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Abstract. We define a functional interpretation of KPω using Howard’s primitive re-

cursive tree functionals of finite type and associated terms. We prove that the Σ-ordinal

of KPω is the least ordinal not given by a closed term of the ground type of the trees

(the Bachmann-Howard ordinal). We also extend KPω to a second-order theory with

∆1-comprehension and strict-Π1
1 reflection and show that the Σ-ordinal of this theory

is still the Bachmann-Howard ordinal. It is also argued that the second-order theory is

Σ1-conservative over KPω.

§1. Introduction. Admissible proof theory made its debut with the 1979
doctoral dissertation of Gerhard Jäger [17]. Systems of analysis, both pred-
icative and impredicative, can be embedded in theories of admissible sets and
variations thereof. A particularly central and perspicuous system is Kripke-
Platek set theory with infinity, denoted by KPω, whose intendend models are
the pure admissible sets with ω (see Barwise’s opus [4] for notation and results
used in this paper). The impredicative theory ID1 of (non-iterated) arithmetical
monotone inductive definitions can be embedded in KPω and shares with it the
same proof-theoretical ordinal, viz the Bachmann-Howard ordinal. The main
aim of this paper is to give a new computation of the Σ-ordinal of KPω. The
dominant method for computing this ordinal relies on infinitary cut-elimination
for semi-formal systems of uncountably infinitary derivations. Our computation
relies instead on Gödel’s method of functional interpretation and is based on a
finite-type system of tree terms. In his recent account [8] of the proof-theory of
inductive definitions, Solomon Feferman insists – more than once – on conceptu-
ally clear and perspicuous solutions to the problems. We hope that our present
attempt is one more step in this direction.

Our functional interpretation is a “bounded functional interpretation.” These
interpretations are, in the words of Gilda Ferreira and Paulo Oliva in [12], vari-
ants of functional interpretations where bounds (rather than precise witnesses)
are extracted from proofs. They enjoy the further crucial property, proeminent
in the interpretation given in the present article, that bounded quantifications
are treated as computationally empty (this feature is briefly mentioned in the
closing section of [12]). The specific form of the functional interpretation that we
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present here is very much indebted to the particular analysis of ID1 by Jeremy
Avigad and Henry Towsner in [2].

The theory KPω is framed in the language of set theory. Its axioms consist of
extensionality, pair, union, infinity, the scheme of ∆0-separation and the schemes
of foundation and of ∆0-collection. See [4] for precise formulations. Nevertheless,
let me make some comments. Bounded or ∆0-formulas are formulas obtained
from the atomic formulas using propositional connectives and bounded quantifi-
cations. It is convenient to work with a language of set theory which includes
a primitive syntactic apparatus for bounded quantifications: ∀x ∈ z φ is part of
the primitive syntax and not an abbreviation of ∀x (x ∈ z → φ). The axiom
of infinity is stated as the existence of a limit ordinal: ∃xLim(x). The notion
of limit ordinal can be defined by saying that x is a non-zero ordinal and that,
whenever y ∈ x, then y ∪ {y} ∈ x. Being an ordinal is, in turn, defined as being
an hereditarily transitive set. The point is that Lim(x) is a ∆0-formula. The
scheme of foundation is the following scheme, which applies to every formula
φ(x), possibly with parameters:

∀x (∀y ∈ xφ(y)→ φ(x))→ ∀xφ(x).

The scheme of ∆0-collection applies to ∆0-formulas φ(x, y), possibly with pa-
rameters:

∀x ∈ z∃y φ(x, y)→ ∃w∀x ∈ z∃y ∈ wφ(x, y).

A Σ1-formula φ is a formula of the form ∃z ψ(z), where ψ(z) is a ∆0-formula
(possibly with parameters). We have defined this notion with only one existential
quantifier because the presence of the pairing axiom permits us to reduce the
tuple case to the single variable case. In the literature, it is usual to introduce
a more general form of Σ1-formula: the Σ-formulas. However, in the presence
of ∆0-collection, both notions coincide and hence, in this paper, we will not
distinguish them.

Gödel’s hierarchy of constructible sets Lα, for ordinals α, plays an important
role in the model theory of KPω as well as in admissible proof theory. The least
ordinal α for which Lα is a model of KPω is the first non-recursive ordinal: the so-
called Church-Kleene ordinal ωCK

1 . By general recursion-theoretic considerations
(spelled out in [19]), the least ordinal α such that Lα is a model of all Σ1-
consequences of KPω is smaller than ωCK

1 . We can define the Σ-ordinal of KPω,
denoted by ||KPω||Σ, as follows:

||KPω||Σ := min{α : Lα |= ψ for all Σ1 sentences ψ such that KPω ` ψ}.

Analogous definitions can be made for the other theories of this paper. Wolfram
Pohlers discusses the importance of this recursive ordinal in [19] and argues that
it is an upper bound for the order types of (primitive recursive) well-orderings
for which the scheme of transfinite induction is provable in KPω.

This paper is organized as follows. In the next section, we introduce Howard’s
primitive recursive tree functionals and define the Bachmann-Howard ordinal as
the least ordinal not given by the ordinal height of a closed term of the ground
type of the trees. The main section of the paper follows. In it, we define the
new functional interpretation and prove a corresponding soundness theorem. As
a corollary, the Bachmann-Howard ordinal is shown to be an upper bound for
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||KPω||Σ. Section 4 is an interlude section, with brief comments on alternative
functional interpretations. In Section 5, we define a second-order variant of KPω
with the scheme of strict Π1

1-reflection and extend the functional interpretation
to this theory. The following section internalizes the functional interpretations
within KPω. As a consequence, it is shown that the Bachmann-Howard ordinal is
a lower bound for ||KPω||Σ and it is also proved a conservation result concerning
strict Π1

1-reflection.

§2. Howard’s primitive recursive tree functionals. In this section, we
describe the language LΩ of the primitive recursive tree functionals of finite type
and its set-theoretical interpretation. LΩ is a language consisting only of terms
(there are no formulas) which is an extension of the (term part of the) language
of Gödel’s finite-type theory T. We expand the language of T with a new ground
type Ω, for the countable constructive tree ordinals. We denote the ground type
of the natural numbers by N . The complex types are obtained from the ground
types by closing under arrow. We use the letters ρ, τ , σ, . . . to denote the
types. The pure Ω-types are the types obtained (via the arrow) from the ground
type Ω only. The language has a denumerable stock of variables a, b, c, . . . for
each type. When we want to make explicit the type of the variables, we use the
notation aρ, bτ , cσ, . . . . We follow [1] for the conventions concerning omission
of parentheses. The language consists of the following constants:

(a) Logical constants or combinators. For each pair of types ρ, τ there is a
combinator of type ρ → τ → ρ denoted by Πρ,τ . For each triple of types
δ, ρ, τ there is a combinator of type

(δ → ρ→ τ)→ (δ → ρ)→ (δ → τ)
denoted by Σδ,ρ,τ .

(b) Arithmetical constants. The constant 0N of type N . The successor constant
S of type N → N . For each type ρ, a (number) recursor constant of type

N → ρ→ (N → ρ→ ρ)→ ρ
denoted by RNρ .

(c) Tree constants. The constant 0Ω of type Ω. The supremum constant Sup
of type (N → Ω)→ Ω. For each type ρ, a tree recursor constant of type

Ω→ ρ→ ((N → Ω)→ (N → ρ)→ ρ)→ ρ
denoted by RΩ

ρ .

The terms of LΩ are obtained from the variables and the constants by suc-
cessively using the operation of application: If t is a term of type ρ → τ and
q is a term of type ρ then App(t, q) is a term of type τ . We write (tq) instead
of App(t, q), as usual. There are no other terms in LΩ. As it is well-known,
the presence of the combinators allows the introduction of lambda terms via
the usual definitions. The original variant of this term language was defined by
William Howard in [16]. Our exposition is a streamlined version of the language
described in section 9.1 of [1] (without the so-called µ-operator).

Before proceeding with further syntactic discussions, let me give the intended
set-theoretic interpretation of this language (the interpretation can be carried in
Zermelo-Fraenkel set theory ZF). The variables of each type ρ range over a set
Sρ defined according to the following clauses:
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1. SN = N
2. SΩ is the smallest set W which contains 0 and is such that, whenever f is

a function that maps ω into W , then (1, f) ∈W .
3. Sρ→τ = {f : f is a function that maps Sρ into Sτ}
We skip the interpretations of the combinators and the arithmetical constants

(they are as usual). The constant 0Ω is interpreted by 0. The constant Sup
is interpreted by the function which, on input f ∈ SN→Ω, outputs the element
(1, f) of W . We simply write Sup(f) = (1, f), instead of SupI(f) = (1, f),
where the superscript I stands for the interpretation function. In the sequel, we
omit the superscript and use the same notation for a symbol and its (intended)
interpretation. This ambiguity (and abuse of language) will be systematic, but
harmless.

To each element c of W , we can associate a countable set-theoretical ordinal
|c| so that |0| = 0 and, for f : N → W , |Sup(f)| = sup{|f(n)| + 1 : n ∈ N}.
Observe that |f(n)| < |Sup(f)|, for each natural number n. Hence, we can define
by classical ordinal recursion the interpretations of the tree recursors RΩ

ρ so that:

RΩ
ρ (0Ω, a, F ) = a and RΩ

ρ (Sup(f), a, F ) = F (f, λxN .RΩ
ρ (f(x), a, F )),

for all a ∈ Sρ and F a function that maps SN→Ω into S
SN→ρ
ρ .

Finally, the application operation is interpreted simply by function application.
We have given the set-theoretic interpretation of LΩ. As a consequence, each
closed term t of LΩ of type ρ has an interpretation, which we denote by t again.
We can see t as an element of Sρ. In particular, if ρ is the arrow type τ → σ
then t is a function from Sτ into Sσ and it makes sense to write t(a), for a ∈ Sτ .
If t is a closed term of ground type Ω, then its interpretation is an element of W .
Therefore, it has an associated ordinal |t|. The supremum of all these ordinals
is the Bachmann-Howard ordinal. An anonymous referee pointed out that this
is not the original definition of the Bachmann-Howard ordinal. The referee is
right, of course. This ordinal was first defined in 1950 by Heinz Bachmann in
[3] through a ordinal notation system. Only in his groundbreaking paper [16]
of 1972, did Howard prove that this ordinal coincides with the supremum of the
ordinal heights of the closed terms of (an inessential variant of) LΩ.

In this paragraph, we define some important terms and describe their interpre-
tations. We let c+1 :≡ Sup(λxN .c). Of course, |c+1| = |c|+1. It is easy to define
(using the number recursor) a closed term t such that, for all a, b ∈W and n ∈ N,
t(a, b, 0) = a and t(a, b, Sn) = b. We consider the term Sup(λxN .t(a, b, x)), which
we denote by max(a, b)+1 (this notation should be viewed syncategorematically,
of course). Clearly, |max(a, b) + 1| = max(|a|, |b|) + 1. By number recursion,
we can define a closed term qN→Ω such that q(0) = 0Ω and q(Sn) = q(n) + 1.
We write nΩ instead of q(n). Clearly, |nΩ| = n. Let ωΩ := Sup(λxN .xΩ).
Obviously, |ωΩ| = ω. By tree recursion, take the functional Sup−1 of type
Ω → (N → Ω) such that Sup−1(0Ω) = λxN .0Ω and Sup−1(Supf) = f . We
abbreviate Sup−1(a)(n) by a〈n〉. With this notation, (Sup(f))〈n〉 = f(n) and,
therefore, |a〈n〉| < |a|, for every n ∈ N and a ∈ W \ {0Ω}. With the defini-
tions just introduced, it is clear that (a+ 1)〈n〉 = a, (max(a, b) + 1)〈0〉 = a and
(max(a, b) + 1)〈n+ 1〉 = b.
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§3. The functional interpretation. In the previous section, we described
the term language LΩ and its intended set-theoretical interpretation. Let us
come back to syntactic matters again. We consider a mixed language that is
the union of the term language LΩ and of the first-order language of set theory
together with a unary function symbol L(a), which we write La, acting on terms
of type Ω and giving out a set-theoretical term (in the intended interpretation,
La stands for the set L|a| of Gödel’s constructible hierarchy of sets). The atomic
formulas of the mixed language are the formulas of the form x = y, x ∈ y or
x ∈ Lt, for x and y set-theoretical variables and t a term of LΩ of type Ω. Finally,
we also allow in the mixed language quantifications of the form ∃nN φ. The set-
theoretical interpretation of this quantification is the obvious one. We classify
this kind of quantification as a bounded quantification (intuitively, a numerical
quantification corresponds to a bounded quantification in KPω). In our func-
tional interpretation, we are going to associate to each formula of the language
of set theory (as described above) a set-theoretical predicate. We describe these
predicates via formulas of the mixed language.

Definition 1. The class of bounded mixed formulas is the smallest class of
formulas of the mixed language that contains the atomic formulas and is closed
under Boolean connectives and bounded quantifications.

From the discussion above, the intended set-theoretic interpretation of the
bounded mixed formulas is clear.

In the following, we are going to associate to each formula φ(x1, . . . , xn) of
the language of set theory (free variables as shown) a bounded mixed formula
φS of the form

φS(a1, . . . , ak, b1, . . . , bm, x1, . . . , xn),

with free variables as shown (the a’s and the b’s are variables of LΩ of pure
Ω-type, determined by the definition below). Note that k or m or both can be
zero, in which case these variables do not occur. For notational simplicity, we
often omit tuples of variables and simply write φ(x) and φS(a, b, x) (as noted,
the variables may be absent).

For a crucial clause in the definition below, we need to extend the Sup−1 from
the ground type Ω to all pure Ω-types. The extension is defined pointwise. Let
t be a term of pure Ω-type τ1 → τ2 → . . . τn → Ω (pure Ω types are necessarily
of this form). We define t〈n〉 :≡ λx.((tx)〈n〉), where x is a n-tuple of variables
of appropriate types.

The functional interpretation in Definition 2 is given for classical logic directly.
It is based on the direct interpretation of Peano arithmetic by Joseph Shoenfield
in his textbook [21]. The logical primitives of Shoenfield’s calculus are just ¬,
∨ and ∀. The other logical symbols are defined as usual. In particular, we
will use systematically the definitions φ → ψ :≡ ¬φ ∨ ψ and ∃xφ :≡ ¬∀x¬φ.
As discussed, we also have the primitive bounded quantifier ∀x ∈ z and define
∃x ∈ z φ :≡ ¬∀x ∈ z¬φ. We are now ready to define a functional interpretation
for KPω.

Definition 2. To each formula φ of the language of set theory, we assign for-
mulas φS and φS so that φS is of the form ∀a∃b φS(a, b), with φS(a, b) a bounded
mixed formula, according to the following clauses:
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1. (φ)S and φS are simply φ, for bounded formulas φ of the language of set
theory.

For the remaining cases, if we have already interpretations for φ and ψ given by
∀a∃b φS(a, b) and ∀d∃eψS(d, e) (respectively), then we define:

2. (φ ∨ ψ)S is ∀a, d∃b, e [φS(a, b) ∨ ψS(d, e)],
3. (∀xφ(x))S is ∀a, cΩ∃b [∀x ∈ Lc φS(a, b, x)],
4. (∀x ∈ z φ(x, z))S is ∀a∃b [∀x ∈ z φS(a, b, x, z)],
5. (¬φ)S is ∀B∃a [∃nN¬φS(a〈n〉, B(a〈n〉))].

In the above definition of φS, we are using quantifications on variables of LΩ.
This is incidental, as it is costumary in functional interpretations, and one can see
them as a mere aid for defining the bounded mixed formulas φS (alternatively, we
can be literal and extend the language with these quantifiers). We have written
the lower case S-translations inside square parentheses. For instance, (∀xφ(x))S

is, by definition, the bounded mixed formula ∀x ∈ Lc φS(a, b, x). Let me make
a final clarification regarding tuples. In clause (5) above, if φS is of the form
∀a1, a2∃b φS(a1, a2, b), then (¬φ)S is

∀B∃a1∃a2 [∃nN ,mN ¬φS(a1〈n〉, a2〈m〉, B(a1〈n〉, a2〈m〉))].
The general case follows this pattern. In the sequel, we consider the lower S-
translations up to logical equivalence.

Lemma 1. Let φ be a ∆0-formula. Then:

(i) (∃xφ(x))S is ∃bΩ[∃nN∃x ∈ Lb〈n〉φ(x)].

(ii) (∀x∃y φ(x, y))S is ∀aΩ∃bΩ [∀x ∈ La∃nN∃y ∈ Lb〈n〉φ(x, y)].

Proof. The proof is easy. Let us check (i). We must compute (¬∀x¬φ(x))S.
Well, (∀x¬φ(x))S is ∀bΩ∀x ∈ Lb¬φ(x). The result follows. a

A more natural definition of (¬φ)S would, of course, be ∀B∃a [¬φS(a,B(a))].
Note that ∃a [¬φS(a,B(a))] is equivalent to ∃a [∃nN¬φS(a〈n〉, B(a〈n〉))]. How-
ever, as it is typical of bounded functional interpretations, the definition proposed
does not work. Even though the upper S-translations are equivalent, the lower
S-translations are not. In order for the proof of the interpretation theorem to go
through, it is crucial to have a monotonicity property regarding the existential
quantification. Following [2], we define b v c as ∀n ∈ N∃m ∈ N (b〈n〉 = c〈m〉),
for b and c of the same pure Ω-type. We also use the notation b v c for b and
c tuples of the same length and same corresponding pure Ω-types. In this case,
the notation means that each entry of the first tuple is below (in the sense of v)
the corresponding entry of the second tuple.

Lemma 2 (Monotonicity Property). Let φ(x) a formula of the language of set
theory. If b v c and φS(a, b, x), then φS(a, c, x).

Proof. The proof is by induction on the complexity of φ. It is clear that
clauses (2), (3) and (4) of the functional interpretation preserve the monotonicity
property. The final clause (5) is designed to preserve monotonicity. a

Fix p a pairing term of typeN → (N → N) with inverse functions l and r, both
of type N → N . Hence, p(l(n), r(n)) = n, l(p(m, k)) = m and r(p(m, k)) = k,
for all natural numbers n,m, k. Given t a term of type N → Ω, we let t̃ :≡



A NEW COMPUTATION OF THE Σ-ORDINAL OF KPω 7

λzN .t(l(z))〈r(z)〉 and define
⊔
t :≡ Sup t̃. It follows easily from the definitions

that, for every natural number k, t(k) v
⊔
t. It is clear that we can also define

(pointwise)
⊔
t for t of type N → ρ, with ρ a pure Ω-type. If ρ is of the form

τ1 → τ2 → . . . τn → Ω, we let
⊔
t :≡ λx.Sup ˜λzN .tzx (here, x is a n-tuple of

variables of appropriate types). Of course, t(k) v
⊔
t also holds in this case for

all natural numbers k. It is also easy to define t t q, for terms t and q of type
N → ρ (with ρ of pure Ω-type), so that t v t t s and s v t t s.

Theorem 1 (Soundness Theorem). Let φ be a sentence of the language of set
theory. Suppose that KPω ` φ. Then there are closed terms t of LΩ such that,
for appropriate types ρ, ∀a ∈ Sρ φS(a, t(a)).

Proof. The proof is by induction on the number of lines of the derivation.
We show that if the formula φ(x) is provable in KPω, then there are closed terms
t of LΩ such that, for appropriate types ρ, we have

∀c ∈W∀a ∈ Sρ∀x ∈ Lc φS(a, t(a, c), x).

For ease of reading, we ignore parameters that do not play an important role in
the functional interpretation.

For the logical part of the calculus, we rely on the complete axiomatization of
classical logic described in sections 2.6 and 8.3 of [21]. Shoenfield’s axiomatiza-
tion consists of three types of axioms and five rules. The axioms are:

• Excluded middle: ¬φ ∨ φ
• Substitution: ∀xφ(x)→ φ(w)
• Equality axioms: x = x and x = y → (w = z → (x ∈ w → y ∈ z))
The rules are:

• Expansion: from φ infer φ ∨ ψ
• Contraction: from φ ∨ φ infer φ
• Associativity: from φ ∨ (ψ ∨ θ) infer (φ ∨ ψ) ∨ θ
• Cut: from φ ∨ ψ and ¬φ ∨ θ infer ψ ∨ θ
• ∀-introduction: from φ(x) ∨ ψ infer ∀xφ(x) ∨ ψ, provided that x does not

occur free in ψ

The verification of the logical axioms and rules is formally similar to the veri-
fications in [9] and, specially, in [2] (this is particularly the case for the cut rule
where the argument has an extra complication, absent in [9]). In the following,
we always take φS as ∀aρ∃b φS(a, b), ψS as ∀dη∃eψS(d, e) and θS as ∀u∃v θS(u, v).

The upper S-translation of excluded middle is

∀B, a∃ã, b [∀nNφS(ã〈n〉, B(ã〈n〉))→ φS(a, b)].

Clearly ã := a+ 1 and b := B(a) work. The upper S-translation of substitution
is

∀d,B, a∃ã, c, b (∀nN ,mN∀x ∈ Lc〈m〉 φS(ã〈n〉, B(ã〈n〉), x)→ ∀w ∈ Ld φS(a, b, w)).

Clearly, ã := a + 1, c := d + 1 and b := B(a) do the job. The equality axioms
pose no problem because they are universal.

Let us consider the rules now. Expansion is easy. By induction, there is a
term t such that ∀a ∈ Sρ φS(a, t(a)). We need to find witnesses for the existential
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claims of the upper S-translation of the conclusion of the rule:

∀a, d∃b, eσ (φS(a, b) ∨ ψS(d, e)).

Just take b := ta and e := 0σΩ. Here, 0σΩ is just 0Ω in case σ is the ground type
Ω. Otherwise, σ is of the form τ → Ω, for a certain pure Ω-type τ and we let 0σΩ
be λxτ .0Ω.

Contraction is usually a delicate affair in ordinary functional interpretations,
but is rather easy for bounded interpretations. By induction hypothesis, there
are terms t and q such that

∀a, ã ∈ Sρ (φS(a, t(a, ã)) ∨ φS(ã, q(a, ã)).

By monotonicity, if we let r(a) := t(a, a)t q(a, a), we get ∀a ∈ Sρ φS(a, r(a)), as
wanted.

Associativity is trivial. Let us consider the cut rule. By induction, there are
terms t, q, r and s such that

($) ∀aρ, d (φS(a, t(a, d)) ∨ ψS(d, q(a, d))) and

($$) ∀B, u (∃nN¬φS(r(B, u)〈n〉, B(r(B, u)〈n〉)) ∨ θS(u, s(B, u)))

hold in the set-theoretic interpretation. We need now to define terms k and l so
that ∀d, u (ψS(d, k(d, u))∨θS(u, l(d, u))) also holds in the set-theoretic interpreta-
tion. Given d and u, consider Bd := λxρ.t(x, d) and ã(d, u) := λnN .r(Bd, u)〈n〉.
Finally, let q̃(d, u) := λnN .q(an, d), where an denotes ã(d, u)(n), i.e, r(Bd, u)〈n〉.
We can now define k and l in the following way:

k(d, u) :=
⊔
q̃(d, u) and l(d, u) := s(Bd, u).

By ($), we have that ∀nN (φS(an, t(an, d)) ∨ ψS(d, q(an, d))) holds in the set-
theoretic interpretation. Since q(an, d) v k(d, u), by monotonicity we conclude
that

∀nNφS(an, t(an, d)) ∨ ψS(d, k(d, u))

holds in the interpretation. On the other hand, instantiating ($$) with B =
Bd we get ∃nN¬φS(an, t(an, d))∨ θS(u, l(d, u)), and ψS(d, k(d, u))∨ θS(u, l(d, u))
follows.

Let us turn to the last logical rule: ∀-introduction. By induction hypothesis,
there are terms t and q such that

∀c ∈W∀a ∈ Sρ∀d ∈ Sη (∀x ∈ Lc (φS(a, t(c, a, d), x) ∨ ψS(d, q(c, a, d)))).

This provides the verification of the conclusion of the rule (with the very same
terms).

Before considering the proper axioms of KPω, we need to check that the in-
terpretation also works for the scheme that regulates the primitive apparatus of
the bounded quantifiers:

∀y (∀x ∈ y φ(x, y)↔ ∀x (x ∈ y → φ(x, y))),

where φ is any formula. We see the above equivalence as two general conditional
statements. Let us analyze the left-to-right general conditional. Given dΩ, B, c
and a we need to produce ã and b such that

∀y ∈ Ld (∀nN∀x ∈ y φS(ã〈n〉, B(ã〈n〉), x, y)→ ∀x ∈ Lc (x ∈ y → φS(a, b, x, y))).
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Clearly, ã := a + 1 and b := B(a) work. Let us now analyze the right-to-left
general conditional. Given dΩ, B and a, we need to produce c, ã and b such
that, for all y ∈ Ld,
∀m,n∀x ∈ Lc〈m〉 (x ∈ y → φS(ã〈n〉, B(c〈n〉, ã〈m〉), x, y))→ ∀x ∈ y φS(a, b, x, y).

It is clear that c := d+ 1, ã := a+ 1 and b := B(d, a) do the job.
In the remaining part of the proof, we check the axioms of KPω. Extension-

ality poses no problem because the formula x = y ↔ ∀w (w ∈ x ↔ w ∈ y) is
(equivalent to) a bounded formula. The upper S-translation of the pairing axiom
is

∀aΩ, bΩ∃cΩ[∀x ∈ La∀y ∈ Lb∃nN∃z ∈ Lc〈n〉 (x ∈ z ∧ y ∈ z)].
It is clear that c := max(a, b) + 2 does the job (note the abuse of language). The
upper S-translation of the union axiom is

∀aΩ∃cΩ [∀x ∈ La∃nN∃z ∈ Lc〈n〉∀y ∈ x∀w ∈ y (w ∈ z)].
Letting c := a+ 2 does the job. We now turn to the infinity axiom. It says that
∃xLim(x). Its upper S-translation is ∃bΩ∃nN∃x ∈ Lb〈n〉 Lim(x). The closed
term ωΩ + 2 does the witnessing.

Let us consider ∆0-separation: ∀w∀y∃z∀x (x ∈ z ↔ x ∈ y ∧ φ(x,w)), for φ a
bounded formula in which the variable z does not occur. Note that the formula
∀x (x ∈ z ↔ x ∈ y ∧ φ(x,w)) is (equivalent to) a bounded formula. Having this
in mind, it is easy to check that the upper S-translation of bounded separation
is

∀dΩ, aΩ∃cΩ[∀w ∈ Ld∀y ∈ La∃nN∃z ∈ Lc〈n〉∀x (x ∈ z ↔ x ∈ y ∧ φ(x,w))].

It is clear that c := max(a, d) + 2 does the job.
We now check the foundation scheme. It is easier to consider the foundation

rule: from ∀x (∀y ∈ xφ(y) → φ(x)) infer ∀xφ(x). The rule is equivalent to
the foundation scheme because there are no restrictions on the formula φ. If
one computes the functional translation of the premise of the rule and applies
the induction hypothesis, we know that there are terms t = t(B, a, d) and q =
q(B, a, d) such that

(∗) ∀B, a, dΩ[∀x ∈ Ld (∀nN∀y ∈ xφS(t〈n〉, B(t〈n〉), y))→ φS(a, q, x))]

holds in the set-theoretic interpretation.
We must find a witnessing term for the translation of the conclusion. I.e., we

must find a term s = s(a, d) such that, ∀d ∈ W∀a ∈ Sρ∀x ∈ Ld φS(a, s(a, d), x).
Let us define, by tree recursion,

s(a, d) := q(λcρ.
⊔

(λiN .s(c, d〈i〉)), a, d),

for d 6= 0Ω, and s(a, 0Ω) := 0σΩ, where σ is the type of b. We prove, by transfinite
induction on |d|, that this term s works. Fix d ∈ W . We may suppose that
d 6= 0Ω. By induction hypothesis, we have:

(∗∗) ∀n ∈ N∀a ∈ Sρ∀y ∈ Ld〈n〉 φS(a, s(a, d〈n〉), y).

Let a ∈ Sρ be given and x ∈ Ld. We want to show φS(a, s(a, d), x). Consider

Bd :≡ λcρ.
⊔

(λiN .s(c, d〈i〉)).
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By (∗), it is enough to show ∀nN∀y ∈ xφS(t〈n〉, Bd(t〈n〉), y). Take n ∈ N and
y ∈ x. Since x ∈ Ld, there is n0 ∈ N such that y ∈ Ld〈n0〉. By (∗∗), we can con-
clude that ∀a ∈ Sρ φS(a, s(a, d〈n0〉), y). In particular, φS(t〈n〉, s(t〈n〉, d〈n0〉), y).
Notice that

s(t〈n〉, d〈n0〉) v
⊔
λiN .s(t〈n〉, d〈i〉) = Bd(t〈n〉)

and so, by monotonicity, φS(t〈n〉, Bd(t〈n〉), y). This is what we want.
Finally, we check ∆0-collection. A simple computation shows that the upper

S-translation of an instance of this scheme is

∀aΩ∃cΩ [∀x ∈ z∃nN∃y ∈ La〈n〉 φ(x, y)→ ∃nN∃w ∈ Lc〈n〉∀x ∈ z∃y ∈ wφ(x, y)].

It is clear that c := a+ 2 does the job. a

Corollary 1. If KPω ` ∀x∃y φ(x, y), where φ(x, y) ∈ ∆0 (x and y are the
only free variables), then there is a closed term t of type Ω→ Ω such that

∀a ∈W∀x ∈ La∃y ∈ Lt(a) φ(x, y).

Proof. By (ii) of Lemma 1 and the soundness theorem, there is a closed term
t of type Ω→ Ω such that

∀a ∈W∀x ∈ La∃n ∈ N∃y ∈ Lt(a)〈n〉 φ(x, y).

The result follows with the same witnessing term t, since Lt(a)〈n〉 ⊆ Lt(a) for
every n ∈ N and a ∈W . a

The following corollary shows that the Bachmann-Howard ordinal is an upper
bound for ||KPω||Σ.

Corollary 2. If KPω ` ∃xφ(x), where φ(x) ∈ ∆0 (x is the only free vari-
able), then there is an ordinal α smaller than the Bachmann-Howard ordinal
such that Lα |= ∃xφ(x).

Proof. It follows easily from the soundness theorem that there is a closed
term q of type Ω such that ∃x ∈ Lq φ(x). Hence, Lα |= ∃xφ(x), where α =
|q|. a

Within KPω it is possible to define the Σ1-operation α ; Lα that, to each
ordinal α, associates the αth-stage of the constructible hierarchy. Since the
constructible sets provide an internal model of KPω, it follows that KPω+V = L
is Σ1-conservative over KPω and, in particular, that the Σ-ordinal of KPω+V = L
is still the Bachmann-Howard ordinal. This observation has applications. For
instance, in his recent textbook [19] on proof theory and impredicativity, Pohlers
considers a strengthening of KPω: the theory Π2-REF. This theory is the theory
KPω augmented with the Π2-reflection scheme:

∀w (∀x∃y φ(x, y, w)→ ∃z (z 6= ∅ ∧ Trans(z) ∧ w ∈ z ∧ ∀x ∈ z∃y ∈ z φ(x, y, w))),

where φ(x, y, w) is a ∆0-formula with its free variables as shown and Trans(z)
says that z is a transitive set. (In the presence of this principle, it can be
shown that the scheme of ∆0-collection and the axiom of infinity are redundant.)
Instead of giving a direct computation of the Σ-ordinal of KPω, Pohlers opts
for giving such an analysis for Π2-REF since, as it turns out, the Σ-ordinal of
this latter theory is still the Bachmann-Howard ordinal. A simple argument
can be advanced for this because it is known that the Π2-reflection scheme is
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a consequence of KPω + V = L (the argument of theorem 11.8.1 of [19] can be
adapted to get this result).

We want to point out that it is an easy exercise to show that the Π2-reflection
scheme has a set-theoretical functional S-interpretation. This gives a direct way
of computing the Σ-ordinal of Π2-REF. More can be obtained since the functional
interpretation is also able to compute the Σ-ordinal of KPω + V = L.

Proposition 1. The sentence V = L has a set-theoretical functional S-inter-
pretation.

Proof. Let us start with some preliminaries. The operation α ; Lα is a
Σ1-operation in KPω. This means that there is a formula ∃wψ(y, z, w), where
ψ is a ∆0-formula, saying that z = Ly and such that

KPω ` ∀y (Ord(y)→ ∃z, w ψ(y, z, w)).

Here, Ord(y) is a ∆0-formula saying that y is an ordinal. By an easy consequence
of Corollary 1, there is a closed term t of type Ω→ Ω such that:

∀a ∈W∀y ∈ La+1∃z∃w ∈ Lt(a) (Ord(y)→ ψ(y, z, w)),

and, as a consequence, ∀a ∈ W∃w ∈ Lt(a) ψ(|a|, L|a|, w). Let us consider now
the axiom V = L in the form ∀x∃y, z (Ord(y) ∧ z = Ly ∧ x ∈ z). Its upper S-
translation can be taken to be the formula with the quantifier prefix ‘∀a∃b, c, d’
followed by the bounded mixed formula

∀x ∈ La∃n,m, k∃y ∈ Lb〈n〉∃z ∈ Lc〈m〉∃w ∈ Ld〈k〉 (Ord(y) ∧ ψ(y, z, w) ∧ x ∈ z).

It is clear that we can put b = c = a + 2 and d = t(a) + 1 (with y = |a| and
z = L|a|). a

§4. Brief digression on other functional interpretations. This is per-
haps a good occasion to comment on alternative functional interpretations,
namely the Diller-Nahm interpretation of [7], the bounded functional interpre-
tation [11] of the present author and Oliva and other ones. The Diller-Nahm
interpretation addresses a problem posed by the interpretation of a particular
rule of logic, viz the contraction rule: from φ ∨ φ infer φ. Gödel’s interpretation
needs the presence of equality functionals in order to deal with contraction (see
[24] for a perceptive discussion of this issue). The Diller-Nahm interpretation
circumvents the contraction problem by relaxing the witness condition. A defi-
nite witness is not required anymore, but only that a witness is given among a
finite set of possible choices. There are certain superficial similarities between
the Diller-Nahm interpretation (and its generalizations, like Martin Stein’s in-
terpretations of [23]) and the bounded interpretations, where the choices of wit-
nesses fall below a certain bound (and, along the way, the contraction problem
is also circumvented). The main difference with bounded interpretations is the
treatment of the interpretation of the bounded quantifiers. Take clause (4) of
Definition 2. The bounded quantifier is carried across the ∀∃ prefix. It is this
feature that permits the interpretation of the scheme of ∆0-collection of KPω.
(Of course, a suitable supply of terms is needed for the interpretation of the other
axioms, specially the foundation scheme.) This is what distinguishes “bounded”
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functional interpretations from the Diller-Nahm variant and its generalizations
(see [18] for a discussion of these variants).

The functional interpretation of the previous section does not follow the blue-
print of [11], where majorizability relations play a prominent role. The reason is
twofold. On the one hand, there is no need to interpret higher type quantifica-
tions (the class quantification of the next section is tame enough not to need the
apparatus of majorizability). One could perhaps envisage a full-blown bounded
functional interpretation of Kripke-Platek set theory, but the present objectives
do not require it. On the other hand, the interpretation of Avigad and Towsner
has a very nice feature: the lower S-matrices of the interpretation have only
quantifications over countably many individuals. This opens the possibility of a
reduction of KPω to a constructive theory of tree functionals, in a way similar
to the reduction outlined in the second part of [2] for the theory ID1.

Let me finally remark on the functional interpretation of KPω given by Wolf-
gang Burr in [5]. This interpretation is a refinement of a previous interpretation
[6] whereby a choice functional is avoided by resorting to a Diller-Nahm style
interpretation. Bounded formulas are interpreted by themselves, as in our in-
terpretation. Otherwise, Burr’s interpretation follows the standard functional
interpretations (resorting to a Diller-Nahm maneuver), with no particular dis-
tinction between the interpretations of bounded and unbounded quantifiers. The
scheme of collection is dealt with by an “infinitary” union functional. As a con-
sequence, the term calculus underlying the interpretation has an infinitary rule
and the calculus loses its finitary character. As the authors of [6] say, the notion
of “normal form is no longer a mere syntactical notion.”

§5. Strict-Π1
1 reflection. Weak König’s lemma plays a very important role

in fragments of analysis and in reverse mathematics (see [22]). The lemma says
that every infinite binary tree has an infinite path. A strict-Π1

1 predicate P (n)
of natural numbers is a predicate of the form ∀X ⊆ N∃x ∈ NR(n, x,X), for R
a recursive predicate in the oracle X. It is easy to see that we can restrict R to
the predicates which are defined by bounded formulas of arithmetic (with a new
second-order unary symbol X). Weak König’s lemma implies (see chapter VIII
of [4]) the so-called principle of strict-Π1

1 reflection:

∀X ⊆ N∃x ∈ Nφ(n, x,X)→ ∃z ∈ N∀X ⊆ N∃x ≤ z φ(n, x,X),

for φ a bounded formula of arithmetic (with a new second-order unary symbol
X). Given that φ is a bounded formula, it is easy to conclude that the formula
in the consequent of the above implication is equivalent to a Σ0

1-formula of arith-
metic (do notice that the totality of exponentiation is used in this argument).
This observation can also be stated by saying that the strict-Π1

1 predicates define
exactly the recursively enumerable sets.

Jon Barwise considers in [4] strict-Π1
1 predicates and the principle of strict-

Π1
1 reflection in the framework of models of KPω. A strict-Π1

1 predicate of set
theory, is a predicate P (u) of the form ∀X∃xR(u, x,X), where R is given by a
∆0-formula of set theory with a new second-order unary symbol X. The principle
of strict-Π1

1 reflection in set theory can be formulated as

∀X∃xφ(u, x,X)→ ∃z∀X∃x ∈ z φ(u, x,X),
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for φ a ∆0-formula of set theory with the second-order unary symbol X (the
unary symbol X can be interpreted by any subset of the given admissible set).
It is no longer true that strict-Π1

1 reflection holds in every model of KPω, but
it is known to hold in the countable admissible sets (see [4]). Interestingly,
a predicate can be strict-Π1

1 without being equivalent to a Σ1-predicate (see
chapter VIII of Barwise’s book). In hindsight, this is not really surprising for a
person who is familiar with weak systems of arithmetic and analysis. There are
similarites between fragments of arithmetic and admissibility (see, for instance,
the preface of [20]). In this (and the next) section, we explore these similarities
in the direction of formal theories.

As it is well-known, the second-order system of analysis WKL0 is Π0
2-conserva-

tive over the theory IΣ0
1 of Peano Arithmetic with induction restricted to Σ0

1-
formulas. The system WKL0 consists of the base system RCA0 of recursive com-
prehension together with weak König’s lemma. These systems are described and
discussed in the classic [22]. The following definitions parallel the arithmetic
case.

Definition 3. The language of second-order set theory is the extension of the
language of set theory with monadic second-order quantification.

We use the letters X,Y, Z, . . . for the monadic predicates and call them classes.
The new atomic formulas of the language are those of the form X(x), but we
write instead x ∈ X. Note that the symbol ∈ in x ∈ X should not be confused
with the primitive symbol ∈ of the language of set theory (which infixes between
first-order variables). It is a mere notational device for the official X(x), and we
usually read x ∈ X by saying that x is a member of (the class) X. The notions
of ∆0-formula, Σ1-formula, etc, are defined in the second-order language in the
same old manner, but now allowing the new atomic formulas. In other words,
we allow class parameters in the definitions of these notions. Therefore, in the
second-order language, the schemes of separation, collection and foundation are
formulated with second-order parameters. Furthermore, the foundation scheme
is formulated for every formula of the new second-order language. The theory
KPω2 is the second-order extension of the theory KPω as described above.

Definition 4. The following schemes are defined in the language of KPω2:

1. The scheme of ∆0-CA is ∃X∀x (x ∈ X ↔ φ(x)), where φ(x) is a ∆0-
formula in which X does not occur, possibly with first and second-order
parameters.

2. The scheme of ∆1-CA is ∀x (φ(x) ↔ ψ(x)) → ∃X∀x (x ∈ X ↔ ψ(x)),
where φ(x) is a Σ1-formula and ψ(x) is a Π1-formula in which X does not
occur, possibly with first and second-order parameters.

3. The scheme sΠ1
1-ref of strict-Π1

1 reflection is

∀X∃xφ(x,X)→ ∃z∀X∃x ∈ z φ(x,X),

where φ(x,X) is a ∆0-formula, possibly with first and second-order param-
eters.

Lemma 3. The theory KPω2 + ∆0-CA + sΠ1
1-ref proves ∆1-CA.
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Proof. The argument follows closely a proof in [10] for theories of arith-
metic and analysis. We reason in KPω2 + ∆0-CA + sΠ1

1-ref. Suppose that
∀u(∃yφ(u, y) ↔ ∀zψ(u, z)), where φ and ψ are ∆0-formulas, possibly with first
and second-order parameters. We claim that

∀w∃X∀x ∈ w∀u, y, z ∈ x ((φ(u, y)→ u ∈ X) ∧ (u ∈ X → ψ(u, z))).

Given a set w, consider w̃ its transitive closure and take, by bounded compre-
hension, the class X := {u : ∃y ∈ w̃ φ(u, y)}. It is clear that this class X does
the job. Now, by sΠ1

1-ref, we get

∃X∀x∀u, y, z ∈ x ((φ(u, y)→ u ∈ X) ∧ (u ∈ X → ψ(u, z))),

and this entails the desired result. a
The notion of bounded mixed formula is generalized for the second-order set-

ting:

Definition 5. The class of second-order bounded mixed formulas is the small-
est class of formulas of the mixed language that contains the atomic formulas and
is closed under Boolean connectives, bounded quantifications and second-order
quantifications.

In a nutshell, second-order quantifications count as bounded quantifications.
(The reader of like mind will imagine these second-order quantifications as char-
acteristic functions bounded by the constant 1 function. Barwise observes in
p. 316 of [4], that “the study of s-Π1

1 predicates is one of the few places in
logic where the difference between relation symbols and function symbols really
matters.” In our context, this observation cashes in as the difference between
bounded and unbounded quantifications.)

We can now assign to each formula φ of second-order set theory, a second-
order bounded mixed formula φS(a, b) and the corresponding formula φS :≡
∀a∃b φS(a, b). The clauses are the same as in Definition 2, together with the
extra clause:

6. (∀X φ(X))S is ∀a∃b [∀X φS(a, b,X)].

Note that the monotonicity property of Lemma 2 is also preserved by this
clause.

In the next result, second-order (class) quantifications are interpreted as rang-
ing over sets:

Theorem 2. Let φ be a sentence of the language of second-order set theory
and suppose that KPω2 + ∆1-CA+ sΠ1

1-ref ` φ. Then there are closed terms t of
LΩ such that, for appropriate types ρ, ∀a ∈ Sρ φS(a, t(a)).

Proof. The logical axioms and rules extend the first-order case with new
cases for substitution and universal introduction. The proof is by induction on
the length of the derivation. We claim that if φ(x,X) is provable in KPω2 +
∆1-CA + sΠ1

1-ref, then there are closed terms t such that, for appropriate types
ρ,

∀c ∈W∀a ∈ Sρ∀x ∈ Lc∀X φS(a, t(a, c), x,X).

In the following arguments we ignore, as usual, the parameters that do not
play an important role and rely on previous notation.
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Let us consider the second-order substitution axiom ∀X φ(X) → φ(Y ). Its
upper S-translation is

∀B, a∃ã, b [∀nN∀X φS(ã〈n〉, B(ã〈n〉), X)→ φS(a, b, Y )].

It is simple to check that ã := a+1 and b := B(a) work. Let us now consider the
second-order universal introduction rule: from φ(X)∨ψ, conclude ∀Xφ(X)∨ψ,
where X does not occur free in ψ. The upper S-translation of the premise is

∀a, d∃b, e (φ(a, b,X) ∨ ψ(d, e)).

Hence, by induction hypothesis, there are closed terms t and q such that

∀a, d∀X (φ(a, t(a, d), X) ∨ ψ(d, q(a, d)))

holds in the intended set-theoretic interpretation. The upper S-translation of
the conclusion of the rule is ∀a, d∃b, e (∀XφS(a, b,X) ∨ ψS(d, e)). Obviously, the
same terms t and q witness the existential claims.

By the previous lemma, we can check ∆0-CA instead of ∆1-CA. An instance
of the scheme ∆0-CA has the form ∀W,w∃X∀x (x ∈ X ↔ φ(x,w,W )), where
φ is a ∆0-formula in which X does not occur. The upper S-translation of this
instance is:

∀dΩ, aΩ∀W∀w ∈ Ld∃X∀nN∀x ∈ La〈n〉(x ∈ X ↔ φ(x,w,W )).

This statement holds with the set X := {x ∈ Lα : φ(x,w,W )}, where α = |a|.
It remains to check the principle of strict-Π1

1 reflection. The upper S-translation
of this principle is:

∀aΩ∃cΩ[∀X∃nN∃x ∈ La〈n〉 φ(x,X)→ ∃z ∈ Lc∀X∃x ∈ z φ(x,X)].

Since La〈n〉 ⊆ La, for all natural numbers n, and La ∈ La+1, it is clear that
c := a+ 1 (with z = La) witnesses the above statement. a

As before, the following are immediate consequences of the above interpreta-
tion theorem:

Corollary 3. If KPω2 +∆1-CA+sΠ1
1-ref ` ∀x∃yφ(x, y), where φ(x, y) ∈ ∆0

(x and y are the only free variables), then there is a closed term t of type Ω→ Ω
such that

∀a ∈W∀x ∈ La∃y ∈ Lt(a) φ(x, y).

Corollary 4. If KPω2 + ∆1-CA + sΠ1
1-ref ` ∃xφ(x), where φ(x) ∈ ∆0 (x is

the only free variable), then there is an ordinal α smaller than the Bachmann-
Howard ordinal such that Lα |= ∃xφ(x).

§6. Internalizing the interpretation. In Section 2, we described the set-
theoretic interpretation of the term language LΩ. There are other interpreta-
tions, of course. In this section, we describe (following section 9.4 of [1], but
without the µ-operator) an interpretation H analogous to the interpretation of
Gödel’s T by the hereditarily recursive operations. The interpretation Hρ, for
each type ρ, is given as follows:

1. HN = N
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2. HΩ is the smallest set X ⊆ N which contains 0 and whenever f ∈ N is such
that ∀n ∈ N ({f}(n) ↓ ∧ {f}(n) ∈ X) then 〈1, f〉 ∈ X. (Here we are using
Kleene’s bracket notation for the partial recursive functions, and 〈 , 〉 is a
pairing function from N2 to N \ {0}.)

3. Hρ→τ = {f ∈ N : ∀n ∈ N (n ∈ Hρ → {f}(n) ↓ ∧ {f}(n) ∈ Hτ )}
The interpretations of the combinators and the arithmetical constants are

done as in the arithmetical case of the hereditarily recursive operations (see [25]

for details). We let (0Ω)H be 0 and take SupH ∈ N such that, for all f ∈ N,

{SupH}(f) = 〈1, f〉. In order to interpret the tree recursors RΩ
ρ , we use the

recursion theorem to produce natural numbers rρ satisfying

{rρ}(0, a, e) = a and {rρ}(〈1, f〉, a, e) ' {{e}(f)}(λxN .{rρ}({f}(x), a, e)).

We must argue that, for c ∈ HΩ, a ∈ Hρ and e ∈ H(N→Ω)→(N→ρ)→ρ, {rρ}(c, a, e)
is defined. As in Section 2, to each element of HΩ we associate an ordinal
so that |0| = 0 and, for f ∈ HN→Ω, |〈1, f〉| = sup{|{f}(n)| + 1 : n ∈ N}.
It is now easy to show, by transfinite induction on |c|, that {rρ}(c, a, e) is
defined. The interpretation of RρΩ is the natural number (RρΩ)H such that
{{{(RρΩ)H}(c)}(a)}(e) ' rρ(c, a, e), for all c, a and e.

Finally, we define the application operation between an element f of Hρ→τ and
an element e of Hρ as {f}(e). This finishes the description of the interpretation
H of LΩ. We claim that this interpretation can be done inside the theory KPω.
Within KPω, the Hρ’s are not sets. They are given by formulas. This is because
HΩ is given by an arithmetical monotone inductive definition. Therefore, it is
given by a Σ1-formula of the language of set theory and KPω does not have
comprehension for these formulas. The higher type Hρ’s build on HΩ and, in
fact, have definitions of unbounded formula complexity.

Let us look more closely at HΩ. The positive inductive operator associated
with it is

Γ(X) := {c ∈ ω : c = 0 ∨ ∃f ∈ ω (c = 〈1, f〉 ∧ ∀n ∈ ω ({f}(n) ↓ ∧ {f}(n) ∈ X))}.

As it is well-known, we can define within KPω the Σ1-operation α ; IαΓ , from

ordinals to subsets of ω, such that IαΓ = Γ(
⋃
β<α I

β
Γ ), for all ordinals α. Of

course, for all c ∈ ω, c lies in HΩ if, and only if, ∃α (c ∈ IαΓ ). Within KPω,
we can now associate to each element c of HΩ the unique ordinal α such that

c ∈ IαΩ ∧ ∀β < α (c /∈ IβΩ). By abuse of language, we abbreviate this formula by
writing |c| = α and say that the height of c is α. The “height function” enjoys
the right properties:

Lemma 4 (KPω). |0| = 0 and, given f ∈ HN→Ω, |{SupH}(f)| is the least
upper bound of all ordinals of the form |{f}(n)|+ 1, with n ∈ ω.

Proof. Take f in HN→Ω and let α = |{SupH}(f)|. Hence, 〈1, f〉 ∈ IαΓ and,

for each n ∈ ω, {f}(n) ∈
⋃
β<α I

β
Ω. Therefore, ∀n ∈ ω∃β < α (|{f}(n)| ≤ β). It

follows that α is an upper bound for the ordinals of the form |{f}(n)|+ 1, with
n ∈ ω.

Let β < α. By definition of α, 〈1, f〉 /∈ IβΩ. Therefore, it is not the case that,
for every n ∈ ω, {f}(n) ∈

⋃
γ<β I

γ
Γ . Take n0 ∈ ω with ∀γ < β ({f}(n0) /∈ IγΓ).
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We conclude that β ≤ |{f}(n0)| < |{f}(n0)| + 1. Therefore, β is not an upper
bound for the ordinals of the form |{f}(n)|+ 1, with n ∈ ω. a

We have seen how the Hρ’s are given by predicates within KPω. (In the sequel,
as it is usually done, we use the membership sign for saying that an element falls
under a predicate Hρ, instead of subsuming the element under the predicate.)
We have also seen that each element in HΩ has an ordinal height and that this
“height function” has the properties stated in the above lemma. There is no
difficulty in interpreting the combinators and the arithmetical constants within
KPω. The interpretation of the tree recursors is as before, via the recursion
theorem. The totality of these recursors for appropriate inputs is provable by
ordinal induction on the height of c (notation as before). Note that this ordinal
induction is available in KPω because of the (unrestricted) scheme of foundation.
The scheme of foundation is indeed heavily used in justifying the totality of the
tree recursors.

Given a term t(a) of type ρ, with a free variable aτ , it is now clear that we can
give a sense to tH(x), for x in Hτ . Formally, it is enough to define (t(x) = y)H

for x in Hτ and y in Hρ. This is done by a straightforward induction on the
build-up of the term t. Note that, under the previous conditions, (t(x) = y)H

is a ∆0
1 (i.e., recursive) relation. Let us now give a nice application of the H-

interpretation and show that the Bachmann-Howard ordinal is a lower bound
for ||KPω||Σ. In view of Corollary 2, ||KPω||Σ is exactly the Bachmann-Howard
ordinal.

Proposition 2. For each ordinal β smaller than the Bachmann-Howard or-
dinal, there is a Σ1-sentence provable in KPω which fails in Lβ.

Proof. Let β be an ordinal smaller than the Bachmann-Howard ordinal.
Take q a closed term of LΩ of type Ω such that β ≤ |qH | (obviously, the ordinal
height of q is the same in the set-theoretic interpretation and in the interpretation
H). By the discussions above, KPω ` ∃α (qH ∈ IαΓ ). Note that the formula
qH ∈ IαΓ is, formally,

∃y (y ∈ IαΓ ∧ (q = y)H)

where, as we have discussed, the predicate (q = y)H is ∆0
1. Therefore, the

formula qH ∈ IαΓ is Σ1 and, hence, so is ∃α (qH ∈ IαΓ ). If Lβ |= ∃α (qH ∈ IαΓ ),
then we would have qH ∈ IαΓ for some α < β. This is absurd. a

It is clear how to interpret the second-order bounded mixed formulas of Defi-
nition 5 via the H-interpretation within KPω. Given a formula

φ(x1, . . . , xn, X1, . . . , Xr)

of second-order set theory, it makes sense to write

(φS)H(a1, . . . , ak, b1, . . . , bm, x1, . . . , xn, X1, . . . , Xr),

with the a’s and the b’s in appropriate levels of the Hρ’s. The important thing
to note, is that the second-order variables are interpreted as ranging over sets
(we could have used lower case letters, but it would be artificial to use different
letters in φ and in (φS)H).

The arguments of Theorems 1 and 2 can be internalized in KPω and we get:
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Theorem 3. Let φ be a sentence of the language of second-order set theory
and suppose that KPω2 + ∆1-CA + sΠ1

1-ref ` φ. Then there is a closed term t of
LΩ such that, for appropriate type ρ, KPω ` ∀a ∈ Hρ (φS)H(a, tH(a)).

The following is an improvement of Corollary 4:

Corollary 5. The theory KPω2 + ∆1-CA + sΠ1
1-ref is Σ1-conservative over

KPω.

Proof. Suppose that KPω2 + ∆1-CA + sΠ1
1-ref ` ∃xφ(x), where φ(x) ∈ ∆0

(x is the only free variable). By the above soundness theorem, there is a closed
term q of type Ω such that KPω ` ∃α (|qH | = α ∧ ∃x ∈ Lα φ(x)). This entails
KPω ` ∃xφ(x). a

We conjecture that KPω2 +∆1-CA+sΠ1
1-ref is Π2-conservative over the theory

KPω. This conjecture is in line with the analogous result in arithmetic and
analysis, whereby WKL0 is Π0

2-conservative over IΣ0
1. There is an (unpublished)

result of Leo Harrington that shows that the second-order theory WKL0 is even
fully conservative over the first-order theory IΣ0

1. Harrington’s proof uses a
forcing argument and has been reported in [22] (there is also a pure proof-
theoretic proof of Harrington’s conservation result, given in [10]). We can, of
course, also pose the question whether the theory KPω2 + ∆1-CA + sΠ1

1-ref is
fully conservative over KPω.
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[17] G. Jäger, Die konstruktible Hierarchie als Hilfsmittel zur beweistheoretischen Unter-

suchung von Teilsystemen der Mengenlehre und Analysis, Ph.D. thesis, Ludwig-Maximilians-

Universität, Munich, 1979.
[18] P. Oliva, Unifying functional interpretations, Notre Dame Journal of Formal Logic,

vol. 47 (2006), pp. 263–290.

[19] W. Pohlers, Proof theory. The first step into impredicativity, Universitext,
Springer-Verlag, 2009.

[20] G. Sacks, Higher recursion theory, Perspectives in Mathematical Logic, Springer-

Verlag, 1990.
[21] J. R. Shoenfield, Mathematical logic, Addison-Wesley Publishing Company, 1967,

Republished in 2001 by AK Peters.
[22] S. G. Simpson, Subsystems of second order arithmetic, Perspectives in Mathemat-

ical Logic, Springer, Berlin, 1999.

[23] M. Stein, Interpretationen der Heyting-Arithmetik endlicher Typen, Archive für
Mathematische Logik und Grundlagenforschung, vol. 19 (1979), pp. 49–66.

[24] A. S. Troelstra, introductory note to [13] and [14], 1990, Published in [15], pages

214–241.
[25] A. S. Troelstra (ed.), Metamathematical investigation of intuitionistic arith-

metic and analysis, Lecture Notes in Mathematics, vol. 344, Springer, Berlin, 1973.

DEPARTAMENTO DE MATEMÁTICA
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UNIVERSIDADE DE LISBOA

CAMPO GRANDE, ED. C6, 1749-016 LISBOA, PORTUGAL

E-mail : fjferreira@fc.ul.pt


