
To appear in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition 1996.What is the Set of Images of an ObjectUnder All Possible Lighting Conditions?Peter N. Belhumeur� David J. KriegmanyDept. of Electrical Engineering, Yale University, New Haven, CT 06520-8267AbstractThe appearance of a particular object depends onboth the viewpoint from which it is observed and thelight sources by which it is illuminated. If the appear-ance of two objects is never identical for any pose orlighting conditions, then { in theory { the objects canalways be distinguished or recognized. The questionarises: What is the set of images of an object un-der all lighting conditions and pose? In this paper,we consider only the set of images of an object un-der variable illumination (including multiple, extendedlight sources and attached shadows). We prove that theset of n-pixel images of a convex object with a Lamber-tian re
ectance function, illuminated by an arbitrarynumber of point light sources at in�nity, forms a con-vex polyhedral cone in IRn and that the dimension ofthis illumination cone equals the number of distinctsurface normals. Furthermore, we show that the conefor a particular object can be constructed from threeproperly chosen images. Finally, we prove that the setof n-pixel images of an object of any shape and withan arbitrary re
ectance function, seen under all possi-ble illumination conditions, still forms a convex conein IRn. These results immediately suggest certain ap-proaches to object recognition. Throughout this paper,we o�er results demonstrating the empirical validity ofthe illumination cone representation.1 IntroductionOne of the complications that has troubled computervision recognition algorithms is the variability of anobject's appearance from one image to the next. Withslight changes in lighting conditions and viewpoint of-ten comes large changes in the object's appearance.To handle this variability methods usually take one oftwo approaches: either measure some property in theimage of the object which is, if not invariant, at leastinsensitive to the variability in the imaging conditions,or model the object, or part of the object, in order topredict the variability.Nearly all approaches to object recognition havehandled the variability due to illumination by usingthe �rst approach; they have concentrated on edgesin the images, i.e. the discontinuities in the image in-tensity. Because discontinuities in the albedo on thesurface of the object or discontinuities in albedo acrossthe boundary of the object generate edges in images,�P. N. Belhumeur was supported by ARO grant DAAH04-95-1-0494.yD. J. Kriegman was supported by NSF under an NYI, IRI-9257990 and by ONR N00014-93-1-0305.

these edges tend to be insensitive to a range of illumi-nation conditions.Yet, edges do not contain all of the information use-ful for recognition. Furthermore, objects which are notcomposed of piecewise constant albedo patterns oftenproduce inconsistent edge maps. The reason most ap-proaches have avoided using the rest of the intensityinformation is because its variability under changingillumination has been di�cult to tame. Only recentlyhave \appearance-based" approaches been developedin an e�ort to use intensity information to model orlearn a representation that captures a large set of thepossible images of an object under pose and/or illu-mination variation [6, 9, 12, 13].In this paper, we consider some of the fundamentalissues that must be addressed if recognition is to beperformed under variation in illumination. Our goalis to develop methods that are insensitive to extremevariation in lighting conditions { variation for whichedge based methods would surely fail. To this end,we answer a number of questions: If an image with npixels is treated as a point in IRn, what is the set in IRnof all images of an object under varying illumination?Is this set an incredibly complex, but low-dimensionalmanifold in the image space? Or does the set have asimple, predictable structure? Can a �nite number ofimages characterize this set? If so, how many imagesare needed?The image formation process for a particular ob-ject can be viewed as a function of pose and lighting.Since an object's pose can be represented by a pointin IR3 � SO(3) (a six dimensional manifold), the setof n-pixel images of an object under constant illumi-nation, but over all possible poses, is at most six di-mensional. Murase and Nayar take advantage of thisstructure when constructing appearance manifolds [6].However, if the pose is held constant, the variabilitydue to illumination may be much larger as the set ofpossible lighting conditions is in�nite dimensional.Nonetheless, we will show that the set of all im-ages of a convex object with a Lambertian re
ectancefunction is a convex polyhedral cone in IRn where nis the number of pixels in each image, and that thedimension of the cone is equal to the number of dis-tinct surface normals, independent of the albedo pat-tern. Furthermore, we will show that this cone can bedetermined from three properly chosen images of theobject. Empirical investigations support the validityof this representation, and these results suggest somespeci�c recognition algorithms.



2 The Illumination ConeIn this section, we will develop our illuminationcone representation. The development will be basedupon two assumptions: First, we assume that the sur-faces of objects have Lambertian re
ectance functions.Second, we assume that the shape of an object's sur-face is convex. While the theorems we state and proveare based upon these two assumptions, we will demon-strate the validity of the illumination cone representa-tion by presenting results on images of objects whichhave neither purely Lambertian surfaces, nor convexshapes.2.1 Developing the Illumination ConeTo begin let us assume a Lambertian model for re-
ectance with a single point light source at in�nity.Let x denote an image with n pixels. Let B 2 IRn�3be a matrix where each row of B is the product ofthe albedo with the inward pointing unit normal for apoint on the surface projecting to a particular pixel;here we assume that the surface normals for the set ofpoints projecting to the same image pixel are identical.Let s 2 IR3 be a column vector signifying the prod-uct of the light source strength with the unit vectorfor the light source direction. Thus, a convex objectwith surface normals and albedo given by B, seen un-der illumination s, produces an image x given by thefollowing equationx = max(Bs; 0); (1)where max(�; 0) zeros all negative components of thevector Bs [5]. Note that the negative components ofBs correspond to the shadowed surface points and aresometimes called attached shadows [11]. Also, notethat convexity of the object's shape is needed to guar-antee that the object does not cast shadows on itself.If the object is seen under illumination by k pointlight sources at in�nity, the image x is given by thesuperposition of images which would have been pro-duced by the individual light source, i.e.x = kXi=1max(Bsi; 0)where si is a single light source. Note that extendedlight sources at in�nity can be handled by allowing anin�nite number of point light sources.The product of B with all possible light source di-rections and strengths sweeps out a 3-D subspace inthe n dimensional image space [11]; we call the sub-space created by B the illumination subspace L, whereL = fx j x = Bs; 8s 2 IR3g:When a single light source is parallel with the cam-era's optical axis, all visible points on the surface areilluminated, and, consequently, all pixels in the imagehave non-zero values. The set of images created byscaling the light source strength and moving the lightsource away from the direction of the camera's opti-cal axis such that all pixels remain illuminated can befound as the relative interior of a set L0 de�ned bythe intersection of L with the non-negative orthant of

IRn.1 We will show presently that L0 is a convex conein IRn. However, to show this, we �rst need the de�-nition of convexity and the de�nition of a cone [2, 10].De�nition 1 X � IRn is convex i� for any two pointsx1;x2 2 X, �x1 + (1� �)x2 2 X for every � 2 [0; 1].De�nition 2 X � IRn is a cone i� for any point x 2X, �x 2 X for every � � 0.With these de�nitions, we state the following lemma:Lemma 1 The set of images L0 is a convex cone inIRn.Proof. To prove that L0 is convex, we appeal to thede�nition of convexity. Now L0 = L \ fx j x 2 IRn,with all components of x � 0g. Because L is a linearsubspace, if x1;x2 2 L, then �x1+(1��)x2 2 L. And,if x1 and x2 both have all components non-negative,then �x1+(1��)x2 has all components non-negativefor every � 2 [0; 1]. Thus, �x1 + (1 � �)x2 2 L0.To prove that L0 is a cone, we appeal to the def-inition of a cone. Because L is a linear subspace, ifx 2 L then �x 2 L. And, if x has all components non-negative, then �x has all components non-negative forevery � � 0. Therefore �x 2 L0. So it follows thatL0 is a cone.As we move the light source direction further fromthe camera's optical axis, points on the object will fallinto shadow. Naturally, which pixels are the imageof shadowed or illuminated surface points depends onwhere we move the light source direction. If we movethe light source all the way around to the back ofthe object so that the camera's optical axis and thelight source are pointing in opposite directions, thenall pixels are in shadow.Let us now consider all possible light source direc-tions, representing each direction by a point on thesurface of the sphere; we call this sphere the illumi-nation sphere. The set of light source directions forwhich a given pixel in the image is illuminated cor-responds to an open hemisphere of points; the set oflight source directions for which the pixel is shadowedcorresponds to the other hemisphere of points. A greatcircle on the illumination sphere divides these sets.Each of the n pixels in the image has a correspond-ing great circle on the illumination sphere. The col-lection of great circles carves up the surface of theillumination sphere into cells. See Fig 1.The collection of light source directions containedwithin a single cell on the illumination sphere pro-duces a set of images, each with the same pixels inshadow and the same pixels illuminated; we say thatthese images have the same \shadowing con�gura-tions." Di�erent cells produce di�erent shadowingcon�gurations.1By orthant we mean the high-dimensional analogue toquadrant, i.e. the set fx j x 2 IRn; with certain componentsof x � 0 and the remaining components of x < 0g. By non-negative orthant we mean the set fx j x 2 IRn; with all com-ponents of x � 0g.



L
0Figure 1: The Illumination Sphere: The set of allpossible light source directions can be represented bypoints on the surface of a sphere; we call this spherethe illumination sphere. Great circles correspondingto individual pixels divide the illumination sphere intocells of di�erent shadowing con�gurations. The arrowsindicate the hemisphere of light directions for whichthe particular pixel is illuminated. The cell of lightsource directions which produce L0, the set of imagesin which all pixels are illuminated, is labeled in the�gure. Each of the other cells produce the Li, 0 < i �n(n� 1) + 1.We call the cell on the illumination sphere contain-ing the collection of light source directions which pro-duce images with all pixels illuminated the bright cell.Thus, the collection of light source directions from theinterior and boundary of the bright cell produces theset of images L0. To determine the set of images pro-duced by another cell on the illumination sphere, weneed to return to the illumination subspace L.The illumination subspace L not only slices throughthe non-negative orthant of IRn, but other orthants inIRn as well. Let Li be the intersection of the illumi-nation subspace L with an orthant i in IRn throughwhich L passes. Certain components of x 2 Li are al-ways negative and others always greater than or equalto zero. Not surprisingly, each Li has a correspond-ing cell of light source directions on the illuminationsphere. Note that L does not slice through all of the2n orthants in IRn, but at most n(n� 1) + 2 orthants(see the proof of Theorem 1). Thus, there are at mostn(n�1)+2 sets Li, or cells on the illumination sphere.The set of images produced by the collection of lightsource directions from a cell other then the bright cellcan be found as a projection Pi of all points in a par-ticular set Li. The projection Pi is such that it leavesthe non-negative components of x 2 Li untouched,while the negative components of x become zero. Wedenote the projected set by Pi(Li).Lemma 2 The set of images Pi(Li) is a convex conein IRn.

Proof. By the same argument used in the proof ofLemma 1, Li is a convex cone. Since the linear pro-jection of convex cone is itself a convex cone, Pi(Li)is a convex cone.Since Pi(Li) is the projection of Li, it is at mostthree dimensional. Each Pi(Li) is the set of all im-ages such that certain pixels are illuminated, and theremaining pixels are shadowed. Let P0 be the iden-tity, so that P0(L0) = L0 is the set of all images suchthat all pixels are illuminated. The number of possibleshadowing con�gurations is the number of orthants inIRn through which the illumination subspace L passes,which in turn is the same as the number of sets Pi(Li).Theorem 1 The number of shadowing con�gurationsis at most m(m � 1) + 2, where m � n is the numberof distinct surface normals.Proof. Each of the n pixels in the image has a corre-sponding great circle on the illumination sphere, butonly m of the great circles are distinct. The collec-tion of m distinct great circles carves up the surfaceof the illumination sphere into cells. Each cell on theillumination sphere corresponds to a particular set ofimages Pi(Li). Thus, the problem of determining thenumber of shadowing con�gurations is the same as theproblem of determining the number of cells on the il-lumination sphere. If every vertex on the illuminationsphere is formed by the intersection of only two of them distinct great circles (i.e. if no more than two sur-face normals are coplanar), then it can be shown byinduction that the illumination sphere is divided intom(m� 1) + 2 cells. If a vertex is formed by the inter-section of three or more great circles, there are fewercells.Thus, the set U of images of a convex Lambertiansurface created by varying the direction and strengthof single point light source at in�nity is given by theunion of at most n(n� 1) + 2 convex cones, i.e.U = fx j x = max(Bs; 0); 8s 2 IR3g = n(n�1)+1[i=0 Pi(Li):From this set, we can construct the set C of all pos-sible images of a convex Lambertian surface createdby varying the direction and strength of an arbitrarynumber of point light sources at in�nity,C = fx : x = kXi=1max(Bsi; 0); 8si 2 IR3; 8k 2 ZZ+gwhere ZZ+ is the set of positive integers.Theorem 2 The set of images C is a convex cone inIRn.Proof. The proof that C is a cone follows triviallyfrom the de�nition of C. To prove that C is convex,we appeal to a theorem for convex cones which statesthat a cone C is convex i� x1 + x2 2 C for any twopoints x1;x2 2 C [2]. So the proof that C is convexfollows trivially from the above de�nition of C.



We call C the illumination cone, and every objecthas its own illumination cone. Note that each point inthe cone is an image of the object under a particularlighting con�guration, and the entire cone is the set ofimages of the object under all possible con�gurationsof point light sources at in�nity.Theorem 3 The illumination cone C can be com-pletely determined by three properly chosen images,i.e. three linearly independent images from the set L0,without any knowledge of the light source directions.Proof. The illumination cone C is completely deter-mined by the illumination subspace L, which is de-termined both by B, which in turn is determined bythree linearly independent images in L0 and by thecorresponding light source directions. As has beenknown to the photometric stereo community for overa decade, without prior knowledge of the light sources,we cannot determine B uniquely. To see this note thatfor any arbitrary invertible 3�3 linear transformationA 2 GL(3) Bs = (BA)(A�1s);i.e. the albedo and surface normals are transformedby A, while the light source is transformed by A�1.Therefore, we can only recover B up to an arbitraryinvertible linear transformation B� = BA. Neverthe-less, even without prior knowledge of the light sourcedirections or the object geometry, we can still use B�to determine what the object will look like under dif-ferent illumination: it is easy to show that L = fx jx = B�s; 8s 2 IR3g = fx j x = Bs; 8s 2 IR3g, see[11].Thus, for a convex object with Lambertian re
ectance,we can determine its appearance under arbitrary illu-mination from as few as three images of the object.Knowledge of the light source strength or directionis not needed, see also [11]. What may not be im-mediately obvious is that any point within the coneC (including the boundary points) can be found as aconvex combination of the rays (images) produced bylight source directions lying at the m(m� 1) intersec-tions of the great circles. Furthermore, because thecone is constructed from a �nite number of extremerays (images), the cone is polyhedral.We should point out that nothing in the proof ofTheorem 2 required assumptions about the shape ofthe object, the nature of the light sources, or the re-
ectance function for the object's surface. Thus, wecan state a more general theorem about the set of im-ages of an object under varying illumination:Theorem 4 The set of n-pixel images of any object,seen under all possible lighting conditions, is a convexcone in IRn.2.2 Empirical Investigation of the Illumi-nation ConeTo demonstrate the power of these concepts, we haveconstructed the illumination cone for two di�erentscenes: a human face and a desktop still life. To con-struct the cone for the human face, we used images

Original ImagesBasis ImagesFigure 2: The top half of the �gure shows three ofthe original images used to construct the illuminationsubspace L of the face. The bottom half of the �gureshows three basis images, lying in L0, that span theillumination subspace L for the face.from the Harvard Face Database [4], a collection ofimages of faces seen under a range of lighting direc-tions. For the purpose of this demonstration, we usedthe images of one person, taking six images from theset L0 and using singular value decomposition (SVD)to construct a 3-D basis for the illumination subspaceL. Note that this 3D linear subspace di�ers from thea�ne subspace constructed using the Karhunen-Loevetransform: the mean image is not subtracted beforedetermining the basis vectors as in the Eigenpicturemethods [12, 13].The illumination subspace was then used to con-struct the illumination cone C. We generated novelimages of the face as if illuminated by one, two, orthree point light sources by randomly sampling theillumination cone. Rather than constructing an ex-plicit representation of the halfspaces bounding theillumination cone, we sampled L, determined the cor-responding orthant, and appropriately projected theimage onto the illumination cone. Images constructedunder multiple light sources simply correspond to thesuperposition of the images generated by each of thelight sources.The top half of Fig. 2 shows three of the images ofa person's face that were used to construct the basis ofthe linear subspace L. The bottom half of Fig. 2 showsthree basis images that span L. The three columns ofFig. 3 respectively comprise sample images from theillumination cone for the face with one, two, or threelight sources.There are number of interesting points to noteabout this experiment. There was almost no shad-owing in the training images yet there are strong at-tached shadows in many of the sample images. Theyare particularly distinct in the images generated witha single light source. Notice for example the sharp
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Figure 3: Random Samples from the Illumina-tion Cone of a Face: Each of the three columnsrespectively comprises sample images from the illumi-nation cone with one, two and three light sources.shadow across the ridge of the nose in column 1, row2 or the shadowing in column 1, row 4 where the lightsource is coming from behind the head. Notice alsothe depression under the cheekbones in column 2, row5, and the cleft in the chin revealed in column 1, row3. For the image in column 3, row 2, two of the lightsources are on opposite sides while the third one iscoming from below; notice that both ears and bottomof the chin and nose are brightly illuminated while

Original ImagesBasis ImagesFigure 4: The top half of the �gure shows three ofthe original images used to construct the illuminationsubspace L of the still life. The bottom half of the�gure shows three basis images, lying in L0, that spanthe illumination subspace L for the still life.1 Light 2 Lights 3 Lights

Figure 5: Random Samples from the Illumina-tion Cone of a Desktop Still Life: Each of thethree columns respectively comprises sample imagesfrom the illumination cone with one, two and threelight sources.that rest of the face is darker.To construct the cone for the desktop still life, weused our own collection of nine images from (or near)the set L0. The top half of Fig. 4 shows three ofthese images. The bottom half of Fig. 4 shows the



three basis images that span L. The three columns ofFig. 5 respectively comprise sample images from theillumination cone for the desktop still life with one,two or three light sources.The variability in illumination in these images is soextreme that the edge maps for these images woulddi�er drastically. Notice in the image in column 1,row 4 that the shadow line on the bottle is distinctand that the left sides of the phone, duck, and bottleare brightly illuminated. Throughout the scene, noticethat those points having comparable surface normalsseem to be similarly illuminated. Furthermore, noticethat all of the nearly horizontal surfaces in the bottomtwo images of the �rst column are in shadow since thelight is coming from below. In the image with twolight sources shown at the bottom of column 2, thesources are located on opposite sides and behind theobjects. This leads to shadow line in the center of thebottle. The head of the wood duck shows a similarshadowing where the front and back of the head areilluminated, but not the side.3 Dimension of the Illumination ConeIn this section, we investigate the dimension of theillumination cone, and show that it is equal to thenumber of distinct surface normals. We also presentexperimental results validating this claim.3.1 Determining the DimensionGiven that the set of images of an object undervariation in illumination is a convex cone, it is naturalto ask what is the dimension of the cone in IRn? Bythis we mean, what is the span of the vectors in theillumination cone C?Why do we want to know the answer to this ques-tion? Because the complexity of the cone, will almostcertainly dictate the nature of the recognition algo-rithm. For example, if the illumination cones are 1-D,i.e. rays in the positive orthant of IRn, then a recog-nition scheme based on normalized correlation couldhandle all of the variation due to illumination. How-ever, in general the cones are not one dimensional. Tothis end, we o�er the following theorem.Theorem 5 The dimension of the illumination coneC is equal to the number of distinct surface normals.Proof. As for the proof of Theorem 1, we again repre-sent each light source direction by a point on the sur-face of the illumination sphere. Each cell on the illu-mination sphere corresponds to the light source direc-tions which produce a particular set of images Pi(Li).For every image in a set Pi(Li) certain pixels alwaysequal zero, i.e. always in shadow. There exists a cellon the illumination sphere corresponding to the lightsource directions which produce L0, the set of imagesin which all pixels are always illuminated { we callthis the bright cell. There exists a cell correspondingto the light source directions which produce a set ofimages in which all pixels are always in shadow { wecall this the dark cell. Choose any point sb within thebright cell. The point sd = �sb is antipodal to sb andlies within the dark cell. Draw any half-meridian con-necting sb and sd. Starting at sb, follow the path of

Plane Cylinder SphereFigure 6: Examples of Illumination Spheres: The�gure shows a view of the illumination sphere for aplanar, cylindrical, and spherical object.the half-meridian; it crosses m distinct great circles,and passes through m di�erent cells before enteringthe dark cell. Note the path of the half-meridian cor-responds to a particular path of light source directions,starting from a light source direction producing an im-age in which all pixels are illuminated and ending ata light source direction producing an image in whichall pixels are in shadow. Each time the half-meridiancrosses a great circle, the pixel corresponding to thegreat circle becomes shadowed.Take an image produced from any light source di-rection within the interior of each cell through whichthe meridian passes, including the bright cell, but ex-cluding the dark cell. Arrange each of these m imagesas column vectors in an n�m matrixM . By elemen-tary row operations, the matrix M can be convertedto its echelon form M�, and it is trivial to show thatM� has exactly m non-zero rows. Thus, the rank ofM is m, and the dimension of C is at least m. Sincethere are only m distinct surface normals, the dimen-sion of C cannot exceed m. Thus, the dimension of Cequals m.Note that for images with n pixels, this theoremindicates that the dimension of the illumination cone isone for a planar object, is roughlypn for a cylindricalobject, and is n for a spherical object. But if the conespans IRn, what fraction of the positive orthant doesit occupy? And if this fraction can be estimated, canwe make claims on the upper bounds for recognitionrates of databases with multiple objects?3.2 Empirical InvestigationTo empirically demonstrate the validity of Theorem 1,we have constructed the linear subspaces for three ob-jects using an image of a box of co�ee �lters, a can ofcorn, and a bocce ball. For each object, we computed



the great circles associated with each pixel and dis-play one hundred of them in Fig. 6. As mentionedabove, we would expect the illumination cone pro-duced by one face of the box of co�ee �lters to beone dimensional since all of the surface normals areidentical. The illumination sphere should be parti-tioned into two regions by a single great circle. Thisis nearly seen in the �gure. Due to both image noiseand the fact that the surface is not truly Lambertian,there is some small deviation of the surface normals.For a cylinder, the surface normals lie on a great cir-cle of the Gauss sphere, and so we would expect theillumination sphere to be partitioned by lines of longi-tude intersecting at a common pole. This structure isalso seen in the �gure. Finally, the visible surface nor-mals of a sphere should cover half of the Gauss sphereand so the great circles should cover the illuminationsphere.From these three examples we make the follow-ing observations. The partitioning of the illuminationsphere has the expected qualitative structure. How-ever, due to a combination of image noise, use of ex-tended light sources near the object, and surfaces thatare not truly Lambertian, none of the surface nor-mals are truly coincident. Therefore, n distinct sur-face normals are computed, and so there actually aren(n�1)�2 regions for all three objects. Thus, the cor-responding cones will span n dimensions. However, itexpected that the illumination cone for the co�ee �lterbox would be small, that the cone for the can wouldbe 
at except in pn directions, and that the cone forthe sphere would have the largest volume.4 DiscussionIn this paper, we have shown that the set of imagesof a convex object with a Lambertian re
ectance func-tion, under all possible lighting conditions, is a convex,polyhedral cone. Furthermore, we have shown thatfor convex object with Lambertian re
ectance func-tions the cone be learned from three properly chosenimages and that the dimension of the cone equals thenumber of distinct surface normals. These are fun-damental results which any recognition system thatoperates under variable illumination should consider.Nevertheless, there remains a number of extensionsand open issues which we discuss below. While wehave focused this paper solely on characterizing theset of images under varying illumination, we believethe ideas presented within have natural applicationsto recognition algorithms.4.1 Shape of Illumination ConeWhile we have shown that the illumination cone is aconvex, polyhedral cone that can span n dimensions ifthere are n distinct surface normals, we have not saidhow big it is in practice. The illumination cone for acylinder would ideally spanpn dimensions. When it iscomputed from noisy data, it is likely to actually spann dimensions. However, it is expected to be rather\
at" in most dimensions and only have signi�cantextent in pn directions. Clearly if the illuminationcones for objects are small and well separated, thenrecognition should be easy { in theory { even underextreme lighting conditions.

On the other hand, is is conceivable that the il-lumination cone could completely cover the positiveorthant of IRn. Note that having the cone span ndimensions does not mean that it covers IRn, sincethe cone is de�ned only by positive combinations ofthe basis vectors. The existence of an object geom-etry whose images cover the positive orthant seemsunlikely. For such an object, it must be possible tochoose n light source directions; each light source mustilluminate a single pixel while all others are in shadow,and each light source must illuminate a di�erent pixel.If this were possible, the n images produced by nsuch light source directions would form basis vectorsaligned with a coordinate axes of IRn.4.2 Relaxing AssumptionsTwo important assumptions have been made alongthe way: First, we assumed that the object's shapeis convex; second, we assumed the object has a Lam-bertian re
ectance function. The �rst assumption wasneeded so that we could ignore the e�ects of cast shad-ows. However, if cast shadows do not dominate, wehope that the illumination cone is a fairly accurate ap-proximation of the set of images of the object underall possible lighting conditions. If the object is highlynon-convex and cast shadows do dominate, we shouldagain point out that the set of images of the object un-der varying illumination remains a convex cone! Thequestion remains: Can the cone be learned from asfew as three images?The second assumption was needed so that we couldignore the e�ects of specularities. Yet, as the recentwork of Yuille and Epstein has shown [3], even for sur-faces which appear to be highly specular, the Lamber-tian component of the re
ectance function still domi-nates. So again, we believe that for most objects theillumination cone is a fairly accurate approximation ofthe set of all images. In the experiments shown in Sec-tion 2.2, the objects were neither purely Lambertian,nor completely convex. Yet, the illumination cone ap-pears to give an accurate representation of the set ofimages under varying illumination, even though thetraining images had little variation in illumination.4.3 ColorThe images produced by a color camera withnarrow-band spectral �lters for each of color channelcan be considered as a point in IR3n. It is straightforward to show that the set of images of a convex,colored Lambertian surface produced by a single lightsource at in�nity with arbitrary spectral distribution(color) and without shadowing is a �ve dimension setin IR3n; this set is not a linear subspace. However,through superposition, the set of images produced bytwo light sources without shadowing lies in a 9-D lin-ear subspace of IR3n. This 9-D linear subspace can beconsidered the Cartesian product of three 3-D linearsubspaces, one for each color channel. When attachedshadows are considered, the set of possible images isgiven by the Cartesian product of the illuminationcones for each color channel. Again, three color im-ages without shadowing are su�cient for constructingthis color illumination cone.



4.4 Interre
ectionA surface is not just illuminated by the light sourcesbut also through interre
ections from points on thesurface itself. For a Lambertian surface, the imagewith interre
ection x0 is related to the image thatwould be formed without interre
ection x byx0 = (I � PK)�1xwhere I is the identity matrix, P is a diagonal ma-trix with Pi;i equal to the albedo of pixel i, andK is known as the interre
ection kernel [7]. Whenthere is no shadowing, all images lie in a 3-D linearspace that would be generated from (1) by a pseudo-surface whose normals and albedo B0 are given byB0 = (I � PK)�1B [7, 8]. From Theorem 4, the setof all possible images is still a cone. While B0 can belearned from only three images, the set of shadowingcon�gurations and the partitioning of the illuminationsphere is generated from B, not B0. So, it remains anopen question how the cone can be constructed fromonly three images.4.5 E�ects of Change in PoseAll of the previous analysis in the paper has dealtsolely with variation in illumination. Yet, a change inthe object's pose creates a change in the perceived im-age. If an object undergoes a rotation or translation,how does the illumination cone deform? The illumina-tion cone of the object in the new pose is also convex,but almost certainly di�erent from the illuminationcone of the object in the old pose. Which raises thequestion: Is there a simple transformation, obtainablefrom a small number of images of the object seen fromdi�erent views, which when applied to the illuminationcone characterizes these changes? Alternatively, is itpractical to simply sample the pose space constructingan illumination cone for each pose? Currently, Nayarand Murase are extending their appearance manifoldrepresentation by modeling illumination variation foreach pose as a 3-D linear subspace [8]. However, thisrepresentation does not account for shadowing.4.6 Object RecognitionUltimately, we intend to apply the illuminationcone concept to recognition. In earlier face recog-nition work, we implemented a classi�cation methodbased on the minimumdistance of an image to a threedimensional linear subspace (i.e. L) that was con-structed for each person. Experimentally, recognitionrates were perfect when there was only moderate vari-ation in illumination with minor shadowing [1]. Whilethe distance to illumination subspace algorithm per-formed impressively, the experiments also indicatedthat its performance deteriorates as the test imagesmove further and further away from the illuminationsubspace L. We believe that nearly perfect recogni-tion rates could be achieved under extreme variationin illumination, by measuring distance to the illumi-nation cone, rather than distance to the illuminationsubspace. Measuring the squared distance to a con-vex cone can be posed as a non-negative least-squaresproblem which is easily solved by convex programmingsince both the objective function and cone are convex.

It is important to stress that the illumination conesare convex. If they are non-intersecting, then thecones are linearly separable. That is, they can beseparated by a n � 1 dimensional hyperplane in IRnpassing through the origin. Furthermore since con-vex sets remain convex under linear projection, thenfor any projection direction lying in the separatinghyperplane, the projected convex sets will also be lin-early separable. For d di�erent objects represented byd linearly separable convex cones, there always existsa linear projection of the image space to an d� 1 di-mensional space such that all of the projected sets areagain linearly separable. So an alternative to classi-�cation based on measuring distance to the cones inIRn is to �nd a much lower dimensional space in whichto do classi�cation. In our Fisherface method for rec-ognizing faces under variable illumination and facialexpression, projection directions were chosen to max-imize separability of the object classes [1]; a similarapproach can be taken here.References[1] P. N. Belhumeur, J. P. Hespanha, and D. J. Krieg-man. Eigenfaces vs. Fisherfaces: Recognition usingclass speci�c linear projection. In Proc. EuropeanConf. on Computer Vision, 1996.[2] M. Canon, C. Cullum Jr., and E. Polak. Theoryof Optimal Control and Mathematical Programming.McGraw-Hill, New York, 1970.[3] R. Epstein, P. Hallinan, and A. Yuiile. 5 � 2 eigen-images su�ce: An empirical investigation of low-dimensional lighting models. Technical Report 94-11,Harvard University, 1994.[4] P. Hallinan. A low-dimensional representation of hu-man faces for arbitrary lighting conditions. In Proc.IEEE Conf. on Comp. Vision and Patt. Recog., pages995{999, 1994.[5] B. Horn. Computer Vision. MIT Press, Cambridge,Mass., 1986.[6] H. Murase and S. Nayar. Visual learning and recogni-tion of 3-D objects from appearence. Int. J. ComputerVision, 14(5{24), 1995.[7] S. Nayar, K. Ikeuchi, and T. Kanade. Shape frominterre
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