Abstract: 

Via a confluence of genomic technology and computational developments 
the possibility of network inference methods that automatically learn large 
comprehensive models of cellular regulation is closer than ever. This perspective 
will focus on enumerating the elements of computational strategies that, when 
coupled to appropriate experimental designs, can lead to accurate large-scale 
models of chromatin-state and transcriptional regulatory structure and dynamics. 
We highlight four research questions that require further investigation in order to 
make progress in network inference: using overall constraints on network 
structure like sparsity, use of informative priors and data integration to constrain 
individual model parameters, estimation of latent regulatory factor activity under 
varying cell conditions, and new methods for learning and modeling regulatory 
factor interactions. We conclude that methods combining advances in these four 
categories of required effort with new genomic technologies will result in 
biophysically motivated dynamic genome-wide regulatory network models for 
several of the best studied organisms and cell types.  
 
Large cellular regulatory networks exist, are important, and won’t go away 
if we ignore them. 

Large cellular regulatory networks, composed of thousands of protein and 
RNA components interacting with the chromosome to regulate transcription, are 
essential to coordinating nearly all cell functions [1]. All regulatory factors are in 
turn regulated by the same processes they comprise and under the simultaneous 
control of other regulation-relevant cell processes such as localization and post-
transcriptional and post-translational modifications. The end result is a complex 
and large network of interactions that govern cell decision-making critical to all 
cell functions, from cell division to differentiation to response to exogenous 
environmental factors.  Evolutionary, genomic and genetic work supports the 
(functional) importance of the complexity of these regulatory networks. With all of 
this in mind it is reasonable to state that regulatory network models can only be 
reduced in scale and simplified so much before they break and become 
incoherent, and that breaking point, once reached, still leaves us with regulatory 
networks of daunting complexity.  In spite of the many significant challenges to 
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working on such large systems, the fields of genomics and systems biology have 
developed powerful genome-wide measurement technologies that when 
combined with new computational methods for learning networks produce large 
regulatory network models that vary in accuracy, comprehension, and model 
complexity tremendously (depending on the biological system, technologies 
used, and methods used for network modeling and learning)	 [2]	 [3]	 [4].  This 
perspective piece will not provide a comprehensive review of all of these 
methods (or all or the large scale genomics efforts that produce the required 
data-sets); instead we aim to provide an overview of a few core features that the 
network inference methods of the future will need to incorporate. 
 
Large-scale network inference is the best way to approach learning new 
regulatory interactions even if you are primarily interested in one or a few 
cell processes or regulatory sub-networks. 

In this work network inference is an umbrella term for computational 
methods that identify (quantitative) gene regulatory networks (sets of regulatory 
interactions between transcription factors (TFs)) and genes) from experimental 
data. There are a number of reasons for approaching cellular regulation using a 
large-scale computational network inference framework. Given the scale of 
genomes and the correspondingly large scale and complexity of robust 
regulatory apparatus controlling genome structure and gene expression, learning 
regulatory interactions one or a few at a time is woefully inefficient and is prone 
to observation biases.  The inherent very-large scale of functional regulatory 
interaction networks is shown by:  1) recent high-throughput experiments aimed 
at TFs (in most cases well known TFs have many more regulatory targets than 
known prior to genomic interrogation) [5] [6] [7] [8] [9],  2) recent high-throughput 
experiments aimed at determining functional regions and structure of the genome 
[10-14]  [15-18] [10, 19-23], 3) genetics and evolutionary considerations which 
show that expansion and neo-functionalization of regulatory gene families is 
ongoing and under strong selection	 [24]	 [25] and lastly 4) by single-TF and 
traditional molecular biology (by continually finding and characterizing new 
regulatory interactions we see that the end of the regulatory complexity 
connected to phenotype is no where in sight).  

Scale and efficiency based-arguments (akin to the above considerations) 
are, perhaps, the weaker and more obvious reasons to employ large-scale 
regulatory network inference and genomic approaches. Large-scale network 
inference approaches also have several advantages with regard to experimental 
design: that is, we can learn things from large-scale experimental designs that 
we cannot from single-gene or single-pathway experimental designs. Often 
smaller scale (single process focused) molecular biology experiments must be 
selected from a very large manifold of potential experiments. This selection 
process is driven by biological intuition and the expert knowledge of molecular 
biologists. With even the keenest group of intelligent biologists this process 
introduces unacceptable observation bias and inhibits scientific reproducibility. 
The important process of selecting what to test in the first place is often poorly 
described and key negative results leading to this selection are omitted or buried 
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in poorly written supplemental materials. Avoiding the observation bias of small-
scale molecular biology workflows is a main attraction of genomics-powered 
network inference.  Unbiased approaches to network inference enable cross-
comparisons that are not always possible with single-gene or single-process 
experimental designs and better enable comparison of newly learned interactions 
to known interactions (and enable in some case a more unbiased reevaluation of 
error in our ‘known’ set of regulatory characterized interactions).  

Lastly, regulatory network inference does not obviate detailed study of 
regulatory interactions, it enhances such endeavors, by providing a weighted 
map that a molecular biologist can use to select and prioritize factors to further 
characterize. With sufficiently detailed representations (i.e. sufficiently biologically 
motivated core representations of the core components of the regulatory 
network) we also provide opportunities for biochemical and molecular biology 
follow-up studies that would not exist with a single-gene approach.  A main 
reason for pursuing methods that result in biophysically motivated models of 
regulatory networks is to better integrate initial network inference with 
downstream functional characterization of the bigger better regulatory 
interactions one catches with network inference.  
 
Method diversity in network inference stems, necessarily, from the 
diversity in how we model regulatory networks and the diversity of 
genomic technologies and experimental designs. 
 There is no one-size-fits-all solution to network inference [26]	 [27-33].  
There are a large number of methods for network inference due to the 
importance of the problem and the diversity of experimental designs. For 
example, the experimental designs and computational methods available to 
scientists studying bacteria without good genetic systems differs from methods 
appropriate for scientists studying the immune system in human. The appropriate 
method for network inference must be determined after a careful consideration of 
several factors including: 1) the biological questions that are priorities for any 
given study (do you want to predict the effects of knock outs on metabolism or 
find new regulators with a predefined phenotype?), 2) the orthogonal 
measurement techniques available and applicable, 3) the budget and the scale of 
the project, 4) the availability and diversity of public data, and 5) the extent of 
prior knowledge about the system.  These considerations affect the model 
simplifications and requirements that are allowed/needed and thus should 
influence method development and selection. Computational modeling should 
not only be used as a post measurement analysis step. Instead we should 
carefully match experimental design to the computational tools we plan to use if a 
major motivation is optimal discovery of new regulatory interactions with large-
scale (unbiased data-driven) methods. 
       
The scope of this perspective 

This perspective does not intend to provide a broad and comprehensive 
review of methods for network inference, but instead will express a very focused 
view on where the field of regulatory network inference needs to go in order to 
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build genome-wide biophysically motivated regulatory network models. We also 
aim to provide the reader thoughts on how to coordinate experimental design 
with computational methods for network inference. In this section we will explicitly 
state our assumptions, restrictions and focus.  For a more comprehensive 
discussion see any of these recent reviews of network inference in biology. [27, 
32, 34-44] 

Our first and largest restriction of focus is that we will exclusively discuss 
regulatory networks controlling transcription and chromatin state. We will 
consider methods that learn networks of factors that regulate chromatin state, 
chromatin structure, rate of transcription at target genes, transcription factor 
activity and RNA-degradation and processing rates. That is to say, that our 
models stop at translation (precisely where technologies beyond nucleotide 
sequencing are needed to make measurements). Networks of protein 
interactions and the regulation of translation and post-translational processes are 
clearly an exciting and an important area of research and also amenable to large-
scale computational methods for discovering and characterizing interactions. 
Modeling of metabolism and its interaction with gene-regulation is also omitted 
here. We feel this scope is justified as: 1) several of the discussions here can be 
in part applied to other informational levels given appropriate data and 2) 
transcriptional network inference together with progress in mapping regulatory 
chromatin will aid ongoing efforts to integrate models across these other 
informational levels. We also believe that no single approach is likely to be 
optimal given the distinctly different properties of different types of biological 
networks. Given this focus, we will discuss recent complimentary genomic 
technologies that are driving the next generation of integrated experimental 
designs and computational approaches to transcription and chromatin-state 
regulatory network inference.  

We will focus here on network inference methods such as Inferelator that 
result in models with units of time and concentration (or relative concentration). 
Transcription and its regulation are dynamic processes by their core nature and 
any approach to modeling gene regulation that does not take dynamics (or at 
least timing) into account is, in our opinion, leaving out key biology.  Uncertainty 
about the critical timing and rate of events here motivates the need for time 
series and dynamical experimental designs as uncertainty about the interactions 
motivates genetics and perturbation driven genomic approaches to discovering 
regulatory interactions.   
 
Defining network models and determining model complexity. 

In many fields of computational biology, the main factor separating 
schools of modeling/analysis is resolution. For example, in modeling protein 
structure, early computational work was separated into schools of thought 
partitioned along an axis that spanned atomic resolution molecular dynamics 
methods to statistical lower resolution methods[45]. As the availability of 
structure data, the power of computers, and the sophistication of methods 
progressed, lower resolution methods have been largely supplanted by high-
resolution (atomistic and even hybrid quantum mechanical) methods. Although 
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the problems of structure prediction and network inference are fundamentally 
different, we believe that there are some parallels to the evolution of 
methodologies in both fields and that resolution/detail of resulting models is a 
primary axis to consider. We believe that regulatory network models are 
demonstrably moving towards more detailed representations commensurate with 
the data availability and richness (and commensurate with better overall 
experimental designs).   
Undirected vs. directed.  A first level of approximation to consider in network 
inference is whether the resulting network will be undirected or directed.  
Directed graphs are desirable in regulatory biology, as we know the regulators 
involved in many case, we wish to use these graphs to predict outcomes of 
perturbed systems. Directed graphs imply causality even when methods that do 
not explicitly consider causality are employed, and thus there are several reason 
that inferring directed graphs is markedly more difficult than undirected graphs. 
Although several notable examples of the use and learning of undirected graphs 
exist this review is written with the overriding idea that directed network 
representations, although difficult to get right, are the eventual or immediate goal 
of regulatory network inference. The idea that directed graphs are needed is 
driven by the assumption that regulatory models should be used in forward 
engineering and genetic-interpretation applications (where directionality and 
ideally causation are desired model properties). 
Discrete- vs. continuous-valued.  There are several advantages to reducing 
the representation of gene-levels to discrete (1 and 0 in most cases) levels. 
Methods for determining steady-state behavior and fitting Boolean models to 
data can be quite efficient	 [30,	 46]. Current methods based on (dynamic) Boolean 
network models have been shown to powerful in modeling interactions and 
asynchronous dynamics across networks	 [47,	 48]. The largest advantage of 
methods based on these models is that the extreme representational efficiency 
allows for enumeration and evaluation of large (and in some cases exhaustive) 
sets of proper interaction terms (AND and OR interactions between TFs for 
example). Methods based on decision trees and forests of decision trees 
represent a model representation somewhat between Boolean and real-valued 
data representations (where there is a discrete set of values for each gene, but 
they are fit in the original data-space)	 [49]. A major potential disadvantage of 
these methods is that they require mapping data from continuous values (where 
real-valued variance is often biologically relevant) to discrete labels via a lossy 
transformation.  This review will focus on real-valued network inference methods 
where the real values representing genes are assumed to correspond to rates 
(for model parameters), concentrations (for targets) and concentrations or 
activities (for regulators, where activity is given in units of concentration or 
relative concentration).  
Dynamic models of regulation.  Many methods for regulatory network 
inference represent TF-target interactions as TF effect of target rates of 
transcription. Modeling transcription and transcriptional regulation as a 
convolution of many thousands of rates and influences on rates turns network 
inference into a large-scale parameter estimation task that at first glance seems 
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impossible to solve. Methods for model selection, influencing model selection 
with informative parameters, integration of multiple-data types and proper 
experimental design can (we argue throughout this paper) be combined to make 
this problem tractable. The most commonly used differential equation models are 
ordinary differential equation (ODE) and stochastic differential equation (SDE) 
models where TF effect on transcription rate is learned using a greedy search 
(one target gene at a time). Several challenges remain for learning dynamic 
models including: 1) treating the parameterization of these large networks as a 
proper global system by simultaneously fitting all parameters [50]2) modeling 
latent states like transcription factor activity [51]	 [52], 3) explicitly modeling 
activator, repressor[53], degradation and target expression with distinct 
biophysically correct distributions, and 4) determining correct methods for using 
these models to design optimal experiments.  
Interactions.  Learning introductory molecular biology often mixes the 
memorization of biology’s many moving parts with learning about the 
experiments and analysis needed to study cells. From this experience we get 
examples of many small network models that represent regulatory programs of 
combinatorial regulation involving TF-TF interactions and TF complexes. Even 
though we are taught about the key relevance of these multiple factor regulatory 
interactions we find that a few automatic methods for network inference include 
interactions (with a few notable/influential exceptions).  There are many 
mathematical approaches to modeling regulatory factors that must interact to be 
functional (or non-functional) including 1) use of linearly interpolated logic gates 
using min() and max() and 2) quadratic terms, and proper biophysical modeling 
of complex assembly integrated into network inference core models via 
approximate functions (S-systems, etc.). This is due to the fact that interaction 
terms dramatically increase the rate at which complexity of models grows with 
number of predictors. In many cases current data sets do not support the de 
novo learning of interactions and we posit below that interactions should be 
included and modeled using integration of multiple data types. Network inference 
is typically driven by data sets that give us windows in to system state and 
dynamics (like expression, proteomics and phosphoproteomics) but to include 
interactions and properly capture the biology we must integrate interaction-
centric data types (protein-protein interactions, genetic interactions, chromatin 
accessibility and cooperative TF binding).  

When deciding the resolution of our network model (and thus deciding 
between the large number of potential representations and associated methods) 
we must balance the biological/modeling demands to be placed on the model 
(how we hope to use the model) with the constraints on what we can learn 
imposed by technology, the scope of the study and the experimental design. 
Learning more detailed models can increase the need for more elaborate 
experimental designs at larger scale resulting in increased cost and work levels. 
In many cases biological systems are not amenable to repeated interrogations or 
genetic manipulation, which confounds the inference of more detailed and more 
comprehensive networks. Thus, part of the motivation to use simplified 
representation stems from the need to learn networks from small data sets and 
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from imperfect experimental designs.  We must not err on the side of over-
simplifying our models, as this will limit proper comparisons to data and the 
usefulness of the model revealing novel biology. Recent works show that network 
inference tasks are not inherently harder than undirected graph identification 
tasks. This notion is supported by the success of dynamical models in blind 
prediction settings [29]	 and in the context of inference of networks that were then 
experimental validated via large-scale functional follow-up experiments	[5]	[7].  

There are several ways in which increasing the detail and biophysical 
relevance of our model can improve or enable accurate learning when compared 
to less detailed models. More detailed representations of regulation can, 
however, have several advantages with respect to learning from limited data 
sets.  The most direct advantage is that more detailed representations may 
require fewer assumptions to compare model states to data (and thus fewer 
lossy data transformations with inbuilt assumptions are required). An example 
would be comparing a continuous dynamic model to a Boolean representation of 
transcript levels. In the case of the Boolean model the parameter space might be 
significantly smaller, but severe lossy assumptions are needed to transform the 
original observations into the binary space of the model.  Another advantage is 
that additional model complexity (especially with respect to dynamics) can allow 
for more direct integration of data from different studies and different 
measurement technologies.  

More detailed representations can also have several advantages when 
integrating network inference methods into the larger experimental & biological 
context of a large-scale study. For example, including modeling of dynamics and 
time might allow for additional flexibility in designing time series experiments 
(where other methods might perform best with regularly sampled time series), 
capturing important dynamics from irregularly sampled time series and might 
allow for prediction of data for time series and other experiments that have 
significant missing data (afforded by explicit modeling of time and transcriptional 
dynamics).  
 
 
Relevant genomics technological advancements and biological 
data. 

Before going any further, we focus on a minimal set of data types needed 
to genome-wide chromatin & transcriptional network inference. These data types 
fall into four broad categories: expression data, chromatin accessibility data, 
chromatin structure data and TF-DNA interaction data. Expression data can be 
used to derive core regulatory models while the former three data types provide 
information on TF-loci interactions that can be used to select correct network 
models and estimate TF-target activity relationships. 
 
Expression/state: 

Gene expression, a key staple data type for regulatory network inference, 
is also the state variable for the target genes in many of the models we describe 
herein. For transcriptional regulatory network inference these state variables are 
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measured primarily by microarray and RNA-seq, which aim to make 
comprehensive genome-wide measurements of different RNA molecule types.  
Other key technologies are emerging that promise to allow direct measurement 
of RNA-degradation [54], measurement of actively transcribing transcripts, 
integration of transcription and proteomic measurements [55] [56, 57]  and other 
more kinetically relevant views on transcription. As our focus here is on 
chromatin and transcription networks we leave out any discussion of the 
intriguing current work to connect transcription and translation [58] [59].  These 
technologies can be combined to form multi-view data sets, that optimally 
combine perturbation, genetics and time series experimental designs into an 
overarching design. Overarching experimental design considerations, in the 
context of network inference[60], are discussed more below.  
  
TF-binding and chromatin state:  

Key to tackling the scale of regulatory networks are means of identifying 
active TF-binding sites from putative binding sites in the genome and ways of 
reducing the set of all genes to the set of active (or differentially regulated) 
targets in any given cell or cell-state.  Key data for this model-space reduction 
are data sets that tell us where TFs bind the genome. Several such experiments 
(ChIP-seq, ChIP-chip [61, 62], ChIP-exo [63, 64], ChIA-PET [65] and others) 
exist and can be combined with expression data to derive detailed priors on the 
structure of the network. A key limitation is that these experiments target a single 
TF at a time and thus do not scale easily when hundreds to thousands of TFs 
might be involved in any given process of interest. Imperfect, but very highly 
scalable, alternatives can be found in methods that combine the TF-binding 
motifs [66-69] of TFs with chromatin state [70] (including histone modifications 
and chromosome accessibility, where accessibility = nucleosome free and 
possibly bound by regulatory factors). Motifs found for a given TF in an 
accessible region are much more likely (although far from guaranteed) to be 
active or functional.  The availability of >1000 motifs for mouse or for human, for 
example, allow us to extract from each accessibility experiment the network-
inference equivalent of 1000+ noisy ChIP-seq experiments [66-69] [71-73]. Key 
limitations include the fact that many homologous TFs share nearly identical 
binding sites, and like with ChIP-seq, a small fraction of binding sites are thought 
to be regulatory in the cell’s current state. Thus, to scale the estimation of 
structured informative prior we need new computational methods that can deal 
with this error and large-TF-family ambivalence.  
 
Chromatin structure:   

Another problem in regulatory network inference is the assignment of 
binding sites and regulatory genomic loci to their targets throughout the genome 
(actual sites of transcription). In many cases methods applied to large integrated 
data sets make the assumption that binding sites near genes are potentially 
involved in regulating proximal genes (throwing out all interactions that skip over 
genes and throwing out all long range interactions along the chromosome). This 
limiting assumption was, prior, needed to limit the number of putative interactions 
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and preserve the main intended use of data like ChIP-seq (that the data reduce 
the space of plausible models).  New data sources allow us to estimate 
chromosomal structure through both the explicit measurement of interactions and 
through the identification of chromosome neighborhoods along the genome [74-
76] [77, 78].  With the increase in the quality and prevalence of these data 
sources we will find that weaving these data types into integrated experimental 
designs will offer the ability to connect enhancers to distal regions accurately and 
without the model size explosion. 
 
Example experimental designs for networks inference. 

When approaching how to design experiments for (or curate inputs to) 
network inference we have to consider both the balance between the 
experimental types and the possibility that several large efforts may have 
produced relevant data sets already.  Experimental designs for network inference 
need to balance all of these data types, but how to construct optimal 
experimental designs [79, 80], given a network inference method and such 
diverse TF-binding, accessibility and chromosome-structure data types remains 
an open question [81, 82].  Biological constraints also strongly restrict 
experimental design in unexpected ways; for instance, we want to see what that 
gene knockout (KO) does to T-cells, but knocking out that gene is 
developmentally lethal.  Two recent experimental designs for network inference 
are presented below (both examples where binding/constraints are balanced with 
state/expression data). In both cases we do not imply that these designs are 
examples of optimality: both of these studies enabled network inference but were 
not designed solely for network inference.  There were several time and reagent 
cost constraints; and we have learned a lot about the computational tools in the 
last five years that would lead to improvements in these experimental designs. 
That said, these studies are the result of balancing network inference 
experimental design against practical and biological constraints with the aim of 
learning large-scale regulatory network models. 
  
An example experimental design for studying T-cell differentiation and function: 

In our recent work aimed at learning T-cell networks that coordinate and 
drive T helper 17 (Th17) differentiation and function we combined time series and 
KO RNA-seq data, and ChIP-seq data types to constrain a plausible regulatory 
network model [5] [83-86]. This resulted in identification of several novel TF-
target relationships important to the immune-phenotypes we were interested in. 
Approximately 1/4 of >2000 identified regulatory interactions were tested and 
validated by knocking out TFs or performing follow-up ChIP-seq on TFs found 
with the model. The core of this data set was a set of >150 RNA-seq experiments 
aimed at different T helper (Th) cells (e.g. Th0, Th1, Th2, and Th17) and T 
regulatory cells (Tregs) with the majority of the data collected for Th17 cells. This 
data was split nearly evenly between a time series following Th17 differentiation, 
KO of ~30 TFs, and several other key perturbations. Added to this were ChIP-
seq experiments performed for ~30 TFs (mostly in house).  Lastly large numbers 
of public data sets were used, including a large atlas of gene expression in other 
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immune cell types (the ImmGen data set, as well as several recent single-cell 
RNA-seq, knockout and orthogonal RNA-seq experiments could be integrated 
into this data set) [3, 87-90] [91, 92].  As we have developed new computational 
and genomic techniques, the Littman lab has now (post the 2012 work) added to 
this 35 ATAC-seq (an assay for transposase-accessible chromatin using 
sequencing) experiments for mapping active chromatin in different cell states, 
hundreds of additional expression experiments in a broad array of cell types and 
single-cell RNA-seq experiments (Dan Littman, unpublished). Thus, sufficient 
data exists for the estimation of hundreds of TFs and chromatin remodeling 
agents in hundreds of lymphoid cell types and states (using ChIP- and ATAC-seq 
to derive noisy priors on network structure and then using those priors to 
estimate TF activity, see below). The expression data, when combined with 
informative priors derived from binding and accessibility experiments, enables 
inference of detailed and dynamic regulatory networks.  A main missing element 
in the T-cell network data-corpus is information about chromosomal structure that 
can be used to bring distal enhancers into regulatory network models, but current 
efforts are rapidly closing this gap. 
  
An example experimental design for B. subtilis: 

Another example comes from the world of bacterial systems biology. Two 
studies aimed at large-scale regulatory network inference resulted in huge strides 
towards a global regulatory network model of the B. subtilis (thousands of newly 
discovered regulatory interactions) [7, 93, 94] [8] [95, 96].  In this organism 
~2,900 regulatory interactions were known prior to these studies, and so both 
attempts could rely on large numbers of ‘known’ interactions for tasks like 
generating informative priors and estimating TF activities.  The use of such a 
large number of ‘known’ edges to generate constraints on network structure and 
to estimate TF activities is in strong contrast to the above experimental design 
(where ChIP-seq and ATAC-seq were used to generate network priors and 
‘known’ interactions were kept as a mini-benchmark). Databases like RegulonDB 
[97]	 for E. coli and SubtiWiki [98] for B. subtilis containing experimentally verified 
interactions are extremely valuable resources for both developing and applying 
network inference methods in these and closely related organisms.  It is 
important to note and emphasize that some of the earliest and most successful 
studies aimed at global models of regulation and regulation’s interaction with 
other systems in the cell were carried out in bacteria and archaea	 [8]	 [6]	 [9]	 [96].  
The main body of this data set consist of two sets of microarray experiments (one 
on a tiling array, the other a custom Agilent array). In both cases the arrays were 
able to also detect long noncoding RNAs as well as mRNAs. One set of 
experiments focused on a set of perturbations followed by sampling of short time 
series, the other was a mix of genetic and metabolic perturbations (although both 
datasets were very diverse in the shear number of environmental and genetic 
perturbations explored). From combining these data sets (as well as analysis on 
subsets of the data) multiple computational groups were able to expand the 
global regulatory network, estimate activities for approximately half of the TFs 
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over all the conditions explored, and even learn dynamic regulatory network 
models. 

A key distinction between this work in B. subtilis and prior work in 
Halobacterium 	 [6] is that genetic perturbations in Halobacterium (an archaea 
model system) (as well as several current genomic technologies) were not 
available prior and the number of known interactions were quite small. Therefore, 
the use of genetics and informative priors was not possible in 2005, resulting in a 
distinctly different time series and environmental perturbation based approach 
aimed at accurately predicting trends in data (such as future time points in time 
series).  This contrast highlights nicely the degree to which biology ultimately 
(and correctly) dominates experimental design except in cases like human or 
model systems where vast human efforts have developed genetics and other 
systems needed to dissect these systems at will.  Similar contrasts exist when 
considering experimental designs aimed at learning and comparing human and 
mouse regulatory programs. Model systems are still (and might always be) key to 
progress in this and other fields of biology.   
 
 
Our four part recipe for network inference: 
 For the rest of this perspective we will present our four part recipe for 
breaking the problem of network inference into approachable sub-problems and 
working methods given the data we can reasonably expect to be able to collect 
and integrate with public data. The four sub-problems are: 1) using structural 
assumptions like sparsity that effect global network properties, 2) generating and 
using informative priors on network structure that effect single edges, 3) TF 
activity estimation, and 4) using guided/intelligent TF-TF interaction terms.  
 
Model selection in network inference using assumptions about 
sparsity, structure, rank etc. 
 Given the significant challenges we face when learning regulatory 
networks from biological data sets of limited size and constrained design we 
must develop computational methods that take full advantage of both biologically 
motivated assumptions and data integration in equal measure to solve the 
problem[99].  One of the key assumption is that biological networks are sparse 
[100]; that is, to say that most regulatory factors do not regulate most genes, thus 
the true regulatory network has many fewer interactions than the full set of 
possible interactions. This constrain has been built in one way (Lasso, various 
information criteria and marginal likelihood etc.) or another into nearly every 
method currently in use.  Key places to look for discussions of sparsity 
constraints in model selection in biology include: [101] [102] [103, 104] [105, 
106].  Given that this a mature area of discourse and part of nearly every method 
cited here we will not discuss or compare the myriad methods. 
 In spite of our best efforts to identify networks with simple topology priors, 
like sparsity, there are several aspects of biological networks that confound our 
efforts. One major problem is that several sets of genes are co-expressed [107]. 
Thus, a TF and a potential target gene may have significant correlation, mutual 
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information or other similarity metric, due only to the fact that they are co-
expressed (thus several false positives could result from misattributing co-
expression as direct regulation).  Two possible classes of approaches to this are 
pre-clustering (or pre-biclustering) [94, 108-116] and the use of time series and 
dynamics to differentiate co-regulation from true regulatory interactions (as co-
expressed should appear instantaneous and true regulatory interaction should 
incorporate a delay between TF activity and effect on target) [117].  These cases 
would include fan-out motifs where multiple of the downstream targets are in turn 
TFs.  
     Other motifs including feed-forward, feed-back and auto-regulatory loops also 
present considerable difficulties.  In recent double blind tests of network 
inference methods several such loops were identified as especially difficult to 
infer correctly across all methods tested [29, 118]. This is consistent with several 
previous works that show that even small signaling and regulatory networks can 
suffer from non-identifiability (e.g. where the true network generates data 
consistent with a large number of model structures).  A last consideration is that 
biological networks are in many cases robust to perturbations including deleting 
nodes and edges and modifying strength of edges. This biological robustness to 
perturbations implies that removing components of the true network will result in 
incorrect models that are equally consistent with the data when a few 
observational methods are used [119].  Although difficult to prove degrees, this 
line of thinking suggests that many learned regulatory network models are in fact 
overly sparse.  With all of this in mind, we can safely state that constraining 
network complexity, although an important component of most methods, is only 
part of the recipe to the network inference problem. 
 
Model selection with informative priors: using constraints to 
fight the non-identifiability problem 

Given the shortfalls of data sets, unavoidable biological constraints and 
the likely non-identifiability problem discussed above we must turn to orthogonal 
data sources and prior information to aid in selecting correct models from the 
large number of candidate models consistent with our data. Prior information 
about network structure can come from a huge variety of sources. First and 
foremost are ‘known’ interactions; in S. cerevisiae, E. coli and B. subtilis we could 
use thousands of previously characterized regulatory interactions to influence our 
network inference [120] [121, 122] [97, 123] [98, 124-126].  We also look to 
experiments like ChIP-seq and others described above to provide information 
about where factors bind in the genome. With these experiments we still have 
several primary analyses to perform before suitable network priors/constraints 
are derived. These primary analyses involve matching peaks to target genes 
hampered by lossy assumptions including ignoring or incorrectly mapping distal 
influences. More recent, computational methods combine chromatin accessibility 
experiments with regulatory factor DNA binding motifs to derive priors on 
connectivity for all TFs with known motifs simultaneously. Thus, the prevalence, 
accuracy and coverage of structure priors and methods for deriving informative 
priors on network structure is rapidly increasing.  
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Computational methods that aim to use data integration and known 
interactions to constrain network inference must face a high error/irrelevance rate 
(many binding sites are not functional or they are functional in other cell 
states/types) and must deal with heterogeneity in the evidence for individual 
edges (the high variability in ‘known’ edges). 

Recent work in our group used informative priors to modify both shrinkage 
based  methods (modified elastic net) and Bayesian linear regression with 
modified informative priors on network structure (Inferelator-BBSR) [7, 127] [128]; 
in both cases we were able to show that our methods improved our ability to infer 
correct network edges even when signal to noise ratio was as low as 1/10 (where 
signal to noise ratio = number of regulatory relevant edges divided by relevant 
edges + noise and non-functional). Several other groups have also recently 
made progress in using informative network priors both within computational 
biology and statistics[129] [130-132] [133]. It is clear that informative and 
structured network prior generation and use will remain a fruitful research topic in 
the future [129] [130-132] [133].   

Using new high-dimensional statistics methods to couple related inference 
tasks (such as inference for closely related species, closely related cell types, 
and similar cells interrogated with different technologies) also promises to 
provide new ways of identifying correct network models [134-136]. Several 
approaches have been proposed to coupled model identification and fitting that 
incorporate inter-model distance to the overall penalty (objective) function. These 
inter-model distances reward orthologous pairs of TF-target interactions that 
have similar parameters across models. A simple approach to this problem for 
multiple closely related species would be to select TF-target pairs believed to be 
conserved and add a penalty term that pushes coupled (conserved) model 
parameters toward similar evaluation (some function of the difference between 
the model parameter in mouse and human for example) [137, 138]. However, 
coupling inference tasks runs the risk of forcing interactions that are no longer 
conserved to manifest as false positives or false negative in either task. Newer 
versions of these methods need to be developed that allow for this constraint to 
be learned in ways that allow for orthology constraints and other linkages 
between inference tasks to be down-weighted when not supported by the 
data[139]. For instance, when TF-target pairs have been neo-functionalized or 
when regulatory interactions do not span the cellular conditions represented by 
distinct inference tasks [140] [141].  
 
Estimation of transcription factor activities: using data 
integration to turn every cell into a massively scaled reported 
assay 

Genomic technologies advance at a tremendous pace; a key 
misconception this innovation fosters is that a technology that can measure a 
desired cell property is right around the corner. This misconception limits the 
degree to which groups embrace proper integrative multi-data-type experimental 
designs and analysis frameworks.  A key example comes when we consider that 
transcription factor activity is perhaps one of the most important variables in the 
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cell (especially if we are interested in differentiation and adaptation). The activity 
of a TF (or any protein or functional RNA) is the concentration or active 
molecules (or relative concentration) [142]. For STAT3 in mouse this would be 
the concentration (presumably a fraction of the total protein between 0 and the 
total concentration of STAT3 protein) of STAT3 that is phosphorylated and in the 
nuclease [143]. For RORC in mouse this would be the concentration or this 
nuclear hormone receptor that has ligand bound and is located in the nucleus 
[143]. Many other transcription factors need to interact with other proteins to form 
active complexes (e.g. IRF4 and BATF in mouse) [5] [144]. It is important to 
remember that activity also depends on the state of the chromatin target loci 
[145, 146]. This activity (in these diverse cases) can be represented with the 
same diversity of representation that we use for TFs and target expression: from 
Boolean all the way to concentration proper with all sorts of normalized relative 
representations in between. Looking at a few examples we find that the activity of 
transcription factors cannot be simultaneously measured directly in a single 
uniform assay or set of assays for all transcription factors.   

The key to efficiently estimating transcription factor activities genome-wide 
is data integration [7] [147-159]. Consider how we would estimate TF activities if 
we had a perfect regulatory model: we would simply plug in the measured 
expression observations and solve for the TF activities.  Strikingly, this would 
allow us to utilize known regulatory interactions to turn each set of RNA-seq 
experiments into massively parallel reporter assays reporting on TF activities.  In 
practice, we are faced with estimating TF activities from noisy data with a very 
incomplete set of regulatory interactions.  There are several groups that have 
demonstrated progress in developing methods, that with real data, can derive 
activity estimates that match assays of activity for select TFs[7] [147-159]. 
Importantly, these estimated TF activities improve downstream analysis and 
ultimately improve the accuracy and coverage of regulatory network inference. 
Early methods utilized linear regression approaches to solve this problem. More 
recent methods range from detailed probabilistic methods that can take 
advantage of the dynamics captured in irregular time series data to the use of 
earlier methods embedded in more recent network inference and model selection 
methods.   We believe that explicit estimation of the activity of regulatory factors 
must be a central part of any future successful network inference method, but 
several open questions remain. Current approaches include methods that first 
estimate activities and then learn networks based on those activities. We believe 
that future methods need to integrate network and regulatory factor activity 
estimations.  Another key question to consider (at least in eukaryotes) is the 
receptiveness/accessibility of the target loci and the possible need to model this 
target-receptiveness when estimating TF activities.  
 
Need for interactions: cell type specificity of regulatory networks 
is overemphasized in current works 

A key question in systems biology is: to what degree do we need cell-type 
and cell-state specific network models. Here we posit that the level of 
representation used to model regulatory networks is a key to answering this 
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question, and that more detailed biophysical models can span larger numbers of 
cell types than less detailed representations.  An extreme example would be a 
‘perfect’ model of a mouse embryo or a bacterial cell. With this model in hand we 
could generate any cell type or state and then simulate its behavior, thus we 
would be in possession of a model that spanned all cell types. On the other end 
of the cell-specificity-need spectrum we find current practice, where labs collect 
large data sets with the aim of making network models relevant in small numbers 
of cell states (for example learning separate models for different finely divided 
types of T-cells). In practice, we find that many labs pursuing single celled 
organisms pursue global models while multi-cellular organisms are often 
dominated by efforts aimed at ever more distinct cell sub-types (presumably 
leading to equal level of complexity). Like all questions posed in this perspective, 
there is no one-size-fits-all solution, however we believe that increasing the detail 
and biophysical motivation behind models would decrease the need for different 
models for each cell type[160].   

Modeling interactions between regulators and chromatin state is perhaps 
the most important level of detail needed in current models (not found in most 
regulatory network models to date) because it is a prerequisite for formulating 
multi-cell state models[146, 161, 162]. There are a large number of challenges 
that have limited the degree to which true interaction terms appear in network 
inference models. This is due to both the need to specify the type of interaction 
(AND, OR, fuzzy logic like Łukasiewicz logic, etc.) as well as deal with the large 
explosion in the possible model complexity that allowing the number of predictors 
squared terms into a model. Typically, interaction terms have been included in 
models that have reduced model complexity, such as Boolean models and 
asynchronous Boolean models in which huge gains in representational and 
model-evaluation efficiency allow for searches over very large spaces of possible 
interactions. Early versions of the Inferelator included such interaction terms for 
environmental and TF-TF interaction terms (linearly interpolated AND gates) 
[163]. In addition to improving cell-type comparability, proper interaction terms 
should also increase the degree to which the network representation matches 
known key biological interactions that are essential to several of the best 
characterized regulatory networks.  
 
Frameworks for putting it all together: 

How do we build a method that encompasses structural constraints, 
informative priors, TF-TF interactions, and TF activity estimation? How do we put 
the pieces together? One might respond to either of these questions in a number 
of ways, but for simplicity here we will reduce this overall field-wide question to a 
simpler variant: what is the value in simultaneously estimating these qualities as 
part of a network inference procedure? We might break the calculation up into 
modules, whereby activity estimation, TF-TF interaction selection, and network 
inference are carried out in three separate modules [7],	 or we might construct a 
procedure that attempts to solve these estimation tasks simultaneously within a 
single unified model.  
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 In principle, gene transcription and its regulation could be modeled rather 
accurately with exact stochastic simulation of coupled chemical reactions [164, 
165]. Unfortunately, the practical usefulness of the this approach is severely 
impaired by many practical facts, e.g.: 1) it requires a detailed specification of the 
chemical reaction network model (the details are not known), 2) model inference 
requires single-cell data on many molecules (not feasible in practice), or 
otherwise the model is rendered by many latent variables, 3) many reaction 
parameters are unknown and difficult to measure, 4) inference of a large-scale 
model is computationally intractable and 5) model identifiability is questionable 
due to the flexibility of the detailed model rendering model selection difficult. For 
these reasons, ODEs and SDEs have been popular for modeling gene 
transcription on a population level and its regulation through transcription factors, 
and for inferring cell-type specific transcription factor networks in the data-driven 
manner[36, 166, 167]. Undoubtedly, the TF focused view of transcriptional 
regulation is a crude simplification of the biophysical phenomenon, but despite 
that, it has been empirically shown to be efficient and yet accurate 
approximation.  Additionally, the importance of TFs in regulating transcription is 
undisputed, and their mechanisms of action on transcription regulation are well 
understood [1, 168].  

Implicitly, many (among our) TF centric approaches are based on the 
assumption that TFs collectively modulate RNA polymerase II (RNAPII) 
recruitment and elongation (could be measured using ChIP) resulting in changes 
in rate of gene transcription [51, 169, 170]. Importantly, traditional mature mRNA 
sequencing (RNA-seq) results only in snapshots of total mature mRNA levels, 
that is, the rates of transcription are not directly measured (could be measured 
using GRO-seq/ chromatin associated RNA-seq). Hence, many existing 
statistical models consider rates of transcription as latent variables affecting total 
mature mRNA levels together with basal/degradation rates[171-173]. Finally, in a 
biophysically motivated model, the rate of transcription should be strictly non-
negative, and thus the loss of mature mRNA is explained solely by the 
degradation (accessible by inference and recent experimental techniques). 

Many current methodologies explicitly assume that the effect of a TF on 
transcription is a function of concentration of its active form and protein activities 
have to be considered as latent variables because (as discussed above) of the 
difficulties in measuring activity directly genome wide.  Initially, mRNA levels of 
TFs were assumed to work as proxies for TF activities; however, this assumption 
is inaccurate in general due to nonlinearities in post-transcriptional regulation and 
protein translation, phosphorylation, and translocation. Importantly, this limitation 
can be overcome to some extent since we have demonstrated that the 
preprocessing step where estimation of TF activities are computationally 
estimated by utilizing experimentally verified regulatory interactions improves the 
precision of overall network inference[174, 175]. 
 The challenge of gene transcription network inference stems significantly 
from the fact that the rates of transcription (measurable in principle) are 
convolutions of contributions of many TFs; for instance, transcription of a gene 
can be driven cooperatively by several promoting and suppressing TF-DNA 
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interactions at promoter and enhancer/insulator regions (even a single TF could 
affect through multiple TF-DNA interactions). Identification of the target gene of a 
distal regulatory region is difficult because distal intergenic regulatory regions can 
reside megabases away from the affected gene; although, it has been 
demonstrated, that the analysis of enhancer and promoter transcription patterns 
across numerous cell types and perturbations can be used to identify target gene 
and enhancer pairs [176]. Alternatively, one can obtain information on the 3D 
organization of chromosomes in the nucleus [77, 177]; arguably, active distal 
regulatory regions should be located close to the target genes. Genome-wide 
chromatin accessibility can be used to identify potential enhancer regions; 
chromatin accessibility can be measured using e.g. ATAC-seq [18]. ATAC-seq 
has been demonstrated to be a relatively cheap and fast method for identifying 
temporal and cell-type changes in chromatin accessibility[178, 179]. However, 
ATAC-seq even when combined with motif-based sequence analysis tools does 
not necessarily identify which TFs are bound[180]. 

Generative models are statistical models for generating observable data 
given relationships between variables and corresponding parameters. Because 
generative models define hierarchical relationships between variables, they can 
be advantageous in integrating different data types. As always, it is important to 
match the level of detail of the model with the data and modeling objectives. One 
could formulate a hierarchical generative model for inferring TF networks by 
integrating temporal 5C, ChIP-seq of many TFs, and RNA-seq data. To 
accomplish this, the variables in the model and their types should be defined 
carefully; for example, 3D organization of chromosomes could be modeled using 
a binary matrix representing interactions between chromatin domains, TF-DNA 
interactions could be modeled using binary variables representing interactions 
between TFs and genomic regions, target gene and enhancer pairs could be 
modeled using binary variables representing pairs of target genes and genomic 
regions with bound TF(s), and TF activities and gene expressions could be 
modeled using continuous variables. Next, the relationships between variables 
within and between hierarchical levels should be defined; arguably, target gene 
and enhancer pairs should be compatible with the 3D organization of 
chromosomes, that is, interacting target genes and enhancers should reside 
within a chromatin domain or in interacting chromatin domains. Additionally, 
possible changes in target gene and enhancer pairs should be supported by 
gene expression and TF-DNA interactions; that is, appearing and disappearing 
target gene and enhancer pairs should have an effect on the expression of the 
target gene. The effect of an enhancer on the target gene is a function of the 
activities of the bound TFs. TF activities can be estimated by conditioning the 
model on known regulatory interactions and gene expression data (depending on 
the model formulation and assumptions, even novel interactions could tell us 
something about TF activities); resulting TF activity estimates are prone to be 
noisy and thus it is important to incorporate and propagate their uncertainty 
throughout the analysis. Finally, the TF-centric approach together with TF activity 
estimation and target gene and enhancer pairs will help us to learn the 
directionality and sign of the interactions.    
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It is questionable whether the simultaneous modeling of 3D chromatin 
structure and TF-DNA interactions is worthwhile when the increased 
computational complexity is taken into account. For example, uncertainty in 
detected TF-DNA interactions is relatively small, and thus it will not have a great 
effect on the final estimates. One could analyze 5C, accessibility and ChIP-seq 
separately and in advance of the TF network inference, and then the obtained 
results could be used for specifying priors for the TF network inference. For 
instance, 3D chromatin structure can be seen as an informative prior connecting 
target-gene and enhancer pairs to be used in any methods that can currently 
incorporate priors on network structure.  

Probabilistic hierarchical generative models are naturally modular and 
deal properly with latent variables such as TF activities.  Resulting models are 
flexible and model components can be added and removed based on the 
available data and data types. In principle, it is possible to add a hierarchical 
level for different cell types, which would model variation between cell types and 
could be used to quantify how different the transcriptional regulatory networks of 
different cell types are. A proper statistical inference of the model propagates the 
uncertainty in the variables and data through the model resulting in estimates 
with corresponding uncertainty. Although challenges remain in scaling such 
complex models to larger network inference tasks, this is an area of active 
research and several optimization and modeling advances will likely make these 
detailed probabilistic models a good choice going forward.  
 
 
Coda 

Several challenges remain to determining optimal overall experimental 
designs and computational methods for learning large-scale regulatory networks. 
Determining methods for integrating the estimation of disparate model 
components is an open area of research, but early progress in stage-wise 
approaches (integrating TF activity estimation as a pre-processing step) provide 
encouragement that such research will bear fruit and lead to improved 
computational methods. Another key consideration is the integration of single cell 
and population level genomics data.  As single cell genomics becomes readily 
available our ability to estimate key network model components from these data 
will likely likely also increase, building on the network inference work carried out 
on populations of carefully sorted cell types and stages.  New methods that 
integrate current datasets with single cell data sets will need to be developed to 
deal with the fundamentally different error structure present in current single cell 
data-sets (particularly missing data manifesting as extreme zero inflation) and 
these methods will need to co-develop with these rapidly evolving technologies.  
Given all of these simultaneous genomic and computational developments it is 
reasonable to argue that we are entering a new phase in systems biology that 
will see a substantive leap in the accuracy and biophysical detail of large-scale 
regulatory network models.  
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