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Networked Control Systems
with Time-Varying Delay – Stability
through Input-Output Transformation
Netzwerkregelungssysteme mit variabler Totzeit –
Stabilität durch Eingangs-Ausgangs-Transformation

Tilemachos Matiakis, Sandra Hirche and Martin Buss

With the increasing complexity of modern automation systems, Networked Control Systems
(NCS) gain more and more importance due to their modularity and simplified diagnosis. In
NCS, plant and controller are spatially separated and the control loop is physically closed
through a communication network. Communication time delay in a NCS degrades the
performance and may lead to instability. In this article we propose a novel approach for time-
varying delay applicable to the class of input-feedforward-output-feedback-passive (IF-OFP)
systems. The proposed approach is based on an input-output transformation; instead of dir-
ect communication a linear transformation of the plant and controller input and output is sent
through the communication network. Asymptotic stability is guaranteed for arbirarily large
time delay with bounded rate of change. The control performance is superior compared to
alternative approaches. Simulations show the validity of the proposed approach.

Angesichts steigender Komplexität moderner Automatisierungssysteme gewinnen Netz-
werkregelungssysteme wegen ihrer Modularität und vereinfachten Diagnose mehr und mehr
an Bedeutung. In derartigen Systemen sind Prozess und Regler räumlich getrennt und über
ein Kommunikationsnetz verbunden. Die dadurch induzierte Kommunikationstotzeit wirkt
potenziell destabilisierend. In diesem Artikel wird eine neuartige Methode zur Stabilisierung
in Gegenwart von variabler Totzeit vorgeschlagen, welche auf einer Eingangs-Ausgangs-
Transformation basiert. Anstelle der ursprünglichen Ausgänge von Prozess und Regler
werden Linearkombinationen aus deren Ein- und Ausgängen über das Kommunikationsnetz
übertragen. Asymptotische Stabilität kann für Netzwerkregelungsysteme bestehend aus
nichtlinearen eingangs-ausgangs-passiven Teilsystemen und beliebig große variable Totzeit
mit begrenzter Änderungsrate garantiert werden. Die vorgeschlagene Methode zeichnet sich
in Vergleich zu bekannten Ansätzen durch eine hervorragende Regelgüte aus. Ihre Validität
wird in Simulationen bestätigt.
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1 Introduction

The use of communication networks for signal transmission
in control systems offers significant advantages over the
traditional point-to-point connections, in terms of reduced
wiring and cost, increased modularity, high flexibility and
reconfigurability. Therefore NCS, i. e. systems in which the

plant and the controller are connected through a network,
see Fig. 1, increasingly replace traditional control systems.
NCS have already been adopted to numerous applications,
see e. g. [1; 2]. However, in NCS the signal transmission
over the communication network cannot be regarded as
ideal. Time delay, packet loss and the limited communi-
cation resources constitute major challenges, see e. g. the
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Figure 1: Standard architecture of a networked control system.

surveys [3; 4]. These network induced effects depend on
the number of active nodes, the network traffic and the
transmission protocol and are generally not exactly known
during the controller design stage. Advantageously, NCS
offer additional degrees of freedom in the design com-
pared to traditional control architecture. For instance, the
limited computational power available at the plant side can
be used to implement local low order pre-stabilizing con-
trollers, while computationally intensive control measures
are remotely placed.

In this article the unknown time-varying delay challenge is
addressed. It is well known that time delay in the control
loop deteriorates the performance and can lead to insta-
bility. Stability in the presence of unknown time-varying
delay is usually guaranteed based on bounds on the time
delay value, the time delay derivative or both. For the
constant time delay challenge delay-dependent and delay-
independent approaches exist. In the former a bound for the
time delay value is necessary, while in the second stability
is guaranteed for arbitrarily large time delay.

In the seminal work [5] an augmentation technique is ap-
plied to transform the linear discrete time system with
time delay into a system without time delay but higher
order. Stability is guaranteed for periodic time delays. In [6]
a queuing method is used to reshape bounded random time
delay to constant time delay and a state predictor is applied
in order to compensate for the time delay. Queuing methods
introduce additional time delay deteriorating thus the per-
formance. Predictive control, where the model of the plant
is included in the controller in order to predict the future
plant output is also considered e. g. in [7; 8]. Nevertheless,
predictive control schemes in general require very good
knowledge of the plant model and the time delay. Alter-
natively, stochastic control approaches based on stochastic
time delay models have been developed. In [9] stochastic
optimal control is applied, assuming that the time delay
is bounded by the sampling period, and extended in [10]
to longer time delays. Random time delays modelled as
Markov chains are further considered in [11] where a ne-
cessary stability condition formulated in Bilinear Matrix
Inequalities is obtained, and in [12], where necessary and
sufficient conditions for stability are given. Stability for un-
known time-varying delay based on bounds on the time
delay derivative and the time delay bound is examined
in [13]. In a comparison with other recent methodologies
for time-varying delay [14–16], the approach in [13] seems
to be less conservative. Common in the literature is also
the restriction to one channel feedback NCS, in which

a communication network in inserted only in the forward or
backward path, e. g. [17; 18].

The assumptions made in the NCS literature are often re-
strictive in practical control applications. For instance, the
exact time delay model, stochastic or not, is hard to ob-
tain, nevertheless some bounds can be guaranteed. In this
article we propose a novel methodology for time-varying
delay in the forward and backward communication channel
which can guarantee stability based on bounds on the time
delay derivative. For stabilizing controller design limited
plant knowledge is necessary. Output feedback is consid-
ered, requiring no direct access to the states.

The proposed approach is based on the input-output trans-
formation introduced by the authors in [19] for constant
time delay. In contrast to standard time delay systems with
input or state delay, in NCS there is access to the inputs and
outputs before and after the time delay. Exploiting this fact,
instead of the original plant and controller output, a lin-
ear combination of the corresponding inputs and outputs is
transmitted over the network. The plant and controller are
assumed to be input-feedforward-output-feedback-passive
(IF-OFP) systems. It is shown that as long as the plant and
controller without the network and the time delay are stable
based on well known feedback stability theorem, the closed
loop with the transformation is stable for arbitrarily large
constant time delay. Stability is based on the fact that the
constant time delay operator has L2 gain one for arbitrarily
large time delay.

In case of time-varying delay however, the time delay op-
erator becomes unbounded and stability may be comprom-
ised. Here, we extend the above approach to time-varying
delay. It is shown that asymptotic stability of the closed
loop system can be guaranteed if the time delay operators
are bounded, even if the gain is larger than one. The time
delay operator can be bounded by assuming a bound on the
time delay derivative. A more conservative controller de-
sign can be exploited to accommodate larger bounds for the
time delay derivative. The proposed method is validated in
a comparison with two alternative approaches.

The remainder of this article is organized as follows: Sect. 2
introduces the necessary background, followed by the sta-
bility analysis in Sect. 3. A comparison with two other
approaches is presented in Sect. 4.

2 Preliminaries

Let ‖u‖L2 denote the L2 norm of a piecewise square-
integrable function u(·) : R+ → Rm with R+ being the set
of non-negative real numbers and Rm the Euclidean space
of dimension m. The truncation of u(·) up to the time t is
denoted by ut(·), and the extended space of Lebesgue in-
tegrable functions by L2e. The systems considered in this
article are described by

H : ẋ = f(x, u) , y = h(x, u) (1)
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where x ∈ Rn, u, y ∈ Rm are the state, input and output vec-
tors respectively, and f(0, 0) = h(0, 0) = 0. The function f
is locally Lipschitz, thus for each fixed initial state x(0), (1)
defines a causal mapping from the input signal u(·) to the
output signal y(·). In case of a Linear-Time-Invariant (LTI)
system, G(s) = Y(s)

U(s) denotes the transfer function of (1),
where U(s), Y(s) are the Laplace transforms of the in-
put u(·) and output y(·) respectively. In this article we will
consider zero state observable systems.

Definition 1 [20] The system (1) is called zero state ob-
servable if no solution ẋ = f(x, 0) can stay identically
in S = {x ∈ Rn|h(x, 0) = 0} other than the trivial solu-
tion x(t) ≡ 0.

2.1 Input-feedforward-output-feedback-passive
systems

Definition 2 The system (1) is called input-feedforward-
output-feedback-passive if there exist constants δ, ε ∈ R and
a positive semi-definite function V : Rn → R+ such that for
each admissible u and each t ∈ [0,∞) we have

V̇ (x) ≤ uT y − δuT u − εyT y (2)

where x ∈Rn is the state vector or the system.

In physical interpretation uT y represents the instantaneous
external energy flow into the system. The above input-
output description is a generalization of the passivity con-
cept. If δ = ε = 0 then the system is passive, i. e. it does
not generate energy. If δ = 0 and ε > 0 the system is called
output-feedback strictly passive and if δ > 0 and ε = 0
input-feedforward strictly passive. In both these cases the
system dissipates energy. If one or both of the values δ, ε

are negative then there is a shortage of passivity in the
system. The system can generate energy, but this energy
is bounded by the squared L2 norm of the input and/or
the output signal. Note, that IF-OFP is a special case of
dissipativity with a quadratic supply rate [21; 22].

2.2 Finite gain L2 stability

Definition 3 [20] The system (1) is called finite gain L2

stable if there exist constants γ, β ≥ 0 such that be-
tween each input u(·) ∈ L2e and the corresponding out-
put y(·) ∈ L2e of the system for each t ∈ [0,∞) the follow-
ing inequality holds

‖yt‖L2 ≤ γ‖ut‖L2 +β. (3)

The smallest possible value γ satisfying (3) is the L2 gain
of the system. In LTI systems the L2 gain is the H∞ norm,
denoted here by |G|∞, where G(s) is the transfer function
of the system.

One important stability result for closed loop systems
comes from the IF-OFP property of its subsystems. Con-
sider two IF-OFP systems Hp and Hc satisfying (2) with
some Vi, δi, εi , i ∈ {p, c} with subscript (.)p refering to the
plant and (.)c to the controller.

Proposition 1 [20] The negative feedback interconnection
of Hp and Hc is finite gain L2 stable if

εc + δp > 0 and εp + δc > 0 .

Assuming further zero state observability of plant and con-
troller, asymptotic stability can be shown by taking as
Lyapunov function V = Vp + Vc, and applying the invari-
ance principle [20].

2.3 Time delay operator

We consider a time delay operator D : u(·) → y(·) with
u, y ∈ Rm the input and output respectively, i. e. y(t) =
u(t − T(t)), where T is the time delay value. In case of
constant time delay, i. e. T(t) = T0 it is easy to show that
the L2 gain γD = 1 for arbitrarily large constant time delay.
However, in case of time-varying delay, without further as-
sumptions, the operator becomes unbounded [23]. The time
delay operator can be bounded assuming a maximum in the
time delay derivative.

Proposition 2 [23] If the time delay is continuously differ-
entiable and the time delay derivative bounded, i. e.

Ṫ ≤ d < 1 , (4)

the L2 gain of the time-varying delay operator is

γD = 1√
1−d

.

3 Main result

Most generally, multi-input-multi-output systems with the
same dimension m of input and output can be considered
as plant and controller in this approach. For the ease of
notation the following statements address the single-input-
single-output case, i. e. m = 1. Where non-ambiguous, the
time argument t is dropped.

3.1 NCS with input-output transformation

The system comprises a plant Hp and a controller Hc de-
scribed by (1) with xp, up, yp, xc, e, yc being the plant and
controller, state, input and output vectors respectively. By e
the control error is denoted e = w−uc, with w ∈ L2e be-
ing the desired value and uc the lefthand side output of the
communication channel, see Fig. 2.

The plant is connected to the controller through a commu-
nication network. However, instead of directly transmitting
plant (controller) output over the communication channel,
a linear combination of plant (controller) output and input
is sent to the corresponding receiver side. The transform-
ation matrix M ∈ R2×2 acts on the plant and the controller
input-output vector zT

p = [up yp] and zT
c = [yc uc], respect-

ively

sr = Mzp and sl = Mzc , (5)

where sT
r = [ur vr ] and sT

l = [ul vl] represent the values
transmitted over the communication channel, see Fig. 2.
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Figure 2: Networked control system with time-varying delay and
input-output transformation.

The transformation matrix M = RB is parameterized as
a rotation matrix R and a scaling matrix B

R =
[

cos θ sin θ

− sin θ cos θ

]
, B =

⎡
⎢⎣

√
b 0

0
1√
b

⎤
⎥⎦ ,

with the rotation angle θ ∈ [−π
2 , π

2 ] and the scaling param-
eter b > 0, both constant. The mapping by M is a bijection;
it belongs to the class of special linear transformations,
i. e. det M = 1, hence is non-singular, an inverse exists.
Note that for M = I2, with I the identity matrix, the stand-
ard approach without input-output transformation is re-
covered.

The network is modelled as a forward time delay op-
erator DT1 (plant to controller channel) and backward
time delay operator DT2 . The value ul is transmit-
ted from the controller to the plant side arriving as
value ur(t) = ul(t − T1(t)). Accordingly for the backward
channel vl(t) = vr(t − T2(t)) holds.

For further reference, the following subsystems are defined:
H1 : ur(·) → vr(·), H2 : yc(·) → uc(·), H3 : vl(·) → ul(·)
and HOL = H1 ◦DT2 ◦ H3 ◦DT1 , see also Fig. 2.

Throughout the paper we make the following assumptions:

1. Plant Hp and controller Hc are IF-OFP systems with
positive definite radially unbounded functions Vi

and δi, εi , i ∈ {p, c} satisfying Proposition 1, i. e.

εc + δp > 0 and εp + δc > 0 .

2. Plant Hp and controller Hc are zero state observable.
3. The time delays T1(t), T2(t) are continuously differ-

entiable and the time delay derivatives are bounded
i. e. Ṫi ≤ di < 1, i ∈ {1, 2}.

4. The closed loop system is well posed, i. e. for each in-
put signal w ∈ L2e there exists a unique solution for the
signals e, uc, yc, ul, vl, ur , vr, up, yp that causally de-
pends on w.

The time delay operators are bounded, accordingly to
Proposition 2 and assumption 3.

3.2 Stability with constant time delay

Under the further assumption that the forward and back-
ward time delays are constant but unbounded the next
proposition holds.

Proposition 3 [19] The closed loop system is delay-
independently finite gain L2 stable if the angle θ is chosen
by

cot 2θ = εpb− δp

b
, (6)

and

α(θ) = sin(θ) cos(θ)− δp

b
cos2(θ)− εpb sin2(θ) ≥ 0 , (7)

where b > 0 is a parameter which can be chosen freely to
meet performance requirements. Stability is based on the
fact that the constant time delay operator has L2 gain one,
for arbitrarily large time delay. The right hand transform-
ation transforms the IF-OFP plant to a finite gain L2 stable
system H1, see Fig. 2. Since the constant time delay oper-
ator has L2 gain one the L2 gain of the subsystem H1 is
not affected. Consequently the left hand inverse transform-
ation restores the original IF-OFP property of the plant to
the subsystem H2. Thus, the effect of the input-output trans-
formation is to preserve the plant IF-OFP property to the
subsystem H2 which includes the arbitrarily large constant
time delay. As long as stability is guaranteed for the ori-
ginal plant and controller feedback interconnection based
on Proposition 1, the same holds for the feedback intercon-
nection of the controller and the subsystem H2.

3.3 Stability with time-varying delay

In the rest of this article the reference input is considered to
be zero, i. e. w = 0. The next theorem holds.

Theorem 1 The closed loop system is globally asymptotic-
ally stable if

γ 2
D T1

γ 2
D T2

<
β(θ∗)
α(θ∗)

α(θ∗)+∆

β(θ∗)−∆
, (8)

where θ∗, α(θ∗) given by (6) (7),

β(θ∗) = α(θ∗)+ δp

b
+ εpb , (9)

and

∆ = min[(εp + δc)b, (εc + δp)/b] > 0 . (10)

Proof: See Appendix.

Expressing the L2 gain of the time-varying delay operator
in (8) using Proposition 2 the following corollary is derived.

Corollary 1 The closed loop system is globally asymptot-
ically stable if

1

(1−d1)(1−d2)
<

β(θ∗)
α(θ∗)

α(θ∗)+∆

β(θ∗)−∆
.

Proof: Direct application of Theorem 1, Proposition 2 and
assumption 3.
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From (8) it is seen that the larger ∆ is, the larger the
gain of the time delay operators which do not comprom-
ise stability can be, allowing thus larger bounds for the
time delay derivatives. Depending on controller design,
i. e. δc, εc, different bounds on the time delay derivatives
can be accommodated.

An interpretation of the above stability condition can be
given in terms of the small gain theorem in the loop with
the transformed plant and controller, see Fig. 2. It is shown
in the proof, see the Appendix, that an upper bound for
the L2 gain of the subsystem H1 is given by

γ 2
H1

= α(θ∗)
β(θ∗)

,

and further an upper bound for the L2 gain of the subsys-
tem H3, which includes the controller, is given by

γ 2
H3

= β(θ∗)−∆

α(θ∗)+∆
.

Consequently the inverse of the right part of (8) repres-
ents a maximum for the L2 gain of the subsystem H1 ◦ H3,
i. e. γH1◦H3 ≤ γH1γH3 . Equation (8) can thus be interpreted
as a small gain condition, γHOL ≤ γH1γD T2

γH3γD T1
< 1.

A larger ∆ results in smaller L2 gain for H3, consequently
larger bounds of the time delay operators can be accommo-
dated without compromising stability.

Since the small gain condition is satisfied in the loop
with the transformed plant and controller all the signals
in this loop will converge to zero. The invertibility of
the transformation together with the zero state observabil-
ity of the plant and the controller can further guarantee
that the states will also converge to zero. The small gain
theorem however, needs not to be satisfied between the
initial plant and controller, thus less conservative con-
troller design is allowed compared to the typical small gain
case. For example assuming a plant with an integrator,
the small gain theorem between the plant and controller
cannot be satisfied, as the integrator is not a bounded L2

gain operator. On the contrary, Theorem 1 can be still sat-
isfied, even if there is a free integrator in the plant or
controller. This can be demonstrated by counterexamples,
e. g. Gp(s) = 1

s+1 , Gc(s) = s+1
s(s+10)

, b = 1, θ = 30◦.

4 Comparison with alternative
approaches

Goal of this section is to verify in simulation the efficacy
of the proposed approach. For comparison, a controller
without the input-output transformation as well as a con-
troller based on the small gain theorem are considered. We
will refer to the controller without the input-output trans-
formation as delay-dependent, in the sense that, contrary
to the other two, a bound for the time delay value is ne-
cessary for stability to be guaranteed. For simplicity the
forward and backward time delays are considered to be
equal, i. e. T1(t) = T2(t) = T(t). As the method used to com-
pute the stability bounds for the delay-dependent approach

is applicable to linear systems only, we consider an LTI
system

ẋp = Apxp + Bpup , yp = Cpxp , (11)

as plant with up, yp, xp its input, output and state, respect-
ively. For the following simulations we fix the parameters
to

Ap =
[−10.1 −1

1 0

]
, Bp =

[
8
0

]
, Cp=

[
0 5

]
.

resulting in the transfer function

Gp(s) = 40

s2 +10.1s+1
.

The above system can be interpreted as a mass-spring-dam-
per system, with mass Mp = 0.025 kg, spring and damper
coefficients Kp = 0.025 N/m and Dp = 0.2525 Ns/m, force
as input and position as output. Consequently the con-
troller design problem can be considered as position control
of a mass-spring-damper system through a communication
network.

4.1 Controller design

For fair comparison the controllers for all approaches are
designed by numerical optimization using the integrated
time square tracking error measure (ITSE)

J =
t f∫

0

τe2(τ)dτ ,

as cost function. The time horizon is defined t f = 5 s and
the optimization is performed using fmincon of the Mat-
lab optimization toolbox. The initial state of the plant
is xp(0)T = [1 1]. The numerical optimization is performed
for constant forward and backward time delay T = 150 ms.
The time-varying delay stability limits are afterwards de-
fined. As basic structure for the controller a lead-lag elem-
ent

Gc(s) = k
s +a

s + c
,

is considered where k, a, c > 0 are parameters to be de-
termined by the numerical optimization. The exact design
procedure for all cases is explained in the next.

4.1.1 Input-output transformation

For the input-output transformation the optimization prob-
lem is described by mink,a,c,b,θ J subject to the stability
constraint |G1|∞|G3|∞ < 1 and k, a, c, b > 0. The opti-
mization problem gives the controller

Gtr(s) = 10.6762(s+55.5019)

s +66.5624
,

with all the constraints satisfied and b = 0.1531, θ = 51◦.
The optimal cost function value is J = 0.1147. The L2 gain
of the open loop is bounded by |G1|∞|G3|∞ = 0.4471.
Based on Corollary 1 stability is guaranteed if for the bound
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of the time delay derivative (4) holds d < 0.5529, indepen-
dently of the time delay value.

4.1.2 Small gain based controller

For fair comparison, in order to accommodate the same
time delay derivative as the transformation approach, the
controller gain k is fixed to

k = 0.4471

|Gp( jω)|∞|Gc( jω)|∞ . (12)

The numerical optimization problem is described by
mink,a,c J subject to the constraints a, c > 0 and (12). The
resulting controller is

Gsg = 0.2558(s+0.0986)

(s +2.2736)
,

The optimal cost function value is J = 94.5822.

4.1.3 Delay-dependent controller

For the delay-dependent controller, the lead-lag element
is considered without the input-output transformation. The
optimization problem is described by mink,a,c J subject to
the constraint k, a, c > 0. The optimization gives the con-
troller

Gdd(s) = 18.7112(s+4.0228)

s +140.4704
,

with the optimal cost function value J = 2.4789.

The stability limits of the time delay value with re-
spect to the time delay derivative are computed through
LMIs, based on the Integral Quadratic Constraints (IQC)
framework [13]. Therefore the closed loop system with
the forward and backward time delay operator is mod-
eled as a multiple time-varying delay system with time
delays T1(t), T2(t), and Trt(t) = T1(t)+ T2(t − T1(t)), i. e.
it can be written

ẋ = Ax(t)+ AT1x(t − T1(t))+ AT2x(t − T2(t))+
ATrt x(t − Trt(t))+ Bw(t)+ BT1w(t − T1(t))

y = Cx(t) ,

where xT = [
xT

p xT
c

]
,

A =
[

Ap 0
0 Ac

]
, AT1 =

[
0 BpCc

0 0

]
, AT2 =

[
0 0

−BcCp 0

]
,

ATrt =
[−BpDcCp 0

0 0

]
, B =

[
0
Bc

]
, BT1 =

[
BpDc

0

]
,

and Ap, Bp, Cp and Ac, Bc, Cc, Dc representing plant and
controller respectively. The bounds of the time delays
are straightforward to compute, T1,max = T2,max = Tmax ,
Trt,max = 2Tmax , and further d1,max = d2,max = drt,max =
d < 1. The time delay bounds are computed for all
d ∈ {0, 0.02, . . ., 0.98}. Propositions 1, 3 and 4 of [13] are
considered, formulated in LMIs. For its computation the
YALMIP Matlab toolbox is used [24] with the SDPT3
solver [25]. The computed time delay bound sufficient for

stability is Tmax = 5.2 ms for all d ∈ {0, 0.02, . . ., 0.98},
accordingly for the allowable round trip time delay we
get Trt,max = 10.4 ms. This is conservative compared to
the delay-independency of the proposed input-output trans-
formation approach.

4.2 Simulations

The approaches are compared for two different time delay
characteristics, a bounded sinusoidal time delay and a con-
tinuously increasing ramp time delay.

4.2.1 Sinusoidal time delay

The time delay is given by T(t) = 2.5(1+ sin(200t)) ms,
with bounds Tmax = 5 ms, dmax = 0.5 s/s. Stability is guar-
anteed for all three approaches. The simulation results
are presented in Fig. 3. Note that all the systems settle to
zero, however, the proposed approach gives by far the best
performance with respect to the convergence speed. The
settling time is less than 1 s, while for the delay-dependent
approach the settling time is approximately 3 s. The small
gain based system is conservative as it needs more than 40 s
to settle down.

4.2.2 Ramp time delay

The time delay is given by T(t) = lt. Stability of the delay-
dependent approach cannot be guaranteed as the time delay
increases continuously. The simulation results for the trans-
formation approach and the small gain based approach
are presented in Fig. 4 for l ∈ {0.2, 0.5}. Here, again both
responses are asymptotically stable, yet again the trans-
formation approach performs by far better. For the trans-
formation the settling time is approximately 1s in the first
case and 3 s in the second. The small gain based system
takes more than 40 s to settle down.

In short asymptotic stability is guaranteed for the trans-
formation approach independently of the time delay value
while the performance is by far better than the small gain
based approach, but even the delay-dependent approach.
That is to be expected, since contrary to the other two
approaches, the transformation approach uses the fact that
there is access to the input and output of the plant before
the time delay. The right hand transformation can be inter-
preted as a local static output-feedback-input-feedforward

Figure 3: Simulation results for sinusoidal time delay T(t ) = 0.0025×
(1+ sin(200t)).
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Figure 4: Simulation results for constantly increasing time delay T(t) =
lt for l = 0.2 and l = 0.5.

controller. Whether the proposed approach can be used to
formulate, even less conservative stability criteria based on
bounds on the time delay value is subject for future re-
search.

5 Conclusions

An input-output transformation approach is considered in
this article for time-varying delay in NCS. Instead of direct
communication, a linear combination of plant and con-
troller input and output is transmitted through the network.
Asymptotic stability is guaranteed for arbitrarily large time
delay and the time delay derivative with known upper
bound. The proposed approach is superior with respect
to convergence speed compared to the standard delay-
independent small gain and also to a delay-dependent ap-
proach. Simulations are performed to verify the obtained
results. Future research includes the development of a con-
troller design method based on the above stability criteria,
as well as the investigation for less conservative stability
conditions based on bounds on the time delay value.
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Appendix

Before stating the proof some necessary Lemmas are pres-
ented.

Lemma 1 [19] Without loss of generality the domain
of δ, ε in IF-OFP systems (2) is considered by Ω = Ω1 ∪Ω2

with Ω1 = {δ, ε ∈R|δε < 1/4} and Ω2 = {δ, ε ∈ R|δε = 1/4;
ε > 0}.
Accordingly, we consider (δ, ε) ∈ Ω.

Lemma 2 [19] Consider the expressions

α(θi) = sin(θi) cos(θi)− δp

b
cos2(θi)− εpb sin2(θi)

β(θi) = sin(θi) cos(θi)+ δp

b
sin2(θi)+ εpb cos2(θi)

= α(θi)+ δp

b
+ εpb

where θi, i ∈ {1, 2} are the two solutions of cot(2θ) =
εpb− δp/b in the interval [−π

2 , π
2 ], b > 0, and (δp, εp) ∈ Ω.

Then the following statements are true:

• α(θ1), β(θ1) > 0 and α(θ2), β(θ2) < 0 if (δp, εp) ∈ Ω1,
• α(θi) = 0, β(θi) > 0 if (δp, εp) ∈ Ω2.

Proof of Theorem 1: The reference input is considered to
be zero, w = 0. The Lyapunov function of the closed loop
system is chosen to be

V = V1 + V3 + Vcom , (13)

where

V1 = Vp

β(θ∗)
, V3 = Vc

α(θ∗)+∆
, (14)

with θ∗, α(θ∗), β(θ∗) given by, (6), (7) and (9) respectively,
and

Vcom(t) = γ 2
H1

t+T1(tout,1)∫
t

u2
r dτ +γ 2

H3

t+T2(tout,2)∫
t

v2
l dτ ,

with tout,1, tout,2 given by

tout,1 − T1(tout,1) = t , tout,2 − T2(tout,2) = t . (15)

The positive definite function Vcom(t) expresses the en-
ergy stored in the time communication network at
time t. Accordingly to Lemma 2, α(θ∗) ≥ 0, β(θ∗) > 0 and
since ∆ > 0, V1 and V3 are positive definite and radially
unbounded. Consequently so is V .

Inequality (2) for the plant can be written

V̇p ≤ zT
p Qpzp , (16)

with the matrix

Qp =
⎡
⎢⎣−δp

1

2
1

2
−εp

⎤
⎥⎦ .

Rewriting (16) in terms of the transmitted variables and
choosing θ from (6) (7) it follows

V̇p ≤ sT
r M−T QpM−1sr = sT

r Q1sr,

with

Q1 =
[
α(θ∗) 0

0 −β(θ∗)

]
,

where accordingly to Lemma 2, α(θ∗) ≥ 0, β(θ∗) > 0.
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By integration we get

V1(xp(t))− V1(xp(0)) ≤
t∫

0

γ 2
H1

u2
r −v2

r dτ , (17)

where V1 given in (14) and

γ 2
H1

= α(θ∗)
β(θ∗)

,

an upper bound for the L2 gain of H1. By parameterizing
the controller IF-OFP parameters δc, εc in terms of δp, εp

and the ∆ (10) it is straightforward to see that the controller
satisfies also (2) with δ′

c = −εp +∆/b, ε′
c = −δp +∆b as

δ′
c ≤ δc, ε′

c ≤ εc. By considering further that e = −uc we
get

V̇c ≤ zT
c Q′

czc (18)

with

Q′
c =

[
δp −∆b 1

2
1
2 εp − ∆

b

]
.

Substituting uc, yc from the inverse of the transformation
equations (5) in (18) and after some mathematical manipu-
lation it follows

v2
l

(
−δp

b
sin2(θ)− εpb cos2(θ)− cos(θ) sin(θ)+∆

)
+

u2
l

(
δp

b
cos2(θ)+ εpb sin2(θ)− cos(θ) sin(θ)−∆

)
− V̇c ≥

ulvl

(
cos2(θ)− sin2(θ)−2

(
εb− δp

b

)
sin(θ) cos(θ)

)
.

(19)

By choosing θ from (6) (7) the right part of (19) is zero,
thus (19) can be rewritten

V̇c +u2
l (α(θ∗)+∆) ≤ v2

l (β(θ∗)−∆)

which by integration becomes

V3(xc(t))− V3(xc(0)) ≤
t∫

0

γ 2
H3

v2
l −u2

l dτ , (20)

with V3 given in (14) and

γ 2
H3

= β(θ∗)−∆

α(θ∗)+∆
,

an upper bound for the L2 gain of the subsystem H3.

For the forward time delay channel DT1 , because Ṫ1 < 1,
for each time t and τ ∈ [0, tout,1) where tout,1 is given
by (15), it holds

ur(τ) =DT1(ul(τ)) =DT1(ul,t(τ)) = u′
r(τ) ,

where with ul,t the truncation of ul until time t is denoted.
Furthermore, because DT1 is bounded by L2 gain γD T1

it holds
t+T1(tout,1)∫

0

γ 2
DT1

u2
l,t d τ −

t+T1(tout,1)∫
0

u
′2
r dτ ≥ 0 ⇒

t+T1(tout,1)∫
t

u2
r dτ ≤

t∫
0

γ 2
D T1

u2
l dτ −

t∫
0

u2
r dτ . (21)

Equivalently for the backward time delay operator we reach

t+T2(tout,2)∫
t

v2
l dτ ≤

t∫
0

γ 2
DT2

v2
r dτ −

t∫
0

v2
l dτ . (22)

By substituting (17) (20) (21) (22) in the Lyapunov func-
tion (13) and after some mathematical manipulation we get

V(x(t))− V(x(0)) ≤
t∫

0

γrv
2
r +γlu

2
l dτ, (23)

where γr = γ 2
H3

γ 2
D T2

−1 and γl = γ 2
H1

γ 2
D T1

−1. At least one
of γr, γl < 0 as otherwise (8) does not hold. Let’s as-
sume γl < 0. The case which γr < 0 is equivalent. For the
subsystem H1 ◦DT1 we can compute

t∫
0

1

γ 2
H1

γ 2
D T1

v2
r dτ ≤

t∫
0

u2
l dτ + V1(xp(0))

γ 2
H1

γ 2
D T1

,

and substituting in (23) and after some mathematical ma-
nipulation we reach

V(x(t))− V ′(x(0)) ≤ −γ 2

t∫
0

v2
r dτ , (24)

where

V ′(x(0)) = V(x(0))− γlV1(xp(0))

γ 2
H1

γ 2
D T1

,

and

γ 2 =
1−γ 2

H1
γ 2
DT1

γ 2
H3

γ 2
D T2

γ 2
H1

γ 2
D T1

> 0 .

Assuming that V(x) is continuously differentiable, (24) can
be equivalently rewritten

V̇ (x) ≤ −γ 2v2
r ≤ 0 ,

i. e. the closed loop system is stable. Global asymp-
totic stability can be further shown from (24), finite gain
stability of the subsystems and the invertibility of the
transformation. From (24) we conclude that limt→∞ vr = 0
otherwise V ′(x(0)) → ∞. Because H1,DT2, H3,DT1 are
finite gain stable operators we have limt→∞ vr = 0 ⇒
limt→∞ ur, vl, ul = 0. Furthermore, the transformation
is invertible, thus from (5), limt→∞ vr , vl, ur, ul = 0 ⇒
limt→∞ up, yp, uc, yc = 0 and due to zero state ob-
servability of plant and controller limt→∞ up, yp = 0 ⇒
limt→∞ xp = 0, limt→∞ uc, yc = 0 ⇒ limt→∞ xc = 0.
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