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Abstract

The appearance of a particular object depends on
both the viewpoint from which it is observed and the
light sources by which it is lluminated. If the appear-
ance of two objects is never tdentical for any pose or
lighting conditions, then — in theory — the objects can
always be distinguished or recognized. The question
arises: What s the set of images of an object un-
der all lighting conditions and pose? In this paper,
we consider only the set of images of an object un-
der variable illumination (including multiple, extended
light sources and attached shadows). We prove that the
set of n-pizel images of a convex object with a Lamber-
tian reflectance function, itlluminated by an arbitrary
number of point light sources at infinity, forms a con-
ver polyhedral cone in IR™ and that the dimension of
this illumination cone equals the number of distinct
surface normals. Furthermore, we show that the cone
for a particular object can be constructed from three
properly chosen images. Finally, we prove that the set
of n-pizel images of an object of any shape and with
an arbitrary reflectance function, seen under all possi-
ble tllumination conditions, still forms a convexr cone
in IR™. These results immediately suggest certain ap-
proaches to object recognition. Throughout this paper,
we offer results demonstrating the empirical validity of
the tllumination cone representation.

1 Introduction

One of the complications that has troubled computer
vision recognition algorithms is the variability of an
object’s appearance from one image to the next. With
slight changes in lighting conditions and viewpoint of-
ten comes large changes in the object’s appearance.
To handle this variability methods usually take one of
two approaches: either measure some property in the
image of the object which is; if not invariant, at least
insensitive to the variability in the imaging conditions,
or model the object, or part of the object, in order to
predict the variability.

Nearly all approaches to object recognition have
handled the variability due to illumination by using
the first approach; they have concentrated on edges
in the images, i.e. the discontinuities in the image in-
tensity. Because discontinuities in the albedo on the
surface of the object or discontinuities in albedo across
the boundary of the object generate edges in images,
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these edges tend to be insensitive to a range of illumi-
nation conditions.

Yet, edges do not contain all of the information use-
ful for recognition. Furthermore, objects which are not
composed of piecewise constant albedo patterns often
produce inconsistent edge maps. The reason most ap-
proaches have avoided using the rest of the intensity
information is because its variability under changing
illumination has been difficult to tame. Only recently
have “appearance-based” approaches been developed
in an effort to use intensity information to model or
learn a representation that captures a large set of the
possible images of an object under pose and/or illu-
mination variation [6, 9, 12, 13].

In this paper, we consider some of the fundamental
issues that must be addressed if recognition is to be
performed under variation in illumination. Our goal
is to develop methods that are insensitive to extreme
variation in lighting conditions — variation for which
edge based methods would surely fail. To this end,
we answer a number of questions: If an image with n
pixels is treated as a point in IR", what is the set in IR"
of all images of an object under varying illumination?
Is this set an incredibly complex, but low-dimensional
manifold in the image space? Or does the set have a
simple, predictable structure? Can a finite number of
images characterize this set? If so, how many images
are needed?

The image formation process for a particular ob-
ject can be viewed as a function of pose and lighting.
Since an object’s pose can be represented by a point

in IR® x SO(3) (a six dimensional manifold), the set
of n-pixel images of an object under constant illumi-
nation, but over all possible poses, 1s at most six di-
mensional. Murase and Nayar take advantage of this
structure when constructing appearance manifolds [6].
However, if the pose 1s held constant, the variability
due to illumination may be much larger as the set of
possible lighting conditions is infinite dimensional.

Nonetheless, we will show that the set of all im-
ages of a convex object with a Lambertian reflectance
function is a convex polyhedral cone in IR" where n
is the number of pixels in each image, and that the
dimension of the cone is equal to the number of dis-
tinct surface normals, independent of the albedo pat-
tern. Furthermore, we will show that this cone can be
determined from three properly chosen images of the
object. Empirical investigations support the validity
of this representation, and these results suggest some
specific recognition algorithms.



2 The Illumination Cone

In this section, we will develop our illumination
cone representation. The development will be based
upon two assumptions: First, we assume that the sur-
faces of objects have Lambertian reflectance functions.
Second, we assume that the shape of an object’s sur-
face 1s convex. While the theorems we state and prove
are based upon these two assumptions, we will demon-
strate the validity of the illumination cone representa-
tion by presenting results on images of objects which
have neither purely Lambertian surfaces, nor convex
shapes.

2.1 Developing the Tllumination Cone

To begin let us assume a Lambertian model for re-
flectance with a single point light source at infinity.

Let x denote an image with n pixels. Let B € IR"*?
be a matrix where each row of B is the product of
the albedo with the inward pointing unit normal for a
point on the surface projecting to a particular pixel;
here we assume that the surface normals for the set of
points projecting to the same image pixel are identical.

Let s € IR? be a column vector signifying the prod-
uct of the light source strength with the unit vector
for the light source direction. Thus, a convex object
with surface normals and albedo given by B, seen un-
der illumination s, produces an image x given by the
following equation

x = max(Bs, 0), (1)

where max(+,0) zeros all negative components of the
vector Bs [5]. Note that the negative components of
Bs correspond to the shadowed surface points and are
sometimes called attached shadows [11]. Also, note
that convexity of the object’s shape is needed to guar-
antee that the object does not cast shadows on itself.

If the object 1s seen under illumination by &k point
light sources at infinity, the image x is given by the
superposition of images which would have been pro-
duced by the individual light source, i.e.

k
x = Z max(Bs;, 0)
i=1

where s; is a single light source. Note that extended
light sources at infinity can be handled by allowing an
infinite number of point light sources.

The product of B with all possible light source di-
rections and strengths sweeps out a 3-D subspace in
the n dimensional image space [11]; we call the sub-
space created by B the illumination subspace £, where

L= {x|x=Bs,VseR?.

When a single light source is parallel with the cam-
era’s optical axis, all visible points on the surface are
illuminated, and, consequently, all pixels in the image
have non-zero values. The set of images created by
scaling the light source strength and moving the light
source away from the direction of the camera’s opti-
cal axis such that all pixels remain illuminated can be
found as the relative interior of a set Ly defined by
the intersection of £ with the non-negative orthant of

IR".> We will show presently that £ is a convex cone
in IR". However, to show this, we first need the defi-
nition of convexity and the definition of a cone [2, 10].

Definition 1 X C IR" is conver iff for any two points
X1,X2 € X, Ax1 + (1 = A)xg € X for every A € [0,1].

Definition 2 X C IR" is a cone iff for any point x €
X, ax € X for every a > 0.

With these definitions, we state the following lemma:

Lemma 1 The set of tmages Ly ts a conver cone in

R".

Proof. To prove that Ly is convex, we appeal to the
definition of convexity. Now Lo = LN {x | x € R",
with all components of x > 0}. Because £ is a linear
subspace, if x1,x5 € £, then Ax;+(1—X)x2 € £. And,
if x; and x3 both have all components non-negative,
then Ax; 4 (1 — A)x3 has all components non-negative
for every A € [0, 1]. Thus, Ax; + (1 — M)x2 € Ly.

To prove that Ly is a cone, we appeal to the def-
inition of a cone. Because £ is a linear subspace, if
x € L then ax € £. And, if x has all components non-
negative, then ax has all components non-negative for
every a > 0. Therefore ax € L;. So it follows that
Lo is a cone. ||

As we move the light source direction further from
the camera’s optical axis, points on the object will fall
into shadow. Naturally, which pixels are the image
of shadowed or illuminated surface points depends on
where we move the light source direction. If we move
the light source all the way around to the back of
the object so that the camera’s optical axis and the
light source are pointing in opposite directions, then
all pixels are in shadow.

Let us now consider all possible light source direc-
tions, representing each direction by a point on the
surface of the sphere; we call this sphere the #llumi-
nation sphere. The set of light source directions for
which a given pixel in the image is illuminated cor-
responds to an open hemisphere of points; the set of
light source directions for which the pixel is shadowed
corresponds to the other hemisphere of points. A great
circle on the illumination sphere divides these sets.

Each of the n pixels in the image has a correspond-
ing great circle on the illumination sphere. The col-
lection of great circles carves up the surface of the
illumination sphere into cells. See Fig 1.

The collection of light source directions contained
within a single cell on the illumination sphere pro-
duces a set of images, each with the same pixels in
shadow and the same pixels illuminated; we say that
these images have the same “shadowing configura-
tions.” Different cells produce different shadowing
configurations.

1By orthant we mean the high-dimensional analogue to
quadrant, i.e. the set {X | X € R", with certain components
of X > 0 and the remaining components of X < 0}. By non-
negative orthant we mean the set {X | X € R"”, with all com-
ponents of X > 0}.
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Figure 1: The Illumination Sphere: The set of all
possible light source directions can be represented by
points on the surface of a sphere; we call this sphere
the lumination sphere. Great circles corresponding
to individual pixels divide the illumination sphere into
cells of different shadowing configurations. The arrows
indicate the hemisphere of light directions for which
the particular pixel is illuminated. The cell of light
source directions which produce Ly, the set of images
in which all pixels are illuminated, is labeled in the
figure. Each of the other cells produce the £;, 0 < i <
n(n—1)+1.

We call the cell on the illumination sphere contain-
ing the collection of light source directions which pro-
duce images with all pixels illuminated the bright cell.
Thus, the collection of light source directions from the
interior and boundary of the bright cell produces the
set of images Lo. To determine the set of images pro-
duced by another cell on the illumination sphere, we
need to return to the illumination subspace L.

The illumination subspace £ not only slices through
the non-negative orthant of IR™, but other orthants in
IR” as well. Let £; be the intersection of the illumi-
nation subspace £ with an orthant ¢ in IR" through
which £ passes. Certain components of x € £; are al-
ways negative and others always greater than or equal
to zero. Not surprisingly, each £; has a correspond-
ing cell of light source directions on the illumination
sphere. Note that £ does not slice through all of the
2" orthants in IR", but at most n(n — 1) + 2 orthants
(see the proof of Theorem 1). Thus, there are at most
n(n—1)+2 sets £;, or cells on the illumination sphere.

The set of images produced by the collection of light
source directions from a cell other then the bright cell
can be found as a projection P; of all points in a par-
ticular set £;. The projection F; is such that it leaves
the non-negative components of x € £; untouched,
while the negative components of x become zero. We
denote the projected set by P;(L;).

Lemma 2 The set of images P;(L;) is a convex cone

in IR".

Proof. By the same argument used in the proof of
Lemma 1, £; is a convex cone. Since the linear pro-
jection of convex cone is itself a convex cone, P;i(L;)
1s a convex cone. ||

Since P;(L;) is the projection of £;, it is at most
three dimensional. Each P;(L;) is the set of all im-
ages such that certain pixels are illuminated, and the
remaining pixels are shadowed. Let Py be the iden-
tity, so that Py(Lg) = Lo is the set of all images such
that all pixels are illuminated. The number of possible
shadowing configurations is the number of orthants in
IR™ through which the illumination subspace £ passes,
which in turn is the same as the number of sets P;(L;).

Theorem 1 The number of shadowing configurations
is at most m(m — 1) + 2, where m < n is the number
of distinct surface normals.

Proof. Each of the n pixels in the image has a corre-
sponding great circle on the illumination sphere, but
only m of the great circles are distinct. The collec-
tion of m distinct great circles carves up the surface
of the illumination sphere into cells. Each cell on the
illumination sphere corresponds to a particular set of
images P;(L;). Thus, the problem of determining the
number of shadowing configurations is the same as the
problem of determining the number of cells on the il-
lumination sphere. If every vertex on the illumination
sphere is formed by the intersection of only two of the
m distinct great circles (i.e. if no more than two sur-
face normals are coplanar), then it can be shown by
induction that the illumination sphere is divided into
m(m — 1) + 2 cells. If a vertex is formed by the inter-
section of three or more great circles, there are fewer

cells. |

Thus, the set U of images of a convex Lambertian
surface created by varying the direction and strength
of single point light source at infinity is given by the
union of at most n(n — 1) + 2 convex cones, i.e.

n(n—1)+1
U = {x | x = max(Bs,0),Vs € R’} = U

i=0

Pi(L;).

From this set, we can construct the set C of all pos-
sible images of a convex Lambertian surface created
by varying the direction and strength of an arbitrary
number of point light sources at infinity,

3
C={x:x= ZmaX(Bsi,O),Vsi e R®> Vk e Z1}
i=1

where Z* is the set of positive integers.

Theorem 2 The set of images C s a convex cone in

R".

Proof. The proof that C is a cone follows trivially
from the definition of C. To prove that C is convex,
we appeal to a theorem for convex cones which states
that a cone C is convex iff x; + x5 € C for any two
points x1,x2 € C [2]. So the proof that C is convex
follows trivially from the above definition of C. ||



We call C the llumination cone, and every object
has its own illumination cone. Note that each point in
the cone is an image of the object under a particular
lighting configuration, and the entire cone 1s the set of
images of the object under all possible configurations
of point light sources at infinity.

Theorem 3 The illumination cone C can be com-
pletely determined by three properly chosen images,
1.e. three linearly independent images from the set Ly,
without any knowledge of the light source directions.

Proof. The illumination cone C is completely deter-
mined by the illumination subspace £, which is de-
termined both by B, which in turn is determined by
three linearly independent images in £y and by the
corresponding light source directions. As has been
known to the photometric stereo community for over
a decade, without prior knowledge of the light sources,
we cannot determine B uniquely. To see this note that
for any arbitrary invertible 3 x 3 linear transformation
AeGL(3)
Bs = (BA)(A™1's),

i.e. the albedo and surface normals are transformed
by A, while the light source is transformed by A~!.
Therefore, we can only recover B up to an arbitrary
invertible linear transformation B* = BA. Neverthe-
less, even without prior knowledge of the light source
directions or the object geometry, we can still use B*
to determine what the object will look like under dif-
ferent illumination: it is easy to show that £ = {x |

x = B*s,Vs € IRS} = {x | x = Bs,Vs € IRB}, see
1],

Thus, for a convex object with Lambertian reflectance,
we can determine its appearance under arbitrary illu-
mination from as few as three images of the object.
Knowledge of the light source strength or direction
is not needed, see also [11]. What may not be im-
mediately obvious is that any point within the cone
C (including the boundary points) can be found as a
convex combination of the rays (images) produced by
light source directions lying at the m(m — 1) intersec-
tions of the great circles. Furthermore, because the
cone is constructed from a finite number of extreme
rays (images), the cone is polyhedral.

We should point out that nothing in the proof of
Theorem 2 required assumptions about the shape of
the object, the nature of the light sources, or the re-
flectance function for the object’s surface. Thus, we
can state a more general theorem about the set of im-
ages of an object under varying illumination:

Theorem 4 The set of n-pizel images of any object,
seen under all possible lighting conditions, is a convex
cone in IR™.

2.2 Empirical Investigation of the Tllumi-
nation Cone

To demonstrate the power of these concepts, we have

constructed the illumination cone for two different

scenes: a human face and a desktop still life. To con-

struct the cone for the human face, we used images
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Figure 2: The top half of the figure shows three of
the original images used to construct the illumination
subspace L of the face. The bottom half of the figure

shows three basis images, lying in L, that span the
illumination subspace £ for the face.

from the Harvard Face Database [4], a collection of
images of faces seen under a range of lighting direc-
tions. For the purpose of this demonstration, we used
the images of one person, taking six images from the
set Lo and using singular value decomposition (SVD)
to construct a 3-D basis for the illumination subspace
L. Note that this 3D linear subspace differs from the
affine subspace constructed using the Karhunen-Loeve
transform: the mean image is not subtracted before
determining the basis vectors as in the Eigenpicture
methods [12; 13].

The illumination subspace was then used to con-
struct the illumination cone C. We generated novel
images of the face as if illuminated by one, two, or
three point light sources by randomly sampling the
illumination cone. Rather than constructing an ex-
plicit representation of the halfspaces bounding the
illumination cone, we sampled £, determined the cor-
responding orthant, and appropriately projected the
image onto the illumination cone. Images constructed
under multiple light sources simply correspond to the
superposition of the images generated by each of the
light sources.

The top half of Fig. 2 shows three of the images of
a person’s face that were used to construct the basis of
the linear subspace £. The bottom half of Fig. 2 shows
three basis images that span £. The three columns of
Fig. 3 respectively comprise sample images from the
illumination cone for the face with one, two, or three
light sources.

There are number of interesting points to note
about this experiment. There was almost no shad-
owing in the training images yet there are strong at-
tached shadows in many of the sample images. They
are particularly distinct in the images generated with
a single light source. Notice for example the sharp
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Figure 3: Random Samples from the Illumina-
tion Cone of a Face: Each of the three columns
respectively comprises sample images from the illumi-
nation cone with one, two and three light sources.

shadow across the ridge of the nose in column 1, row
2 or the shadowing in column 1, row 4 where the light
source is coming from behind the head. Notice also
the depression under the cheekbones in column 2, row
5, and the cleft in the chin revealed in column 1, row
3. For the image in column 3, row 2, two of the light
sources are on opposite sides while the third one is
coming from below; notice that both ears and bottom
of the chin and nose are brightly illuminated while

Basis Images

Figure 4: The top half of the figure shows three of
the original images used to construct the illumination
subspace £ of the still life. The bottom half of the
figure shows three basis images, lying in Ly, that span
the illumination subspace £ for the still life.

2 Lights 3 Lights

Figure 5: Random Samples from the Illumina-
tion Cone of a Desktop Still Life: Each of the
three columns respectively comprises sample images
from the illumination cone with one, two and three
light sources.

that rest of the face is darker.

To construct the cone for the desktop still life, we

used our own collection of nine images from (or near)
the set Lq. The top half of Fig. 4 shows three of
these images. The bottom half of Fig. 4 shows the



three basis images that span £. The three columns of
Fig. 5 respectively comprise sample images from the
illumination cone for the desktop still life with one,
two or three light sources.

The variability in illumination in these images is so
extreme that the edge maps for these images would
differ drastically. Notice in the image in column 1,
row 4 that the shadow line on the bottle is distinct
and that the left sides of the phone, duck, and bottle
are brightly illuminated. Throughout the scene, notice
that those points having comparable surface normals
seem to be similarly illuminated. Furthermore, notice
that all of the nearly horizontal surfaces in the bottom
two images of the first column are in shadow since the
light is coming from below. In the image with two
light sources shown at the bottom of column 2, the
sources are located on opposite sides and behind the
objects. This leads to shadow line in the center of the
bottle. The head of the wood duck shows a similar
shadowing where the front and back of the head are
illuminated, but not the side.

3 Dimension of the Illumination Cone
In this section, we investigate the dimension of the
illumination cone, and show that it is equal to the
number of distinct surface normals. We also present
experimental results validating this claim.

3.1 Determining the Dimension

Given that the set of images of an object under
variation in illumination is a convex cone, it is natural
to ask what is the dimension of the cone in IR"7 By
this we mean, what is the span of the vectors in the
illumination cone C?7

Why do we want to know the answer to this ques-
tion? Because the complexity of the cone, will almost
certainly dictate the nature of the recognition algo-
rithm. For example, if the illumination cones are 1-D,
i.e. rays in the positive orthant of IR"™, then a recog-
nition scheme based on normalized correlation could
handle all of the variation due to illumination. How-
ever, 1n general the cones are not one dimensional. To
this end, we offer the following theorem.

Theorem 5 The dimension of the tllumination cone
C s equal to the number of distinct surface normals.

Proof. As for the proof of Theorem 1, we again repre-
sent each light source direction by a point on the sur-
face of the illumination sphere. Each cell on the illu-
mination sphere corresponds to the light source direc-
tions which produce a particular set of images P;(£;).
For every image in a set P;(L;) certain pixels always
equal zero, i.e. always in shadow. There exists a cell
on the illumination sphere corresponding to the light
source directions which produce Ly, the set of images
in which all pixels are always illuminated — we call
this the bright cell. There exists a cell corresponding
to the light source directions which produce a set of
images in which all pixels are always in shadow — we
call this the dark cell. Choose any point s; within the
bright cell. The point s4 = —s; is antipodal to s; and
lies within the dark cell. Draw any half-meridian con-
necting s; and sg. Starting at s, follow the path of
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Figure 6: Examples of Illumination Spheres: The
figure shows a view of the illumination sphere for a
planar, cylindrical, and spherical object.

the half-meridian; it crosses m distinct great circles,
and passes through m different cells before entering
the dark cell. Note the path of the half-meridian cor-
responds to a particular path of light source directions,
starting from a light source direction producing an im-
age in which all pixels are illuminated and ending at
a light source direction producing an image in which
all pixels are in shadow. Each time the half-meridian
crosses a great circle, the pixel corresponding to the
great circle becomes shadowed.

Take an image produced from any light source di-
rection within the interior of each cell through which
the meridian passes, including the bright cell, but ex-
cluding the dark cell. Arrange each of these m images
as column vectors in an n X m matrix M. By elemen-
tary row operations, the matrix M can be converted
to 1ts echelon form M™, and it is trivial to show that
M?* has exactly m non-zero rows. Thus, the rank of
M is m, and the dimension of C is at least m. Since
there are only m distinct surface normals, the dimen-
sion of C cannot exceed m. Thus, the dimension of C
equals m. |

Note that for images with n pixels, this theorem
indicates that the dimension of the illumination cone is
one for a planar object, is roughly +/n for a cylindrical
object, and is n for a spherical object. But if the cone
spans IR", what fraction of the positive orthant does
it occupy? And if this fraction can be estimated, can
we make claims on the upper bounds for recognition
rates of databases with multiple objects?

3.2 Empirical Investigation

To empirically demonstrate the validity of Theorem 1,
we have constructed the linear subspaces for three ob-
jects using an image of a box of coffee filters, a can of
corn, and a bocce ball. For each object, we computed



the great circles associated with each pixel and dis-
play one hundred of them in Fig. 6. As mentioned
above, we would expect the illumination cone pro-
duced by one face of the box of coffee filters to be
one dimensional since all of the surface normals are
identical. The illumination sphere should be parti-
tioned into two regions by a single great circle. This
is nearly seen in the figure. Due to both image noise
and the fact that the surface 1s not truly Lambertian,
there is some small deviation of the surface normals.
For a cylinder, the surface normals lie on a great cir-
cle of the Gauss sphere, and so we would expect the
illumination sphere to be partitioned by lines of longi-
tude intersecting at a common pole. This structure is
also seen in the figure. Finally, the visible surface nor-
mals of a sphere should cover half of the Gauss sphere
and so the great circles should cover the illumination
sphere.

From these three examples we make the follow-
ing observations. The partitioning of the illumination
sphere has the expected qualitative structure. How-
ever, due to a combination of image noise, use of ex-
tended light sources near the object, and surfaces that
are not truly Lambertian, none of the surface nor-
mals are truly coincident. Therefore, n distinct sur-
face normals are computed, and so there actually are
n(n—1)—2 regions for all three objects. Thus, the cor-
responding cones will span n dimensions. However, it
expected that the illumination cone for the coffee filter
box would be small, that the cone for the can would
be flat except in y/n directions, and that the cone for
the sphere would have the largest volume.

4 Discussion

In this paper, we have shown that the set of images
of a convex object with a Lambertian reflectance func-
tion, under all possible lighting conditions, is a convex,
polyhedral cone. Furthermore, we have shown that
for convex object with Lambertian reflectance func-
tions the cone be learned from three properly chosen
images and that the dimension of the cone equals the
number of distinct surface normals. These are fun-
damental results which any recognition system that
operates under variable illumination should consider.

Nevertheless, there remains a number of extensions
and open issues which we discuss below. While we
have focused this paper solely on characterizing the
set of images under varying illumination, we believe
the ideas presented within have natural applications
to recognition algorithms.

4.1 Shape of Illumination Cone

While we have shown that the illumination cone is a
convex, polyhedral cone that can span n dimensions if
there are n distinct surface normals, we have not said
how big it is in practice. The illumination cone for a
cylinder would ideally span v/n dimensions. When it is
computed from noisy data, it is likely to actually span
n dimensions. However, 1t is expected to be rather
“flat” in most dimensions and only have significant
extent in y/n directions. Clearly if the illumination
cones for objects are small and well separated, then
recognition should be easy — in theory — even under
extreme lighting conditions.

On the other hand, is is conceivable that the il-
lumination cone could completely cover the positive
orthant of IR". Note that having the cone span n
dimensions does not mean that it covers IR", since
the cone is defined only by positive combinations of
the basis vectors. The existence of an object geom-
etry whose images cover the positive orthant seems
unlikely. For such an object, it must be possible to
choose n light source directions; each light source must
illuminate a single pixel while all others are in shadow,
and each light source must illuminate a different pixel.
If this were possible, the n images produced by n
such light source directions would form basis vectors
aligned with a coordinate axes of IR".

4.2 Relaxing Assumptions

Two important assumptions have been made along
the way: First, we assumed that the object’s shape
is convex; second, we assumed the object has a Lam-
bertian reflectance function. The first assumption was
needed so that we could ignore the effects of cast shad-
ows. However, if cast shadows do not dominate, we
hope that the illumination cone is a fairly accurate ap-
proximation of the set of images of the object under
all possible lighting conditions. If the object is highly
non-convex and cast shadows do dominate, we should
again point out that the set of images of the object un-
der varying illumination remains a convex cone! The
question remains: Can the cone be learned from as
few as three images?

The second assumption was needed so that we could
ignore the effects of specularities. Yet, as the recent
work of Yuille and Epstein has shown [3], even for sur-
faces which appear to be highly specular, the Lamber-
tian component of the reflectance function still domi-
nates. So again, we believe that for most objects the
illumination cone is a fairly accurate approximation of
the set of all images. In the experiments shown in Sec-
tion 2.2, the objects were neither purely Lambertian,
nor completely convex. Yet, the illumination cone ap-
pears to give an accurate representation of the set of
images under varying illumination, even though the
training images had little variation in illumination.

4.3 Color

The images produced by a color camera with
narrow-band spectral filters for each of color channel

can be considered as a point in IR®". It is straight
forward to show that the set of images of a convex,
colored Lambertian surface produced by a single light
source at infinity with arbitrary spectral distribution
(color) and without shadowing is a five dimension set

in IR®"; this set is not a linear subspace. However,
through superposition, the set of images produced by
two light sources without shadowing lies in a 9-D lin-

ear subspace of IR*". This 9-D linear subspace can be
considered the Cartesian product of three 3-D linear
subspaces, one for each color channel. When attached
shadows are considered, the set of possible images is
given by the Cartesian product of the illumination
cones for each color channel. Again, three color im-
ages without shadowing are sufficient for constructing
this color illumination cone.



4.4 Interreflection

A surface is not just illuminated by the light sources
but also through interreflections from points on the
surface itself. For a Lambertian surface, the image
with interreflection x’ is related to the image that
would be formed without interreflection x by

x' = (I - PK) 'x

where [ is the identity matrix, P i1s a diagonal ma-
trix with F;; equal to the albedo of pixel ¢, and
K is known as the interreflection kernel [7]. When
there is no shadowing, all images lie in a 3-D linear
space that would be generated from (1) by a pseudo-
surface whose normals and albedo B’ are given by
B' = (I — PK)™'B [7, 8]. From Theorem 4, the set
of all possible images is still a cone. While B’ can be
learned from only three images, the set of shadowing
configurations and the partitioning of the illumination
sphere is generated from B, not B’. So, it remains an
open question how the cone can be constructed from
only three images.

4.5 FEffects of Change in Pose

All of the previous analysis in the paper has dealt
solely with variation in illumination. Yet, a change in
the object’s pose creates a change in the perceived im-
age. If an object undergoes a rotation or translation,
how does the illumination cone deform? The illumina-
tion cone of the object in the new pose is also convex,
but almost certainly different from the illumination
cone of the object in the old pose. Which raises the
question: Is there a simple transformation, obtainable
from a small number of images of the object seen from
different views, which when applied to the illumination
cone characterizes these changes? Alternatively, is it
practical to simply sample the pose space constructing
an illumination cone for each pose? Currently, Nayar
and Murase are extending their appearance manifold
representation by modeling illumination variation for
each pose as a 3-D linear subspace [8]. However, this
representation does not account for shadowing.

4.6 Object Recognition

Ultimately, we intend to apply the illumination
cone concept to recognition. In earlier face recog-
nition work, we implemented a classification method
based on the minimum distance of an image to a three
dimensional linear subspace (i.e. £) that was con-
structed for each person. Experimentally, recognition
rates were perfect when there was only moderate vari-
ation in illumination with minor shadowing [1]. While
the distance to illumination subspace algorithm per-
formed impressively, the experiments also indicated
that its performance deteriorates as the test images
move further and further away from the illumination
subspace £. We believe that nearly perfect recogni-
tion rates could be achieved under extreme variation
in illumination, by measuring distance to the illumi-
nation cone, rather than distance to the illumination
subspace. Measuring the squared distance to a con-
vex cone can be posed as a non-negative least-squares
problem which is easily solved by convex programming
since both the objective function and cone are convex.

It is important to stress that the illumination cones
are convex. If they are non-intersecting, then the
cones are linearly separable. That is, they can be
separated by a m — 1 dimensional hyperplane in IR"
passing through the origin. Furthermore since con-
vex sets remain convex under linear projection, then
for any projection direction lying in the separating
hyperplane, the projected convex sets will also be lin-
early separable. For d different objects represented by
d linearly separable convex cones, there always exists
a linear projection of the image space to an d — 1 di-
mensional space such that all of the projected sets are
again linearly separable. So an alternative to classi-
fication based on measuring distance to the cones in
IR"™ is to find a much lower dimensional space in which
to do classification. In our Fisherface method for rec-
ognizing faces under variable illumination and facial
expression, projection directions were chosen to max-
imize separability of the object classes [1]; a similar
approach can be taken here.
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