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We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the
multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems
of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of
multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic
complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta
based ode45 solver to show that the MSRM gives accurate results.

1. Introduction

Chaos theory studies the behaviour of dynamical systems that
are highly sensitive to initial conditions and have complex
and highly unpredictable profiles [1, 2]. Chaotic systems can
be observed in a wide variety of applications. In 1982, the
complex Lorenz equations were proposed by Fowler et al. [3],
which extended nonlinear systems into complex space. After
that, some research works in this field have been achieved
[4–9]. With in-depth study of complex nonlinear systems,
a variety of physical phenomena could be described by the
chaotic or hyperchaotic complex systems, for instance, the
detuned laser systems and the amplitudes of electromagnetic
fields.

The nature of complex chaotic systems precludes the
possibility of obtaining closed form analytical solutions of
the underlying governing equations. Thus, approximate-
analytical methods, which are implemented on a sequence of
multiple intervals to increase their radius of convergence, are
often used to solve IVPsmodelling chaotic systems. Examples
of multistage methods that have been developed recently to
solve IVPs for chaotic and nonchaotic systems include the

multistage homotopy analysis method [10], piecewise homo-
topy perturbation methods [11, 12], multistage variational
iteration method [13], and multistage differential transfor-
mation method [14]. Other multistage methods which use
numerical integration techniques have also been proposed
such as the piecewise spectral homotopy analysis method
[15–17] which uses a spectral collocation method to perform
the integration process. Accurate solutions of highly chaotic
and hyperchaotic systems require resolution over many
small intervals. Thus, seeking analytical solutions over the
numerous intervals may be impractical or computationally
expensive if the solution is sought over very long intervals.

In this paper, we propose a piecewise or multistage
spectral relaxation method (MSRM) for solving the hyper-
chaotic complex systems as an accurate and robust alternative
to recent multistage methods. The proposed MSRM was
developed using the Gauss-Seidel idea of decoupling systems
of equations and using Chebyshev pseudospectral methods
to solve the resulting decoupled system on a sequence of
multiple intervals.The spectral relaxationmethod (SRM)was
recently proposed in [18, 19].

The rest of the paper is organized as follows. In Section 2,
we give a brief description of the proposedMSRM algorithm.
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In Section 3, we present the numerical implementation of the
MSRM on two examples of hyperchaotic complex systems.
Finally, the conclusion is given in Section 4.

2. Multistage Spectral Relaxation Method

In this section, we give a brief description of the numerical
method of solution used to solve the nonlinear hyperchaotic
complex. We employ the multistage spectral relaxation
method (MSRM) proposed in [19]. The MSRM algorithm is
based on a Gauss-Seidel type of relaxation that decouples
and linearises the system and the use of spectral collocation
method to solve the linearised equations in a sequential
manner. For compactness, we express the system of 𝑚

nonlinear first order differential equations in the form

𝑥̇
𝑟
(𝑡) =

𝑚

∑

𝑘=1

𝛼
𝑟,𝑘
𝑥
𝑘
(𝑡)

+ 𝑓
𝑟
[𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑟−1
(𝑡) ,

𝑥
𝑟+1

(𝑡) , . . . , 𝑥
𝑚
(𝑡)] ,

(1)

subject to the initial conditions

𝑥
𝑟
(0) = 𝑥

∗

𝑟
, 𝑟 = 1, 2, . . . , 𝑚, (2)

where 𝑥
𝑟
are the unknown variables and 𝑥

∗

𝑟
are the corre-

sponding initial conditions, 𝛼
𝑟,𝑘

are known constant input
parameters and 𝑓

𝑟
is the nonlinear component of the 𝑟th

equation and the dot denotes differentiation with respect to
time 𝑡.

The scheme computes the solution of (1) in a sequence
of equal subintervals that makes the entire interval. We
define the interval of integration as Ω = [0, 𝑇] and divide
it into a sequence of nonoverlapping subintervals Ω

𝑖
=

[𝑡
𝑖−1

, 𝑡
𝑖
] (𝑖 = 1, 2, 3, . . . , 𝑓), where 𝑡

0
= 0 and 𝑡

𝑓
= 𝑇.

We denote the solution of (1) in the first subinterval [𝑡
0
, 𝑡
1
]

as 𝑥
1

𝑟
(𝑡) and the solutions in the subsequent subintervals

[𝑡
𝑖−1

, 𝑡
𝑖
] (𝑖 = 2, 3, . . . , 𝑓) as 𝑥𝑖

𝑟
(𝑡). For obtaining the solution

in the first interval [𝑡
0
, 𝑡
1
], (2) is used as the initial condition.

By using the continuity condition between neighbouring
subintervals the obtained solution in the interval [𝑡

0
, 𝑡
1
] is

used to obtain the initial condition for the next subinterval
[𝑡
1
, 𝑡
2
]. This is applied over the 𝑓 successive subintervals;

that is, the obtained solution for each subinterval [𝑡
𝑖−1

, 𝑡
𝑖
] is

used to obtain the initial condition for the next subinterval
[𝑡
𝑖
, 𝑡
𝑖+1

] (𝑖 = 1, 2, . . . , 𝑓−1).Thus, in each interval [𝑡
𝑖−1

, 𝑡
𝑖
]we

must solve

𝑥̇
𝑖

𝑟
= 𝛼
𝑟,𝑟
𝑥
𝑖

𝑟
+ (1 − 𝛿

𝑟𝑠
)

𝑚

∑

𝑘=1

𝛼
𝑟,𝑘
𝑥
𝑖

𝑘

+ 𝑓
𝑟
[𝑥
𝑖

1
, . . . , 𝑥

𝑖

𝑟−1
, 𝑥
𝑖

𝑟+1
, . . . , 𝑥

𝑖

𝑛
] ,

(3)

subject to

𝑥
𝑖

𝑟
(𝑡
𝑖−1

) = 𝑥
𝑖−1

𝑟
(𝑡
𝑖−1

) , (4)

where 𝛿
𝑟𝑠
is the Kronecker delta. As mentioned earlier, the

main idea behind the MSRM scheme is decoupling the

system of nonlinear IVPs using the Gauss-Seidel idea of
decoupling systems of algebraic equations. The proposed
MSRM iteration scheme for the solution in the interval Ω

𝑖
=

[𝑡
𝑖−1

, 𝑡
𝑖
] is given as

𝑥̇
𝑖

1,𝑠+1
− 𝛼
1,1

𝑥
𝑖

1,𝑠+1
= 𝛼
1,2

𝑥
𝑖

2,𝑠
+ 𝛼
1,3

𝑥
𝑖

3,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
1,𝑛

𝑥
𝑖

𝑛,𝑠
+ 𝑓
1
[𝑥
𝑖

1,𝑠
, . . . , 𝑥

𝑖

𝑛,𝑠
] ,

𝑥̇
𝑖

2,𝑠+1
− 𝛼
2,2

𝑥
𝑖

2,𝑠+1
= 𝛼
2,1

𝑥
𝑖

1,𝑠+1
+ 𝛼
2,3

𝑥
𝑖

3,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
2,𝑛

𝑥
𝑖

𝑛,𝑠

+ 𝑓
2
[𝑥
𝑖

1,𝑠+1
, 𝑥
𝑖

2,𝑠
, . . . , 𝑥

𝑖

𝑛,𝑠
] ,

.

.

.

𝑥̇
𝑖

𝑚,𝑠+1
− 𝛼
𝑚,𝑚

𝑥
𝑖

𝑚,𝑠+1
= 𝛼
𝑚,1

𝑥
𝑖

1,𝑠+1
+ ⋅ ⋅ ⋅ + 𝛼

𝑚,𝑚−1
𝑥
𝑖

𝑚−1,𝑠+1

+ 𝑓
𝑚
[𝑥
𝑖

1,𝑠+1
, . . . , 𝑥

𝑖

𝑚−1,𝑠+1
, 𝑥
𝑖

𝑚,𝑠
] ,

(5)

subject to the initial conditions

𝑥
𝑖

𝑟,𝑠+1
(𝑡
𝑖−1

) = 𝑥
𝑖−1

𝑟
(𝑡
𝑖−1

) , 𝑟 = 1, 2, . . . , 𝑚, (6)

where 𝑥
𝑟,𝑠

is the estimate of the solution after 𝑠 iterations. A
suitable initial guess to start the iteration scheme (5) is one
that satisfies the initial condition (6). A convenient choice
of initial guess that was found to work in the numerical
experiments considered in this work is

𝑥
𝑖

𝑟,0
(𝑡) =

{

{

{

𝑥
∗

𝑟
if 𝑖 = 1,

𝑥
𝑖−1

𝑟
(𝑡
𝑖−1

) if 2 ≤ 𝑖 ≤ 𝑓.

(7)

The Chebyshev spectral method is used to solve (5) on
each interval [𝑡

𝑖−1
, 𝑡
𝑖
]. First, the region [𝑡

𝑖−1
, 𝑡
𝑖
] is transformed

to the interval [−1, 1] onwhich the spectralmethod is defined
by using the linear transformation,

𝑡 =

(𝑡
𝑖
− 𝑡
𝑖−1

) 𝜏

2

+

(𝑡
𝑖
+ 𝑡
𝑖−1

)

2

, (8)

in each interval [𝑡
𝑖−1

, 𝑡
𝑖
] for 𝑖 = 1, . . . , 𝑓. We then discretize

the interval [𝑡
𝑖−1

, 𝑡
𝑖
] using the Chebyshev-Gauss-Lobatto

collocation points [20]:

𝜏
𝑖

𝑗
= cos(

𝜋𝑗

𝑁

) , 𝑗 = 1, 2, . . . , 𝑁, (9)

which are the extrema of the 𝑁th order Chebyshev polyno-
mial:

𝑇
𝑁
(𝜏) = cos (𝑁cos−1𝜏) . (10)

The Chebyshev spectral collocation method is based on
the idea of introducing a differentiation matrix 𝐷 which is
used to approximate the derivatives of the unknown variables
𝑥
𝑖

𝑟,𝑠+1
(𝑡) at the collocation points as thematrix vector product

𝑑𝑥
𝑖

𝑟,𝑠+1

𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=𝑡𝑗

=

𝑁

∑

𝑘=0

D
𝑗𝑘
𝑥
𝑖

𝑟,𝑠+1
= DX𝑖

𝑟,𝑠+1
, 𝑗 = 1, 2, . . . , 𝑁,

(11)
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Table 1: Numerical comparison between MSRM and ode45 for the hyperchaotic complex Lorenz system.

𝑡

𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)

MSRM ode45 MSRM ode45 MSRM ode45

2 −2.91138 −2.91138 21.73155 21.73155 −3.24491 −3.24491
4 −3.63001 −3.63001 6.52144 6.52144 −6.30884 −6.30884
6 2.80571 2.80571 −2.77638 −2.77638 −2.37099 −2.37099
8 0.01134 0.01134 2.09585 2.09585 −0.14880 −0.14880
10 −0.80219 −0.80219 16.48559 16.48560 −0.06690 −0.06690

where D = 2𝐷/(𝑡
𝑖
− 𝑡
𝑖−1

) and X𝑖
𝑟,𝑠+1

= [𝑥
𝑖

𝑟,𝑠+1
(𝜏
𝑖

0
), 𝑥
𝑖

𝑟,𝑠+1
(𝜏
𝑖

1
),

. . . , 𝑥
𝑖

𝑟,𝑠+1
(𝜏
𝑖

𝑁
)] are the vector functions at the collocation

points 𝜏𝑖
𝑗
.

Applying the Chebyshev spectral collocation method in
(5) gives

A
𝑟
X𝑖
𝑟,𝑠+1

= B𝑖
𝑟
, X𝑖

𝑟,𝑠+1
(𝜏
𝑖−1

𝑁
) = X𝑖−1

𝑟
(𝜏
𝑖−1

𝑁
) ,

𝑟 = 1, 2, . . . , 𝑚,

(12)

with
A
𝑟
= D − 𝛼

𝑟,𝑟
I,

B𝑖
1
= 𝛼
1,2
X𝑖
2,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
1,𝑛
X𝑖
𝑛,𝑠

+ 𝑓
1
[X𝑖
1,𝑠
, . . . ,X𝑖

𝑚,𝑠
] ,

B𝑖
2
= 𝛼
2,1
X𝑖
1,𝑠+1

+ 𝛼
2,3
X𝑖
3,𝑠

+ ⋅ ⋅ ⋅ + 𝛼
2,𝑚

X𝑖
𝑚,𝑠

+ 𝑓
2
[X𝑖
1,𝑠+1

,X𝑖
2,𝑠
, . . . ,X𝑖

𝑚,𝑠
] ,

.

.

.

B𝑖
𝑚

= 𝛼
𝑚,1

X𝑖
1,𝑠+1

+ 𝛼
𝑚,2

X𝑖
2,𝑠+1

+ ⋅ ⋅ ⋅ + 𝛼
𝑚,𝑚−1

X𝑖
𝑚−1,𝑠+1

+ 𝑓
𝑚
[X𝑖
1,𝑠+1

, . . . ,X𝑖
𝑚−1,𝑠+1

,X𝑖
𝑚,𝑠

] ,

(13)

where I is an identity matrix of order 𝑁 + 1. Thus, starting
from the initial approximation (7), the recurrence formula

X𝑖
𝑟,𝑠+1

= A−1
𝑟
B𝑖
𝑟
, 𝑟 = 1, 2, . . . , 𝑚 (14)

can be used to obtain the solution 𝑥
𝑖

𝑟
(𝑡) in the interval

[𝑡
𝑖−1

, 𝑡
𝑖
]. The solution approximating 𝑥

𝑟
(𝑡) in the entire

interval [𝑡
0
, 𝑡
𝐹
] is given by

𝑥
𝑟
(𝑡) =

{
{
{
{
{

{
{
{
{
{

{

𝑥
1

𝑟
(𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
1
]

𝑥
2

𝑟
(𝑡) , 𝑡 ∈ [𝑡

1
, 𝑡
2
]

.

.

.

𝑥
𝐹

𝑟
(𝑡) , 𝑡 ∈ [𝑡

𝑓−1
, 𝑡
𝑓
] .

(15)

3. Numerical Examples

In this section, we consider two examples which demonstrate
the efficiency and accuracy of the proposed method. In
particular, we use the MSRM algorithm as an appropriate
tool for solving nonlinear IVPs; we apply the method to two
complex nonlinear chaotic systems.

Example 1. The hyperchaotic complex Lorenz system can be
described as

𝑧̇
1
= 𝑎
1
(𝑧
2
− 𝑧
1
) + 𝑗𝑧

4
,

𝑧̇
2
= 𝑎
2
𝑧
1
− 𝑧
2
− 𝑧
1
𝑧
3
+ 𝑗𝑧
4
,

𝑧̇
3
=

1

2

(𝑧
1
𝑧
2
+ 𝑧
1
𝑧
2
) − 𝑎
3
𝑧
3
,

𝑧̇
4
=

1

2

(𝑧
1
𝑧
2
+ 𝑧
1
𝑧
2
) − 𝑎
4
𝑧
4
,

(16)

where 𝑧
1

= 𝑥
1
+ 𝑗𝑥
2
, 𝑧
2

= 𝑥
3
+ 𝑗𝑥
4
, 𝑧
3

= 𝑥
5
, 𝑧
4

= 𝑥
6
,

𝑗 = √−1, 𝑧
1
and 𝑧

2
are the conjugates of 𝑧

1
and 𝑧

2
. When

the parameters are chosen as 𝑎
1
= 15, 𝑎

2
= 36, 𝑎

3
= 4.5, and

𝑎
4
= 12, the system (16) is hyperchaotic [21].
Replacing the complex variables in system (16) with real

and imaginary number variables, one can get an equivalent
system as follows:

𝑥̇
1
= 𝑎
1
(𝑥
3
− 𝑥
1
) ,

𝑥̇
2
= 𝑎
1
(𝑥
4
− 𝑥
2
) + 𝑥
6
,

𝑥̇
3
= 𝑎
2
𝑥
1
− 𝑥
3
− 𝑥
1
𝑥
5
,

𝑥̇
4
= 𝑎
2
𝑥
2
− 𝑥
4
− 𝑥
2
𝑥
5
+ 𝑥
6
,

𝑥̇
5
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
− 𝑎
3
𝑥
5
,

𝑥̇
6
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
− 𝑎
4
𝑥
6
.

(17)

For (17), the parameters 𝛼
𝑟,𝑘

and 𝑓
𝑟
are defined as

𝛼
1,1

= −𝑎
1
, 𝛼

1,3
= 𝑎
1
, 𝛼

2,2
= −𝑎
1
,

𝛼
2,4

= 𝑎
1
, 𝛼

2,6
= 1,

𝛼
3,1

= 𝑎
2
, 𝛼

3,3
= −1, 𝛼

4,2
= 𝑎
2
,

𝛼
4,4

= −1, 𝛼
4,6

= 1,

𝛼
5,5

= −𝑎
3
, 𝛼

6,6
= −𝑎
4
, 𝑓

3
= −𝑥
1
𝑥
5
,

𝑓
4
= −𝑥
2
𝑥
5
, 𝑓

5
= 𝑓
6
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
,

(18)

with all other 𝛼
𝑟,𝑘

and 𝑓
𝑟
= 0 for 𝑟, 𝑘 = 1, 2, . . . , 6.

Through numerical experimentation, it was determined
that 𝑁 = 6 collocation points and 5 iterations of the MSRM
scheme at each interval were sufficient to give accurate results
in each [𝑡

𝑖−1
, 𝑡
𝑖
] interval. Tables 1 and 2 show a comparison

of the solutions of the hyperchaotic complex Lorenz system
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Table 2: Numerical comparison between MSRM and ode45 for the hyperchaotic complex Lorenz system.

𝑡

𝑥
4
(𝑡) 𝑥

5
(𝑡) 𝑥

6
(𝑡)

MSRM ode45 MSRM ode45 MSRM ode45

2 23.96851 23.96851 44.32071 44.32071 26.54682 26.54682
4 11.30830 11.30830 14.68007 14.68007 3.25221 3.25221
6 4.65208 4.65208 39.34559 39.34559 12.99055 12.99055
8 −4.99685 −4.99685 33.79560 33.79560 8.02232 8.02232
10 1.98179 1.98179 50.59739 50.59740 24.48234 24.48234

MSRM
ode45

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

25

t

x
1
(t
)

MSRM
ode45

0 2 4 6 8 10
t

−25

−20

−15

−10

−5

0

5

10

15

20

25

x
2
(t
)

Figure 1: Comparison between the MSRM and ode45 results for the hyperchaotic complex Lorenz system.

computed by the MSRM and ode45. In Figures 1, 2, and 3,
the MSRM graphical results are also compared with ode45
and good agreement is observed. The MRSM phase portraits
in Figures 4 and 5 were also found to be exactly the same as
those computed using ode45. This shows that the proposed
MSRM is a valid tool for solving the hyperchaotic complex
Lorenz system.

Example 2. State equations of a permanent magnet syn-
chronous motor system in a field-oriented rotor can be
described as follows [22, 23]:

𝑑𝑖
𝑑

𝑑𝑡

=

−𝑅
1
𝑖
𝑑
+ 𝜔𝐿
𝑞
𝑖
𝑞
+ 𝑢
𝑑

𝐿
𝑑

,

𝑑𝑖
𝑞

𝑑𝑡

=

𝑅
1
𝑖
𝑞
+ 𝜔𝐿
𝑑
𝑖
𝑞
+ 𝑢
𝑞
− 𝜔Ψ
𝑟

𝐿
𝑞

,

𝑑𝜔

𝑑𝑡

=

𝑛
𝑞
Ψ
𝑟
𝑖
𝑑
+ 𝑛
𝑝
(𝐿
𝑑
− 𝐿
𝑞
) 𝑖
𝑑
𝑖
𝑞
− 𝑇
𝐿
− 𝛽𝜔

𝐽

,

(19)

where 𝑖
𝑑
, 𝑖
𝑞
, and 𝜔 are the state variables which represent

currents and motor angular frequency, respectively; 𝑢
𝑑
and

𝑢
𝑞
are the direct-axis stator and quadrature-axis stator voltage

components, respectively; 𝐽 is the polar moment of inertia;
𝑇
𝐿
is the external load torque; 𝛽 is the viscous damping

coefficient; 𝑅
1
is the stator winding resistance; 𝐿

𝑑
and 𝐿

𝑞

are the direct-axis stator inductors and quadrature-axis stator
inductors, respectively;Ψ

𝑟
is the permanent magnet flux; and

𝑛
𝑝
is the number of pole-pairs; the parameters 𝐿

𝑑
, 𝐿
𝑞
, 𝐽, 𝑇
𝐿
,

𝑅
1
, Ψ
𝑟
, 𝛽 are all positive.

When the air gap is even, and the motor has no load or
power outage, the dimensionless equations of a permanent
magnet synchronous motor system can be depicted as

𝑧̇
1
= 𝑎 (𝑧

2
− 𝑧
1
) ,

𝑧̇
2
= 𝑏𝑧
1
− 𝑧
2
− 𝑧
1
𝑧
3
,

𝑧̇
3
= 𝑧
1
𝑧
2
− 𝑧
3
,

(20)

where 𝑎, 𝑏 are both positive parameters. If the current in the
system (19) is plural and the variables 𝑧

1
, 𝑧
2
in the system (20)

are complex numbers, by changing cross coupled terms 𝑧
1

and 𝑧
2
to conjugate form, Wang and Zhang got a complex
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Figure 2: Comparison between the MSRM and ode45 results for the hyperchaotic complex Lorenz system.
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Figure 3: Comparison between the MSRM and ode45 results for the hyperchaotic complex Lorenz system.

permanent magnet synchronous motor system as follows
[24]:

𝑧̇
1
= 𝑎 (𝑧

2
− 𝑧
1
) ,

𝑧̇
2
= 𝑏𝑧
1
− 𝑧
2
− 𝑧
1
𝑧
3
,

𝑧̇
3
=

1

2

(𝑧
1
𝑧
2
+ 𝑧
1
𝑧
2
) − 𝑧
3
,

(21)

where 𝑧
1

= 𝑥
1
+ 𝑗𝑥
2
, 𝑧
2

= 𝑥
3
+ 𝑗𝑥
4
, 𝑧
3

= 𝑥
5
, 𝑗 = √−1,

𝑧
1
and 𝑧

2
are the conjugates of 𝑧

1
and 𝑧

2
. Replacing the

complex variables in system (21) with real and imaginary

number variables, Wang and Zhang got an equivalent system
as follows (see [24]):

𝑥̇
1
= 𝑎 (𝑥

3
− 𝑥
1
) ,

𝑥̇
2
= 𝑎 (𝑥

4
− 𝑥
2
) ,

𝑥̇
3
= 𝑏𝑥
1
− 𝑥
3
− 𝑥
1
𝑥
5
,

𝑥̇
4
= 𝑏𝑥
2
− 𝑥
4
− 𝑥
2
𝑥
5
,

𝑥̇
5
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
− 𝑥
5
,

(22)

where 𝑎, 𝑏 are positive parameters determining the chaotic
behaviors and bifurcations of system (22). When the param-
eters satisfy 1 ≤ 𝑎 ≤ 11, 10 ≤ 𝑏 ≤ 20, there is one positive



6 The Scientific World Journal

MSRM
ode45

x
2
(t
)

x1(t)

−20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

MSRM
ode45

x
4
(t
)

x3(t)
−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

40

Figure 4: Phase portraits of the hyperchaotic complex Lorenz system.

x
6
(t
)

x5(t)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

x
3
(t
)

x
2 (t) x1

(t)

MSRM
ode45

MSRM
ode45

−20

0
20

40

−40

−20

0
20

40
−30

−20

−10

0

10

20

30

Figure 5: Phase portraits of the hyperchaotic complex Lorenz system.

Lyapunov exponent, two Lyapunov exponents of zero, and
two negative Lyapunov exponents for system (22), which
means system (22) is chaotic [24]. The values of parameters
and initial values are 𝑎 = 11, 𝑏 = 20, and 𝑥

1
(0) = 1, 𝑥

2
(0) = 2,

𝑥
3
(0) = 3, 𝑥

4
(0) = 4, 𝑥

5
(0) = 5.

For (21), the parameters 𝛼
𝑟,𝑘

and 𝑓
𝑟
are defined as

𝛼
1,1

= −𝑎, 𝛼
1,3

= 𝑎, 𝛼
2,2

= −𝑎,

𝛼
2,4

= 𝑎, 𝛼
3,1

= 𝑏, 𝛼
3,3

= −1,

𝛼
4,2

= 𝑏, 𝛼
4,4

= −1, 𝛼
5,5

= −1,

𝑓
3
= −𝑥
1
𝑥
5
, 𝑓

4
= −𝑥
2
𝑥
5
, 𝑓

5
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
,

(23)

with all other 𝛼
𝑟,𝑘

and 𝑓
𝑟
= 0 for 𝑟, 𝑘 = 1, 2, . . . , 5.

The results obtained were compared to those from the
MATLAB inbuilt solver, ode45. The ode45 solver integrates
a system of ordinary differential equations using explicit
4th and 5th Runge-Kutta formula. Tables 3 and 4 show
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Table 3: Numerical comparison between MSRM and ode45 for the complex permanent magnet synchronous motor.

𝑡

𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)

MSRM ode45 MSRM ode45 MSRM ode45

3 −3.85711 −3.85711 −5.66683 −5.66683 −5.20445 −5.20445
10 −0.33729 −0.33729 −0.49554 −0.49554 −0.49104 −0.49104
17 0.12630 0.12631 0.18555 0.18557 0.15550 0.15551
24 0.05091 0.05105 0.07480 0.07501 0.19500 0.19518
31 −2.55034 −2.54878 −3.74694 −3.74465 −0.79819 −0.79326
38 −3.93154 −3.73551 −5.77619 −5.48818 −5.33693 −5.20595

Table 4: Numerical comparison between MSRM and ode45 for the complex permanent magnet synchronous motor.

𝑡

𝑥
4
(𝑡) 𝑥

5
(𝑡)

MSRM ode45 MSRM ode45

3 −7.64635 −7.64635 15.05932 15.05932
10 −0.72144 −0.72143 10.73663 10.73663
17 0.22846 0.22848 14.25582 14.25583
24 0.28649 0.28675 19.33844 19.33921
31 −1.17270 −1.16545 25.34856 25.35739
38 −7.84098 −7.64855 14.98250 14.03140
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Figure 6: Comparison between the MSRM and ode45 results for the complex permanent magnet synchronous motor.

a comparison of the solutions of the complex permanent
magnet synchronous motor computed by the MSRM and
ode45. In Figures 6, 7, and 8, the MSRM graphical results are
also compared with ode45 and good agreement is observed.
The MRSM phase portraits in Figures 9 and 10 were also
found to be exactly the same as those computed using
ode45. This shows that the proposed MSRM is a valid tool
for solving the complex permanent magnet synchronous
motor.

4. Conclusion

In this paper, we have applied a spectral method called the
multistage spectral relaxation method (MSRM) for the solu-
tions of hyperchaotic complex systems.The proposedMSRM
was developed using the Gauss-Seidel idea of decoupling
systems of equations and using Chebyshev pseudospectral
methods to solve the resulting decoupled system on a
sequence of multiple intervals. The proposed MSRM was
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used to solve the hyperchaotic complex Lorenz system
and complex permanent magnet synchronous motor. The
accuracy and validity of the proposed method was tested
against Matlab Runge-Kutta based inbuilt solvers and against
previously published results.
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