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In recent years, automatic change detection for real-time monitoring of

electroencephalogram (EEG) signals has attracted widespread interest with a large

number of clinical applications. However, it is still a challenging problem. This paper

presents a novel framework for this task where joint time-domain features are firstly

computed to extract temporal fluctuations of a given EEG data stream; and then, an

auto-regressive (AR) linear model is adopted to model the data and temporal anomalies

are subsequently calculated from that model to reflect the possibilities that a change

occurs; a non-parametric statistical test based on Randomized Power Martingale

(RPM) is last performed for making change decision from the resulting anomaly scores.

We conducted experiments on the publicly-available Bern-Barcelona EEG database

where promising results for terms of detection precision (96.97%), detection recall

(97.66%) as well as computational efficiency have been achieved. Meanwhile, we

also evaluated the proposed method for real detection of seizures occurrence for

a monitoring epilepsy patient. The results of experiments by using both the testing

database and real application demonstrated the effectiveness and feasibility of the

method for the purpose of change detection in EEG signals. The proposed framework

has two additional properties: (1) it uses a pre-defined AR model for modeling of the

past observed data so that it can be operated in an unsupervised manner, and (2) it uses

an adjustable threshold to achieve a scalable decision making so that a coarse-to-fine

detection strategy can be developed for quick detection or further analysis purposes.

Keywords: electroencephalogram (EEG), automatic change detection, real-time monitoring, joint features,

martingale test

1. INTRODUCTION

Electroencephalogram (EEG) reflects the electrical activity of the brain, which has become an
important tool to record and comprehend the complex activities of the brain (Li et al., 2016).
Among various applications, real-time EEGmonitoring is a useful technique to observe the state of
brain function and capture the potential fluctuations of brain activities. Practical examples of this
technique include, but not limited to,

• Online monitoring of epileptic seizures using statistics of EEG (Yuan et al., 2013; Gajic et al.,
2015). The mathematical model is established via observed EEG to determine whether the
present status is normal by an online way.
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• Change detection of brain status/pattern for patients with
brain injury (O’Neill et al., 2015; Amorim et al., 2016), in
which the real-time monitoring offers a continuous record of
any seizure activity that may have been unwitnessed.
• Detection of sleep-disordered breathing events (Devuyst et al.,

2010; D’Rozario et al., 2015), where real-timemonitoring plays
an important role to record any occurrence of sleep-related
breathing disorders.
• Brain-computer interface (BCI) (Wang et al., 2012;

Abdulkader et al., 2015). Obviously, it allows for real-time
communication between the brain and the computer.

In real-time monitoring of EEG signals, one major goal is to
find change(s) between brain states where the EEG signal changes
from a normal state to the abnormal/ictal, for example, seizure
onset detection of the epilepsy can be regarded as detection of
statistical changes via monitoring EEG signals (Gao and Hu,
2013; Yan et al., 2015). In spite of that monitoring of EEG has
been an extensively studied area in the literature (Chen et al.,
2010; Mullen et al., 2015), change decisionmaking in EEG signals
is still a problem of challenge where EEG recordings are usually
checked by experienced neurologists in an off-line operation in
most of clinical diagnoses. Checking EEG recordings is a time-
consuming and dull task that is prone to lower the accuracy and
effectiveness of detection considering the massive amounts of
collected data (Mporas et al., 2015), and meanwhile it brings a
large delay because the manual observation can not achieve the
real-time in monitoring. Moreover, results of detection would be
different between neurologists because the determination largely
depends on their subjective judgments/decisions (Boashash et al.,
2015).

To address the drawbacks of manual decision making,
plentiful approaches have been proposed over the decades to
automatically detect the changes in monitoring EEG signals,
and they can be divided into two groups. In the former group,
machine learning is introduced into change detection of EEG
signals (Liu et al., 2012; Wang et al., 2016). For example,
Cloostermans et al. (2011) present a novel computer assisted
EEG interpretation system that combines eight quantitative
features into a single classifier and utilizes decision tree to
obtain a classification per brain region, which may improve
early detection of seizure activity and ischemia in critically ill
patients. Tzallas et al. (2009) make good use of time-frequency
analysis to represent the characteristics of different EEG segments
and employ artificial neural networks to classify EEG segments
for epileptic seizures. Moreover, Saghafi et al. (2017) employ
cross channels maximum and minimum to monitor the EEG
signals, then Multivariate Empirical Mode Decomposition and
classification techniques are utilized to detect a possible change
in the eye state. Although these approaches are experimentally
fast and accurate when used for detecting possible changes, they
need a supervised learning/training phase or prior knowledge to
usage.

On the other hand, the latter group of statistical analysis
based methods have been proposed where neither supervised
learning/training nor prior knowledge can be applicable during
EEG monitoring (Gao et al., 2010; Pachori and Bajaj, 2011). For

example, Saaid et al. (2011) propose a change point detection for
EEG signal application based on Particle Swarm Optimization
(PSO). According to Kortelainen et al. (2012), a multiple change
detection algorithm based on Bayesian Information Criterion
(BIC) is presented for the assessment of the switch-like change
in the signal characteristics occurring just before the awakening.
Hopfengärtner et al. (2007) design an efficient, robust and
fast method based on power spectral analysis techniques for
the off-line detection of epileptic seizures in long-term scalp
EEG recordings. These methods do not need a supervised
learning or training phase, but their performances largely rely
on retrospective analysis of the whole data. That is unsuitable
for real-time monitoring applications where the changes are
expected to be detected as soon as possible.

In this paper, we concentrate on the problem of automatic
change detection in real-time EEG monitoring and propose
a novel framework for this task. In this framework, joint
time-domain features are firstly computed to extract temporal
fluctuations of a given EEG data stream; and then, an auto-
regressive (AR) linear model is adopted to model the data and
temporal anomalies are subsequently calculated from that model
to reflect the possibilities that a change occurs; a non-parametric
statistical test based on randomized power martingale (RPM) is
last performed for performing change decision making based on
the resulting anomaly scores.

The rest of the paper is organized as follows. In section 2,
the proposed change detection framework is described in details.
Experimental results are shown in section 3. We also test the
framework in real clinical applications in section 4. A further
discussion of the results follows in section 5. Finally, section 6
concludes the paper.

2. MATERIALS AND METHODS

2.1. Materials
The tested EEG signals in this paper are taken from the publicly-
available Bern-Barcelona EEG database (Andrzejak et al., 2012).
These EEG data that have been recorded with a sampling rate
of 1,024 Hz are down-sampled to 512 Hz prior to further
analysis. They randomly select 3,750 pairs of simultaneously
recorded signals from the pool of all signals measured at
focal and non-focal EEG channels respectively, and divide the
recordings into time windows of 20 s, corresponding to 10,240
samples. The first 50 focal and non-focal types of EEG data
are selected (note that we only test x-signals in given source
file).

In our experiment, 50 new EEG data streams were
generated by concatenating each pair of a non-focal signal
record and a focal signal record to guarantee at least
one change point are contained in each testing EEG data
stream. We further down-sampled these signals with a down-
sampling rate 1:50 in our experiments to decrease the
computation burden in process. Finally, two experienced
neurologists were invited to label the change point(s) in testing
data. Some examples of testing data streams are shown in
Figure 1. We conducted the experiment in Matlab R2014a
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FIGURE 1 | Three examples of testing data streams used in our study.

without any optimization for speeding up the procedure,
and the PC for the experiment is CPU 3.70 GHz, RAM
4.00 GB.

To evaluate the performance of the proposed change detection
framework, we compared the results of automatic detection
by our method with those given by experienced neurologists.
Three statistical measurements of precision (specificity), recall
(sensitivity) and F_score are used to assess the performance of our
approach, which are respectively defined as:

precision = nm

N

recall = nm

Ng

F_score = 2× precision× recall

precision+ recall

where N is the number of changes from automatic detection
by the proposed framework, Ng is the number of all changes
labeled by invited neurologists and nm is the number of changes
which are matched-successfully to manual determination from
automatic detection. In fact, precision revels the ability to
detection accuracy while recall describes the ability to retain

or keep accurate and essential information within detected
events. Apparently, F_score provides a harmonic mean between
precision and recall, and a high value of F_score ensures
reasonably a good balance between them.

2.2. Method
In this section, the proposed method will be described in details.

2.2.1. Overview
As depicted in Figure 2, the framework is operated as follows:
(1) joint time-domain features are firstly computed to extract
temporal fluctuations of a given EEG data stream; and then, (2)
an auto-regressive (AR) linearmodel is adopted tomodel the data
and temporal anomalies are subsequently calculated from that
model to reflect the possibilities that a change occurs; (3) a non-
parametric statistical test based on randomized power martingale
(RPM) is last performed for performing change decision making
based on the resulting anomaly scores. Detailed description will
be given in the following.

2.2.2. Feature Extraction
Feature extraction for EEG signals representation plays an
important role in change detection of the data (Guerrero-
Mosquera et al., 2010; Şen and Peker, 2013). In our study, joint
time-domain features are used to represent the given EEG signals
considering that single time-domain feature may be not reliable
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FIGURE 2 | Flowchart of the proposed framework.

enough for the signal representation because of its non-stationary
characteristic (Boashash et al., 2015).

For a given EEG data stream Y = {y1, y2, ..., yN}, where yi
is the amplitude of the signal at time i and N is the length of
the stream, we employ a sliding window with a fixed length L
to extract features (The length of sliding window L can be set
empirically or with a prior estimation. Here, in this paper, the
value of L was set as 5 empirically in the following experiments)
as follows. For the signal at time k (k ≥ L), we employ five
time-domain features fj (j = 1, 2, 3, 4, 5) resulted from the
signal sequence within the sliding window {yk−L+1, ..., yk−1, yk}
to generate a joint feature corresponding to this signal1. And
the expressions and descriptions corresponding to employed
time-domain features are listed in Table 1.

In fact, we emphasize the amplitude characteristics of given
EEG signal via above time-domain features. Here, it is worth
mentioning that, the direct use of these resulting statistical
features would be straightforward and it would be unreliable
to some extent due to its sensitiveness to temporal fluctuations.
Hence, the entropy is used to combine these statistical measures
as,

qk =
5

∑

j=1
fj log fj (1)

Thus, the EEG signal with the length ofN could be represented as
a vector as {q1, q2, . . . , qN}. And an example of extracted feature
is given in Figure 3 where the extracted feature can reveal the
fluctuation of signal. It shows an obvious representation in where
the given signal changes suddenly in amplitude.

Although the resulted feature can point out the time when
signal changes largely in time-domain, it is difficult to determine
the change based on the calculated entropy because their range
can be varied from a small value to a large value. From this
perspective, an effective decision rule is still necessary. We will
give the detailed detection mechanism in the following.

1Features corresponding to the signal {y1, y2, ..., yL−1} are initialized as zeros.

TABLE 1 | Time-domain features employed for joint feature.

Feature Expression Description

f1
1
L

∑k
i=k−L+1 yi Mean of EEG signal within the sliding

window

f2 max{yk−L+1, ..., yk} Maximum of EEG signal within the

sliding window

f3 min{yk−L+1, ..., yk} Minimum of EEG signal within the

sliding window

f4
1
L

∑k
i=k−L+1 (yi − f1)

2 Variance of EEG signal within the

sliding window

f5

√

1
L

∑k
i=k−L+1 (yi − f1)

2 Standard deviation of EEG signal

within the sliding window

2.2.3. Problem Formulation
We formulate the problem of change detection in this subsection.
Suppose that the given EEG signal Y has been represented as
{qt}(t = 1, 2, ...,N), we employ an auto-regressive (AR) model
to describe the signals without change:

qt = µ+ βt + εt (2)

where µ and β are themean and trend of the EEG series and β is
constrained as constant of 0 due to the natural property of EEG
signals, that is, the values of EEG data always oscillate around
zero, the errors {εt} are zero mean, i.e., E[εt] = 0, which belongs
to independent and identical distribution (I.I.D). Hence, we can
obtain the expectation of {qt} based on the Equation (2), which
is computed as E[qt] = µ + βt + E[εt] = µ + βt. In clinical
applications, for an EEG sequence Y = {q1, q2, ..., qN} without
obvious change(s), the expectation of {qt} can be estimated
approximately as the sample mean as

q̄t =
1

N

N
∑

t=1
qt ≃ µ+ βt (3)
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FIGURE 3 | An example of downsampled EEG signal and extracted feature.

Here, it is worth mentioning that, Equation (3) can be utilized to
estimate two important parameters µ and β in Equation (2) by
computed q̄ts.

Assuming that the given EEG signal satisfies the model
Equation (2) (i.e., it can be generated from this regressionmodel),
we regard that the EEG sequence is a normal state, i.e., no changes
occurs, but if it does not, we consider the signal is in an abnormal
state, i.e., there is a change in this EEG sequence. Once a change
is detected, the current time is determined as one change point.
Apparently, the parameters in regression model at change time
are different from those resulted from the previous established
model. Let us suppose that the model in Equation (2) has been
changed from (µ1,β1) to (µ2,β2) at time c. This change can
be described by a two-phase regression model extended from
Equation (2) (Wang, 2003), as

qt =
{

µ1 + β1t + εt , 1 ≤ t ≤ c− 1

µ2 + β2t + εt , c ≤ t ≤ N
(4)

which allows ‘‘both step(mean)-type (µ1 6= µ2) and trend-type
(β1 6= β2)” changes. A null and alternative hypotheses are given
as:

H0 : µ1 = µ2 and β1 = β2

HA : µ1 6= µ2 and/or β1 6= β2
(5)

If the null hypothesis H0 is rejected, i.e., HA is true, the present
time is regarded as a change. Now, the problem is how to quantify
the data distribution of Y from this model and discriminate the
normal and abnormal states.

2.2.4. Change Detection
The processing of change detection is shown as Figure 4. A
prediction error {et} is employed to measure the amount of
the temporal fluctuations of the EEG data distribution in Y .
Assuming that (µ1,β1) has already been estimated in past signal

by Equation (3), the linear prediction q̂t at time t can be obtained
by Equation (2). Denoting the prediction error as et at time t, we
first compute it as

et = ‖qt − q̂t‖ (6)

where ‖ · ‖ is the Euclidean distance metric. Particularly,
considering Equations (4) and (6) together, the value of et
(i.e., et = ‖1µ + 1βt‖ + εc, where 1µ = (µ1 − µ2)
and 1β = (β1 − β2)), can be divided into two cases as
follows:

• In the case of t < c where H0 in Equation (5) is true, et
is approximately zero or very small, which demonstrates the
observed signal obeys the normal data distribution;
• when t = c which satisfies HA in Equation (5), et will be high

which implies a change occurs and the observed data after the
change time c are considered as another data distribution (i.e.,
abnormal state).

In order to reduce the computation cost, we use an
alternative way to determine q̂(t) on the basis of Equation
(3) as: q̂t ← q̄t , since the trend β has been constrained
as constant of 0 as made previously in this paper. This
alternation can effectively speed up the computation of q̂t
in practical execution because it avoids the large time cost
on estimating the parameters µ and β . Moreover, in order
to remove the effect of the alternation, we then standardize
the resulted {et} into a series of standardized {zt} by zt =
(et − ê)/σ where ê and σ are the sample mean and standard
deviation of {et}. Last, on the basis of {zt}(t = 1, 2, . . . ,N),
we can calculate the anomaly score st of each zt based on
the already-observed data {z1, z2, . . . , zt−1} inspired by Ho and
Wechsler (2010):

st = s({z1, z2, . . . , zt−1}, zt) = ‖zt −Ht−1‖ (7)
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FIGURE 4 | Overview of change detection.

where Ht−1 = 1
t−1

∑t−1
i=1 zi and ‖ · ‖ is the

Euclidean distance metric. On the basis of resulted
anomaly scores {st}(t = 1, 2, . . . ,N), the current
problem is how to find the time c when the change
occurs.

To achieve automatic detection of the change in {st}, a non-
parametric statistical test based on randomized power martingale
(RPM) (Vovk et al., 2003) is employed for this task. Detailed
computation procedure is described as follows.

First, on the basis of {s1, s2, ..., st}, the RPM is constructed by

M(t) =
t

∏

i=1
(ξ p̂ξ−1

i ) (8)

where ξ ∈ (0, 1) (in the following experiment, it was set as
0.8 since any value of ξ ∈ [0.8, 1) has been investigated the
effectiveness in Ho andWechsler, 2010), and p̂is are the p̂i-values
computed from the following function:

p̂i =
#{j : sj > si} + θi#{j : sj = si}

i
(9)

where #{·} is a counting function, j ∈ {1, 2, . . . , i − 1} and θi is
randomly chosen from a uniform distribution of [0, 1] at time i
(Vovk et al., 2005). It is worth mentioning that, when the data
stream includes a change, i.e., the stream does not satisfy the
exchangeability, the p̂i-values using Equation (9) are no longer
uniformly distributed in [0, 1] due to the fact that the new data is
likely to have higher anomaly scores compared to the data already

observed. Here, one observes that, sinceM(t) =
∏t

i=1(ξ p̂
ξ−1
i ), no

re-computation is required for calculatingM(t).

Then, since obviously
∫ 1
0 ξ p̂

ξ−1
t = p̂

ξ
t |10 = 1, the conditional

expectation of M(t), t ∈ {1, 2, . . . , c} with respect to the past
p̂i-values, i.e., {p̂1, p̂2, . . . , p̂t} is given by

E[M(t)|p̂1, p̂2, ..., p̂t] = M(t − 1)

∫ 1

0
ξ p̂

ξ−1
t = M(t − 1) (10)

This property of “the expectation of the next value is the same
as the current value” is so-called martingale, which implies
E[M(t)] = E[M(1)] = 12. Suppose that M(t), t ∈ {1, 2, . . . , c} is
a nonnegative martingale, the Doob’s Maximal Inequality (Doob,
1962) is then satisfied for any t ∈ {1, 2, ..., c}:

P(max
0≤t≤c

M(t) ≥ λ) ≤ 1

λ
(11)

where λ is a positive number. Above inequality shows that not all
M(t)s are higher than a pre-defined threshold, which determines
an upper bound for the false alarm rate (i.e., a given probability)
for detecting a change when there is none. In other words, the
value of λ is determined by the false alarm rate that one is willing
to accept (Ho and Wechsler, 2010). However, the false alarm
rates in different applications are often chosen by cross-validation
or empirical setting. For the decision of martingale test, the
Equation (11) can be transformed to the following inequality:

0 < M(t) < λ (12)

The inequality shown in Equation (12) means that, in the
martingale-test based change detection, one can reject the null
hypothesis H0 in Equation (5) when M(t) ≥ λ. In other words,
HA: a change occurs on the time c as long as M(c) ≥ λ. This
means, decision on a change-point at time c is equivalent to
testing the following hypothesis by combing Equations (5) and
(12) as

H0 : 1 < M(c) < λ

i.e., µ1
v = µ2

v and β1 = β2
: no change

HA : M(c) ≥ λ

i.e., µ1
v 6= µ2

v and/or β1 6= β2
: change occurs

(13)

Once the change is detected, the system will take appropriate
actions to maintain the operation and to avoid accidental

2M(1) is initialized as 1 in settings.
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consequences. Otherwise, the martingale test continues to
operate as long as 0 < M(t) < λ.

2.2.5. Algorithm
Suppose that we have obtained measured anomalies {st}(t =
1, 2, ..., n), the computation procedure of change detection is
given in Algorithm 1 as follows.

Algorithm 1 Procedures of change detection.
STEP 1 Set the value of λ in Eq. (13) for change decision making and

initialize the set of changes C = ∅;
STEP 2 Set beginning time t0 = 1 for martingale construction and initialize

martingale valueM(t0) = 1;
STEP 3 Set time t = t0 + 1 for martingale starting;
STEP 4 Calculate the martingale value by Eq. (8);
STEP 5 Determine the present time by Eq. (13): if it rejects the null

hypothesis H0 via the threshold λ in Eq. (13), add the corresponding time
to C and setM(t) = 1, t0 = t, t = t0+1 successively. After that, goto STEP
4; otherwise, update t = t + 1 and then goto STEP 4;

STEP 6 The iterative process stops when the monitoring EEG signals Y has
been processed completely or at a stopping time.

3. RESULTS

As the description in Equation (13) that a threshold λ is utilized
to control the sensitivity of the detection, we thus gave the results
of precision, recall and F_score in different values of λ from 2 to
9 with a step of 0.5 in Figure 5, respectively. The best precision
(96.97%) is received when λ = 5.5 while the best recall (97.66%)
is obtained when λ = 2. Meanwhile, we can notice that a larger

value of precision is performed while a smaller value of recall
generates when λ increases. In fact, the value of λ controls the
trade-off between precision and recall, and the F_score shows
this performance as shown in Figure 5. The F_score receives
the most promising value (93.75%) with when λ = 3. We
also provided three examples of detection results of different
EEG sequences when λ = 3 in Figure 6. The changes labeled
manually by neurologists (red line) are shown in top figure in
each example. We can notice that only one change is chosen out
in the two examples of Figures 6A,B. And three changes in the
examples shown in Figure 6C are captured by the framework.
The experimental results demonstrate its promising accuracy of
detection and ability to keep essential seizure within detected
events.

For automatic detection in real-time monitoring, the actual
processing time is very important for clinical applications. Thus
we also presented the computation time in Figure 7. The average
computation time is about 0.15s. It can be seen that, the phase of
change detection is very fast in computation for all tested values
of λ, that is faster enough than real-timeness for each EEG signal
sequences, which demonstrates the efficiency of our proposed
mechanism.

4. APPLICATION TO REAL EEG
MONITORING APPLICATION

We introduced the proposed framework into the real monitoring
of epilepsy seizure based on EEG signals (as shown in Figure 8).
The EEG record data and surveillance videos were collected
from an epilepsy patient, which lasted for 6 h. The seizure

FIGURE 5 | Results of precision, recall and F_score in different values of λ.
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FIGURE 6 | Detection results of three EEG examples when λ = 3. (A) Detection result of test signal Ind0005. (B) Detection result of test signal Ind0009. (C) Detection

result of test signal Ind0042.
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time was recorded by our framework. Meanwhile, an expert
observed the EEG recording and labeled the seizure with
the assist of monitoring videos. We compared the detection
results by our framework with expert’s decision. As a result,

FIGURE 7 | The computation time in different values of λ, where ave

corresponds to the average computation time of the proposed framework.

FIGURE 8 | An example of surveillance image in patient monitoring.

30 seizures were detected while there were only 24 seizures
given by the expert. We listed the detection results by our
framework and expert’s decision in Table 2 and showed an
example of EEG recording with a seizure reported by our
framework in Figure 9. We can notice that six seizures were
detected falsely according to expert’s decision. On the one hand,
the threshold value may be too sensitive for seizure detection
(the threshold λ was set as 3 in the experiment). It still needs
more clinical testing for determining the suitable threshold.
On the other hand, two successive seizure with little time
interval was reported by our framework (e.g., 03:22:27 and
03:22:42 in Table 2), which can be regarded as one seizure.
As a result, the proposed framework can detect the EEG
change effectively although it has a false alarm rate in clinical
applications.

5. DISCUSSION

Automatic change detection in real-time monitoring of EEG
signals is a matter of great significance in theory and clinical
practice, which provides an important assistant to observation
and diagnosis for the patient undergoing neurological
illness. A reliable change detection system can reduce the
manual mistakes resulted by neurologists and improve the
efficiency.

In this paper, we have proposed a novel framework for
automatic change detection in real-time monitoring of EEG
signals, which has three key properties:

a) Computational Efficiency. The framework can be executed
very fast, which is experimentally even faster than real-
timeness. This property makes it more suitable for
change detection in real-time monitoring compared with
retrospective analysis based methods (e.g., Saaid et al., 2011;
Kortelainen et al., 2012).

b) Unsupervision. Different from machine learning based
approaches (e.g., Kumar et al., 2014; Yuan et al., 2016), our
framework does not require any prior knowledge about the
EEG signal nor a supervised learning/training phase, which is
convenient and simple in real usages.

c) Scalability. In our framework, change detection can be from-
coarse-to-fine by only adjusting one parameter λ. Theoretically
a smaller number of change will be selected out with a
greater value of λ, and vise versa. This achieves a hierarchical
analysis/processing of EEG monitoring to meet different

TABLE 2 | The detection results by the proposed framework:“
√
” means that the results are endorsed by the expert’s decision while “O” means the false detection.

Seizure Expert Seizure Expert Seizure Expert Seizure Expert Seizure Expert

00:06:23
√

01:11:07
√

02:42:21
√

03:54:04
√

05:01:32
√

00:19:40
√

01:23:56
√

02:56:03
√

04:06:11
√

05:17:39
√

00:31:12
√

01:33:25 O 03:08:43
√

04:21:29
√

05:29:45
√

00:45:30
√

01:46:10
√

03:22:27
√

04:27:33 O 05:47:25
√

00:56:19
√

02:13:31
√

03:22:42 O 04:48:23
√

05:53:15 O

00:59:23 O 02:29:07
√

03:38:27
√

04:50:52 O 05:54:02 O
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FIGURE 9 | An example of EEG recording when seizure is reported by our framework.

FIGURE 10 | From top to bottom: detection results when λ = 2, 3, 4, respectively.
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clinical demands. For example, a patient with serious brain
injuries will need a sensitive detection with a smaller value of
λ in order to avoid any omission.

In detail, it achieves a promising performance of precision
(96.97%) and recall (97.66%). Meanwhile, it obtains the best
performance of balance between precision (93.75%) and recall
(93.75%) when λ = 3. In addition, the computation speed
is sufficiently fast to achieve the real-time monitoring and
analysis. Note that the framework can be from-coarse-to-fine
by only adjusting one parameter λ. As seen in an example
given in Figure 10, we give the different detection results when
λ = 2, 3, 4, respectively. It can be noticed that only one
change is captured when λ = 4 while three changes are
chosen out when λ = 3. The scalability of our framework
provides an adjustable detection for patient with different
serious state of neurological illness. For example, the threshold
value of λ is supposed to be little for the patient undergoing
serious brain injury, because declaring a patient “dead” is a
very tricky procedure and it requires a long-time monitoring
during which the doctor visually inspects the EEG tracings
looking for any change that might account for restart of
cerebral activity (La Foresta et al., 2009). They need a more
sensitive detection so that any tiny change can not be omitted.
In other words, their detection in such a situation needs a
larger recall to keep more essential information as much as
possible.

Compared with those approaches based on machine learning,
our proposed framework is unsupervised. Machine learning
based methods such as Cloostermans et al. (2011) and Zhang
et al. (2015), often need a supervised learning or training phase,
which will be not reliable in the case that we do not have
enough prior knowledge or training samples for the learning
phase. Moreover, the process of classification/recognition often
segments the EEG signals into many epochs with fixed length
with an expectation of improving the accuracy of detection,
but this strategy is not suitable for real-time applications
that require immediate response when the change occurs.
On the contrast, our framework determines the state of
current time by only using the past data with an online
operation way which does not require any prior knowledge
about the processing EEG signals so that it can be employed

directly for the analysis of new EEG signal with unknown
characteristics.

The proposed approach has a high computational efficiency,
which brings a much smaller detection delay compared with
the results obtained from retrospective analysis (e.g., Saaid
et al., 2011; Kortelainen et al., 2012). In some clinical
applications where a timely alarm is required, automatic
detection with a smaller detection delay is more helpful for
medical workers to take actions. Our framework is carried out
in an online way, which makes it more suitable for the real-
time monitoring and analysis in clinical applications such as the
continuous monitoring of coma patient in the intensive care unit
(ICU).

6. CONCLUSION

In this paper, we have proposed an efficient, unsupervised and
scalable framework for automatic change detection in real-
time monitoring of EEG signals. Our main contributions are
summarized into two folds: (1) joint time-domain features are
used for EEG signals representation, which is able to reveal the
fluctuation of signal in amplitude, especially non-stationary EEG
signals. (2) real-time change detection is proposed based on
RPM, which can be implemented in an online operation without
any supervised training phase or prior knowledge. Meanwhile, it
has a small detection delay in operation. Through experiments
conducted on the Bern-Barcelona EEG database and real
clinical application, we demonstrated promising performances
of the proposed method indicating that the framework can be
effectively applicable in future clinical applications.
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