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Abstract A local anomaly detection algorithm based on slid-
ing windows in spectral space has been proposed in this
research. The traditional local anomaly detection algorithms
are implemented in spatial windows because local data of an
image scene is more suitable for a single statistical model than
global data. However, from the aspect of geometric structure
of a dataset, this assumption is not entirely proper. As multi-
variate data, the hyperspectral image dataset can be considered
as a low-dimensional manifold, embedded in the high-
dimensional spectral space. The nonlinear spectral mixture
occurs more frequently, as well as a low dimensional manifold
being nonlinear. The traditional spatial local anomaly detec-
tion algorithms based on linear projection would not be ap-
propriate to deal with this kind of data. This paper studies the
local linear ideas in manifold learning, and an anomaly detec-
tion algorithm has been implemented based on the linear
projections in a local area of spectral space. The key concept
is that a small neighborhood areas of nonlinear manifold can
be considered as a local linear structure. The classic spatial
local algorithms and proposed algorithm are compared by
using real hyperspectral images from vehicle and aviation
platforms. The results demonstrated the effectiveness of the

proposed algorithm in improving detection of the weak anom-
alies that decreases the number of false alarms.

Keywords Remote sensing . Hyperspctral . Local anomaly
detection . Nonlinear manifold

Background and introduction

Anomaly detection is nowadays a very active research topic
for automated analysis of hyperspectral imagery. Without
prior spectral information and atmospheric correction, anom-
aly detectors can identify the pixels that are different in spec-
trum from the background (Stein et al. 2002; Huck and Guil-
laume 2010).

Historically, algorithms to target and anomaly detection in
hyperspectral imagery could be divided into two categories
based on different data models (Ahlberg et al. 2004), as a)
detectors based on unstructured models and b) detectors based
on structured models. The unstructured models referred to no
specific geometric structure on the data. They were also called
probabilistic, statistical, and/or data-driven. Anomaly detec-
tion methods based on unstructured models were traditional
and familiar. They encompassed the well-known RX detector
(Reed and Yu 1990) and its improvement, (i.e. SSRX detec-
tor) (Schaum 2007; Borghys et al. 2012). Detectors using
structured models are based on linear subspace or Linear
Mixture Model (LMM), such as Orthogonal Subspaces Pro-
jection (OSP) that is developed by Harsanyi et al. (1994)), and
Low Probability Detection (LPD) (Harsanyi et al. 1994;
Chang 2005). It is interesting that both structured and unstruc-
tured detectors have performed the same functional form of
matched filter or linear projection (Chang and Chiang 2002).
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In general, the anomaly detection algorithms can be imple-
mented either in global or local area of an image scene. There
were 2 ways to carry out the local detectors (Bachega et al.
2011), a) sliding spatial windows and b) segmentation of an
image scene. The key concept of both methods was that local
data of an image scene was more suitable for a single statis-
tical model. RX algorithm was derived from hypothesis tests
based on multivariate Gaussian distribution. It was always
considered as a local method, such as Local RX and Qausi
Local RX (Borghys et al. 2012).

However, as nonlinear spectral mixture frequently occurs
in the real environment, the nonlinear manifolds would be
more common. In this case, anomaly detection based on linear
projection could not deal with these data efficiently. Thus,
there were many kernel based detectors, such as kernel RX
and kernel OSP (Nasrabadi 2014). They handled this problem
by using the kernel functions to implement linear projections
in high dimensional feature space. Another two kinds of
detectors were developed to treat this problem. One was to
use the local topological structure to calculate the Weighted
Vertex Volume (Messinger and Chester 2011) and extract the
“outliers” in the local spatial image. Basically, outlier detec-
tion is aimed at discovering anomalous or inconsistent pat-
terns from a dataset. This was one of the major tasks in data
mining when working on a large dataset (Zhao and Saligrama
2009; Ramaswamy et al. 2000). Similar research has also
shown in the literatures of Du and Zhang (2014a, 2014b).
The patches with a locally linear structure were used to fit the
manifold structure of the entire hyperspectral image. The other
kind of detectors focused onmanifold embedding methods (Li
et al. 2010a, 2010b). Agovic et al. (2007) had studied anomaly
detection in transportation corridors using manifold embed-
ding. They investigated the usefulness of manifold embedding
methods for feature representation in anomaly detection prob-
lems. The study was focused on both linear methods, such as
multi-dimensional scaling (MDS), as well as nonlinear
methods, such as locally linear embedding (LLE) and isomet-
ric feature mapping (ISOMAP).

The traditional detectors based on linear projection could
not extract the weak anomaly points from the nonlinear spec-
tra mixture dataset because the prominence of anomalies
would be reduced after linear projection. If these detectors
are implemented in a small area of data manifold, then their
local structures can be linear and the detectors based on linear
projection would become effective. This is the motivation of
the proposed algorithm in this paper. By using the concept of
local linearity from manifold learning methods (Seung and
Lee 2000), the sliding windows were established in spectral
space and the local data would be considered as a linear
manifold. Thus, the detector based on linear projections was
implemented in spectral space windows. The Low Probability
Anomaly Detection (LPAD) detector (Li et al. 2014) would be
implemented on these sliding windows of spectral space. This

algorithm is called LPAD based on Spectral Space Window
(SSW-LPAD). In Section II, the relationship between nonlin-
ear manifolds of datasets and anomalies are introduced;
Section III is the methodology of the algorithm based on
spectral space window; Section IV is description of image
data; Section V is the results analysis and the comparative
analysis between this algorithm and spatial local algorithms.

Nonlinear manifold and anomalies

As a kind of multivariate data, hyperspectral image may be
considered to be a low dimensional manifold in spectral space.
Usually, the dimension of this manifold is called intrinsic
dimension (Verveer, Peter j., Robert P. W. Duin 1995). If the
datasets fit description of the Linear Mixed Model (LMM),
the manifold can be a linear and also may be regarded as a
hyper-plane or a linear hyper-simplex (Koppen 2000). In this
case, the entire datasets can be linearly projected into a sub-
space. The dimension of this subspace is the intrinsic dimen-
sion of the whole datasets. The dispersion of the original data
can be represented accurately by this linear subspace.

On the other hand, the lower dimensional manifold would
be nonlinear if the datasets fit the description of the non-linear
mixed model, such as a hyper-curved surface or a nonlinear
hyper-simplex (Koppen 2000). The geometric structure of
nonlinear manifolds is particular. The dataset cannot be rep-
resented accurately by utilizing the linear transformations (i.e.
translation, rotation and scaling) in the intrinsic dimensional
subspace. A higher dimensional linear subspace should be
used to contain it.

For anomaly detection, nonlinear properties of the mani-
fold have considerable effects on the detectors based on linear
projections. An example in a low dimensional space (3D) can
illustrate this problem. Figure 1a shows a 2D curve and one
anomaly point in 3D space and Fig. 1b shows a 2D curved-
surface and one anomaly point in 3D space. The curve C (in
Fig. 1a) is considered as a nonlinear manifold and its intrinsic
dimension is 1. Pt is an anomaly point. The points of the curve
C and anomaly point Pt are all located on the plane P. It is
obvious that point Pt will be submerged into the points of
curve C by using the detectors based on linear orthogonal
projections, because the curve was the main part of this
dataset. Thus, in order to suppress the points of the curve
effectively, the detectors based on linear orthogonal projec-
tions will project all points to the orthogonal space of plane P
in 3D space. However, point Pt belongs to the plane P, so it
will be suppressed like points of curve C. It is hard to distin-
guish Pt from the projected image. The case of Fig. 1b has the
same problem.

However, if the nonlinear manifold data has been handled
by detectors based on linear projections, some weak anomaly
points which were close but did not belong to the background
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nonlinear manifold would be ignored, even for local data of an
image scene. Therefore, if a small area is segmented from this
manifold, it would be considered as a linear structure and the
weak anomaly points could be distinguished effectively by
using the detectors based on linear projections. This is the
main motivation of the proposed method.

Method

It is important to compare the performance between the pro-
posed algorithm and algorithms based on spatial window.
Here, the Local RX(LRX) and Local OSP(LOSP) (Chao
et al. 2009) algorithms will be considered. In this section,
the LRX and LOSP are introduced first, and the SSW-LPAD
algorithm has been discussed.

Local RX (LRX)

The RX algorithm is a constant false alarm rate (CFAR)
adaptive anomaly detector that is derived from the generalized
likelihood ratio test (GLRT). It was considered as the bench-
mark anomaly detection algorithm for hyperspectral data
(Messinger and Chester 2011). RX algorithm is based on the
assumption that the background statistics could be modeled as
a multivariate Gaussian distribution:

DRXD xið Þ ¼ xi−μð ÞTC−1 xi−μð Þ ≥η; anomaly present
< η; anomaly absent

�

ð1Þ

Where μ ¼ 1
N ∑

N

i¼1
xi is the mean spectrum, C ¼ 1

N ∑
N

i¼1

xi−μð Þ xi−μð ÞT is covariance matrix. xi are the pixel spectra

of image data, subscripts i refer to the ith pixel spectrum in the
image dataset.

Usually, RX algorithm is regarded as a local detector, but it
can handle global data as well. In the implementation of LRX,
the covariance matrix and the mean spectrum of the back-
ground were estimated locally in a window around the pixel
under test (PUT). A double sliding window was used: a guard
window and the outer window were defined, and the back-
ground statistics were determined using the pixels between
them. See Fig. 2.

Local orthogonal subspaces projection (LOSP)

LOSP algorithm (Chao et al. 2009) is based on the assumption
that the variation of terrain is small in the local area of an
image scene. In other word, the mean spectrum presents the
background, and it uses constructing orthogonal projected
operators. If the spectrum of PUT is d and the mean spectrum

of the sliding window is d then the detector of LOSP will be:

PLOSP ¼ κdT I−d d
T
d

� �−1

d
T

" #
ð2Þ

Where d ¼ ∑
m

i¼1
yi , yi are the spectra except PUT in the

window. κ is a constant for normalization.

Fig. 1 Nonlinear manifold and anomaly point. a 2D curve and anomaly point; b 3D curve surface and anomaly point

Fig. 2 Double spatial windows of LRX
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Spectral space window LPAD (SSW-LPAD)

In SSW-LPAD, LPAD algorithm has implemented sliding
windows in spectral space. LPAD algorithm has been derived
upon data linear manifold assumption (Li et al. 2014). In this
algorithm, the entire image dataset is modeled as a linear
manifold. Although, it does not fit the real situation, the linear
manifold is a simple and feasible assumption to the
hyperspectral dataset. If an image dataset is considered as a
linear manifold, anomalies would not located in this manifold
because of the spectral independence. The distances along the
particular vertical direction could be used to evaluate whether
the points are anomalies or background. The purpose of LPAD
is to find these special directions.

The vertical subspace can be derived from linear equations.
Firstly, the general plane equation in 3-D Euclidean space is
considered and extended to describe the linear manifold in
high dimensional space. Suppose that there is a dataset Da

which distributes in a linear manifold in l -dimensions space,
all of the vectors α=(a1,a2,⋯al) in dataset Da fit the follow-
ing equation:

x1a1 þ x2a2 þ⋯þ xlal þ xlþ1 ¼ 0 ð3Þ

Where, the non-zero vector X ¼ x1 x2 ⋯ xlþ1ð Þ is
the normal vector of this linear manifold. With respect to
linear algebra, equation (3) means all the vectors α of Da

can linearly express each other. After removing the mean
vector of dataset, the matrix form of equation (3) could be
rewritten as:

AX ¼ 0 ð4Þ

A is a N×l matrix. The row vectors in A represents a l -
dimension vector of the dataset. N is the number of samples in
the dataset. X is the l -dimensional column vector which
represents the normal vector.

Considering the hyperspectral image dataset, the main parts
of geometrical structure would be composed of background
data and would be a linear manifold. The anomalies would be
located outside of the manifold. Therefore, the anomalies
could be distinguished from the manifold efficiently if the
proper decision boundary along the normal direction could
be found. In fact, Equation (4) is a homogeneous linear
equation. In this case, the extraction of normal vectors is
converted to solving the homogeneous linear equations. The
matrix A is a singular matrix because the row vectors has
denoted as a linear combination of the others. Therefore, the
solution of the equation (4) would not be unique, and it has a
solution set. We used the Moore–Penrose pseudoinverse
(Barata and Hussein 2012) to calculate it. If some rows of A

are linearly independent, the solution set (in terms of least
squares) of equation (4) could be derived from the Moore–
Penrose pseudoinverse:

x0 ¼ E−UþUð Þξ ð5Þ

U+ denoted Moore–Penrose pseudoinverse, where U+=U-
T(UUT)−1. U is k×l matrix, it is constructed by k independent
rows of A. E is the identity matrix and ξ is an arbitrary l -
dimension vector.

Because ξ is an arbitrary l -dimension vector, we could use
the spectrum of PUT to replace it. Thus, the vertical distance
(along the normal direction of manifold) between the PUTand
background manifold can be calculated as:

D αð Þ ¼ αT E−UþUð Þα ¼ αT E−UT UUT
� �−1

U
� �

α ð6Þ

Where,α represents the spectrum of PUT. The key of these
calculations is matrix U. Usually, U is composed of the
endmembers of background. However, for the convenient
calculation, the larger eigenvectors have been used to replace
the background endmembers. Thus, the equation became:

D αð Þ ¼ αT E−VþVð Þα ¼ αT E−VT VVT
� �−1

V
� �

α ð7Þ

Where, V is composed of the magnificent eigenvectors of
the data covariance matrix. This detector is called Low Prob-
ability Anomaly Detection (LPAD) because it is similar to the
LPD detector (Chang 2005). The significant difference is the
unit vector in LPD that is replaced by the spectrum of PUT in
LPAD.

In this paper, we implemented the LPAD on the sliding
windows in spectral space. By calculating the Euclidean dis-
tance between two arbitrary points of spectral pixels, a list of
nearest neighbors has been established for each PUT. Alter-
natively, double sliding windows have defined to be a guard
window and the outer window. The size of the outer window
is defined as K nearest neighbors, and the size of the guard
window is defined as G nearest neighbors. The spectrums
between the two windows are used to calculate matrix V. It
is worth noting that the radii of these windows are variable
because the density is different throughout the whole mani-
fold. Theoretically, taking into account the requirements of the
minimum number of pixels for the detection algorithm, the
entire pixels between the two windows should form a linear
manifold. Similarly, for the areas with different in density, the
numbers of K and G should be mutative. However, its com-
putation and complexity is very high, therefore, a constant
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number has been chosen for convenience of calculation in this
paper.

Data collection and description

To assess the performance and compare the effectiveness of
different algorithms, two groups of hyperspectral data were
used in experiments. One was from Field Imaging Spectrom-
eter System (FISS) and the other was fromOperative Modular
Imaging Spectrometer (OMIS), which was produced by the
Shanghai Institute of Technical Physics (SITP) of the Chinese
Academy of Sciences. The basic parameters of the two imag-
ing spectrometers have been shown in Table 1.

The data of FISS was collected by the vehicle platform and
placed 30 m from the ground. The size of the image to be
processed was 230×230 pixels and 86 bands has been select-
ed. The anomalies in FISS data were small planks. They
depicted in green color and put in a corn field (see Fig. 3).
Fig. 3a is a hyperspectral image cube and Fig. 3b is the digital
pictures. There are 15 pieces of planks, and their spatial sizes
are about 6–10 cm. In Fig. 3b, the white dots indicate the
actual position of these planks.

The data of OMIS was achieved by the actual flight of the
airborne platform. Image size is 250×250 pixels. Because of

the low SNR, the bands of vapor absorption are removed, and
only 80 bands have been processed in this research. The
Original image and ground truth data have shown in Fig. 4.
The anomalies have two parts. One is the vehicles in the center
of the image (i.e. labeled from T1 to T7 in Fig. 4b), and the
other is 8 white tiles at the top of the image.

Results and discussion

Four algorithms have been compared by utilizing the two
hyperspectral images. They are global LPAD, LRX, LOSP
and SSW-LPAD. The size of the outer window is set as 15×
15 pixels and the guard window is 5×5 pixels. The number of
magnificent eigenvectors was nine for FISS data and six for
OMIS data. Figure 5 is the projected image of four algorithms
for FISS data. Figure 6 is the projected image of four algo-
rithms for OMIS data.

The thresholds are calculated by exploiting the Constant
False Alarm Rate (CFAR) algorithm in the projected images.
Here, we utilized the CFAR based on the lognormal distribu-
tion. The experimental ROC curves (Matteoli et al. 2010)
have been calculated and used to assess the performance.
The ex-ROC curves are derived from counting the number
of targets correctly detected, and the corresponding number of
false alarms (see Fig. 7). Fig. 7 is the ex-ROC curves of the
four detectors for FISS and OMIS data.

The influence of the two parameters (K and G) on the
detection performances show in Fig. 8. The SSW-LPAD al-
gorithm and OMIS dataset are used here. Usually, guard
window G are determined by the targets, spatial size and
image resolution.

Firstly, on the basis of the fixed K, the experimental ROC
curves on different G are calculated, such as Fig. 8a. Obvi-
ously, G should not be too big. At the same time, it should not
be too small. Because of the mixture of spectra, there would be

Table 1 Main parameters of two spectrometers

Name of Spectrometer Parameter FISS OMIS

Spectral coverage (μm) 0.4–0.9 0.4 - 12.5

Spectral resolution (nm) 1.4 10–500

Number of band 344 128

IFOV (mrad) 1 3–5

Height of sensor (m) 30 1000

Fig. 3 FISS data cube and targets
position. a Data cube; b Digital
photo
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many pixels that have a similar spectrum as the targets in
image. If G is small, these pixels may involve in the orthog-
onal projection and the separation between targets and back-
ground will be decreased.

On the other hand, the experimental ROC curves on differ-
ent K are calculated based on the fixed G, such as Fig. 8b.

Different K were tested, and only six curves were shown here.
For the first few easily detected anomalies, the six curves were
similar. However, for the last few weak anomalies, the perfor-
mances of detectors with K greater than 200 were much better.
It meant that outer windows should be big enough to form the
local linear manifolds (at least 5~6 times more than the G).

Fig. 4 OMIS data cube and the
anomalies position. a Data cube;
b Anomalies position

Fig. 5 FISS data projected images of four algorithms. a Global LPAD; b LRX; c LOSP; d SSW-LPAD

Earth Sci Inform



Fig. 6 OMIS data projected images of four algorithms. a Global LPAD; b LRX; c LOSP; d SSW-LPAD

Fig. 7 Experimental ROC curves of four algorithms of FISS and OMIS data. a Experimental ROC curves of FISS data; b Experimental ROC curves of
OMIS data
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Small K would lead to a decrease in detection performance.
Alternatively, the bigger value of K was not necessary. In
Fig. 8b, the detection performances of detectors with K greater
than 200 were similar.

The experiments and analyses of this study have revealed
that

1) Overall, SSW-LPAD outperformed the global and spatial
local detectors, especially in background suppression (see
Figs. 5d and 6d). The texture of SSW-LPAD background
has almost disappeared in the projected image. In the case
of the same targets in the detection, SSW-LPAD algo-
rithm has a lower number of false alarms. See Fig. 7.

2) Among the structured model based detectors, SSW-LPAD
outperformed global LPAD and LOSP, especially for FISS
data. All targets have detected in case of the few false
alarms (see Fig. 7a). In these algorithms, LOSP showed
unsatisfactory results (see Figs. 5c and 6c). Themain reason
is that of using the mean spectrum was not enough to
suppress energy of the background. According to the prop-
erties of the manifolds, local spatial data might not neces-
sarily coincide with the one-dimensional linear manifold
because of the complexity of the terrain. Therefore, LOSP
would achieve the better results if more endmembers of
background data could be used in the projections.

3) Although performances of SSW-LPAD were better than
spatial local detectors, it was more outstanding in the
projected image than others for particular targets (see
target T1 in Fig. 6c). This case meant that LRX can
distinguish the targets whose spectra were similar to the
spectral neighbors, but different from the spatial neigh-
bors. That also meant, for SSW-LPAD algorithm, an
inappropriate neighborhood of local manifold might lead
to failure of detection.

In summary, there were overall better performances for the
local detectors based on spectral space window. This case
showed that it was to be a reasonable and an effective ap-
proach to handling the nonlinear manifold by using the detec-
tors based on spectral space window. It would improve the
detection of weak anomalies and decrease the false alarms.
However, there is a critical limitation that we encountered.
The computational efficiency of SSW-LPAD was low. The
calculation of the nearest neighborhoods list would be very
time consuming when the image size is big. This paper rec-
ommends a motivating future research in finding a proper way
to eliminate the aforementioned limitation and speed up the
calculation.

Conclusion

Algorithms of SSW-LPAD have been derived from the geo-
metric structure feature of low dimensional manifolds. By
applying local linear concepts in nonlinear manifold, we
established the sliding windows for neighborhood data in
spectral space and implemented detectors based on linear
projection in these local areas. Thus, the problem of global
nonlinear data processing was converted into local linear
ways; it improved the performance of detection. The experi-
mental results and comparative analysis based on real
hyperspectral image data demonstrated the effectiveness of
the proposed algorithm. At the same time, it also validated the
improvement of the local linear concept when dealing with the
nonlinear manifold data in anomaly detection.
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Fig. 8 Experimental ROC curves of SSW-LPAD algorithms andOMIS dataset based on different K andG. a Experimental ROC curves of different G; b
Experimental ROC curves of different K
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