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Abstract This work is motivated by the problem of synthesizing switching protocols for
continuous switched systems described by differential or difference equations, in a way that
guarantees that the resulting closed-loop trajectories satisfy certain high-level specifications
expressed in linear temporal logic. We introduce augmented finite transition systems as an
abstract representation of the continuous dynamics; the augmentation consists in encodings
of liveness properties that can be used to enforce progress in accordance with the underlying
continuous dynamics. Abstraction and refinement relations that induce a preorder on this
class of finite transition systems are established, and, by construction, this preorder respects
the feasibility (i.e., realizability) of the synthesis problem. Hence, existence of a discrete
strategy for one of these abstract finite transition systems guarantees the existence of a
switching protocol for the continuous system that enforces the specification for all result-
ing trajectories. We show how abstractions and refinements can be computed for different
classes of continuous systems through an incremental synthesis procedure that starts with
a coarse abstraction and gradually refines it according to the established preorder relations.
Finally, the incremental synthesis procedure is tailored to a class of temporal logic formu-
las by utilizing specific fixed point structures to enable localized updates in the refinement
steps. The procedure is not guaranteed to terminate in general but we illustrate its practical
applicability on numerical examples.
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1 Introduction

Motivated by the need for designing controllers to satisfy complex requirements, there has
been significant recent interest in abstraction-based control synthesis techniques (Tabuada
2009). These techniques provide a unified way to handle state and input constraints, and
possibly hybrid dynamics, which are common in many safety-critical systems. In particu-
lar, several techniques have been proposed to construct abstractions for switched systems
with discrete-valued actuators, or, equivalently, systems whose operation is restricted to a
finite set of predefined modes (Cámara et al. 2011; Yordanov et al. 2012; Gol et al. 2012;
Liu et al. 2013; Ozay et al. 2013). These abstractions are used for synthesizing switching
protocols that orchestrate the low-level dynamics in a way that ensures that the trajectories
of the system satisfy high-level specifications, typically given in terms of temporal logic
formulas.

By an abstraction, also known as a symbolic model (Tabuada 2009), we essentially mean
a finite graph structure that captures some of the properties of the underlying continuous
dynamics. If a given switched system satisfies certain stability conditions, it is possible to
obtain a finite transition system that (approximately) bisimulates it. For instance, Girard
et al. show that under certain stability conditions, and if the sampling time is chosen care-
fully, it is possible to find a finite transition system that approximately bisimulates the
time-sampled trajectories of a continuous-time switched system (Girard et al. 2010). Gol
et al. present results for constructing bisimilar finite abstractions for stable discrete-time
switched systems (Gol et al. 2012). If the switched system does not satisfy the stabil-
ity conditions, or if a finite bisimilar model with a good approximation quality requires
too many states, it is still possible to construct finite transition systems that simulate the
underlying dynamics or over-approximate it as defined in (Liu et al. 2013). By construc-
tion, a control strategy for such an abstract transition system can be implemented as a
switching protocol for the concrete switched system in a way that preserves specification
satisfaction.

Both simulation relations and over-approximation relations are based on the ability
of a finite transition system to encompass and mimic the transitions of the concrete
continuous system. Transitions are short-horizon properties, therefore it is difficult to
capture long-horizon properties of the underlying dynamics with the usual transition sys-
tem structures. This shortcoming manifests itself, for instance, through spurious cycles
in the finite transition system, which may cause liveness properties to be unenforceable
on the abstract transition system, despite being enforceable on the concrete continuous
system.

In this paper we address this limitation by introducing augmented finite transition sys-
tems (AFTS), which generalize finite transition systems with additional liveness conditions
that encode transience properties of the underlying dynamics. Appropriate preorder rela-
tions among these transition systems are established to facilitate abstraction-refinement
based incremental control synthesis. We also present algorithms to compute this type of
abstraction and its refinements for various continuous-time and discrete-time dynamical
systems. In the second part of the paper, we focus on controller synthesis and propose an
incremental synthesis algorithm based on an abstraction-refinement loop. The algorithm is
specialized to AFTSs and a fragment of Linear Temporal Logic (LTL). In particular, by uti-
lizing the specific fixed-point structures that appear in solving the synthesis problems in
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this fragment, the runtime of the incremental synthesis algorithm is improved by enabling
localized updates during abstraction refinement.

Ideas similar to AFTSs have previously been considered for verification (Kesten and
Pnueli 2000; Batt et al. 2008). In the context of abstraction-based control synthesis, elimi-
nating potentially spurious self-loops—which are special instances of spurious cycles—has
been proposed as a post-processing step during synthesis (Yordanov et al. 2012; Coogan
and Arcak 2015). AFTSs and associated synthesis algorithms provide a systematic method-
ology to describe all potential spurious cycles in a unified way, thus eliminating the need
for post-processing. AFTS-based abstractions are also related to the notion of fair simula-
tion relations studied for purely discrete systems (Baier and Katoen 2008). Incremental syn-
thesis for partition refinement has been proposed for stochastic linear systems (Svorenova
et al. 2015) and for deterministic abstractions (Mattila et al. 2015). Compared to this paper,
both of these works consider a different fragment of LTL, namely GR(1), and the class of
continuous dynamics is limited.

The preliminary conference version of this work appeared in (Nilsson and Ozay 2014).
Some related results have also appeared in (Ozay et al. 2013) and (Sun et al. 2014). The
current paper unifies these preliminary results, significantly extends the class of systems and
specifications, and provides complete implementation details. We have chosen to organize
the exposition in the following way. First, we introduce some preliminary set notation in
Section 2, and define the grammar and semantics of LTL. Subsequently, we define switched
systems in Section 3, together with the problem we seek to solve. In Section 4 we introduce
AFTSs together with related ordering notions and show in Section 5 how AFTSs can be
used as an abstraction of a switched system. The proposed abstraction-synthesis-refinement
framework is presented in Section 6 and in the following Section 7 we restrict attention to
a fragment of LTL and give efficient synthesis algorithms. We describe how a controller
can be extracted from the synthesis algorithms in Section 8 and comment on elimination of
Zeno behavior. Finally, we present illustrative numerical examples in Section 9 before the
paper is concluded in Section 10.

2 Preliminaries

2.1 Notation

We introduce the following notation pertaining to sets. For sets X and Y , X ⊂ Y indicates
that X is a (not necessarily strict) subset of Y . We write set closure as cl(X), set interior as
int(X), and set complement as XC . For a function f : X → Y we define the image of a
set V ⊂ X as f (V ) := {f (x) : x ∈ V } ⊂ Y . Conversely, we define the pre-image of a set
W ⊂ Y as f −1(W) := {x ∈ X : f (x) ∈ W }. Finally, the power set, or set of all subsets, of
X is denoted 2X := {Y : Y ⊂ X}.

2.2 Linear temporal logic

Linear Temporal Logic (LTL) is a formalism for specifying temporal properties. LTL has
two types of operators: logical connectives and temporal modal operators. The logic con-
nectives are those used in propositional logic: negation (¬), disjunction (∨), conjunction (∧)
and material implication ( =⇒ ). The temporal modal operators include next (©), always
(�), eventually (♦) and until ( U ). An LTL formula over a finite set of atomic propositions
(AP ) can be defined inductively as follows:
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(i) True is an LTL formula,
(ii) any atomic proposition p ∈ AP is an LTL formula, and

(iii) given LTL formulas ϕ and ψ , ¬ϕ, ϕ ∨ ψ , ©ϕ, and ϕ U ψ are also LTL formulas.

The remaining derived operators are defined as follows: (i) ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), (ii)
ϕ =⇒ ψ := ¬ϕ ∨ ψ , (iii) ♦ϕ := True U ϕ, and (iv) �ϕ := ¬♦¬ϕ.

Semantics of LTL LTL formulas are interpreted over ω-words, which are infinite
sequences in 2AP . Given an ω-word w = w(0)w(1)w(2) . . . in 2AP and an LTL formula
ϕ, we write (w, i) |= ϕ if and only if w satisfies ϕ at a position i ≥ 0, which is defined
inductively as follows:

(i) For an atomic proposition p ∈ AP , (w, i) |= p iff p ∈ w(i);
(ii) (w, i) |= ¬ϕ iff (w, i) 
|= ϕ;

(iii) (w, i) |= ϕ ∨ ψ iff (w, i) |= ϕ or (w, i) |= ψ ;
(iv) (w, i) |= ©ϕ iff (w, i + 1) |= ϕ; and
(v) (w, i) |= ϕ U ψ iff there exists j ≥ i such that (w, j) |= ψ and (w, k) |= ϕ for all

k ∈ [i, j).

An ω-word w satisfies ϕ, written as w |= ϕ, if and only if (w, 0) |= ϕ. Given an arbi-
trary set Y and an observation map h : Y → 2AP , we can interpret LTL formulas
for both discrete-time sequences and continuous-time functions taking values in Y . Let
y = y(0)y(1)y(2) . . . be an infinite sequence in Y ; then the ω-word generated by y is
h(y) := h(y(0))h(y(1))h(y(2)) . . .. We say that y satisfies ϕ, written as y |= ϕ, if h(y) |=
ϕ. For a continuous-time function y : [0, ∞) → Y , an ω-word w = w(0)w(1)w(2) . . . in
2AP is said to be consistent with the observation of y if and only if there exists a strictly
increasing sequence {tk}∞k=0 in [0, ∞) with t0 = 0 and tk → ∞ as k → ∞, such that
h(y(t)) = w(k) for all t ∈ [tk, tk+1). Note that for any such sequence {tk}∞k=0, all ω-words
consistent with the observation of y are stutter equivalent (Baier and Katoen 2008). We say
y satisfies ϕ, written as y |= ϕ, if there exists an ω-word w consistent with the observation
of y such that w |= ϕ.

3 Problem setup

In this paper we consider control synthesis for switched dynamical systems to satisfy given
linear temporal logic specifications. We use a cohesive notation that encompasses switched
dynamical systems in both continuous and discrete time. In the following, a switched system
is a tuple S = (X,U , {fu}u∈U ,D, AP, hX), where

– X ⊂ R
n is a compact domain,

– U is a finite set that enumerates the modes,
– fu is a mapping X → R

n for all u ∈ U ,
– D ⊂ R

d is a compact disturbance set,
– AP is a finite set of atomic propositions, and
– hX : X → 2AP is a state labeling function.

The evolution of the state x ∈ R
n of S is governed by

D+x(t) = fσ(t)(x(t), δ(t)), (1)
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where

D+x(t) :=
{

d
dt

x(t), for continuous time,
x(t + 1), for discrete time.

In Eq. 1, σ(t) ∈ U determines the active dynamical mode at time t , and δ(t) ∈ D is
a disturbance signal. In the continuous time case we assume that regularity conditions on
the functions {fu}u∈U , δ, and σ are fulfilled so that a weak1 solution to (1) exists and is
unique. It is enough to require that for all u ∈ U , fu(x, δ) Lipschitz continuous in X × D,
and, in addition, that δ is continuous and that σ is piecewise constant, see e.g. (Walter and
Thompson 1998, p. 121).

In the following we will refer to such weak solutions as trajectories, which will be
denoted x : I → X for a time interval I . In the continuous time case, I = [0, τ ] or
I = [0, ∞), whereas in discrete time I = {0, 1, . . . , T } or I = N. For the unbounded cases
I = [0, ∞) and I = N, the corresponding trajectory is called maximal.

A switching protocol for a switched system S is a partial function π : M × X →
U together with an internal state update function πint . The function π maps an internal
memory state m ∈ M and system state x ∈ X to an action u ∈ U , and the memory
m(t) follows some internal memory dynamics described by πint (m(t), x(t)). The control
synthesis problem considered in this paper can now be stated as follows.

Problem 1 Given a switched system model S = (X,U , {fu}u∈U ,D, AP, hX) in continu-
ous or discrete time, a set of initial conditions X0, and an LTL formula ϕ over AP , find
a switching protocol π such that all resulting closed-loop trajectories starting in X0 are
maximal and satisfy ϕ.

4 Augmented finite transition systems

We now introduce augmented finite transition systems and define relations between
augmented finite transition systems and switched systems.

Definition 1 An augmented finite transition system (AFTS) is a tuple T = (Q,U ,→T ,

G, AP, hQ), where

– Q is a finite set of states,
– U is a finite set of actions (control inputs),
– →T ⊆ Q × U × Q is a transition relation,
– G : 2U → 22Q

is a progress group map,
– AP is a finite set of atomic propositions, and
– hQ : Q → 2AP is a labeling function.

The difference between an AFTS and usual finite transition system definitions (e.g.,
(Baier and Katoen 2008)) is the progress group map. When there are no progress groups,
i.e. G(U) = ∅ for all U ∈ 2U , the AFTS is equivalent to a finite transition system. Given an
AFTS T , we denote by 	(T ) the finite transition system induced by T , which is the finite
transition system obtained from T by setting G(U) = ∅ for all U ∈ 2U .

1A weak (Carathéodory) solution is absolutely continuous and satisfies (1) for almost all t in the Lebesque
measure sense.
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Fig. 1 Illustration showing how a multi-action progress group can encode information that restricts the
behavior of an AFTS in a way that is useful for control purposes. The nondeterministic finite transition
system to the right can be thought of as an abstraction (see Def. 5) of the switched system with two modes
to the left. Without progress groups and starting in q1, there is no way to choose between actions u1 and
u2 to guarantee that the system will end up in q4 since q1q2q3q2q1q2 . . . is a valid trajectory. However, if
P := {q1, q2, q3} is a progress group under actions {u1, u2}, i.e. P ∈ G({u1, u2}), the state can not remain
indefinitely in P while these actions are used. This information can be inferred from the switched system.
Therefore, by always selecting u1 in q1 and u2 in q3, the state can be controlled to q4 in finite time. This type
of progress group information is exploited in the synthesis algorithms presented later in the paper. For this
example, single-mode progress groups are not capable of encoding the same information

The progress group map G maps a subset of actions U ∈ 2U to a set of subsets of states.
A set G ∈ G(U) is called a progress group under the action set U and restricts the behavior
of T in the following way: the system cannot remain indefinitely within G by exclusively
choosing actions from U . In previous work (Sun et al. 2014; Nilsson and Ozay 2014), only
single-action progress group maps of the form G : U → 22Q

were utilized. In this work,
we allow for the extended notion of multi-action progress groups that allow a richer class
of transience properties to be encoded. Figure 1 shows an example of how multi-action
progress groups can encode synthesis-critical information that is not possible to encode with
single-action progress groups.

Definition 2 An AFTS is said to be well-formed if the following holds for all U ∈ 2U and
for all subsets V ∈ 2G of all G ∈ G(U): there is a state q1 ∈ V such that for all actions
u ∈ U there exists a transition (q1, u, q2) ∈→T such that q2 
∈ V .

This condition is required to comply with the notion of a progress group: if an AFTS is
not well-formed it is possible to select actions so that the state remains indefinitely in some
V ⊂ G. Another way to interpret well-formedness is that a progress group G ∈ G(U) can
not contain a controlled invariant set for actions restricted to U .

We assume, without loss of generality, that all actions are enabled at every state.2 That is,
for all q1 ∈ Q and for all u ∈ U , there exists at least one q2 ∈ Q such that (q1, u, q2) ∈→T .
An execution ρ of an AFTS T is an infinite sequence of pairs ρ = (q(0), u(0)) (q(1), u(1))

(q(2), u(2)) . . ., where (q(k), u(k), q(k+1)) ∈→T for all k ≥ 0, that satisfies the progress
conditions encoded by G. That is,

∀U ∈ 2U , ∀G ∈ G(U), ∀K ≥ 0, ∃k > K s.t. (q(k), u(k)) 
∈ G × U. (2)

2A dummy state qd can be added, together with transitions from all forbidden state-action pairs, to obtain an
AFTS that is equivalent for synthesis purposes.
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Furthermore, the word produced by an execution ρ is an infinite sequence w = hQ(q(0))

hQ(q(1))hQ(q(2)) . . .. A control strategy for an AFTS T is a partial function μ : (Q ×
U)∗ × Q → 2U that maps the execution history ρ ∈ (Q × U)∗ and current state q ∈ Q to
a set of actions. A μ-controlled execution of T is an execution where for each step k ≥ 0,
the action u(k) is chosen according to the control strategy μ.

Synthesizing a control strategy for a finite transition system in order to guarantee
the satisfaction of an LTL formula by all controlled executions of the system is a well-
understood problem (Bloem et al. 2012; Piterman and Pnueli 2006; Church 1962; Pnueli
and Rosner 1989). Moreover, it is known that if there is a control strategy that guaran-
tees the satisfaction of the specification, there is always a finite memory strategy (Grädel
et al. 2002). That is, one can always choose μ : M × Q → 2U with internal update rule
m(k + 1) = μint (m(k), q(k)) for m(k) ∈ M , where M is a finite set. Next, we show
that controller synthesis for AFTSs with LTL specifications can be reduced to a controller
synthesis problem for a finite transition system.

Proposition 1 Given a well-formed AFTS T = (Q,U ,→T ,G, AP, hQ) and an LTL
formula ϕ, let

ϕG,U := ¬♦�(q ∈ G ∧ u ∈ U) = �♦ ((q 
∈ G) ∨ (u 
∈ U)) , (3)

for a progress group G under an action set U . Then, there exists a control strategy for T
that guarantees the satisfaction of ϕ, if and only if there exists a control strategy for 	(T )

that guarantees the satisfaction of the following modified specification ϕ′ over an extended
set of atomic propositions, defined as

ϕ′ :=
⎛
⎝ ∧

U∈2U

∧
G∈G(U)

ϕG,U

⎞
⎠→ ϕ. (4)

Proof The progress group condition (2) is captured by the LTL formula (3). Therefore, the
progress information can equivalently be stated as part of the formula ϕ′.

Finite synthesis problems like these can be solved for general LTL specifications using
software such as TuLiP (Filippidis et al. 2016), a toolbox that provides interfaces for mul-
tiple synthesis tools. Although the synthesis problem can be computationally challenging
for general LTL specifications, there are fragments of LTL such as GR(1) with more favor-
able computational complexity (Piterman et al. 2006). If ϕ ∈ GR(1), then also ϕ′ ∈ GR(1),
so the algorithmic complexity of the synthesis problem is not affected by the addition of
progress group encodings.

The next definition gives a relation between AFTSs, which leads to a preorder.

Definition 3 Given two AFTSs T̂ = (Q̂,U ,→T̂ , Ĝ, AP, ĥ
Q̂

) and T = (Q,U ,→T ,

G, AP, hQ), T is said to be a refinement of T̂ (or, T̂ is an abstract model of T ), denoted
by T̂ �T , if there exists a refinement function β : Q → Q̂ such that the following
conditions hold.

(i) For all q ∈ Q, hQ(q) = ĥ
Q̂

(β(q)).
(ii) For all (q1, u, q2) ∈→T , (β(q1), u, β(q2)) ∈→T̂ .
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(iii) For all U ⊂ U , for all Ĝ ∈ Ĝ(U), there exists G ∈ G(U) such that for all q̂ ∈ Ĝ, we
have β−1({q̂}) ⊆ G.

It is easy to see that � is a preorder relation as it is reflexive and transitive. The
reflexive property can be shown by taking β to be the identity map, while transitive-
ness follows by noting that if T1�T2 with the refinement function β1,2, and T2�T3 with
the refinement function β2,3, then β1,3 := β1,2 ◦ β2,3 is a refinement function that
verifies T1�T3.

Proposition 2 Given T̂ �T , the set of all words that can be generated by T is a subset
of those that can be generated by T̂ . Moreover, given an LTL formula ϕ over 2AP , if it is
realizable on T̂ , then it is realizable on T .

Proof The set of generated words is restricted by the absence of transitions or the pres-
ence of progress groups. Conditions (i)-(ii) in Definition 3 imply that the states of T̂ are
aggregations of disjoint sets of equally labeled states in T . For every transition in the refine-
ment T there is therefore a corresponding transition in the abstract model T̂ , but T̂ may
also have additional transitions (i.e., more non-determinism). Additionally, condition (iii)
ensures that for each progress group Ĝ of the abstract model T̂ , there is a corresponding
progress group G of the refinement T . Since T contains a subset of the transitions and
a superset of the progress groups of T̂ , all words generated by T can also be generated
by T̂ .

Given a control strategy μ̂ : M × Q̂ → U with an internal update μ̂int : M × Q̂ → M

for T̂ that induces trajectories with words satisfying ϕ, a control strategy μ : M × Q → U
for T with internal update μint : M × Q → M can be defined as

μ(m, q) := μ̂(m, β(q)), μint (m, q) := μ̂int (m, β(q)). (5)

By the above, the set of words generated by μ will be a non-empty subset of those generated
by μ̂, so ϕ is realizable also on T .

Next, we seek to establish a similar relation between switched systems and AFTSs. This
necessitates the concept of transience—the continuous equivalent of progress groups.

Definition 4 Given a switched system S = (X,U , {fu}u∈U ,D, AP, hX), a set Y ⊂ X is
transient on a set of modes U ⊂ U if and only if for any state x0 ∈ Y , for any disturbance
δ(t) ∈ D, and any σ(t) taking values in U , there exists a bounded interval I such that
the trajectory x : I → X of D+x(t) = fσ(t)(x(t), δ(t)) with x(0) = x0 leaves Y , i.e.,
x(I ) \ Y 
= ∅.

As with progress groups, there is an equivalent interpretation of transience in terms of
controlled invariance: a set Y is transient on a set of modes U ⊂ U if and only if it does not
contain a controlled invariant set when the mode signal is restricted to U and δ is regarded
as a control input.

Definition 5 An AFTS T = (Q,U ,→T ,G, AP, hQ), is an over-approximation of
the switched system S = (X,U , {fu}u∈U ,D, AP, hX), denoted T �S , if there exists an
abstraction function α : X → Q, such that the following statements hold.
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(i) For all x ∈ X, hX(x) = hQ(α(x)).
(ii) Given states q1, q2 ∈ Q, if there exist x0 ∈ α−1(q1), a compact time interval I (not

a singleton), and some disturbance δ : I → D such that the corresponding trajectory
x : I → X of D+x(t) = fu(x(t), δ(t)), with x(0) = x0, satisfies

x
(

max
t∈I

t

)
∈ α−1(q2), x(I ) ⊂ α−1(q1) ∪ α−1(q2),

then (q1, u, q2) ∈→T .
(iii) The progress group map G is such that for all action sets U ∈ 2U , for all G ∈ G(U),

the set α−1(G) is transient on the mode set U of S .

As shown next, the over-approximation as defined above preserves LTL realizability,
which implies that a correct control strategy for an over-approximation T � S can be
implemented as a switching protocol on S .

Theorem 1 Let S be a switched system that is over-approximated by an AFTS T , i.e.,
T �S . Furthermore, let ϕ be an LTL (LTL\© for continuous time, since the next operator
(©) is not well defined) formula over the atomic propositions of S and T . If there exists
a control strategy for T that guarantees the satisfaction of ϕ, then there is a switching
protocol for S that guarantees the satisfaction of ϕ.
Proof We show that for any single-valued3 control strategy μ : M × Q → U for T with
internal update rule μint : M × Q → M , there is a corresponding switching protocol π for
S with internal dynamics πint such that each trajectory of S resulting from π corresponds
to a μ-controlled execution in T .

The switching protocol π is a function of its internal state m(t). For continuous time, it
is constructed inductively as follows for a trajectory x starting in x0. First, given an internal
state m(t) at time t , the switching protocol outputs π(m(t), x(t)) := μ(m(t), α(x(t)). Sec-
ondly, let q(0) := α(x0), m0 := μint (∅, q(0)), and t1 := inf{t ≥ 0 : α(x(t)) 
= q(0)}. Then
the internal state of π on the interval [0, t1) is m(t) := m0. Lastly, we define the update rule
πint of the internal state. For a time t ≥ tk , let the internal state of π be m(t) = mk . We
let m(t) be constant on the interval [tk, tk+1), for tk+1 := inf{t ≥ tk : α(x(t)) 
= α(x(tk))}.
We define q(k + 1) := α(limτ↘tk+1 x(τ )), where ↘ indicates the limit from above, and let
m(t) := μint (mk, q(k + 1)) for times t ≥ tk+1.

This construction results in a strictly increasing4 sequence {tk} in [0, ∞) with t0 = 0,
such that the output maps produce the same word,

π(m(t), x(t)) = μ(mk, qk) =: u(k),

hX(x(t)) = hQ(α(x(t))) = hQ(q(k)),
∀t ∈ [tk, tk+1). (6)

For discrete time, the construction simplifies to initializing q(0) := α(x0) and m(0) :=
μint (∅, q(0)). The switching protocol outputs u(t) := π(m(t), x(t)) := μ(m(t), α(x(t)))
and the internal state updates as m(t + 1) := μint (m(t), q(t + 1)).

Also this construction leads to output equivalence between T and S , given as

π(t) = u(t), hX(x(t)) = hQ(α(x(t))) = hQ(q(t)), ∀t = 0, 1, . . . (7)

3Taking values in U , as opposed to in 2U . Any set-valued control strategy can be restricted to a single-valued
strategy by fixing a selection rule.
4In the continuous time case, some mild conditions on continuous implementations of the strategy being
non-Zeno are necessary. See Section 8 for more details.
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By construction, in both cases q := q(0)q(1)q(2) . . . is a μ-controlled execution of T .
If it satisfies ϕ, it follows from Eq. 6 (resp. (7)) that also x satisfies ϕ.

5 Abstractions of switched systems

We now detail how an abstraction of a switched system

S = (X,U , {fu}u∈U ,D, AP, hX)

can be constructed as an AFTS. The abstraction will satisfy the properties of an over-
approximation in Definition 5, which allows us to reason about trajectories of S by
analyzing the abstraction algorithmically.

We consider abstractions based on a partition of the domain X. A partition can be defined
in terms of the equivalence classes X/ ∼α of an abstraction function α and its associated
equivalence relation ∼α:

x ∼α y iff α(x) = α(y).

In the following we assume that α takes a finite number of values, which makes also the
corresponding partition X/ ∼α finite, and that each partition cell α−1(q) = {x : α(x) = q}
satisfies the regularity property cl

(
int
(
α−1(q)

)) = cl
(
α−1(q)

) 
= ∅. From a computational
point of view, the type of partitions that we use (e.g., consisting of hyper boxes or convex
polyhedra with non-empty interior) naturally satisfy this assumption. We restrict attention to
abstraction functions α with the property of being proposition preserving with respect to the
set of atomic propositions AP . Being proposition preserving means that continuous states
that are in the same equivalence class have identical truth evaluations, i.e., for x, y ∈ X,
x ∼α y =⇒ hX(x) = hX(y).

Consider now an AFTS Tα = {Q,U ,→α,G, AP, hα}, where Q = α(X), hα := hX ◦
α−1, and the construction of →α and G are described below.

Determine transitions →α We require a transition (q1, u, q2) to be added to the AFTS
whenever there exists a corresponding trajectory between α−1(q1) and α−1(q2) in S . What
we are actually interested in is to limit spurious behaviors of the abstraction by obtaining
certificates for the absence of such trajectories. This task is described in Algorithm 1, which
systematically determines whether transitions exist between pairs of cells in the partition.
It will typically produce a nondeterministic AFTS, i.e., for a given state-action pair (q1, u)

there may be several successors q2 such that (q1, u, q2) ∈→T . Algorithm 1 depends on the
following subroutine:

R.1 isBlocked(C1, C2, f,D): Given two sets C1, C2 ⊂ R
n, single-mode dynamics

described by f , and a disturbance set D, return False if there exists a non-singleton
compact interval I and a trajectory x : I → X of D+x(t) = f (x(t), δ(t)) that
satisfies

x(0) ∈ C1, x
(

max
t∈I

t

)
∈ C2, x(I ) ⊂ C1 ∪ C2,

and True otherwise.
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Remark 1 In the interest of keeping notation simple, we have omitted handling poten-
tial out-of-domain trajectories. If there is a trajectory x on an interval I of D+x(t) =
fu(x(t), δ(t)) such that

x(I ) ⊂ α−1(q) ∪ XC, XC ∩ x(I ) 
= ∅,

then the action u must be avoided at state q. This can be encoded in the AFTS by adding
a dummy state qout to Q, and adding transitions (q, u, qout ) to →α for all state-action
pairs (q, u) with potential out-of-domain trajectories, and then avoid qout in synthesis by
adding the specification �¬qout . If isBlocked(C,XC, fu,D) = True, then there are
no out-of-domain trajectories from C corresponding to fu.

Determine progress groups G We use Algorithm 2 to extract a progress group map from
a switched system S . In essence, it considers collections of discrete states and adds them
to the progress group map if their pre-image under α is transient, as determined by the
following subroutine:

R.2 isTransient(C1, {fu}u∈U ,D): Given a set C1, switched dynamics described by
{fu}u∈U , and a disturbance set D, return False if there exists a maximal trajectory
x of D+x(t) = fσ(t)(x(t), δ(t)), with mode switching restricted to σ taking values in
U , such that x(I ) ⊂ C1, and True otherwise.

Algorithm 1 will by default add many transitions of the form (q, u, q) to →T . For
instance, in continuous time isBlocked(C,C, fu, D) = True by definition. To elimi-
nate spurious self-loops, single-action progress groups can be added for states q for which
α−1({q}) is transient. The same progress properties can however also be encoded in larger
progress groups, as discussed later in the section.
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Whether the subroutines isBlocked and isTransient can be implemented, and
how efficiently that can be done, depends on the form of the dynamics (1) (e.g., linear,
polynomial) and the type of sets induced by α (e.g., hyper boxes, polyhedra, semi-algebraic
sets). In the end of this section we give convex optimization formulations that can be used
to implement isBlocked and isTransient for various combinations of dynamics and
set descriptions.

Algorithms 1 and 2 can typically be implemented more efficiently than the pseudo-code
given here. For instance, at line 4 in Algorithm 1 it is sufficient to consider neighboring pairs
of cells in continuous time, as transitions between all other pairs are blocked by definition.
The search can also be heavily restricted in discrete time by calculating a global bound
on transition distance and automatically infer isBlocked to be True for pairs of cells
separated by a longer distance. Such localized search procedures improve the complexity of
the algorithm.

Similarly, the exponential complexity of Algorithm 2 is impractical in most applications
but can often be improved in practice. There is no additional benefit of either 1) finding
progress groups that are subsets of another progress group under the same action set, or
2) finding a single-action progress group that consists of states that are already part of
a multi-action progress group containing the same action. In these cases, the transience
properties are already captured by the “larger” progress groups. A reasonable choice is
therefore a heuristic search strategy that primarily focuses on finding large multi-action
progress groups. In the abstraction-refinement loop described in Section 6, the progress
group computed for the initial coarse abstraction where |Q| is small is mapped through
refinement steps, while search for new progress groups is conducted in localized candidate
regions only. It is also worth noting that for systems with globally asymptotically stable
equilibrium points per different subsets of inputs, the set of all cells that do not contain
the equilibrium form a large progress group and computation reduces to finding the cells
containing equilibrium points.

Intuitively, isBlocked and isTransient look for certificates of blocked transitions,
and transient subsets, so that spurious trajectories in the abstraction can be eliminated. How-
ever, it is not necessary that isBlocked and isTransient are exact in order for the
conditions of Definition 5 to hold. It is enough that they do not return false positives, as captured
in the following theorem. For the same reason, it is not necessary to find all possible progress
groups, although more progress groups might increase the quality of the approximation.

Theorem 2 Assume that an abstracting AFTS T is constructed from a switched system S as
described above, using a proposition preserving abstraction function and implementations
of isBlocked and isTransient that do not return false positives (i.e., if True is
returned for a given query, the conditions for True in R.1 resp. R.2 are indeed satisfied).
Then T is well-formed and T � S .

Proof Condition (i) of Definition 5 is satisfied by the definition of hα . If isBlocked
does not return false positives all transitions present in S will be added to T by Algorithm
1, which assures the satisfaction of (ii). Similarly, if isTransient does not return false
positives no progress groups will be added by Algorithm 2 unless their pre-image is transient
as required by (iii). Thus T � S .

We show that T is well-formed. Assume for contradiction that Eq. 2 is not satisfied.
Then there exists G ∈ G(U) such that for some V ⊂ G,

∀v1 ∈ V, ∃u ∈ U s.t. (v1, u, v2) ∈→T =⇒ v2 ∈ V. (8)
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By the above, α−1(V ) is transient on U , meaning that all trajectories of S under modes
in U will eventually exit V . In particular, this holds for trajectories generated by selecting
actions according to Eq. 8. But by the same reasoning as above, the discrete analogues of
these trajectories must be present also in T which is a contradiction of Eq. 8.

We now give concrete implementations of isBlocked and isTransient for a vari-
ety of situations. We start with general formulations and then specialize to convex, efficient
implementations for the special cases of linear and polynomial systems, for both discrete
and continuous time. We note that some variants of isBlocked for linear and multi-affine
dynamics on rectangular sets or simplices have appeared in the literature (Habets et al. 2006;
Belta and Habets 2006; Girard and Martin 2012).

5.1 General formulations

For general sets C1, C2 ⊂ X and dynamics described by f : X × D → R
n, the following

optimization formulations can be used to determine whether there is a transition from C1 to
C2.

5.1.1 isBlocked

For continuous time, we infer blocking by a Nagumo-type condition (Walter and
Thompson 1998, Chapter 10, XVI). Intuitively, if the vector field along a surface is always
pointing “inwards”, then no trajectories of that vector field can cross the surface to the “out-
side”. Let f be a continuous function, and N̂C1(x) be the normal cone5 of cl(C1) at x. Then,
if the optimal value of ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

max
x,δ

n̂(x) · f (x, δ),

s.t. x ∈ cl(C1) ∩ cl(C2),

δ ∈ D,

n̂(x) ∈ N̂C1(x),

(BLK-CT)

is smaller than or equal to 0, the vector field f points “inwards” towards C1 everywhere on
cl(C1) ∩ cl(C2), which implies that isBlocked(C1, C2, f,D) = True.

For discrete time, if the following program is infeasible,{
find x ∈ C1, δ ∈ D,

s.t. f (x, δ) ∈ C2,
(BLK-DT)

then isBlocked(C1, C2, f,D) = True.

5.1.2 isTransient

As remarked earlier in the paper, the concept of transience is equivalent to the non-existence
of a controlled invariant set. Therefore, existence of a function satisfying Lyapunov-like
conditions can be used to infer that a given set is transient. For a decay rate ε > 0, we

5The normal cone of a general set can be defined as follows (Clarke et al. 1998). The tangent cone of a set
C at x is the cone T̂C(x) := {u : ∀{xi} → x, ∀{ti} → 0 from above, ∃{ui} → u s.t.xi + tiui ∈ C for alli}.
Informally, T̂C(x) consists of directions u in which infinitesimal moves from x remain in C. The normal
cone of C at x is then the dual of T̂C(x): N̂C(x) := {v : uT v ≤ 0 ∀u ∈ T̂C(x)}.
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propose the following search problem to determine transience of a bounded set C1 under
dynamics governed by {fu}u∈U :{

find B : cl(C1) → R,

s.t. �uB(x, δ) ≤ −ε, ∀x ∈ cl(C1), ∀δ ∈ D, ∀u ∈ U,
(TRS)

where

�uB(x, δ) :=
{∇B(x) · fu(x, δ), for continuous time,

B(fu(x, δ)) − B(x), for discrete time.

Proposition 3 If a differentiable function B satisfying (TRS) can be found, then
isTransient(C1, {fu}u∈U ,D) = True.

Proof Assume that a differentiable function B satisfying (TRS) exists. By compactness of
cl(C1) and continuity of B, B attains a minimal value on cl(C1). Assume for contradiction
that there is an unbounded interval I and a maximal trajectory x : I → cl(C1) generated by
a disturbance δ : I → D and a switching signal σ : I → U .

For continuous time,

−ε ≥ ∇B(x(t)) · fσ(t)(x(t), δ(t)) = d

dt
B(x(t)), for almost all t ∈ I,

Integrating up to time T yields −εT ≥ B(x(T )) − B(x(0)), which contradicts the
boundedness of B on cl(C1).

For discrete time,

−ε ≥ B(fσ(t)(x(t), δ(t)) − B(x(t)) = B(x(t + 1)) − B(x(t)).

Summing from t = 0 to T gives

−ε(T + 1) ≥
T∑

t=0

(B(x(t + 1)) − B(x(t))) = B(x(T + 1)) − B(x(0)),

due to a telescopic sum. This again contradicts the boundedness of B on cl(C1).

Existence of such a function B can also be shown to be a necessary condition for tran-
sience of compact sets in both continuous (Lin et al. 1996) and discrete (Jiang and Wang
2002) time.

5.2 Linear system, polyhedra

When f is affine and the sets cl(C1) and cl(C2) are polyhedra, isTransient and
isBlocked can be implemented as linear programs.

Assume that f is an affine mapping, i.e. f (x, δ) = Ax + Eδ + K , and that the sets
cl(Ci) = {x : Hix ≤ hi} for i = 1, 2, and D = {δ : HDδ ≤ hD} are (convex) polyhedra.
The intersection cl(C1) ∩ cl(C2) is then the common facet of cl(C1) and cl(C2) which is
itself a polyhedron with a normal n̂ (assuming it has co-dimension 1).

Then, (BLK-CT) simplifies to the linear program{
max
x,δ

n̂T (Ax + Eδ + K),

s.t H1x ≤ h1, H2x ≤ h2, HDδ ≤ hD.
(BLK-CT-LIN)

For intersections with co-dimension higher than 1, the normal of any separating hyperplane
between C1 and C2 can be used to obtain a blocking certificate.
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Linear programs attain their optimal values at vertices. Thus, in order to find the optimal
value of Eq. BLK-CT-LIN it is enough to evaluate the objective function at the combina-
tions of all vertices of the intersection cl(C1) ∩ cl(C2) with all vertices of D. If the vertex
enumeration is computationally cheap, as it is for instance for hyper boxes, the enumeration
method can be beneficial compared to solving (BLK-CT-LIN) with a standard LP solver.

Similarly, (BLK-DT) becomes the linear feasibility problem⎧⎨
⎩

find x, δ,

s.t H1x ≤ h1, HDδ ≤ hD,

H2(Ax + Eδ + K) ≤ h2,

(BLK-DT-LIN)

which is feasible if and only if isBlocked(C1, C2, f,D) = False.
For linear systems, convex sets are controlled invariant if and only if they contain a con-

trolled fixed point (in discrete time this is a special case of Kakutani’s fixed point theorem,
see (Feuer and Heymann 1976) for continuous time), so transience can be determined by
proving the absence of such fixed points. We therefore propose the following linear pro-
gram in the single-mode case, since a single-mode switched linear system is just a linear
system. For the multi-mode case it is preferable to use the polynomial approach described
in Section 5.3 below. For continuous time, we get⎧⎨

⎩
find x, δ,

s.t. H1x ≤ h1, HDδ ≤ hD,

Aux + Euδ + Ku = 0,

(TRS-CT-LIN)

and for discrete time,⎧⎨
⎩

find x, δ,

s.t. H1x ≤ h1, HDδ ≤ hD,

Aux + Euδ + Ku = x.

(TRS-DT-LIN)

In these cases, isTransient(C1, {fu},D) = True if and only if Eq. TRS-CT-LIN (resp.
(TRS-DT-LIN)) is infeasible.

5.3 Polynomial system, semi-algebraic sets

Assume instead that f is polynomial and that cl(C1), cl(C2), and D are simple semi-
algebraic sets described by cl(Cj ) = {x : gi

Cj
(x) ≥ 0, i = 1, . . . , kCj

} with deg(gi
Cj

) ≤
dCj

for j = 1, 2, and D = {d : gi
D(d) ≥ 0, i = 1, . . . , kD} with deg(gi

D) ≤ dD.
We first introduce some notation required to state polynomial optimization problems.

Let Rd [x1, . . . , xn] be the set of real polynomials over the variables {xi}ni=1 and of degree
at most d. Similarly, we use the notation �d [x1, . . . , xn] ⊂ Rd [x1, . . . , xn] for the set of
non-negative polynomials of degree at most d. To enable tractable optimization over the
space of non-negative polynomials, the optimization must be restricted to convex subsets of
�d [x1, . . . , xn]. For instance, it can be restricted to the set of sums-of-squares polynomials
�SOS

d [x1, . . . , xn], or to the set of scaled-diagonally-dominant sums-of-squares polynomi-
als �SDSOS

d [x1, . . . , xn]. Positivity constraints translate to semi-definite constraints in the
SOS case (Parrilo 2003) and to second-order cone programs in the SDSOS case (Ahmadi
and Majumdar 2014); software such as YALMIP (Löfberg 2004) and SPOTless6 automate

6SPOTless handles SDSOS optimization through an add-on by Anirudha Majumdar available at https://
github.com/spot-toolbox/spotless.

https://github.com/spot-toolbox/spotless
https://github.com/spot-toolbox/spotless
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the translation. For a more thorough introduction to optimization in the space of positive
polynomials we refer to the tutorial paper (Ahmadi and Parrilo 2014) and references therein.

The optimization formulations of isBlocked and isTransient below are conser-
vative due to truncation of the maximal polynomial degree. Crucially, this conservatism
does not result in false positives (cf. Proposition 4).

For continuous time, an upper bound of the optimal value of Eq. BLK-CT can be found
by fixing a bound 2d on maximal polynomial degree, and solving⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α,σ i

Cj
,σ i

D

α,

s.t α − n̂(x) · f (x, δ) −∑kC1
i=1 σ i

C1
(x, δ)gi

C1
(x)

−∑kC2
i=1 σ i

C2
(x, δ)gi

C2
(x)

−∑kD
i=1 σ i

D(x, δ)gi
D(δ) ∈ �2d [x, δ],

σ i
Cj

(x, δ) ∈ �2d−dCj
[x, δ], i = 1, . . . , kCj

, j = 1, 2,

σ i
D(x, δ) ∈ �2d−dD [x, δ], i = 1, . . . , kD.

(BLK-CT-POL)

The normal vector n̂(x) is chosen as the gradient of the level set function gi∗
C1

that induces the

boundary between C1 and C2, n̂(x) := ±∇Gi∗
C1

(x) with a sign that implies outward direc-
tion from C1. In the degenerate cases where i∗ is not unique, just as in the linear case, any
gi

C1
(x) that separates C1 from C2 can be used to obtain a blocking certificate. The optimiza-

tion is over the scalar α and the positive polynomial multipliers σ i
Cj

and σ i
D. If the optimal

value of Eq. BLK-CT-POL is less than 0 we can infer that isBlocked(C1, C2, f,D) =
True, since α ≤ 0 implies that 0 ≥ n̂(x) · f (x, δ) for all (x, δ) ∈ (cl(C1) ∩ cl(C2)) × D.

For discrete time, we can state kC2 optimization problems for i = 1, . . . , kC2 ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α,σ

j
C1

,σ
j

D

α

s.t α − gi
C2

(f (x, δ)) −∑kC1
j=1 σ

j
C1

(x, δ)g
j
C1

(x)

−∑kD
j=1 σ

j
D(x, δ)g

j
D(δ) ∈ �2d [x, δ],

σ
j
C1

(x, δ) ∈ �2d−dC1
[x, δ], j = 1, . . . , kC1 ,

σ
j
D(x, δ) ∈ �2d−dD [x, δ] j = 1, . . . , kD.

(BLK-DT-POL-i)

If the optimal value of Eq. BLK-DT-POL-i for any i is less than 0, that implies
gi

C2
(f (x, δ)) < 0 for all x ∈ C1 and all δ ∈ D. Thus Eq. BLK-DT is clearly infeasible

so isBlocked(C1, C2, f,D) = True. This procedure essentially amounts to over-
approximating the one step reachable set of C1 and intersecting it with C2. If the intersection
is empty no transitions are possible.

Finally, isTransient can be implemented using the following polynomial equivalent
of Eq. TRS:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

find B ∈ R2d [x], σ
i,u
C1

, σ
i,u
D

s.t. −�uB(x, δ) − ε −∑kC1
i=1 σ

i,u
C1

(x, δ)gi
C1

(x)

−∑kD
i=1 σ

i,u
D (x, δ)gi

D(δ) ∈ �2d [x, δ], ∀u ∈ U,

σ
i,u
C1

(x, δ) ∈ �2d−dC1
[x, δ], i = 1, . . . , kC1 , ∀u ∈ U,

σ
i,u
D (x, δ) ∈ �2d−dD [x, δ], i = 1, . . . , kD, ∀u ∈ U.

(TRS-POL)
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If a B satisfying these conditions can be found, then −�uB(x, δ) − ε ≥ 0 on C1 × D
uniformly over u ∈ U , thus isTransient(C1, {fu}u∈U ,D) = True.

6 Abstraction-synthesis-refinement

In order to reduce the computational effort associated with computing a fine-grained
uniform partition, we propose an algorithm that starts with a coarse partition and itera-
tively refines it in “promising” areas of the state space. Once an initial coarse abstraction
T = (Q,U ,→T ,G, AP, hQ) of a switched system S has been constructed, the synthesis
algorithm attempts to compute a winning set W ⊂ Q in which the specification ϕ can be
enforced. In addition, it also computes a losing set L ⊂ Q, starting from where there is no
hope that ϕ can be satisfied even after further refinement. The refinement procedure, which
produces increasingly tight over-approximations of S , is iterated until the synthesis algo-
rithm can produce a control strategy that solves Problem 1 (i.e., the initial set is covered by
the winning set: X0 ⊂ α−1(W)), until a counterexample is obtained that proves the unreal-
izability of the specification (i.e., the losing set intersects the initial set: α−1(L) ∩ X0 
= ∅),
or until the computational resources are exhausted. The algorithm, illustrated in Fig. 2,
contains three main components Abstraction, Synthesis, and Refinement.

We are interested in making the winning and losing sets as large as possible in order to
extract as much information as possible about the realizability of ϕ. To this end we also
compute candidate winning and losing sets CW and CL that serve as feedback to the refine-
ment step. These sets represent areas where cell refinement may allow the actual winning
and losing sets to be expanded in a later synthesis stage. In the following subsections we
describe the Abstraction, Synthesis, and Refinement procedures in detail.

6.1 Abstraction

To construct an initial abstraction of S = (X,U , {fu}u∈U ,D, AP, hX), any abstraction
function α on X that is proposition preserving with respect to the set of atomic propositions
AP will suffice. Given such an abstraction function α—a natural choice is the coarsest α

that is proposition preserving—an abstracting AFTS T can be constructed following the
procedure in Section 5.

Fig. 2 Schematic view of the abstraction-synthesis-refinement algorithm
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6.2 Synthesis

In the synthesis step, winning, losing, and candidate winning and losing sets are com-
puted. In order to define these sets, we introduce four operators Win�1,�2(T , ϕ) that take
an AFTS T and an LTL formula ϕ and return the set of states in Q where ϕ can be
enforced. In Win�1,�2 , the symbols �1 and �2 are both quantifiers in the set {∃,∀}—thus
making the number of possible combinations four—that denote whether the actions (�1),
and the nondeterminism (�2), are controllable (∃), or not (∀). For instance, Win∃,∃(T , ϕ)

returns the set of initial conditions from where ϕ can be enforced, provided that both the
actions and the nondeterminism in T are controllable. We remark that such finite synthe-
sis problems over an AFTS can be solved algorithmically for general LTL specifications
(cf. Proposition 1).

Given the Win operators, we can introduce the concepts of winning, losing, and candidate
winning and losing sets as follows:

W := Win∃,∀(T , ϕ), (winning), (9a)

CW := Win∃,∃(T , ϕ) \ W, (candidate winning), (9b)

L := Win∀,∀(T ,¬ϕ), (losing), (9c)

CL := Win∀,∃(T ,¬ϕ) \ L, (candidate losing). (9d)

As can be seen, W and CW are defined using (∃, �) quantifiers, which corresponds
to actions being controllable. The difference between the two is that nondeterminism is
assumed to be uncontrollable for W , but controllable for CW . The sets L and CL are defined
in an equivalent manner but with uncontrollable actions.

Given an AFTS T together with a specification ϕ, the synthesis step amounts to com-
puting (9a)–(9d). These computations can be performed for general formulas using LTL
synthesis algorithms, however, for structured specifications more efficient algorithms may
be devised. In addition to efficiency, a second benefit of using formula-tailored algorithms is
that the computational effort for consecutive synthesis steps can be reduced by using previ-
ous synthesis results, which we call incremental synthesis. Thirdly, in the definitions above
it can be shown that (W ∪ L)C = CW = CL

7, which implies that every discrete state that
is not winning or losing is both a candidate winning and a candidate losing state. Restrict-
ing attention to specifications with specific structure makes it possible to compute localized
candidate sets, a modification that potentially enhances the efficiency of the refinement pro-
cedure. In Section 7 we provide tailored algorithms for a meaningful fragment of LTL that
enable localized refinement, as well as efficient incremental synthesis.

6.3 Refinement

In the event that an acceptable winning set was not found, i.e., X0 
⊂ α−1(W), and that
infeasibility of Problem 1 was not proven, we propose to refine the abstracting AFTS in the
hope that a tighter over-approximation will reveal more information about the satisfiability

7Follows by noting that WC = Win∀,∃(T ,¬ϕ) and LC = Win∃,∃(T , ϕ), which implies (W ∪ L)C =
Win∃,∃(T , ϕ) ∩ Win∀,∃(T ,¬ϕ).
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of ϕ on S . We focus the refinement on regions of the state space where it may be beneficial,
i.e., the candidate winning and losing sets.

Specifically, if at step t of the abstraction-refinement loop the current AFTS is T t =
(Qt ,U ,→T t ,Gt , AP, ht

Q) with abstraction function αt , we select for qi ∈ CW ∪ CL a

cell α−1
t (qi) ⊂ X and split it into two parts. This results in two new discrete states qi1

and qi2 and we can define Qt+1 = (Q \ {qi}) ∪ {qi1 , qi2} and a new abstraction func-
tion αt+1 : X → Qt+1 as αt+1(x) := αt (x) for x 
∈ (αt )−1(qi), and such that the
pair
(
(αt+1)−1(qi1), (α

t+1)−1(qi2)
)

forms a 2-cell partition of (αt )−1(qi). We can define a
corresponding refinement function β : Qt+1 → Qt as β := αt ◦ (αt+1)−1.

In order to update the transitions and progress groups for the new transition system,
Algorithms 1 and 2 could be used to determine →T t+1 and Gt+1. However, since the refine-
ment only locally modifies the partition structure, the vast majority of all transitions and
progress groups remain intact. Thus, we only need to re-compute transitions involving the
cells (αt+1)−1(qi1) and (αt+1)−1(qi2), which reduces the required computational effort
drastically. For progress groups, if G ∈ Gt (U), then β−1(G) can be added to Gt+1(U) since
the pre-image remains unchanged: (αt )−1 (G) = (αt+1)−1

(
β−1(G)

)
. However, additional

progress groups that satisfy (iii) of Definition 5 may have been revealed by the refinement,
so a search for new progress groups may be appropriate. By construction, the following
holds.

Proposition 4 The refined AFTS T t+1 = (Qt+1,U ,→T t+1 ,Gt+1, AP, ht
Q ◦ β) satisfies

T t � T t+1 � S.

There are in general many possibilities for selecting a cell for splitting, and the splitting
itself can be done in several ways. Multiple cells can also be selected for splitting in the
same refinement step. The next result shows that there are no “dead ends” in the space of
all refinements, regardless of the refinement heuristics.

Proposition 5 For any pair of abstracting AFTSs T1 � S and T2 � S , there exists an
AFTS T3 � S such that T1 � T3 and T2 � T3. In other words, there exists a refinement T3
of T2 such that T3 approximates S at least as well as T1 does.

Proof It is sufficient to “overlay” the partitions of T1 = (Q1,U ,→1,G1, AP, hQ1) and
T2 = (Q2,U ,→2,G2, AP, hQ2) to create a new AFTS with the required property. Specifi-
cally, if α1 and α2 are abstraction functions for T1 and T2, let α3 : X → Q1 ×Q2 be defined
by α3(x) = (α1(x), α2(x)).

We construct →3 as follows:

– For each (q1, u, q̄1) ∈→1, add ((q1, q2), u, (q̄1, q̄2)) to →3 for all q2 such that
(q1, q2) ∈ α3(X) and all q̄2 such that (q̄1, q̄2) ∈ α3(X).

– For each (q2, u, q̄2) ∈→2, add ((q1, q2), u, (q̄1, q̄2)) to →3 for all q1 such that
(q1, q2) ∈ α3(X) and all q̄1 such that (q̄1, q̄2) ∈ α3(X).

Finally, adding α3 ◦ α−1
1 (G1) and α3 ◦ α−1

2 (G2) to G3(U) for all G1 ∈ G1(U) and all G2 ∈
G2(U) produces the required object as T3 := (α3(X),U ,→3,G3, AP, h3), for h3(q1, q2) =
h1(q1) = h2(q2) (well defined due to proposition preservation). T3 is a refinement of both
T1 and T2 with refinement functions βi(q1, q2) := qi for i = 1, 2.
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7 Structured synthesis

We now restrict attention to the LTL fragment consisting of specifications on the form

ϕ = �A ∧ ♦�B ∧
(∧

i∈I

�♦Ci

)
, (10)

for subsets A,B,Ci ⊂ Q defining atomic propositions. This fragment encompasses spec-
ifications of invariance, persistence, and recurrence types, which together can be used to
express a range of practical requirements. The same fragment was considered in (Wolff
et al. 2013), where efficient synthesis algorithms were provided for FTSs. Here, we give
algorithms that also take advantage of the information contained in the progress groups of
an AFTS.

First we introduce notation which will allow us to express winning and losing sets of
LTL formulas as fixed points of certain operators, under different choices of quantifiers as
to what is controllable. The internals of the fixed point operators are then leveraged to define
localized candidate winning and losing sets, and to enable incremental synthesis.

7.1 Primal fixed point operators

We define the following basic one-step reachability operators for an AFTS T = (Q,U ,→T
,G, AP, hQ), where as before �1, �2 ∈ {∃,∀},

PreT ,U
�1,�2

(V ) = {q1 ∈ Q : �1(u ∈ U) �2 (q2 s.t (q1, u, q2) ∈→T ), q2 ∈ V }. (11)

For instance, PreT ,U
∃,∀ (V ) is the set of all states that can be controlled to be in V at the next

time step by selecting actions in U , regardless of how the nondeterminism in T is resolved.
Similarly, PreT ,U

∀,∀ (V ) is the set of states from where every transition ends in V —regardless
of the action and how the nondeterminism is resolved. Using these operators as building
blocks, we introduce algorithms that together are capable of computing the winning set of
a specification of type (10). In the following � denotes either ∃ or ∀.

We first give an algorithm to compute the winning set of the fundamental specification
B U Z as the smallest fixed point of an expanding iteration. Just as the operators � and ♦
are defined in terms of ( U ) (c.f. Section 2.2), we can compute the winning set of Eq. 10
by constructing higher-level fixed points that use the ( U ) fixed point as a subroutine. The
hierarchy of nested fixed points presented here is inspired by an algorithm from (Piterman
and Pnueli 2006) that computes the winning set of a similar specification. We assume that
the non-determinism is uncontrollable, i.e., we compute the winning sets WinT∃,∀ (B U Z)

and WinT∀,∀ (B U Z). As shown in Appendix A, they are equal to the fixed point value X∞
of the iteration scheme below:

WinT�,∀ (B U Z) =
{

X0 = ∅,

Xk+1 = Z ∪
(
B ∩ PreT ,U

�,∀ (Xk)
)

∪ PGPreT�,∀ (Xk, B) ,
(12)



Discrete Event Dyn Syst (2017) 27:301–340 321

where the inner operator PGPreT�,∀ is defined as a union over fixed points Y∞ of an iteration
scheme.

PGPreT∃,∀ (Z,B) :=
⋃

U∈2U

⋃
G∈G(U)

InvU,G
∃ (Z,B) , (13a)

PGPreT∀,∀ (Z,B) :=
⋃

G∈G(U)

InvU,G
∀ (Z,B) , (13b)

InvU,G
� (Z,B) :=

{
Y0 = (G ∩ B) \ Z,

Yk+1 = Yk ∩ PreT ,U
�,∀ (Yk ∪ Z) .

(13c)

The invariance-like operator InvT�,∀(Z,B) calculates a set Y∞ contained in G ∩ B

from where the state can either remain inside Y∞ or enter Z. Since it can not remain
inside G ⊃ Y∞ indefinitely due to the progress group condition, Z will eventually be
reached. Defined as the union over all progress groups, the result PGPreT�,∀(Z,B) com-
prises all points from where progress properties can be leveraged to enforce an eventual
transition to Z, while remaining in B. In the (∀, ∀)-case, only progress groups over all
modes are taken into account; to leverage the progress property of G for G ∈ G(U)

the actions must be constrained to U which is not possible if U 
= U and actions are
uncontrollable.

We remark that the set sequence {Xk}k≥1 generated by Eq. 12 is monotonically increas-
ing with respect to inclusion. It will therefore converge to X∞ in a finite number of steps
since the state space is finite. Equivalent convergence properties hold for the other iterative
algorithms presented in this section.

Based on the until operator, the winning set of a second specification that turns out to be
useful can now be computed as the fixed point value W∞ of the following iteration scheme:

Win T
�,∀
(
(B U Z) ∨ �

(
B ∧ (∧i∈I ♦Ci

)))

=

⎧⎪⎪⎨
⎪⎪⎩

W0 = Q,

Z̃i
k+1 = Z ∪

(
B ∩ Ci ∩ PreT ,U

�,∀ (Wk)
)

,

Wk+1 =⋂i∈I WinT�,∀
(
B U Z̃i

k+1

)
.

(14)

The soundness and completeness of this algorithm are established in Appendix A. The
case I = ∅—i.e. when the property has no recurrence part—is not well defined in Eq. 14
but can be handled by setting I = {1} and C1 = True which gives an equivalent
specification.

Finally, the winning set of the specification of interest ϕ = �A ∧♦�B ∧ (∧i∈I �♦Ci
)

can be computed by defining a fixed point on top of Eq. 14. To satisfy �A, we first compute
Vinv = WinT�,∀(�A) and restrict the synthesis to this controlled invariant set; the restric-

tion amounts to modifying each call for computing WinT�,∀(B U Z) to instead compute
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WinT�,∀ ((B ∩ Vinv) U (Z ∩ Vinv)).8 Given the restriction, the winning set is obtained as the
fixed point V∞ of this iteration scheme:

WinT�,∀ (ϕ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vinv = WinT�,∀ (�A) ,

Restrict synthesis to Vinv,

V0 = ∅,

Z̃k+1 = PreT ,U
�,∀ (Vk) ∪ PGPreT�,∀ (Vk,Q) ,

Vk+1 = WinT�,∀
((

B U Z̃k+1

)
∨ �
(
B ∧ (∧i∈I ♦Ci

)))
.

(15)

Again, a proof of soundness and completeness of this algorithm is provided in Appendix A.

7.2 Dual fixed point operators

In order to compute the losing set of ϕ, an algorithm for the winning set of ¬ϕ is required.
By duality, WinT∃,∀ (¬ϕ) = WinT∀,∃ (ϕ)C and WinT∀,∀ (¬ϕ) = WinT∃,∃ (ϕ)C , but the algo-
rithms above do not apply for controllable nondeterminism. The reason is that controllable
nondeterminism conflicts with progress groups; certain sequences of nondeterminism reso-
lutions violate the progress property, which invalidates the contracting algorithms above, in
particular the InvU,G operator. Instead, we introduce dual algorithms that compute the win-
ning set of the negated specification. As before, the soundness and correctness of the three
algorithms below are established in Appendix A.

The first algorithm computes the winning set of
∨

i∈I

[(
Bi U Z

) ∨ �Bi
]

as the union
X∞ of fixed points XJ∞ for all nonempty subsets J of I . It can be seen as the dual of Eq. 12
since ¬(ψ1 U ψ2) = (ψ1 ∧ ¬ψ2) U (¬ψ1 ∧ ¬ψ2) ∨ �(ψ1 ∧ ¬ψ2).

WinT�,∀
(∨

i∈I

[(
Bi U Z

) ∨ �Bi
])

=

⎧⎪⎨
⎪⎩

XJ
0 = Q for all J ∈ 2I s.t J 
= ∅,

XJ
k+1 = Z ∪

((⋂
i∈J Bi

) ∩ PreT ,U
�,∀
(⋃

K∈2J XK
k

))
,

X∞ =⋃J∈2I XJ∞.

(16)

Secondly, we build upon (16) to obtain the following algorithm that returns the winning set
of ♦Z ∨ (∨i∈I ♦�Bi

)
as a fixed point W∞:

WinT�,∀
(
♦Z ∨ (∨i∈I ♦�Bi

))

=

⎧⎪⎪⎨
⎪⎪⎩

W0 = ∅,

Z̃k+1 =
(
Z ∪ PreT ,U

�,∀ (Wk) ∪ PGPreT�,∀ (Wk,Q)
)

,

Wk+1 = WinT�,∀
(∨

i∈I

[(
Bi U Z̃k+1

)
∨ �Bi

])
.

(17)

8As explained in the proof, an amended “always” specification �A will be propagated through the fixed
points down to the level of Eq. 12. Since the winning set of �V inv ∧ (B U Z) is equal to the winning set
of
(
(B ∩ V inv) U (Z ∩ V inv)

)
for a controlled invariant set V inv , the restriction technique is correct. The

propagation terms have been omitted to improve readability.
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Fig. 3 For the AFTS depicted, if {q1, q2} ∈ G(u1), then WinT∃,∀(♦{q4}) = {q1, q2, q3, q4}. However, the

winning set of the same specification without the progress group information is just Win	(T )
∃,∀ (♦{q4}) =

{q3, q4}, since q1q2q1q2 . . . is a valid trajectory of 	(T ) that never reaches q4

Finally, (17) is used as a subroutine in the computation of the winning set of
♦A ∨ (∨i∈I ♦�Bi

)∨�♦C—the dual of the specification of interest ϕ. The winning set is
equal to the fixed point V∞ of the following iteration scheme:

WinT�,∀
(
♦A ∨ (∨i∈I ♦�Bi

) ∨ �♦C
)

=

⎧⎪⎪⎨
⎪⎪⎩

V0 = Q,

Z̃k+1 = A ∪
(
C ∩ PreT�,∀ (Vk)

)
,

Vk+1 = Win�,∀
(
♦Z̃k+1 ∨ (∨i∈I ♦�Bi

))
.

(18)

By using duality, we can now compute winning sets for both ϕ and ¬ϕ also in the (�, ∃)

cases. We define �̄ as the quantifier dual to �, that is, ∃̄ := ∀ and ∀̄ := ∃. Then,

WinT�,∃

(
�A ∧ ♦�B ∧

∧
i∈I

(
�♦Ci

))

= WinT
�̄,∀

(
♦AC ∨

(∨
i∈I

♦�(Ci)C

)
∨ �♦BC

)C

,

WinT�,∃

(
♦A ∨

(∨
i∈I

♦�Bi

)
∨ �♦C

)

= WinT
�̄,∀

(
�AC ∧ ♦�CC ∧

(∧
i∈I

�♦(Bi)C

))C

.

Remark 2 There is an interesting separation between winning sets that depend on progress
group information, and those that do not. As illustrated in Fig. 3; WinT�,∀(♦B) 
=
Win	(T )

�,∀ (♦B) in general, but WinT�,∀(�A) = Win	(T )
�,∀ (�A).9 The underlying intuition is

that progress groups enforce liveness conditions; they therefore affect the winning set of a
liveness specification ♦B, but not that of a safety specification �A. By duality, the converse
holds in the (�, ∃)-cases.

9The winning set of �A can be computed for instance using the following special case of Eq. 14: W0 =
Q, Wk+1 = A U

(
A ∩ PreT ,U

�,∀ (Wk)
)

. By induction it can be shown that when Eq. 12 is used to compute

Wk+1 it converges to A ∩ PreT ,U
�,∀ (Wk) after one iteration which implies that no progress group information

was used.
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7.3 Incremental synthesis

Equipped with the fixed point iterations from the previous subsections we now give algo-
rithms to compute a winning set W and a losing set L for a specification of the form Eq. 10.
These algorithms provide efficient means of computing (9a) and (9c), as opposed to solv-
ing a general synthesis problem with the progress groups encoded in LTL. By unwinding
the fixed points on which the winning and losing sets are defined, we also obtain localized
versions of the candidate winning and losing sets that are more specific than their general
counterparts (9b) and (9d). Localized candidate sets are provided as feedback to guide the
refinement step, as illustrated in Fig. 2.

Winning set (∃, ∀) The winning set W is defined in Eq. 14 as W = WinT∃,∀ (ϕ), so it can
be computed using Eq. 15.

Losing set (∀, ∀) The losing set L is equal to WinT∀,∀ (¬ϕ), which can be computed using
Eq. 18.

Remark 3 Due to the subroutine (16), the computation of the losing set scales exponentially
with the number of Ci’s. This is expected, with ¬ϕ being a disjunction of objectives. How-
ever, a smaller losing set does not affect correctness of the method, so if scalability is an
issue the following conservative losing set can be used:

WinT∀,∀ (♦¬A) ∪
(⋃

i∈I

WinT∀,∀
(
♦�¬Ci

))
∪ WinT∀,∀ (�♦¬B) .

Candidate winning set (∃, ∃) We next suggest a heuristic for a localized version of the
candidate winning set, that is typically smaller than its general counterpart (9b). The win-
ning set computation (15) is performed as a nested fixed point operation; any enlargement
of the inner fixed points may potentially enlarge the final winning set as well. By system-
atically unwrapping the fixed point algorithms involved in Eq. 15, as presented in detail in
Appendix B, we arrive at the following candidate winning set CW :

CW =
(

PreT ,U
∃,∃ (V∞) \ V∞

)
∪ (W1 \ V1)

∪
(
B
⋂(⋃

j∈I PreT ,U
∃,∃
(
W1,j

) \ W1,j

))
∪ (A \ Vinv) .

(19)

Here, V1, V∞,and Vinv are intermediate results from Eq. 15, and

W1 =
⋂
j∈I

W1,j , W1,j = WinT∃,∀
(
B U
(
B ∧ Ci

))
.

Candidate losing set (∀, ∃). Finally, we also give a localized heuristic version of Eq. 9d
as follows:

CL = (V1 \ V∞) ∪
(

PreT ,U
∀,∃ (V1) \ V1

)
∪ (⋃i Bi \ W1

)
. (20)

This is a set where the losing set may be possible to expand in a refined augmented transition
system. Again, V1 and V∞ are intermediate results from Eq. 18, and

W1 = WinT∃,∃

(∨
i∈I

[
�Bi ∨

(
Bi U (A ∪ C)

)])
.

A motivation behind this choice of CL is provided in Appendix B.
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Apart from being able to extract localized candidate sets, an advantage of the algo-
rithms presented above is that certain winning set computations can be performed
incrementally over refinement cycles (cf. Fig. 2). Smallest fixed points of an expanding
algorithm always grow after refinement. Therefore, fixed points from previous itera-
tions can be mapped to the refined partition and the algorithm can be initialized with
these sets to speed up convergence to the smallest fixed point. To exemplify, let V t∞ =
WinT

t

∃,∀
(
♦�B ∧ (∧i∈I �♦Ci

))
. Then, if T t � T t+1 with a refinement function β, we can

compute V t+1∞ = WinT
t

∃,∀
(
♦�B ∧ (∧i∈I �♦Ci

))
using a modified version of Eq. 15:

V t+1∞ =
{

V0 = β−1(V t∞),

Vk+1 = WinT∃,∀
((

B U PreT ,U
∃,∀ (Vk)

)
∨ �
(
B ∧ (∧i∈I ♦Ci

)))
.

In the same way, results for T t of other expanding fixed point computations can be saved
to get a “warm start” when computing the same smallest fixed points for T t+1. This does
however not apply for contracting algorithms since the greatest fixed point for a contracting
algorithm is smaller in T t than in T t+1.

8 Controller extraction

For controller implementation, a control strategy μ that enforces the specification in the
winning set W must be extracted. All fixed points encountered in Eq. 15 when computing W

are ultimately defined in terms of PreT ,U
∃,∀ . It is therefore enough to extract control strategies

during calls to this operator and map the results into higher-level fixed points together with
memory variables that control a hierarchy of partial reachability objectives. In particular,
this is done by extracting the actions that satisfy the existence condition ∃u ∈ U in Eq. 11.
If the synthesis problem is solved with a general LTL solver, a control strategy can be
extracted together with the winning set.

Remark 4 Certain algorithms in Section 7 are based on taking set complements. In these
cases an enforcing strategy can not be extracted; only the winning set is obtained. However,
primal algorithms are available for all necessary specifications in the (∃, ∀)-case that is of
interest when computing W .

As shown in Theorem 1, a control strategy μ for the AFTS T = (Q,U ,→T ,

G, AP, hQ) � S can be implemented as a switching protocol on S . There are in general
several winning actions for any given state of μ. This control freedom can used to pur-
sue performance objectives, or to eliminate potential continuous-time Zeno behavior, as
described next.

Zeno behavior For continuous-time switched systems, it may happen that the solution
found for T induces Zeno behavior when implemented on S , as illustrated in Fig. 4. In
addition to being undesirable due to its non-physical properties, Zeno behavior prohibits
maximality of continuous-time trajectories, and thus prevents liveness-type specifications
from being fulfilled. On the contrary, if Zeno behavior is not induced, the continuous
switching signal will be piecewise constant which ensures maximality of trajectories as per
the discussion in Section 3. Below we discuss how Zeno behavior can be eliminated. For
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Fig. 4 Assume red and blue
arrows correspond to vector
fields for two different actions
red and blue. Let the winning
discrete control strategy require
picking the blue action in q2 and
the red action in q1.
Implementing an
abstraction-based switching
protocol to reach α−1(q1) from
α−1(q2) ∪ α−1(q3) might induce
Zeno behavior at the facet F23

simplicity, we consider a memoryless10 control strategy μ0 : Q → 2U . It induces a closed
loop graph Tμ0 = (Q,Eμ0) with edge set Eμ0 given by

Eμ0 =
⋃

q1∈Q

{(q1, q2) : (q1, u, q2) ∈→T for some u ∈ μ0(q1)}.

This graph describes (an over-approximation of) all discrete transitions that might occur at
runtime. We say that a simple cycle (q1, q2, . . . , qk) in Tμ0 is Zeno-prone if there exists
a point that is a limit point of all corresponding partition cells, i.e.

⋂k
i=1 cl
(
α−1(qi)

) 
=
∅. All cycles of length 2 are automatically Zeno-prone. Since Zeno-prone cycles are by
definition a local concept in the graph (the maximal length of a Zeno-prone cycle is the
maximum number of jointly adjacent cells in the abstraction partition) it is significantly
faster to enumerate all Zeno-prone cycles than to enumerate all simple cycles.

If there are no Zeno-prone cycles, Zeno behavior will not be present in S . Specifically,
if we can find a restricted controller μ̄0 : Q → 2U such that μ̄0(q) ⊂ μ0(q) for all q, and
such that its induced graph Tμ̄0 is free from Zeno-prone cycles, implementing μ̄0 ◦ α as a
feedback controller on the continuous time switched system will result in both correct and
Zeno-free behavior.

We also propose a heuristic for eliminating Zeno behavior. In addition, it reduces the
number of switches which may be beneficial in non-ideal systems where switches don’t
occur instantaneously. Given a control strategy μ : (Q × U)∗ × Q → 2U , we define for
ρ(k) = (q(0), u(0)) . . . (q(k − 1), u(k − 1)) a control strategy μ̃ as

μ̃(ρ(k), q(k)) =
{

u(k − 1), if u(k − 1) ∈ μ(ρ(k), q(k)),

anyu ∈ μ(ρ(k), q(k)) otherwise.

In essence, this control strategy uses the same action until it is necessary to select a different
one in order to ensure future correctness. If Zeno behavior is still present when using μ̃

on S , further refinement of Zeno-prone areas may be necessary in order to eliminate Zeno
behavior.

Finally, a third method to ensure Zeno-free trajectories is to time-discretize the
continuous-time system and solve a discrete-time synthesis problem. When implementing
the obtained control strategy as a continuous-time switching protocol, the sample time used

10For controllers with (finite) memory, the same analysis can be done using lifts and projections with respect
to a space where states are augmented with the internal controller state.
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in time-discretization can be used as the controller sampling rate to ensure a minimum dwell
time for switching, and thus render Zeno behavior impossible. Under Lipschitz assump-
tions on the vector fields, margins can be added to (for safety)—or removed from (for
liveness)—the atomic propositions to ensure that the final closed-loop system satisfies the
specification in continuous time.

9 Examples

In this section we present two examples to demonstrate the effectiveness of the proposed
approach. The first example compares the performance of finite transition systems to that
of AFTSs, while the second example compares the proposed abstraction-refinement proce-
dure to the approach in Sun et al. (2014) that uses non-incremental synthesis on a uniform
state-space partition partition. The examples are solved with our prototype implementation
that partitions the state space into hyper boxes. It is available at https://github.com/pettni/
abstr-refinement.

9.1 Numerical example

We consider a continuous-time switched system, taken from (Ozay et al. 2013), with four
modes u ∈ U .= {1, 2, 3, 4} and with the following dynamics:

f1 =
[−x2 − 1.5x1 − 0.5x3

1
x1 − x2

2 + 2 + δ

]
, f2 =

[−x2 − 1.5x1 − 0.5x3
1

x1 − x2 + δ

]
,

f3 =
[−x2 − 1.5x1 − 0.5x3

1 + 2
x1 + 10 + δ

]
, f4 =

[−x2 − 1.5x1 − 0.5x3
1 − 1.5

x1 + 10 + δ

]
, (21)

where δ is the disturbance. The domain is taken to be X = [−2, 2]×[−1.5, 3] and we define
the sets Xa = [−2, −0.5] × [−1.5, −1] and Xb = [−1, −0.2] × [0.5, 1.8] with associated
atomic propositions A := x /∈ Xa and B := x ∈ Xb. The goal is to synthesize a switching
protocol to guarantee the satisfaction of the specification ϕ := �A ∧ ♦�B.

We ran the proposed incremental abstraction-refinement algorithm using AFTSs to find
a switching protocol together with a winning set from where this protocol is guaranteed to
satisfy the specification. We considered a disturbance level of |δ| ≤ 0.5 as well as the case
without disturbance (|δ| = 0). As a comparison, we also ran the same algorithm using finite
transition systems without progress groups, where we used the transience only to elimi-
nate self-loops. Figure 5 shows the resulting winning sets after 80 iterations. The results
clearly indicate that using AFTSs as abstractions reduces the conservatism. It is also worth
mentioning that when using AFTSs, the algorithm terminated after 19 iterations in the case
without disturbance, and after 70 iterations in the case with disturbance, since no candidate
sets were left and the exact maximal winning set of the continuous problem was recovered.

For this example, the isBlocked and isTransient functions were computed based
on an SDSOS-based implementation of the programs (BLK-CT-POL) and (TRS-POL).

9.2 Radiant systems in buildings

The second example is a hydronic radiant system for buildings in which chilled supply water
is pumped through a concrete slab which in turn acts as a heat reservoir that moderates the

https://github.com/pettni/abstr-refinement
https://github.com/pettni/abstr-refinement
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Fig. 5 Final partitioning of the domain of the numerical example for four different tests. Winning sets
computed using the proposed incremental abstraction refinement framework are shown in green. For this
example abstractions based on augmented finite transition systems outperform FTS-based abstractions by
allowing a larger winning set to be computed using fewer discrete states. The incremental refinement process
creates a finer partition in relevant areas of the state space

building temperature. By controlling the pump it is possible to regulate the temperature in
the building. Such a system can be modeled as an RC circuit (Romanı́ et al. 2016)

CiṪi =
∑
j 
=i

1

Rij

(
Tj − Ti

)+ qi, (22)

where Ci is the thermal capacitance [J/K] of zone i that is assumed to have homogeneous
temperature Ti , Rij = Rji is the thermal resistance [K/W ] of the barrier between zone i

and zone j , and qi is the heat added [W ] to zone i. The added heat may for example come
from persons utilizing a room, or sunshine, which both vary over the course of a day. We
want to describe a system with two rooms connected to the same hydronic system and opt
for a model with five temperature nodes; temperatures T1 and T2 for the two rooms, Tc for
the concrete slab, To for the building exterior, and Tw for the supply water. The latter two
temperatures are assumed to be constant. If an uncertain amount of heat qi + �qi is added
to room i, the dynamics of mode 1 when the pump is turned on are written as follows:

CcṪc =∑2
i=1

1
Ric

(Ti − Tc) + 1
Rcw

(Tw − Tc) ,

C1Ṫ1 = 1
R1c

(Tc − T1) + 1
R1o

(To − T1) + 1
R12

(T2 − T1) + q1 + �q1,

C2Ṫ2 = 1
R2c

(Tc − T2) + 1
R2o

(To − T2) + 1
R12

(T1 − T2) + q2 + �q2.

(23)

The dynamics when the water pump is turned off (mode 2) are identical to those of mode
1 but with Rcw = +∞. Thermal capacitance is easy to compute for a solid material like
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Table 1 Parameter values for hydronic heating

Room 1 floor dimensions A1c = 8 m × 6 m R1c = r1c

A1c
= 0.0026 K

W

Room 1 area to outside A1o = 24 m2 R1o = r1o

A1o
= 0.0491 K

W

Room 2 floor dimensions A2c = 6 m × 6 m R2c = r2c

A2c
= 0.0035 K

W

Room 2 area to outside A2o = 18 m2 R2o = r2o

A2o
= 0.0654 K

W

Interconnecting wall area A12 = 18 m2 R12 = r12
A12

= 0.0439 K
W

Total slab area Ac = 42 m2 Rcw = rwc

Ac
= 0.0012 K

W

Room 1 volume V1 = 144 m3 C1 = 5caρaV1 = 8.774 × 105 J
K

Room 2 volume V2 = 108 m3 C2 = 5caρaV2 = 6.580 × 105 J
K

Slab volume Vc = 10.5 m3 Cc = ccρcVc = 3.623 × 107 J
K

Nominal heat gains q1 =
(

6 W

m2

)
× A1c q2 =

(
8 W

m2

)
× A2c

concrete;11 for the rooms we compute the thermal capacitance from air volume and com-
pensate for furniture and other objects by multiplying with a factor 5 (Sourbron et al. 2013).
We use formulas and standard parameters from (Gwerder et al. 2008) to compute thermal
heat insulation coefficients12 rij which give the thermal resistance as Rij = rij /Aij for the
corresponding wall or floor area. The inner wall heat insulation coefficient is taken to be
r12 = 0.79 m2K/W (Sourbron et al. 2013). In Table 1 the dimensions of the zones are listed
along with the associated resistances and capacitances.

We assume that the outdoor temperature is To = 30 ◦C, that the water temperature is

Tw = 18 ◦C, and that the uncertainty is bounded as |�qi | ≤
(

3 W

m2

)
× Ai for i = 1, 2.

We set the domain to 20 ≤ Tc, T1, T2 ≤ 28 and consider as objective to control the room
temperatures to a desired range, denoted by a proposition SET (21 ≤ Tc ≤ 27 and 22 ≤
T1, T2 ≤ 25), and guarantee invariance in this range, captured by the LTL formula ϕ2 :=
♦�SET . The problem is under-actuated and the equilibrium points of Eq. 23 are outside of
SET , so it does not have a trivial solution.

Applying the abstraction-synthesis-refinement loop yields a winning set that covers 76%
percent of the domain after 1200 iterations, which takes about 45 minutes on a modern
desktop computer. After the winning set has been found we refine the part represented by
Win∃,∀ (�SET ) further to eliminate Zenoness of the controller. Figure 6 shows a simulation
trace of the corresponding controller under disturbance, and a 3D illustration of trajectories
converging to the target set.

The example above requires using multi-mode progress groups to compute a reasonably
sized winning set. Indeed, the approach in (Sun et al. 2014) fails to find a winning set for this
problem for relatively large uniform abstractions. For comparison, we also solve the same
problem without disturbance and with the parameter set from (Sun et al. 2014). That paper
proposes efficient algorithms for synthesis; the bottle neck is creating the abstraction which
for this problem takes 4.5 hours for an abstraction with 4000 states. Solving the synthesis
problem on the resulting abstraction gives a winning set that covers 63% of the domain.
In contrast, with our abstraction-synthesis-refinement loop we can on the same computer
incrementally construct a non-uniform abstraction with a winning set that covers 64% of

11The formula is cρV , where c is specific heat [J/kgK], ρ is density [kg/m3], and V is volume [m3].
12r1o = r2o = 1.178 m2K/W , r1c = r2c = 0.125 m2K/W , rcw = 0.102 m2K/W .
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Fig. 6 Left: Plot of temperatures versus time when each room is subject to an independent sinusoidal dis-
turbance that models varying utilization of the room throughout the day. As can be seen, the temperatures
converge to the desired ranges and remain there. The black dots at the bottom indicate switches. Right: Plot
showing how 50 sample trajectories converge to the target SET (green) starting from different parts of the
winning set. Different trajectory colors correspond to different control actions

the domain in 1 minute. The abstraction has 270 states at this stage which shows the benefit
of the incremental and non-uniform approach. With additional iterations it is possible to
further enlarge the winning set to cover 83% of the domain.

10 Conclusions

This paper treated augmented finite transition systems (AFTS) and described how they
can be used to construct abstractions of continuous-state switched systems, both in dis-
crete and continuous time. The advantage of AFTSs over standard finite transition systems
is the possibility to encode liveness properties of the continuous dynamics in progress
groups, which eliminates spurious trajectories in the abstraction and thus provides a tighter
over-approximation. The procedure for constructing an abstracting AFTS hinges upon the
implementation of two subroutines isBlocked and isTransient, for which we gave
convex optimization-based implementations in two important cases: linear and polynomial
dynamics.

We described how synthesis problems for general LTL specifications can be solved on
an AFTS, and proposed an abstraction-synthesis-refinement loop which refines an over-
approximating AFTS until a satisfactory solution—or a counter-example—is found. We
also gave efficient AFTS synthesis algorithms for an important fragment of LTL. The ben-
efits of using these algorithms include incremental synthesis and localized partition refine-
ment, both reducing the required computational effort compared to using general-purpose
synthesis tools. We suggested methods to eliminate Zeno behavior in continuous-time sys-
tems when implementing a switching protocol obtained from an abstraction, and illustrated
our approach on two examples.

Current work focuses on identification of classes of nonlinear dynamical systems for
which the isBlocked and isTransient subroutines can be implemented even more
efficiently compared to the positive polynomial-based approach considered in this work
(Yang et al. 2016).
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Appendix A: Synthesis-related proofs

Lemma 1 Algorithm (12) is sound and complete.

Proof For soundness, we first show that a trajectory starting in q ∈ Xk+1 \ Xk can be
steered to Xk in finite time while remaining in B. There are two cases. First, if q ∈ B ∩
PreT�,∀(Xk) \ Xk , then Xk can be reached in one time step by definition of PreT�,∀. Secondly,
if q ∈ PGPre�,∀(Xk, B) \ Xk then there exists (G,U) with G ∈ G(U) such that Xk can
be reached by keeping the state inside of G ∩ B using actions in U until a transition to
Xk occurs due to the progress property (if � = ∀, then U = U which enables progress
for uncontrollable modes). This shows that Xk+1 ⊂ WinT�,∀(B U Xk). By induction the
soundness of the algorithm follows.

For completeness, we show that if a state q is not in X∞, it is not in the (�,∀)-winning
set of B U Z. Assume by contradiction that q is in the (�,∀)-winning set of B U Z; that is,
from q there exists a control strategy such that Z is reached in finitely many steps during
which B holds. This can happen in two different ways. First, there exists a bound K on the
number of steps within which Z is guaranteed to be reached. In this case, q is in X̃K for
X̃0 = Z, X̃k+1 = B ∩ PreT�,∀(X̃k), which contradicts to the fact that X∞ is a fixed point

that does not contain q due to the B ∩ PreT�,∀(Xk) term in Eq. 12. Secondly, Z is guaranteed
to be reached from q while remaining in B but no control strategy can guarantee a bound
on the number of steps. In this case, the controlled trajectories are not guaranteed to avoid
a progress group. Without loss of generality we can take q to be in the last progress group
G for some action set U before reaching X∞ as otherwise the prefix part can be handled by
the arguments in the first case and inductively applying the arguments for the second case.
But then q ∈ InvU,G

�,∀ (X∞, B) ⊂ PGPreG�,∀ (X∞, B), which again contradicts to the fact that
X∞ is a fixed point.

Lemma 2 Algorithm (14) is sound and complete.

Proof The following two LTL identities will be used below:

�
(

ψ1 ∧
(∧

i∈I

♦ψi
2

))
= �ψ1 ∧

(∧
i∈I

�
(
True U ψi

2

))

= �
[∧

i∈I

[
ψ1 U

(
ψ1 ∧ ψi

2

)]]
, (24)

(ψ3 U ψ1) ∨ (ψ3 U ψ2) = ψ3 U (ψ1 ∨ ψ2). (25)

Denote the specification by ϕ1, i.e., ϕ1 := (B U Z) ∨ �
(
B ∧ (∧i∈I ♦Ci

))
. We call a

specification ψ1 stronger than ψ2 if for any word w, w |= ψ1 =⇒ w |= ψ2. If ψ1 is
stronger than ψ2, then Win(ψ1) ⊂ Win(ψ2).
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To prove soundness, we remark that any fixed point W of Eq. 14 satisfies

W =
⋂
i∈I

WinT�,∀
(
B U
(
Z ∪
(
B ∩ Ci ∩ PreT�,∀

(
W
))))

.

Consider q ∈ W , a trajectory starting in q can for each i be controlled to reach either Z

or B ∩ Ci ∩ PreT�,∀
(
W
)

while remaining in B. If the former occurs, B U Z, and thus ϕ1,

is evidently satisfied by the trajectory. If the latter occurs, the set B ∩ Ci ∩ PreT�,∀
(
W
)

is eventually reached. Because of the PreT�,∀
(
W
)

term, the argument repeats which shows

that either B U Z or �
(
B U
(
B ∩ Ci ∩ PreT�,∀

(
W
))) = �

(
B ∧ ♦

(
Ci ∩ PreT�,∀(W)

))
is satisfied by the trajectory (the equality follows from Eq. 24). This holds for any i, which
is a stronger condition than ϕ1. Thus the algorithm is sound.

We prove completeness, which amounts to showing that Win (ϕ1) ⊂ W∞. Consider the
specification

ϕ2 :=
∧
i∈I

[
B U
(
Z ∪
(
B ∩ Ci ∩ PreT�,∀

(
WinT�,∀ (ϕ1)

)))]
.

Since ϕ1 is a liveness specification, a trajectory satisfying ϕ1 must remain in WinT�,∀(ϕ1).
Therefore the winning set of ϕ1 is equal to the winning set of the specification

(B U Z) ∨ �
(

B ∧
(∧

i∈I

♦
(
Ci ∩ WinT�,∀ (ϕ1)

)))
.

Using Eq. 24 above, this is in turn equal to

(B U Z) ∨ �
(∧

i∈I

[
B U
(
B ∩ Ci ∩ WinT�,∀ (ϕ1)

)])
,

which is stronger than

(B U Z) ∨
(∧

i∈I

[
B U
(
B ∩ Ci ∩ WinT�,∀ (ϕ1)

)])
=∧i∈I

[
(B U Z) ∨

(
B U
(
B ∩ Ci ∩ WinT�,∀ (ϕ1)

))]
.

By Eq. 25 and since B ∩ PreT�,∀
(

WinT�,∀(ϕ1)
)

= B ∩ WinT�,∀ (ϕ1), this is stronger than ϕ2.

Thus WinT�,∀ (ϕ1) ⊂ WinT�,∀ (ϕ2).

Take any set K such that WinT�,∀ (ϕ1) ⊂ K . The specification ϕ2 is stronger than the
specification

ϕK :=
∧
i∈I

[
B U
(
Z ∪
(
B ∩ Ci ∩ PreT�,∀ (K)

))]
,

which implies that WinT�,∀ (ϕ2) ⊂ WinT�,∀ (ϕK). Furthermore, in general

WinT�,∀ (ψ1 ∧ ψ2) ⊂ WinT�,∀ (ψ1) ∩ WinT�,∀ (ψ2), which implies

WinT�,∀ (ϕK) ⊂ TK :=
⋂
i∈I

WinT�,∀
(
B U
(
Z ∪
(
B ∩ Ci ∩ PreT�,∀ (K)

)))
.

We recognize the right-hand side from Eq. 14 and conclude that if q ∈ WinT�,∀ (ϕ1), then the

inclusions WinT�,∀ (ϕ1) ⊂ WinT�,∀ (ϕ2) ⊂ WinT�,∀ (ϕK) imply that q is never excluded during

the algorithm (14) since it consists of iterating the mapping K �→ TK . Thus, WinT�,∀ (ϕ1) ⊂
W∞, which proves completeness.
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Lemma 3 Algorithm (15) is sound and complete.

Proof We first prove soundness and completeness for �A = True. Thus let ψ :=
♦�B ∧ (∧i∈I �♦Ci

)
. We first show that the algorithm is sound. The specification

�
(
B ∧ (∧i∈I ♦Ci

))
is stronger than ψ , therefore it follows that V1 ⊂ WinT�,∀ (ψ).

Consider Vk for k > 1. Starting anywhere in Vk , the state can either be controlled to sat-
isfy B U PreT ,U

�,∀ (Vk−1) or �
(
B ∧ (∧i∈I ♦Ci

))
. If the former happens, the state can be

controlled to Vk−1 and an induction argument over k completes the soundness proof.
For completeness, consider the set WinT�,∀ (ψ)\V∞, where V∞ is the smallest fixed point

of Eq. 15. From any q1 ∈ WinT�,∀ (ψ) \V∞, the state can not be controlled to V∞, otherwise
q1 would have been included in V∞ by an argument analogous to the completeness proof of
Lemma 1. By repeating the argument, we conclude that an infinite trajectory in WinT�,∀ (ψ)\
V∞ can be generated that satisfies the specification ψ . By considering an appropriate suffix
of such a trajectory, this implies the existence of q2 ∈ WinT�,∀ (ψ) \ V∞ from where the

specification �
(
B ∧ (∧i∈I ♦Ci

))
can be enforced. But this is a contradiction since such a

q2 is in V1 and hence in V∞.
We finally incorporate the �A term and show necessity and sufficiency of the

restriction to Vinv . As established above, the algorithm is sound and complete for
ψ . All fixed points are ultimately defined in terms of the winning set of B U Z,
so amending �A to the top level specification ψ propagates that term down to the
“until” level. It is therefore necessary and sufficient to replace each computation of
WinT�,∀ (B U Z) with WinT�,∀ (�A ∧ (B U Z)). Since Vinv = WinT�,∀(�A), it follows that

WinT�,∀ (�A ∧ (B U Z)) = WinT�,∀ ((B ∩ Vinv) U (Z ∩ Vinv)) which shows the correctness
of the restriction technique.

Lemma 4 Algorithm (16) is sound and complete.

Proof For soundness, consider a set of fixed points X
J

for J ∈ 2I that satisfy

X
J = Z ∪

⎛
⎝
(⋂

i∈J

Bi

)
∩ PreT ,U

�,∀

⎛
⎝ ⋃

K∈2J

X
K

⎞
⎠
⎞
⎠ .

Let q ∈ X
J

. If q ∈ Z the specification is evidently satisfied. Otherwise, q ∈ (⋂i∈J Bi
)∩

PreT ,U
�,∀
(⋃

K∈2J X
K
)

which implies that q can be controlled to X
K1 for some K1 ⊂ J . If

Z is not reached, an induction argument results in a chain J ⊃ K1 ⊂ K2 ⊃ . . . which
necessarily converges to some non-empty subset K∞ of J . Thus there is a strategy that
eventually enforces �Bi for some i ∈ J .

For completeness, remark that X
{i}
1 = Z ∪ Bi . We show that if q0 
∈ XJ

k0+1 but q0 ∈
XJ

k0
, then nondeterminism can force a trajectory starting in q0 to avoid X

{i}
1 for all i ∈ I

while also avoiding Z. To this end, assume that q0 ∈ XJ
k0

\ XJ
k0+1. Evidently, q0 
∈ Z,

which implies that q0 ∈ ⋂i∈J Bi and q0 
∈ PreT ,U
�,∀
(⋃

K∈2J XK
k0

)
. The latter means that

nondeterminism can prevent a transition to XK
k0

for any K ⊂ J . Assume a transition to

q1 occurs and that q1 was excluded from {XK
k } for k = k1. Induction over time and set

inclusion results in a strictly decreasing sequence k0k1, . . . and a trajectory q0q1 . . . where



334 Discrete Event Dyn Syst (2017) 27:301–340

qt 
∈⋃K∈2J XK
kt

. In particular, qt 
∈ Z and there exists a finite T s.t. qT 
∈ Bi for any i ∈ J ,
which shows completeness of the algorithm.

Lemma 5 Algorithm (17) is sound and complete.

Proof For soundness, we remark that W1 = WinT�,∀
(∨

i∈I

[(
Bi U Z

) ∨ �Bi
])

which is

contained in WinT�,∀
(
♦Z ∨ (∨i∈I ♦�Bi

))
. Starting in Wk for k > 1, a strategy exists that

either results in �Bi being fulfilled for some i, or such that Wk can be reached. An induction
argument completes the soundness proof.

For completeness, assume that q ∈ WinT�,∀
(
♦Z ∨ (∨i∈I ♦�Bi

)) \ W∞ where W∞
is the smallest fixed point of Eq. 17. Since PreT�,∀ (W∞) ∪ PGPreT�,∀ (W∞,Q) ⊂ W∞,
it follows by the completeness argument in the proof of Lemma 1 that a transition to
W∞ can never be enforced for a trajectory starting in q. Since Z ⊂ W∞, it follows
that nondeterminism can generate a trajectory that never enters W∞ and which satis-
fies ♦�Bi for some i. Taking a suffix of such a trajectory, it follows that there exists
q̃ ∈ WinT�,∀

(
♦Z ∨ (∨i∈I ♦�Bi

)) \ W∞ from where
∨

i∈I �Bi can be enforced. But then
q̃ ∈ W1 ⊂ W∞ which is a contradiction. Thus (17) is complete.

Lemma 6 Algorithm (18) is sound and complete.

Proof Let ψ := ♦A ∨ (∨i∈I ♦�Bi
) ∨ �♦C. For soundness, consider a fixed point V of

(18). It has the property

V = Win�,∀

(
♦
(
A ∪
(
C ∩ PreT�,∀

(
V
))) ∨

(∨
i∈I

♦�Bi

))
.

Starting in V , there is a strategy to ensure one of ψ1 := ♦A, ψ2 := ∨i∈I ♦�Bi , or

ψ3 := ♦
(
C ∩ PreT�,∀

(
V
))

. If ψ1 or ψ2 occur, ψ is evidently satisfied. If ψ3 occurs, an

induction argument shows that ψ1 ∨ ψ2 ∨ �ψ3 = ψ holds.
For completeness, remark that any trajectory that enforces ψ must remain in WinT�,∀(ψ)

due to ψ being a liveness property. Furthermore, PreT ,U
�,∀
(

WinT�,∀(ψ)
)

= WinT�,∀(ψ) since

ψ can be enforced from its pre-image. Therefore,

WinT�,∀ (ψ) = WinT�,∀
(
ψ̃
)

, for ψ̃ := ♦A ∨
(∨

i∈I

♦�Bi

)
∨ �♦

×
(
C ∩ PreT ,U

�,∀
(

WinT�,∀ (ψ)
))

.

Take any K ⊃ WinT�,∀(ψ) and let ψK := ♦A ∨ (∨i∈I ♦�Bi
) ∨ ♦
(
C ∩ PreT ,U

�,∀ (K)
)

.

It can be seen that ψ̃ is stronger than ψK , which implies the inclusion WinT�,∀ (ψ) ⊂
WinT�,∀ (ψK). This shows that elements in WinT�,∀ (ψ) are never excluded in Eq. 18, which

consist of iterations of the mapping K �→ WinT�,∀ (ψK).
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Appendix B: Candidate set derivation

Let us call an algorithm expanding or contracting if the sequence {Vk}k≥1 of intermediate
sets it computes is enlarging or shrinking, respectively. All fixed point algorithms consid-
ered in this paper are either contracting or expanding. Moreover, their output is monotone
with respect to initial conditions (i.e., a larger initial set gives a larger fixed point w.r.t. set
inclusion). We consider sets of type WinT�,∀(·) computed as the fixed point V∞ of a sequence
{Vk}k≥1 and determine a candidate set C recursively according to the following rules:

– For an expanding algorithm with input V1 and fixed point V∞:

Addition: add Pre�,∃ (V∞) \ V∞ to the candidate set C.
Recursion: if V1 is an output of another fixed point algorithm, add its candidate set

to C.

– For a contracting algorithm with input V1 and fixed point V∞:

Addition: add V1 \ V∞ to the candidate set C.
Recursion: if V1 is an output of another fixed point algorithm, add its candidate set

to C.

The rationales behind these rules are as follows. Firstly, the fixed point may always be
enlarged by starting with a larger initial set, thus we pursue this objective in both cases. For
an expanding algorithm, we also add states adjacent to its fixed point V∞ in the hope that a
refinement may reveal states that can enlarge it further. There is no need to consider smaller
sets Vi since these are all contained in V∞. For a contracting algorithm we add V1 \ V∞
in the hope that refinement may reveal control options that allow the fixed point V∞ to be
enlarged.

There are ways to further tune the candidate sets that may be suitable for certain prob-
lems. Firstly, the progress group reachability operator PGPre is computed with a contracting
algorithm whose candidate set could be added to the overall candidate set. Below we disre-
gard this potential addition in the interest of keeping the notation relatively simple; the best
way to implement candidate set computation algorithmically is to follow the recursive rules
above. Secondly, it may be possible to exclude parts of the candidate set of a contracting
algorithm in case there are states that will for sure be excluded by the algorithm even after
refinement.

We now apply the rules above to the computation of the winning set (15) to obtain a can-
didate set of a specification of type �A∧♦�B∧(∧i∈I �♦Ci

)
. The algorithm is expanding

and produces an increasing set sequence {Vk}k≥1. We therefore do the following:

1A. Addition: add PreT ,U
�,∃ (V∞) \ V∞ to the candidate set,

1R. Recursion: add candidate set of V1 = WinT�,∀
(
�
(
B ∧ (∧i∈I ♦Ci

)))
to the candidate

set.

We recursively consider V1 which is computed from algorithm (14) as the stable point W∞
of a contracting set sequence {Wk}k≥1. Therefore we do the following

2A. Addition: add W1 \ W∞ = W1 \ V1 to the candidate set,
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2R. Recursion: add candidate set of W1 = ⋂
i∈I W1,i for W1,i :=

WinT�,∀
(
B U
(
B ∩ Ci

))
to the candidate set.

Next we turn to the different W1,i’s which are each computed from Eq. 12 through an
expanding set sequence {Xk,i}k≥1. Since X1,i = B ∩ Ci is not itself a fixed point, the
recursion stops here and we arrive at:

3A. Addition: add B ∩
(⋃

i∈I PreT ,U
�,∃
(
W1,i

) \ W1,i

)
to the candidate set. Here we have

intersected with B since states in BC can not be candidates to B U (B ∩ Ci).

However, there is one final part of the overall candidate set, since the winning set com-
putation is restricted to Vinv = WinT�,∀(�A). This set is computed using Eq. 14 as the

convergence value of a contracting set sequence {W̃k}k≥1 with W̃1 = WinT�,∀ (A U A) = A.
Therefore we make a final addition to the candidate set:

4A. Addition: add A \ Vinv to the candidate set.

Collecting the different pieces from above, we arrive at the following candidate set:

C�,∀
(
�A ∧ ♦�B ∧ (∧i∈I �♦Ci

)) = (PreT ,U
�,∃ (V∞) \ V∞

)
∪ (W1 \ V1)

∪
(
B ∩
(⋃

i∈I PreT ,U
�,∃
(
W1,i

) \ W1,i

))
∪ (A \ Vinv) .

(26)

A candidate set for the dual algorithm (18) can be derived in a similar way. Let {Vk}k≥1
be the contracting set sequence generated by Eq. 18.

1A. Addition: add V1 \ V∞ to the candidate set,
1R. Recursion: add candidate set of V1 = WinT�,∀

(
♦ (A ∪ C) ∨ (∨i∈I ♦�Bi

))
to the

candidate set.

Proceeding with V1, it is equal to the fixed point value W∞ of an expanding sequence
{Wk}k≥1 generated by Eq. 17.

2A. Addition: add PreT ,U
�,∃ (W∞) \ W∞ = PreT ,U

�,∃ (V1) \ V1 to the candidate set,

2R. Recursion: add candidate set of W1 = WinT�,∀
(∨

i∈I [�Bi ∨ (Bi U (A ∪ C))]
)

to the
candidate set.

Finally, W1 is equal to the union over the set of fixed points XJ∞ of the contracting algorithm
(16). At the first iteration, XJ

1 = A ∪ C ∪ (⋂i∈J Bj
)
. We therefore get one final addition

to the candidate set as:

2A. Addition: add
⋃

J∈2I A ∪ C ∪ (⋂i∈J Bi
) \ W1 to the candidate set. However, it

holds that
⋃

J∈2I

⋂
i∈J Bi = ⋃i∈I Bi and furthermore A ∪ C ∈ W1. Therefore the

additional set simplifies to
⋃

i∈I Bi \ W1.

Combined, we arrive at the following candidate set:

C�,∀
(
♦A
∨

i∈I ♦�Bi ∨ �♦C
) = (V1 \ V∞) ∪

(
PreT ,U

�,∃ (V1) \ V1

)
∪ (⋃i Bi \ W1

)
.

(27)
For illustration purposes, we consider two notable special cases of Eq. 26. First, for a

specification of the form ♦�B, the expression simplifies to

C�,∀ (♦�B) =
(

PreT ,U
�,∃ (V∞) \ V∞

)
∪ (B \ V1) , (28)
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for V∞ = WinT�,∀(♦�B) and V1 = WinT�,∀(�B). The same expression can also be obtained
from Eq. 27.

Secondly, for a specification of the form
∧

i∈I �♦Ci , we obtain from Eq. 26 that

C�,∀

(∧
i∈I

�♦Ci

)
=
(

PreT ,U
�,∃ (V∞) \ V∞

)
∪
(⋂

i∈I

W1,i \ V∞

)
∪

×
(⋃

i∈I

PreT ,U
�,∃
(
W1,i

) \ W1,i

)
,

where V∞ = WinT�,∀
(∧

i∈I �♦Ci
)

and W1,i = WinT�,∀
(
♦Ci
)
. However, the expression can

be simplified further since the first term is contained in the union of the last two:13

C�,∀

(∧
i∈I

�♦Ci

)
=
(⋂

i∈I

W1,i \ V∞

)
∪
(⋃

i∈I

PreT ,U
�,∃
(
W1,i

) \ W1,i

)
. (29)

Again, the same expression can be obtained from Eq. 27 for the special case I = {1}.
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Löfberg J (2004) Yalmip: a toolbox for modeling and optimization in matlab. In: Proceeding of IEEE

CACSD, pp 284–289
Mattila R, Mo Y, Murray RM (2015) An iterative abstraction algorithm for reactive correct-by-construction

controller synthesis. In: Proceedings of IEEE CDC, pp 6147–+6152
Nilsson P, Ozay N (2014) Incremental synthesis of switching protocols via abstraction refinement. In:

Proceedings of CDC, pp 6246–6253
Ozay N, Liu J, Prabhakar P, Murray R (2013) Computing augmented finite transition systems to synthesize

switching protocols for polynomial switched systems. American Control Conference
Parrilo P (2003) Semidefinite programming relaxations for semialgebraic problems. Math Program

96(2):293–320
Piterman N, Pnueli A (2006) Faster solutions of rabin and streett games. In: Proceedings of IEEE LICS, pp

275–284
Piterman N, Pnueli A, Sa’ar Y (2006) Synthesis of reactive (1) designs. In: Proceedings of VMCAI, pp

364–380
Pnueli A, Rosner R (1989) On the synthesis of an asynchronous reactive module. In: Proceedings of ICALP,

pp 652–671
Romanı́ J, de Gracia A, Cabeza LF (2016) Simulation and control of thermally activated building systems

(TABS). Energy & Buildings 127:22–42
Sourbron M, Verhelst C, Helsen L (2013) Building models for model predictive control of office buildings

with concrete core activation. J Build Perform Simul 6(3):175–198
Sun F, Ozay N, Wolff EM, Liu J, Murray RM (2014) Efficient control synthesis for augmented finite

transition systems with an application to switching protocols. In: Proceedings of ACC
Svorenova M, Kretinsky J, Chmelik M, Chatterjee K, Cerna I, Belta C (2015) Temporal logic control for

stochastic linear systems using abstraction refinement of probabilistic games. In: Proceedings of HSCC,
pp 259–268

Tabuada P (2009) Verification and control of hybrid systems: a symbolic approach. Springer
Walter W, Thompson R (1998) Ordinary differential equations, 1 edn. Springer
Wolff E, Topcu U, Murray R (2013) Efficient reactive controller synthesis for a fragment of linear temporal

logic. In: Proceedings of IEEE ICRA, pp. 5033–5040
Yang L, Ozay N, Karnik A (2016) Synthesis of fault tolerant switching protocols for vehicle engine thermal

management. In: Proceedings of ACC, pp 4213–4220
Yordanov B, Tumova J, Cerna I, Barnat J, Belta C (2012) Temporal logic control of discrete-time piecewise

affine systems. IEEE Trans Automatic Control 57(6):1491–1504

http://dx.doi.org/http://dx.doi.org/10.1016/j.apenergy.2007.08.001


Discrete Event Dyn Syst (2017) 27:301–340 339

Petter Nilsson received his B.S. in Engineering Physics in 2011, and his M.S. in Optimization and Systems
Theory in 2013, both from KTH Royal Institute of Technology in Stockholm, Sweden. While obtaining these
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