
Chapter 3
Face Subspace Learning

Wei Bian and Dacheng Tao

3.1 Introduction

The last few decades have witnessed a great success of subspace learning for face
recognition. From principal component analysis (PCA) [43] and Fisher’s linear dis-
criminant analysis [1], a dozen of dimension reduction algorithms have been devel-
oped to select effective subspaces for the representation and discrimination of face
images [17, 21, 45, 46, 51]. It has demonstrated that human faces, although usu-
ally represented by thousands of pixels encoded in high-dimensional arrays, they
are intrinsically embedded in a vary low dimensional subspace [37]. The using of
subspace for face representation helps to reduce “the curse of dimensionality” in
subsequent classification, and suppress variations of lighting conditions and facial
expressions. In this chapter, we first briefly review conventional dimension reduc-
tion algorithms and then present the trend of recent dimension reduction algorithms
for face recognition.

The earliest subspace method for face recognition is Eigenface [43], which uses
PCA [23] to select the most representative subspace for representing a set of face
images. It extracts the principal eigenspace associated with a set of training face
images. Mathematically, PCA maximizes the variance in the projected subspace for
a given dimensionality, decorrelates the training face images in the projected sub-
space, and maximizes the mutual information between appearance (training face
images) and identity (the corresponding labels) by assuming that face images are
Gaussian distributed. Thus, it has been successfully applied for face recognition. By
projecting face images onto the subspace spanned by Eigenface, classifiers can be
used in the subspace for recognition. One main limitation of Eigenface is that the
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class labels of face images cannot be explored in the process of learning the projec-
tion matrix for dimension reduction. Another representative subspace method for
face recognition is Fisherface [1]. In contrast to Eigenface, Fisherface finds class
specific linear subspace. The dimension reduction algorithm used in Fisherface is
Fisher’s linear discriminant analysis (FLDA), which simultaneously maximizes the
between-class scatter and minimizes the within-class scatter of the face data. FLDA
finds in the feature space a low dimensional subspace where the different classes
of samples remain well separated after projection to this subspace. If classes are
sampled from Gaussian distributions, all with identical covariance matrices, then
FLDA maximizes the mean value of the KL divergences between different classes.
In general, Fisherface outperforms Eigenface due to the utilized discriminative in-
formation.

Although FLDA shows promising performance on face recognition, it has the fol-
lowing major limitations. FLDA discards the discriminative information preserved
in covariance matrices of different classes. FLDA models each class by a single
Gaussian distribution, so it cannot find a proper projection for subsequent classifi-
cation when samples are sampled from complex distributions, for example, mixtures
of Gaussians. In face recognition, face images are generally captured with different
expressions or poses, under different lighting conditions and at different resolution,
so it is more proper to assume face images from one person are mixtures of Gaus-
sians. FLDA tends to merge classes which are close together in the original feature
space. Furthermore, when the size of the training set is smaller than the dimension
of the feature space, FLDA has the undersampled problem.

To solve the aforementioned problems in FLDA, a dozen of variants have been
developed in recent years. Especially, the well-known undersample problem of
FLDA has received intensive attention. Representative algorithms include the op-
timization criterion for generalized discriminant analysis [44], the unified subspace
selection framework [44] and the two stage approach via QR decomposition [52].
Another important issue is that FLDA meets the class separation problem [39].
That is because FLDA puts equal weights on all class pairs, although intuitively
close class pairs should contribute more to the recognition error [39]. To reduce this
problem, Lotlikar and Kothari [30] developed the fractional-step FLDA (FS-FLDA)
by introducing a weighting function. Loog et al. [28] developed another weighting
method for FLDA, namely the approximate pairwise accuracy criterion (aPAC). The
advantage of aPAC is that the projection matrix can be obtained by the eigenvalue
decomposition. Both methods use weighting schemes to select a subspace that bet-
ter separates close class pairs. Recently, the general mean [39] (including geometric
mean [39] and harmonic mean [3]) base subspace selection and the max-min dis-
tance analysis (MMDA) [5] have been proposed to adaptively choose the weights.

Manifold learning is a new technique for reducing the dimensionality in face
recognition and has received considerable attentions in recent years. That is because
face images lie in a low-dimensional manifold. A large number of algorithms have
been proposed to approximate the intrinsic manifold structure of a set of face im-
ages, such as locally linear embedding (LLE) [34], ISOMAP [40], Laplacian eigen-
maps (LE) [2], Hessian eigenmaps (HLLE) [11], Generative Topographic Mapping
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(GTM) [6] and local tangent space alignment (LTSA) [53]. LLE uses linear coef-
ficients, which reconstruct a given measurement by its neighbors, to represent the
local geometry, and then seeks a low-dimensional embedding, in which these co-
efficients are still suitable for reconstruction. ISOMAP preserves global geodesic
distances of all pairs of measurements. LE preserves proximity relationships by
manipulations on an undirected weighted graph, which indicates neighbor rela-
tions of pairwise measurements. LTSA exploits the local tangent information as
a representation of the local geometry and this local tangent information is then
aligned to provide a global coordinate. Hessian Eigenmaps (HLLE) obtains the fi-
nal low-dimensional representations by applying eigen-analysis to a matrix which
is built by estimating the Hessian over neighborhood. All these algorithms have
the out of sample problem and thus a dozen of linearizations have been proposed,
for example, locality preserving projections (LPP) [20] and discriminative locality
alignment (DLA) [55]. Recently, we provide a systematic framework, that is, patch
alignment [55], for understanding the common properties and intrinsic difference
in different algorithms including their linearizations. In particular, this framework
reveals that: i) algorithms are intrinsically different in the patch optimization stage;
and ii) all algorithms share an almost-identical whole alignment stage. Another uni-
fied view of popular manifold learning algorithms is the graph embedding frame-
work [48]. It is shown that manifold learning algorithms are more effective than
conventional dimension reduction algorithms, for example, PCA and FLDA, in ex-
ploiting local geometry information.

In contrast to conventional dimension reduction algorithms that obtain a low di-
mensional subspace with each basis being a linear combination of all the original
high dimensional features, sparse dimension reduction algorithms [9, 24, 59] se-
lect bases composed by only a small number of features of the high dimensional
space. The sparse subspace is more interpretable both psychologically and physio-
logically. One popular sparse dimension reduction algorithm is sparse PCA, which
generalizes the standard PCA by imposing sparsity constraint on the basis of the
low dimensional subspace. The Manifold elastic net (MEN) [56] proposed recently
is another sparse dimension reduction algorithm. It obtains a sparse projection ma-
trix by imposing the elastic net penalty (i.e., the combination of the lasso penalty
and the L2-norm penalty) over the loss (i.e., the criterion) of a discriminative man-
ifold learning, and formulates the problem as lasso which can be efficiently solved.
In sum, sparse learning has many advantages, because (1) sparsity can make the data
more succinct and simpler, so the calculation of the low dimensional representation
and the subsequent recognition becomes more efficient. Parsimony is especially im-
portant for large scale face recognition systems; (2) sparsity can control the weights
of original variables and decrease the variance brought by possible over-fitting with
the least increment of the bias. Therefore, the learn model can generalize better and
obtain high recognition rate for distorted face images; and (3) sparsity provides a
good interpretation of a model, thus reveals an explicit relationship between the ob-
jective of the model and the given variables. This is important for understanding
face recognition.

One fundamental assumption in face recognition, including dimension reduc-
tion, is that the training and test samples are independent and identically distributed
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(i.i.d.) [22, 31, 38]. It is, however, very possible that this assumption does not hold,
for example, the training and test face images are captured under different expres-
sions, postures or lighting conditions, letting alone test subjects do not even appear
in the training set [38]. Transfer learning has emerged as a new learning scheme to
deal with such problem. By properly utilizing the knowledge obtained from the aux-
iliary domain task (training samples), it is possible to boost the performance on the
target domain task (test samples). The idea of cross domain knowledge transfer was
also introduced to subspace learning [31, 38]. It has shown that by using transfer
subspace learning, the recognition performance on the cases where the face images
in training and test sets are not identically distributed can be significantly improved
compared with comparison against conventional subspace learning algorithms.

The rest of this chapter presents three groups of dimension reduction algorithms
for face recognition. Specifically, Sect. 3.2 presents the general mean criterion and
the max-min distance analysis (MMDA). Section 3.3 is dedicated to manifold learn-
ing algorithms, including the discriminative locality alignment (DLA) and mani-
fold elastic net (MEN). The transfer subspace learning framework is presented in
Sect. 3.4. In all of these sections, we first present principles of algorithms and then
show thorough empirical studies.

3.2 Subspace Learning—A Global Perspective

Fisher’s linear discriminant analysis (FLDA) is one of the most well-known meth-
ods for linear subspace selection, and has shown great value in subspace based
face recognition. Being developed by Fisher [14] for binary-class classification and
then generalized by Rao [33] for multiple-class tasks, FLDA utilizes the ratio of
the between-class to within-class scatter as a definition of discrimination. It can be
verified that under the homoscedastic Gaussian assumption, FLDA is Bayes opti-
mal [18] in selecting a c − 1 dimensional subspace, wherein c is the class number.
Suppose there are c classes, represented by homoscedastic Gaussians N(μi,Σ | ωi)

with the prior probability pi , 1 ≤ i ≤ c, where μi is the mean of class ωi and Σ is
the common covariance. The Fisher’s criterion is given by [15]

max
W

tr
((

WTΣW
)−1

WTSbW
)

(3.1)

where

Sb =
c∑

i=1

pi(μi − μ)(μi − μ)T, with μ =
c∑

i=1

piμi. (3.2)

It has been pointed out that the Fisher’s criterion implies the maximization of the
arithmetic mean of the pairwise distances between classes in the subspace. To see
this, let us first define the distance between classes ωi and ωj in the subspace W as

Δ(ωi,ωi | W) = tr
((

WTΣW
)−1

WTDijW
)
, with Dij = (μi − μj )(μi − μj )

T.

(3.3)
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Fig. 3.1 An illustrative example on the class separation problem of FLDA. a 2-dimensional scatter
plot of three classes, b plots of pairwise separabilities and the arithmetic mean (FLDA) separability
verse projection directions, from −180 degree to 180 degree with respect to horizontal direction
in (a), and c shows the histogram of three classes projected onto the FLDA direction, which is
around 66 degree

Then, simple algebra shows that (3.1) is equivalent to the arithmetic mean criterion
below

max
W

A(W) =
∑

1≤i<j≤c

pipjΔ(ωi,ωj | W). (3.4)

We call it arithmetic mean based subspace selection (AMSS). Since the arithmetic
mean of all pairwise distance is used as the criterion, one apparent disadvantage
of (3.4) is that it ignores the major contributions of close class pairs to classification
error and may cause the merge of those class pairs in the selected subspace. Such
phenomenon of FLDA or AMSS is called the class separation problem [39].

Figure 3.1 illustrates the class separation problem of FLDA [5]. In the toy ex-
ample, three class are represented by homoscedastic Gaussian distributions on the
two dimensional space. And we want to find a one dimensional subspace (or pro-
jection direction) such that the three classes can be well separated. Varying the one
dimensional subspace, that is, changing the angle of projection direction with re-
spect to the horizontal direction, the three pairwise distances change. FLDA finds
the subspace that maximizes the average of the three pairwise distances. However,
as illustrated, the obtained one dimensional subspace by FLDA severely merges the
blue and green classes.

3.2.1 General Mean Criteria

To improve the separation between close class pairs, the general mean criteria has
been proposed by Tao et al., of which two examples are the geometric mean based
subspace selection (GMSS) [39] and the harmonic mean based subspace selection
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(HMSS) [3]

max
W

G(W) =
∏

1≤i<j≤c

Δ(ωi,ωj | W)(pipj ) (GMSS) (3.5)

and

max
W

H(W) =
[ ∑

1≤i<j≤c

pipj

Δ(ωi,ωj | W)

]−1

(HMSS). (3.6)

We give an mathematical analysis to interpret how criteria (3.5) and (3.6) work in
dealing with the class separation problem, and why criterion (3.6) is even better than
criterion (3.5). Consider a general criterion below

max
W

J(W) = f
(
Δ(ω1,ω2 | W),Δ(ω1,ω3 | W), . . . ,Δ(ωc−1,ωc | W)

)
. (3.7)

In order to reduce the class separation problem, the objective J (W) must has the
ability to balance all the pairwise distances. We claim that this ability relies on the
partial derivative of J (W) with respect to the pairwise distances. Apparently, an in-
crement of any Δ(ωi,ωj |W) will enlarge J (W), and for this an small one should
have bigger inference, because from the classification point of view when the dis-
tance between two classes is small then any increment of the distance will signif-
icantly improve the classification accuracy, but when the distance is large enough
then the improvement of accuracy will be ignorable (it is well known that for Gaus-
sian distribution the probability out the range of ±3σ is less than 0.01%). Besides,
the partial derivatives must vary as the varying of the pairwise distances so as to
take account of the current values of the pairwise distances in the procedure of sub-
space selection, but not only the initial distances in the original high dimensional
space. According to the discussion above, the partial derivatives must be monotone
decreasing functions of Δ(ωi,ωj | W). In the cases of criteria (3.4) and (3.5), we set
J (W) = logG(W) and J (W) = −H−1(W), and then the derivatives are calculated
as below

∂ logG(W)

∂Δ(ωi,ωj | W)
= qiqj

(Δ(ωi,ωj | W))−1
(3.8)

and

∂ − H−1(W)

∂Δ(ωi,ωj | W)
= qiqj

(Δ(ωi,ωj |W))−2
. (3.9)

We can see that in both cases the partial derivative monotonically decreases with
respect to the pairwise distance and thus provides the ability to reduce the class sep-
aration problem. However, note that the order of decreasing for HMSS is higher than
that for GMSS (−2 vs −1), which implies that HMSS is more powerful than GMSS
in reducing the class separation problem. Besides, as Δ(ωi,ωj | W) increases, we
have

log
(
Δ(ωi,ωj | W)

) → ∞ (3.10)
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Fig. 3.2 GMSS, HMSS and MMDA for the same three-class problem in Fig. 3.1: first column,
GMSS; second column, HMSS; third column, MMDA. Top row shows plots of pairwise separations
and the separations by different criteria, i.e., GMSS, HMSS and MMDA. Bottom row shows the
histograms of the three classes projected onto the GMSS, HMSS and MMDA directions, which
are around 93 degree, 104 degree and 115 degree, respectively

but

−Δ(ωi,ωj | W)−1 → 0. (3.11)

The logarithm value (3.10) is unbounded, and thus in GMSS a large pairwise dis-
tance still possibly affects small ones. In contrast, the bounded result (3.11) makes
HMSS is more favorable. To solve the maximization problems of (3.5) and (3.6),
[39] provides a gradient descent algorithm with a projection onto the orthogonal
constraint set. Further, [3] suggests exploiting the structure of orthogonal constraint
and optimizing the subspace on the Grassmann manifold [12]. For details of these
optimization algorithms, please refer to [39] and [3]. The corresponding results of
GMMS and HMSS on the illustrative example in Fig. 3.1 are shown in Fig. 3.2. One
can see that the merged class pair in the FLDA subspace is better separated by using
the more sophisticated methods.

3.2.2 Max–Min Distance Analysis

Previous discussions show that GMSS and HMSS are able to reduce the class sepa-
ration problem of FLDA. Such merits come from the inherence of geometric or har-
monic means in adaptively emphasizing small pairwise distance between classes.
A further question is: can we select a subspace that mostly considers small pair-
wise distance? Namely, we may intend to find an optimal subspace which gives the
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maximized minimum pairwise distance. Generally, such aim cannot be achieved by
GMSS or HMSS, neither other subspace selection methods. To this end, [5] pro-
posed the max-min distance analysis (MMDA) criterion,

max
W

min
1≤i<j≤c

Δ(ωi,ωj | W) (3.12)

where the inner minimization chooses the minimum pairwise distance of all class
pairs in the selected subspace, and the outer maximization maximizes this minimum
distance. Let the optimal value and solution of (3.12) be Δopt and Wopt, and then we
have

Δ(ωi,ωj | Wopt) ≥ Δopt, for all i �= j, (3.13)

which ensures the separation (as best as possible) of any class pairs in the selected
low dimensional subspace. Furthermore, by taking the prior probability of each class
into account, the MMDA criterion is given by

max
W

min
1≤i<j≤c

{
(pipj )

−1Δ(ωi,ωi | W)
}
. (3.14)

Note that, the use of (pipj )
−1 as weighting factor is an intuitive choice. In order

to obtain a relatively high accuracy, it has to put more weight on classes with high
prior probabilities; however, because the minimization in the max-min operation
has a negative effect, we need to put a smaller factor, for example, the inverse factor
(pipj )

−1, on the pairwise distance between high-prior probability classes so that it
has a greater chance to be maximized.

The solving of MMDA criteria (3.12) and (3.14) can be difficult. The inner min-
imizations there are over discrete variables i and j, and thus it makes the objective
function for the outer maximization nonsmooth. To deal with this nonsmooth max-
min problem [5] introduced the convex relaxation technique. Specifically, the au-
thors proposed a sequential semidefinite programming (SDP) relaxation algorithm,
with which an approximate solution of (3.12) or (3.14) can be obtained in poly-
nomial time. Refer to [5] for details of the algorithm. The MMDA result on the
illustrative example in Fig. 3.1 is shown in Fig. 3.2, from which one can see that
MMDA gives the best separation between blue and green classes among the four
criteria.

3.2.3 Empirical Evaluation

The evaluation of general mean criteria, including GMSS and HMSS, and the
MMDA are conducted on two benchmark face image datasets, UMIST [1] and
FERET [32]. The UMIST database consists of 564 face images from 20 individ-
uals. The individuals are a mix of race, sex and appearance and are photographed
in a range of poses from profile to frontal views. The FERET database contains
13 539 face images from 1565 subjects, with varying pose, facial expression and
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Fig. 3.3 Face recognition by subspace selection and nearest neighbor classification in the selected
low dimensional subspace

age. 50 subjects with 7 images for each are used in the evaluation. Images from
both databases are cropped with reference to the eyes, and normalized to 40 by
40 pixel arrays with 256 gray levels per pixel. On UMIST, 7 images for each subject
are used for training and the rest images are used for test, while on FERET, a 6 to
1 split is used for training/test setup. The average recognition performances over
ten random trials are shown in Fig. 3.3. One can see that, on FERET, the general
mean criterion (GMSS and HMSS) and MMDA show significant improvements on
recognition rate compared with FLDA, while on UMIST, though GMSS gives slight
inferior performance to FLDA, HMSS and MMDA still improve the performance
in certain extent.

3.2.4 Related Works

In addition to the general mean criteria and max-min distance analysis, there are also
some methods proposed in recent years to deal with the class separation problem
of FLDA. Among these methods, approximate pairwise accuracy criterion (aPAC)
[28] and fractional step LDA (FS-LDA) [30] are the most representative ones, and
both of them use weighting schemes to emphasize close class pairs during sub-
space selection. Besides, the Bayes optimality of FLDA is further studied when
the dimensionality of subspace is less than class number minus 1. In particular,
it is shown that the one dimensional Bayes optimal subspace can be obtained by
convex optimization given the information of the order of class centers projected
onto the subspace [18]. Such result generalizes the early result of Bayes optimal
one dimensional Bayes optimal subspace on a special case of three Gaussian dis-
tributions [36]. Further, the authors of [18] suggested selecting a general subspace
by greedy one dimensional subspace selection and orthogonal projection. The ho-
moscedastic Gaussian assumption is another limitation of FLDA. Various methods
have been developed to extend FLDA to heteroscedastic Gaussian cases, e.g., the us-
ing of information theoretic divergences such as Kullback–Leibler divergence [10,
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39], and Chernoff [29] or Bhattacharyya distance [35] to measures the discrimi-
nation among heteroscedastic Gaussian distributions. Besides, nonparametric and
semiparametric method provide alternative ways for extensions of FLDA, by which
classic work includes Fukunaga’s nonparametric discriminant analysis (NDA) [16],
its latest extension to multiclass case [27] and subclass discriminant analysis [57].
In addition, recent studies show that FLDA can be converted to a least square prob-
lem via a proper coding of class labels [49, 50]. The advantages of such least square
formulation are that the computational speed can be significantly improved and also
regularizations on the subspace are more readily imposed.

3.3 Subspace Learning—A Local Perspective

It has shown that the global linearity of PCA and FLDA prohibit their effectiveness
for non-Gaussian distributed data, such as face images. By considering the local
geometry information, a dozen of manifold learning algorithms have been devel-
oped, such as locally linear embedding (LLE) [34], ISOMAP [40], Laplacian eigen-
maps (LE) [2], Hessian eigenmaps (HLLE) [11], and local tangent space alignment
(LTSA) [53]. All of these algorithms have been developed intuitively and pragmat-
ically, that is, on the base of the experience and knowledge of experts for their
own purposes. Therefore, it will be more informative to provide some a systematic
framework for understanding the common properties and intrinsic differences in the
algorithms. In this section, we introduce such a framework, that is, “patch align-
ment”, which consists of two stages: part optimization and whole alignment. The
framework reveals (i) that algorithms are intrinsically different in the patch opti-
mization stage and (ii) that all algorithms share an almost identical whole alignment
stage.

3.3.1 Patch Alignment Framework

The patch alignment framework [55] is composed of two ingredients, first, part op-
timization and then whole alignment. For part optimization, different algorithms
have different optimization criteria over patches, each of which is built by one mea-
surement associated with its related ones. For whole alignment, all part optimiza-
tions are integrated into together to form the final global coordinate for all indepen-
dent patches based on the alignment trick. Figure 3.4 illustrates the patch alignment
framework.

Given an instance xi and its k nearest neighbors [x(1)
i , x

(2)
i , . . . , x

(k)
i ], the part

optimization at xi is defined by

arg min
Yi

tr
(
YiLiY

T
i

)
(3.15)
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Fig. 3.4 Patch alignment framework

where Yi = [yi, y
(1)
i , y

(2)
i , . . . , y

(k)
i ] is projection of the local patch Xi = [xi, x

(1)
i ,

x
(2)
i , . . . , x

(k)
i ] onto the low dimensional subspace, and Li encodes the local geome-

try information at instance xi and is chosen algorithm-specifically. By summarizing
part optimizations over all instances, we get

arg min
Y1,Y2,...,Yn

n∑

i=1

tr
(
YiLiY

T
i

)
. (3.16)

Let Y = [y1, y2, . . . , yn] be the projection of all instances X = [x1, x2, . . . , xn]. As
for each local patch Yi should be a subset of the whole alignment Y , the relationship
between them can be expressed by

Yi = YSi (3.17)

where Si is a proper 0-1 matrix called the selection matrix. Thus,

arg min
Y

N∑

i=1

tr
(
YiLiY

T
i

)

= arg min
Y

N∑

i=1

tr
(
YSiLiS

T
i Y T)

= arg min
Y

tr
(
YLY T)

(3.18)

with

L =
(

N∑

i=1

SiLiS
T
i

)

(3.19)
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Table 3.1 Manifold learning algorithms filled in the patch alignment framework

Algorithm Patch Xi Representation of part
optimization Li

Objective function

LLE Given instance and
its neighbors

[
1 −cT

i

−ci cic
T
i

]
Nonlinear

NPE Linear

ONPP Orthogonal linear

ISOMAP Given instance and
the rest ones

(1/N) · τ(Di
G) Nonlinear

LE Given instance and its
connected ones in the
undirected graph

[∑l
j=1(wi)j −wT

i

−wi diag(wi)

]
Nonlinear

LPP Linear

LTSA Given instance and
its neighbors

Rk+1 − ViV
T
i , where Vi denotes

d largest right singular vectors of
XiRk+1

Nonlinear

LLTSA Linear

Given instance and
its neighbors

HiH
T
i Nonlinear

called the alignment matrix. Further by letting Y = UTX, that is, a linear projection,
(3.18) is rewritten as

arg min
U

tr
(
UTXLXTU

)
. (3.20)

Further, we can impose the orthogonal constraint UTU = I on the projection matrix
U , or the constraint Y TY = I on the Y , which leads to UTXXTU = I . In both cases,
(3.20) is solved by eigen- or generalized eigen-decomposition.

Among all the manifold learning algorithms, the most representatives are locally
linear embedding (LLE) [34], ISOMAP [40], Laplacian eigenmaps (LE) [2]. LLE
uses linear coefficients to represent local geometry information, and find a low-
dimensional embedding such that these coefficients are still suitable for reconstruc-
tion. ISOMAP preserves geodesic distances between all instance pairs. And LE pre-
serves proximity relationships by manipulations on an undirected weighted graph,
which indicates neighbor relations of pairwise instances. It has been shown that all
these algorithms can be filled into the patch alignment framework, where the differ-
ence among algorithms lies in the part optimization stage while the whole alignment
stage is almost the same. There are also other manifold learning algorithms, for ex-
ample, Hessian eigenmaps (HLLE) [11], Generative Topographic Mapping (GTM)
[6] and local tangent space alignment (LTSA) [53]. We can use the patch alignment
framework to explain them in a unified way. Table 3.1 summarizes these algorithms
in the patch alignment framework.
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Fig. 3.5 The motivation of
DLA. The measurements
with the same shape and color
come from the same class

3.3.2 Discriminative Locality Alignment

One representative subspace selection method based on the patch alignment frame-
work is the discriminative locality alignment (DLA) [54]. In DLA, the discrimina-
tive information, encoded in labels of samples, is imposed on the part optimization
stage and then the whole alignment stage constructs the global coordinate in the
projected low-dimensional subspace.

Given instance xi and its k nearest neighbors [x(1)
i , x

(2)
i , . . . , x

(k)
i ], we divide the

k neighbors into two groups according to the label information, that is, belonging to
the same class with xi or not. Without losing generality, we can assume the first k1

neighbors [x(1)
i , x

(2)
i , . . . , x

(k1)
i ] having the same class label with xi and the rest k −

k1 neighbors [x(k1+1)
i , x

(k1+2)
i , . . . , x

(k)
i ] having different class labels (otherwise, we

just have to resort the indexes properly). And their low dimensional representations
are yi , [y(1)

i , y
(2)
i , . . . , y

(k1)
i ] and [y(k1+1)

i , y
(k1+2)
i , . . . , y

(k)
i ], respectively. The key

idea of DLA is enforcing yi close to [y(1)
i , y

(2)
i , . . . , y

(k1)
i ] while pushing it apart

from [y(k1+1)
i , y

(k1+2)
i , . . . , y

(k)
i ]. Figure 3.5 illustrates such motivation.

For instance, xi and its same class neighbors, we expect the summation of
squared distance in the low dimensional subspace to be as small as possible, that
is,

arg min
yi

k1∑

p=1

∥
∥yi − y

(p)
i

∥
∥2 (3.21)

However, for xi and its different class neighbors, we want the corresponding result
to be large, that is,

arg max
yi

k∑

p=k1+1

∥∥yi − y
(p)
i

∥∥2 (3.22)

A convenient tradeoff between (3.21) and (3.22) is

arg min
Yi

(
k1∑

p=1

∥∥yi − y
(p)
i

∥∥2 − γ

k∑

p=k1+1

∥∥yi − y
(p)
i

∥∥2

)

(3.23)
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where γ is a scaling factor between 0 and 1 to balance the importance between
measures of the within-class distance and the between-class distance. Let

ωi =
[ k1︷ ︸︸ ︷
1, . . . ,1,

k−k1︷ ︸︸ ︷−γ, . . . ,−γ
]T

, (3.24)

then (3.23) is readily rewritten as

arg min
Yi

tr
(
YiLiY

T
i

)
, (3.25)

where

Li =
[∑k

j=1 ωi −ωT
i

−ωi diag(ωi)

]

. (3.26)

To obtain the projection mapping y = UTx, we just substitute (3.26) into the whole
alignment formula (3.18), and solve the eigen-decomposition problem with con-
straint UTU = I . It is worth emphasizing some merits of DLA here: (1) it exploits
local geometry information of data distribution; (2) it is ready to deal with the case
of nonlinear boundaries for class separation; (3) it avoids the matrix singularity
problem.

Now we evaluate the performance of the proposed DLA in comparison with
six representative algorithms, that is, PCA [23], Generative Topographic Mapping
(GTM) [6], Probabilistic Kernel Principal Components Analysis (PKPCA) [42],
LDA [14], SLPP [7] and MFA [48], on Yale face image dataset [1]. For training, we
randomly selected different numbers (3, 5, 7, 9) of images per individual, used 1/2
of the rest images for validation, and 1/2 of the rest images for testing. Such trial
was independently performed ten times, and then the average recognition results
were calculated. Figure 3.6 shows the average recognition rates versus subspace di-
mensions on the validation sets, which help to select the best subspace dimension.
It can be seen that DLA outperforms the other algorithms.

3.3.3 Manifold Elastic Net

Manifold elastic net (MEN) [56] is a subspace learning method built upon the patch
alignment framework. However, the key feature of MEN is that it is able to achieve
sparse basis (projection matrix) by imposing the popular elastic net penalty (i.e., the
combination of the lasso penalty and the L2 norm penalty). As sparse basis are more
interpretable both psychologically and physiologically, MEN is expected to give
more meaningful results on face recognition, which will be shown in experiments
later.

First, MEN uses the same part optimization and whole alignment as in DLA, that
is, the following minimization is considered

arg min
Y

tr
(
YLY T)

. (3.27)
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Fig. 3.6 Recognition rate vs. subspace dimension on Yale dataset. a 3 images per subject for
training; b 5 images per subject for training; c 7 images per subject for training; d 9 images per
subject for training

However, rather than substituting Y = UTX directly, (3.27) is reformed equivalently
as below

arg min
Y,U

tr
(
YLY T) + β

∥∥Y − UTX
∥∥2

. (3.28)

Note that (3.28) indeed will lead to Y = UTX. Given the equivalence between
the two formulations, the latter is more convenient to incorporate the minimization
of classification error. Specifically, letting stores the response or prediction result,
which are proper encodings of the class label information, we expect UTX to be
close to T , that is,

arg min
U

∥∥T − UTX
∥∥2

. (3.29)

By combing (3.28) and (3.29), we get the main objective of MEN

arg min
Y,U

∥∥T − UTX
∥∥2 + α tr

(
Y TLY

) + β
∥∥Y − UTX

∥∥2 (3.30)

where α and β are trade-off parameters to control the impacts of different terms.
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To obtain a sparse projection matrix U , an ideal approach is to restrict the number
of nonzero entries in it, that is, using the L0 norm as a penalty over (3.30). However,
the L0 norm penalized (3.30) is an NP-hard problem and thus intractable practically.
One attractive way of approximating the L0 norm is the L1 norm, i.e., the Lasso
penalty [41], which is convex and actually the closet convex relaxation of the L0
norm. Various efficient algorithms exist for solving Lasso penalized least square
regression problem, including the LARS [13]. However, the lasso penalty has the
following two disadvantages: (1) the number of variables to be selected is limited
by the number of observations and (2) the lasso penalized model can only selects
one variable from a group of correlated ones and does not care which one should
be selected. These limitations of Lasso are well addressed by the so-called elastic
net penalty, which combines the L2 and L1 norm together. MEN adopts the elastic
net penalty [58]. In detail, the L2 of the projection matrix is helpful to increase the
dimension (and the rank) of the combination of the data matrix and the response.
In addition, the combination of the L1 and L2 of the projection matrix is convex
with respect to the projection matrix and thus the obtained projection matrix has the
grouping effect property. The final form of MEN is given by

arg min
Y,U

∥∥T − UTX
∥∥2 + α tr

(
Y TLY

) + β
∥∥Y − UTX

∥∥2

+ λ1‖U‖1 + λ2‖U‖2. (3.31)

We report an empirical evaluation of MEN on the FERET dataset. From in total
13 539 face images of 1565 individuals, 100 individuals with 7 images per subject
are randomly selected in the experiment. 4 or 5 images per individual are selected
as training set, and the remaining is used for test. All experiments are repeated
five times, and the average recognition rates are calculated. Six representative di-
mension reduction algorithms, that is, principal component analysis (PCA) [23],
Fisher’s linear discriminant analysis (FLDA) [14], discriminative locality align-
ment (DLA) [54], supervised locality preserving projection (SLPP) [7], neighbor-
hood preserving embedding (NPE) [19], and sparse principal component analysis
(SPCA) [9], are also performed for performance comparison.

The performance of recognition is summarized in Fig. 3.7. Apparently, the seven
algorithms are divided into 3 groups according to their performance. The baseline
level methods are PCA and SPCA, which is because they are both unsupervised
methods and thus may not give satisfying performance due to the missing of la-
bel information. LPP, NPE and LDA only show moderate performance. In contrast,
DLA and MEN give rise to significant improvements. Further, the sparsity of MEN
makes it outperform DLA. The best performance of MEN is actually not surprising,
since it considers the most aspects on data representation and distribution, including
the sparse property, the local geometry information and classification error mini-
mization.

Figure 3.8 shows the first ten bases selected by different subspace selection meth-
ods. One can see that the bases selected by LPP, NPE and FLDA are contaminated
by considerable noises, which explains why they only give moderate recognition
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Fig. 3.7 Performance evaluation on the FERET dataset

Fig. 3.8 Plots of first 10 bases obtained from 7 dimensionality reduction algorithms on FERET
for each column, from top to bottom: MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA

performance. The bases from PCA, that is, Eigenfaces, are smooth but present rela-
tively few discriminative information. In terms of sparsity, SPCA gives the desired
bases; however, the problem is that the patterns presented in these bases are not
grouped so that cannot provide meaningful interpretation. The bases from MEN,
which we call “MEN’s faces”, have a low level of noise and are also reasonably
sparse. And more importantly, thanks to the elastic net penalty, the sparse patterns
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Fig. 3.9 Entries of one column of projection matrix vs. its L1 norm in one LARS loop of MEN

of MEN’s bases are satisfying grouped, which gives meaningful interpretations, for
example, most discriminative facial features are obtained, including eyebrows, eyes,
nose, mouth, ears and facial contours.

The optimization algorithm of MEN is built upon LARS. In each LARS loop of
the MEN algorithm, all entries of one column in the projection matrix are zeros ini-
tially. They are sequentially added into the active set according to their importance.
The values of active ones are increased with equal altering correlation. In this pro-
cess, the L1 norm of the column vector is augmented gradually. Figure 3.9 shows
the altering tracks of some entries of the column vector in one LARS loop. These
tracks are called “coefficient paths” in LARS. As shown by these plots, one can
observe that every coefficient path starts from zero when the corresponding vari-
able becomes active, and then changes its direction when another variable is added
into the active set. All the paths keep in the directions which make the correlations
of their corresponding variables equally altering. The L1 norm is increasing along
the greedy augment of entries. The coefficient paths proceed along the gradient de-
cent direction of objective function on the subspace, which is spanned by the active
variables.

In addition, Fig. 3.10 shows 10 of the 1600 coefficient paths from LAPS loop. It
can be seen that MEN selects ten important features sequentially. For each feature,
its corresponding coefficient path and the “MEN face” when the feature is added
into active set are assigned the same color which is different with the other 9 fea-
tures. In each “MEN face”, the new added active feature is marked by a small circle,
and all the active features are marked by white crosses. The features selected by
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Fig. 3.10 Coefficient paths of 10 features in one column vector

MEN can produce explicit interpretation of the relationship between facial features
and face recognition: feature 1 is the left ear, feature 2 is the top of nose, feature
3 is on the head contour, feature 4 is the mouth, feature 5 and feature 6 are on the
left eye, feature 7 is the right ear, and feature 8 is the left corner of mouth. These
features are already verified of great importance in face recognition by many other
famous face recognition methods. Moreover, Fig. 3.10 also shows MEN can group
correlated features, for example, feature 5 and feature 6 are selected sequentially
because they are both on the left eye. In addition, features which are not very im-
portant, such as feature 9 and feature 10 in Fig. 3.10, are selected after the selection
of the other more significant features and assigned smaller value than those more
important ones. Therefore, MEN is a powerful algorithm in feature selection.

3.3.4 Related Works

Applying the idea of manifold learning, that is, exploring local geometry infor-
mation of data distribution, into semisupervised or transductive subspace selection
leads to a new framework of dimension reduction by manifold regularization. One
example is the recently proposed manifold regularized sliced inverse regression
(MRSIR) [4]. Sliced inverse regression (SIR) was proposed for sufficient dimen-
sion reduction. In a regression setting, with the predictors X and the response Y ,
the sufficient dimension reduction (SDR) subspace B is defined by the conditional
independency Y⊥X | BTX. Under the assumption that the distribution of X is ellip-
tic symmetric, it has been proved that the SDR subspace B is related to the inverse
regression curve E(X | Y). It can be estimated at least partially by a generalized
eigendecomposition between the covariance matrix of the predictors Cov(X) and
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Fig. 3.11 Point p is the
projection of query x onto the
feature line x1x2

the covariance matrix of the inverse regression curve Cov(E(X | Y)). If Y is dis-
crete, this is straightforward. While Y is continuous, it is discretized by slicing its
range into several slices so as to estimate E(X | Y) at each slice.

Suppose Γ and Σ are respectively the empirical estimates of Cov(E(X | Y)) and
Cov(X) based on a training data set. Then, the SDR subspace B is given by

max
B

trace
((

BTΣB
)−1

BTΓ B
)
. (3.32)

To construct the manifold regularization, [4] uses the graph Laplacian L of the train-
ing data X = [x1, x2, . . . , xn]. Letting Q = 1

n(n−1)
XLXT and S = 1

n(n−1)
XDXT,

with D being the degree matrix, then MRSIR is defined by

max
B

trace
((

BTΣB
)−1

BTΓ B
) − η trace

((
BTSB

)−1
BTQB

)
, (3.33)

where η is a positive weighting factor. The use of manifold regularization extends
SIR in many ways, that is, it utilizes the local geometry that is ignored originally and
enables SIR to deal with the tranductive/semisupervised subspace selection prob-
lems.

So far we have introduced subspace selection methods that exploit local geometry
information of data distribution. Based on these methods, classification can be per-
formed in the low dimensional embedding. However, as the final goal is classifica-
tion, an alternative approach is to do classification directly using the local geometry
information. This generally leads to nonparametric classifiers, for example, nearest
neighbor (NN) classifier. The problem is that simple NN classifier cannot provide
satisfying recognition performance when data are of very high dimensions as in face
recognition. To this end, Li and Liu proposed the nearest feature line (NFL) for face
recognition [25, 26]. In NFL, a query is projected onto a line segment between any
two instances within each class, and the nearest distance between the query and the
projected point is used to determine its class label. Figure 3.11 shows an example
of projecting a query x onto the feature line spanned by instances x1 and x2, where
the projected point p is given by

p = x1 + μ ∗ (x2 − x1), (3.34)

with

μ = (x − x1)
T(x2 − x1)

‖x2 − x1‖2
. (3.35)
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One extension of NFL is the nearest linear combination (NLC) [25]. There a
query is projected onto a linear subspace spanned by a set of basis vectors, where
the basis vectors can be any form from a subspace analysis or a set of local features,
and the distance between the query and the projection point is used as the metric for
classification. Empirical studies shown that NFL and NLC produces significantly
better performance than the simple nearest neighborhood (NN) when the number of
prototype templates (basis vectors representing the class) is small.

Another method related to NLC and NS approach is the sparse representation
classifier (SRC) [47], which treats the face recognition problem as searching for
an optimal sparse combination of gallery images to represent the probe one. SRC
differs from the standard NLC in the norm used to define the projection distance.
Instead of using the 2-norm as in NLC [25], SRC uses the 1- or 0-norm, such that
the sparsity emerges.

3.4 Transfer Subspace Learning

Conventional algorithms including subspace selection methods are built under the
assumption that training and test samples are independent and identically distributed
(i.i.d.). For practical applications, however, this assumption cannot be hold always.
Particularly, in face recognition, the difference of expressions, postures, aging prob-
lem and lighting conditions makes the distributions of training and test face differ-
ent. To this end, a transfer subspace learning (TSL) framework is proposed [38].
TSL extends conventional subspace learning methods by using a Bregman diver-
gence based regularization, which encourages the difference between the training
and test samples in the selected subspace to be minimized. Thus, we can approx-
imately assume the samples of training and test are almost i.i.d. in the learnt sub-
space.

3.4.1 TSL Framework

The TSL framework [38] is presented by the following unified form

arg min
U

F(U) + λDU(Pl ||Pu) (3.36)

where F(U) is the objective function of a subspace selection method, for example,
FLDA or PCA et al., and DU(Pl ||Pu) is the Bregman divergence between the train-
ing data distribution Pl and the test data distribution Pu in the low dimension sub-
space U , and parameter λ controls the balance between the objective function and
the regularization. Note that generally the objective function F(U) only depends on
the training data.

For example, when F(U) is chosen to be FLDA’s objective, (32) will give a sub-
space in which the training and test data distributions are close to each other and
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Fig. 3.12 Two classes of training samples are marked as 1 and 2, while three classes of test sam-
ples are marked as A, B and C. Blue circles A and C are merged together in the FLDA subspace,
where discrimination of the training samples can be well preserved. Blue circles A and B are mixed
in the regularization subspace, where there exists the smallest divergence between training domain
(1, 2) and test domain (A, B and C). Blue circles A, B and C can be well separated in the discrim-
inative subspace, which is obtained by optimizing the combination of the proposed regularization
(the divergence between training sets 1, 2 and test sets A, B, C) and FLDA

the discriminative information in the training data is partially preserved. In particu-
lar, suppose we have two classes of training samples, represented by two red circles
(1 and 2, e.g., face images in the FERET dataset), and three classes of test sam-
ples, represented by three blue circles (A, B and C, e.g., face images in the YALE
dataset), as shown in Fig. 3.12. On one hand, FLDA finds a subspace that fails to
separate the test circle A from the test circle C, but the subspace is helpful to dis-
tinct different subjects in the training set. On the other hand, the minimization of the
Bregman divergence between training and test distributions would give a subspace
that makes the training data and test data almost i.i.d., but give little discriminative
power. Apparently, neither of them individually can find a best discriminative sub-
space for test. However, as shown in the figure, a combination of FLDA and the
Bregman regularization does find the optimal subspace for discrimination, wherein
A, B and C can be well separated and samples in them can be correctly classi-
fied with given references. It is worth emphasizing that the combination works well
because the training and test samples are coming from different domains but both
domains share some common properties.

The authors suggest solving (3.36) by gradient descent method [38],

U ← U − τ

(
∂F (U)

∂U
+ λ

∂DU(Pl ||Pu)

∂U

)
(3.37)

where τ is the learning rate, that is, step size for updating. As F(U) is usually
known, so is its derivative. The problem remaining is how to estimate DU(Pl ||Pu)

and its derivatives.
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Definition 1 (Bregman divergence regularization) Let f : S → R be a convex func-
tion defined on a closed convex set S ∈ R+. We denote the first order derivative
of f as f ′, whose inverse function as ξ = (f ′)−1. The probability density for the
training and test samples in the projected subspace U are pl(y) and pu(y) respec-
tively, wherein y = UTx is the low-dimensional representation of the sample x.
The difference at ξ(pl(y)) between the function f and the tangent line to f at
(ξ(pl(y)), f (ξ(pl(y)))) is given by:

d
(
ξ
(
pl(y)

)
, ξ

(
pu(y)

))

= {
f

(
ξ
(
pu(y)

)) − f
(
ξ
(
pl(y)

))} − pl(y)
{
ξ
(
pu(y)

) − ξ
(
pl(y)

)}
. (3.38)

Based on (3.38), the Bregman divergence regularization, which measures the dis-
tance between pl(y) and pu(y), is a convex function given by

DU(Pl ||Pu) =
∫

d
(
ξ
(
pl(y)

)
, ξ

(
pu(y)

))
dμ (3.39)

where dμ is the Lebesgue measure.

By taking a special form f (y) = y2, DU(Pl ||Pu) can be expressed as [38]

DW(Pl ||Pu)

=
∫ (

pl(y) − pu(y)
)2

dy

=
∫ (

pl(y)2 − 2pl(y)pu(y) + pu(y)2)dy. (3.40)

Further, the kernel density estimation (KDE) technique is used to estimate pl(y) and
pu(y). Suppose there are nl training instances {x1, x2, . . . , xnl

} and nu test instances
{x1, x2, . . . , xnl

}, then through projection yi = UTxi , we have the estimates [38]

pl(y) = (1/nl)

nl∑

i=1

GΣ1(y − yi) (3.41)

and

pu(y) = (1/nu)

nl+nu∑

i=nl+1

GΣ2(y − yi) (3.42)

where GΣ1(y) is a Gaussian kernel with covariance Σ1, so is GΣ2(y). With these
estimates, the quadratic divergence (3.40) is rewritten as [38]
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DW(Pl ||Pu) = 1

n2
l

nl∑

s=1

nl∑

t=1

GΣ11(yt − ys) + 1

n2
u

nl+nu∑

s=nl+1

nl+nu∑

t=nl+1

GΣ22(yt − ys)

− 2

nlnu

nl∑

s=1

nl+nu∑

t=nl+1

GΣ12(yt − ys) (3.43)

where Σ11 = Σ1 + Σ1, Σ12 = Σ1 + Σ2 and Σ22 = Σ2 + Σ2. Further, by basis
matrix calculus, we have

∂DU(Pl ||Pu)

∂U
= 2

n2
l

nl∑

i=1

nl∑

t=1

GΣ11(yi − yt )(Σ11)
−1(yt − yi)x

T
i

− 2

nlnu

nl∑

i=1

nl+nu∑

t=nl+1

GΣ12(yt − yi)(Σ12)
−1(yt − yi)x

T
i

+ 2

u2

nl+nu∑

i=nl+1

nl+nu∑

t=nl+1

GΣ22(yi − yt )(Σ22)
−1(yt − yi)x

T
i

− 2

nlnu

nl+nu∑

i=l+1

nl∑

t=1

GΣ12(yt − yi)(Σ12)
−1(yt − yi)x

T
i . (3.44)

3.4.2 Cross Domain Face Recognition

Based on the YALE, UMIST and a subset of FERET datasets, cross-domain face
recognition is performed by applying the TSL framework. In detail, we have
(1) Y2F: the training set is on YALE and the test set is on FERET; (2) F2Y: the
training set is on FERET and the test set is on YALE; and (3) YU2F: the training
set is on the combination of YALE and UMIST and the test set is on FERET. In
the training stage, the labeling information of test images is blind to all subspace
learning algorithms. However, one reference image for each test class is preserved
so that the classification can be done in the test stage. The nearest neighbor classifier
is adopted for classification, i.e., we calculate the distance between a test image and
every reference image and predict the label of the test image as that of the nearest
reference image.

We compare TSL algorithms, for example, TPCA, TFLDA, TLPP, TMFA, and
TDLA, with conventional subspace learning algorithms, for example, PCA [23],
FLDA [14], LPP [20], MFA [48], DLA [54] and the semi-supervised discriminant
analysis (SDA) [8]. Table 3.2 shows the recognition rate of each algorithm with the
corresponding optimal subspace dimension. In detail, conventional subspace learn-
ing algorithms, for example, FLDA, LPP and MFA, perform poorly because they
assume training and test samples are i.i.d. variables and this assumption is unsuit-
able for cross-domain tasks. Although SDA learns a subspace by taking test sam-
ples into account, it assumes samples in a same class are drawn from an identical
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Table 3.2 Recognition rates
of different algorithms under
three experimental settings.
The number in the parenthesis
is the corresponding subspace
dimensionality

Y2F F2Y YU2F

LDA 39.71(70) 36.36(30) 29.57(30)

LPP 44.57(65) 44.24(15) 45.00(35)

MFA 40.57(65) 34.54(60) 27.85(70)

DLA 50.43(80) 50.73(15) 50.86(65)

SDA 44.42(65) 41.81(40) 32.00(35)

MMDR 45.60(60) 42.00(75) 49.75(80)

TLDA 57.28(15) 50.51(20) 55.57(45)

TLPP 58.28(30) 53.93(25) 58.42(30)

TMFA 63.14(70) 56.96(35) 65.42(70)

TDLA 63.12(60) 61.82(30) 65.57(70)

underlying manifold. Therefore, SDA is not designed for the cross-domain tasks.
Although MMDR considers the distribution bias between the training and the test
samples, it ignores the discriminative information contained in the training samples.
We have given an example in the synthetic data test to show that the training dis-
criminative information is helpful to separate test classes. Example TSL algorithms
perform consistently and significantly better than others, because the training dis-
criminative information can be properly transferred to test samples by minimizing
the distribution distance between the training and the test samples. In particular,
TDLA performs best among all TSL examples because it inherits the merits of DLA
in preserving both the discriminative information of different classes and the local
geometry of samples in an identical class.

Acknowledgements The authors thank Prof. Stan Z. Li for insightful discussions on nearest
feature line.

References

1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition
using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720
(1997)

2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Comput. 15(6), 1373–1396 (2003)

3. Bian, W., Tao, D.: Harmonic mean for subspace selection. In: 19th International Conference
on Pattern Recognition, pp. 1–4 (2008)

4. Bian, W., Tao, D.: Manifold regularization for sir with rate root-n convergence (2010)
5. Bian, W., Tao, D.: Max-min distance analysis by using sequential sdp relaxation for dimension

reduction. IEEE Trans. Pattern Anal. Mach. Intell. 99(PrePrints) (2010)
6. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The generative topographic mapping.

Technical Report NCRG/96/015, Neural Computing Research Group, Dept of Computer Sci-
ence & Applied Mathematics, Aston University, Birmingham B4 7ET, United Kingdom, April
1997



76 W. Bian and D. Tao

7. Cai, D., He, X., Han, J.: Using graph model for face analysis. Technical report, Computer
Science Department, UIUC, UIUCDCS-R-2005-2636, September 2005

8. Cai, D., He, X., Han, J.: Srda: An efficient algorithm for large-scale discriminant analysis.
IEEE Trans. Knowl. Data Eng. 20(1), 1–12 (2008)

9. D’aspremont, A., Ghaoui, L.E., Jordan, M.I., Lanckriet, G.R.G.: A direct formulation for
sparse PCA using semidefinite programming. SIAM Rev. 49(3), 434–448 (2007)

10. Decell, H., Mayekar, S.: Feature combinations and the divergence criterion. Comput. Math.
Appl. 3(4), 71–76 (1977)

11. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-
dimensional data. Proc. Natl. Acad. Sci. USA 100(10), 5591–5596 (2003)

12. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality con-
straints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

13. Efron, B., Hastie, T., Johnstone, L., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–
499 (2004)

14. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–
188 (1936)

15. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San
Diego (1990)

16. Fukunaga, K., Mantock, J.: Nonparametric discriminant analysis. IEEE Trans. Pattern Anal.
Mach. Intell. 5, 671–678 (1983)

17. Graham, D.B., Allinson, N.M.: Characterizing virtual eigensignatures for general purpose face
recognition. In: Wechsler, H., Phillips, P.J., Bruce, V., Fogelman-Soulie, F., Huang, T.S. (eds.)
Face Recognition: From Theory to Applications. NATO ASI Series F, Computer and Systems
Sciences, vol. 163, pp. 446–456 (1998)

18. Hamsici, O.C., Martinez, A.M.: Bayes optimality in linear discriminant analysis. IEEE Trans.
Pattern Anal. Mach. Intell. 30(4), 647–657 (2008)

19. He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: Proc. Int.
Conf. Computer Vision (ICCV’05) (2005)

20. He, X., Niyogi, P.: Locality preserving projections. In: Thrun, S., Saul, L., Scholkopf, B. (eds.)
Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)

21. He, X., Yan, S., Hu, Y., Niyogi, P.: Face recognition using Laplacianfaces. IEEE Trans. Pattern
Anal. Mach. Intell. 27(3), 328–340 (2005)

22. Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting sample se-
lection bias by unlabeled data. In: NIPS, pp. 601–608 (2006)

23. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer Series in Statistics, Springer,
New York (2002)

24. Li, L.: Sparse sufficient dimension reduction. Biometrika 94(3), 603–613 (2007)
25. Li, S.Z.: Face recognition based on nearest linear combinations. In: CVPR, pp. 839–844

(1998)
26. Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Trans. Neural

Netw. 10(2), 439–443 (1999)
27. Li, Z., Lin, D., Tang, X.: Nonparametric discriminant analysis for face recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 31(4), 755–761 (2009)
28. Loog, M., Duin, R., Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted

pairwise Fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23(7), 762–766 (2001)
29. Loog, M., Duin, R.P.W.: Linear dimensionality reduction via a heteroscedastic extension of

lda: The Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26, 732–739 (2004)
30. Lotlikar, R., Kothari, R.: Fractional-step dimensionality reduction. IEEE Trans. Pattern Anal.

Mach. Intell. 22(6), 623–627 (2000)
31. Pan, S.J., Kwok, J.T., Yang, Q.: Transfer learning via dimensionality reduction. In: Proc. of

the Twenty-Third AAAI Conference on Artificial Intelligence (2008)
32. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The Feret evaluation methodology for face-

recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)
33. Rao, C.R.: The utilization of multiple measurements in problems of biological classification.

J. R. Stat. Soc., Ser. B, Methodol. 10(2), 159–203 (1948)



3 Face Subspace Learning 77

34. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290, 2323–2326 (2000)

35. Saon, G., Padmanabhan, M.: Minimum Bayes error feature selection for continuous speech
recognition. In: Advances in Neural Information Processing Systems, vol. 13, pp. 800–806.
MIT Press, Cambridge (2001)

36. Schervish, M.: Linear discrimination for three known normal populations. J. Stat. Plan. Infer-
ence 10, 167–175 (1984)

37. Shakhnarovich, G., Moghaddam, B.: Face recognition in subspaces. In: Handbook of Face
Recognition, pp. 141–168 (2004)

38. Si, S., Tao, D., Geng, B.: Bregman divergence-based regularization for transfer subspace learn-
ing. IEEE Trans. Knowl. Data Eng. 22(7), 929–942 (2010)

39. Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric mean for subspace selection. IEEE Trans.
Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)

40. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

41. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B, Stat.
Methodol. 58, 267–288 (1996)

42. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc., Ser.
B, Stat. Methodol. 61(3), 611–622 (1999)

43. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)
44. Wang, X., Tang, X.: A unified framework for subspace face recognition. IEEE Trans. Pattern

Anal. Mach. Intell. 26, 1222–1228 (2004)
45. Wang, X., Tang, X.: Subspace analysis using random mixture models. In: Proceedings of

the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, pp. 574–580 (2005)

46. Wang, X., Tang, X.: Random sampling for subspace face recognition. Int. J. Comput. Vis. 70,
91–104 (2006)

47. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse
representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

48. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extensions:
A general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell.
29(1), 40–51 (2007)

49. Ye, J.: Least squares linear discriminant analysis. In: Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pp. 1087–1093 (2007)

50. Ye, J., Ji, S.: Discriminant analysis for dimensionality reduction: An overview of recent de-
velopments. In: Boulgouris, N., Plataniotis, K.N., Micheli-Tzanakou, E. (eds.) Biometrics:
Theory, Methods, and Applications. Wiley-IEEE Press, New York (2010). Chap. 1

51. Ye, J., Li, Q.: A two-stage linear discriminant analysis via qr-decomposition. IEEE Trans.
Pattern Anal. Mach. Intell. 27(6), 929–941 (2005)

52. Ye, J., Li, Q.: A two-stage linear discriminant analysis via qr-decomposition. IEEE Trans.
Pattern Anal. Mach. Intell. 27, 929–941 (2005)

53. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent
space alignment. SIAM J. Sci. Comput. 26, 313–338 (2005)

54. Zhang, T., Tao, D., Yang, J.: Discriminative locality alignment. In: Proceedings of the 10th
European Conference on Computer Vision, pp. 725–738, Berlin, Heidelberg, 2008

55. Zhang, T., Tao, D., Li, X., Yang, J.: Patch alignment for dimensionality reduction. IEEE Trans.
Knowl. Data Eng. 21, 1299–1313 (2009)

56. Zhou, T., Tao, D., Wu, X.: Manifold elastic net: A unified framework for sparse dimension
reduction. Data Min. Knowl. Discov. (2010)

57. Zhu, M., Martinez, A.M.: Subclass discriminant analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 28, 1274–1286 (2006)

58. Zou, H., Hastie, T.: Regularization and variable selection via the Elastic Net. J. R. Stat. Soc.
B 67, 301–320 (2005)

59. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph.
Stat. 15 (2004)


	Chapter 3: Face Subspace Learning
	3.1 Introduction
	3.2 Subspace Learning-A Global Perspective
	3.2.1 General Mean Criteria
	3.2.2 Max-Min Distance Analysis
	3.2.3 Empirical Evaluation
	3.2.4 Related Works

	3.3 Subspace Learning-A Local Perspective
	3.3.1 Patch Alignment Framework
	3.3.2 Discriminative Locality Alignment
	3.3.3 Manifold Elastic Net
	3.3.4 Related Works

	3.4 Transfer Subspace Learning
	3.4.1 TSL Framework
	3.4.2 Cross Domain Face Recognition

	 References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


