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Evaluation of the Reliable Data Rates Supported by
Multiple-Antenna Coded Wireless Links for QAM

Transmissions
Enzo Baccarelli

Abstract—In this paper, we present some novel results about the
reliable information-rate supported by point-to-point multiple-an-
tenna Rayleigh-faded wireless links for coded transmissions that
employ two-dimensional (QAM or PSK) data constellations. After
deriving the symmetric capacity of these links, we presentfast-com-
putableanalytical upper and lower bounds that are asymptotically
exactboth for high and low SNRs, and give rise to a reliable eval-
uation of the link capacity when perfect channel state informa-
tion (CSI) is available at the receiver. Furthermore, asymptotically
exact simple upper bounds are also presented for a tight evaluation
of the outage probability.

Index Terms—Information-rates, MIMO wireless data systems,
multiple antennas, outage probability, Rayleigh-fading.

I. INTRODUCTION AND MOTIVATIONS OF THEWORK

T HE GROWING demand for high-throughput wireless
services experienced in the last several years motivates

the design of digital transmission systems able to convey
increasing data rates without substantial bandwidth-expansion.
At the present, typical cellular wireless standards support data
services at about 9–10 kb/s. But recently there has been interest
in providing more sophisticated services at ISDN-compatible
data rates exceeding 100 kb/s using the cellular spectrum [19,
Ch. 7]. Since the wireless channel is inherently band-limited
by multipath phenomena, bandwidth-efficient coding with
diversity constitutes an effective means for coping with the
deleterious effects of fading. Although recent progress of multi-
element array (MEA) technology [23] makes wireless systems
with multiple antennas at the receiver today quite common
([3], [10], [13], and references therein), several important
contributions [1], [2], [9] have pointed out that space diversity
at the transmitter can give rise to an extraordinary improvement
in the reliable rates conveyable by wireless bandwidth-limited
links when the receiver also employs space-diversity. More
recently, in [14] and [15], interesting results have been reported
for the case when the propagation coefficients modeling
the multiple-antenna wireless link are unknown both at the
transmitter and receiver, and the fading fluctuations are ap-
proximately piecewise constant. All these contributions point
out the large performance improvements which may arise from
the utilization of multiple transmit/receive antennas so that,
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motivated by these promising information-theoretic results,
several coding strategies suitable for actual implementations
have also been developed [5]–[7], [9], [16], [17].

Since the coded systems considered in the above cited
contributions provide data-transmissions and then rely on
finite-size QAM/PSK-type constellations, a natural question
that is still unanswered concerns the reliable rates effectively
supported by multiple-antenna point-to-point wireless systems
which employfinite-sizedata-constellations. In this paper, we
attempt to give an answer to this question. In particular, we
consider a point-to-point multiple-antenna link affected by flat
Rayleigh-distributed fadings and under the assumption of per-
fect CSI at the receiver we compute the (symmetric) Shannon
capacity of the coded channel for data transmissions which em-
ploy two-dimensional QAM/PSK signal constellations. Since
the formula for the capacity resists closed-form evaluation, and
its computation requires multiple nested numerical integra-
tions, we present (in Section III) some fast-computable upper
and lower bounds which provide reliable (and asymptotically
exact) evaluation of the capacity. Furthermore, since actual
cellular wireless systems may be impaired by slow-variant (i.e.,
nonergodic) fadings that, in fact, makes meaningless the link
capacity [12], [13, p. 2631], in Section V we investigate on the
outage probability of the considered multiple-antenna systems.
Numerical results and some concluding remarks are provided
in Sections VI and VII.

II. L INK MODELING AND SYSTEM CAPACITY

A. Multiple-Antenna MIMO Wireless System

By referring to the narrow-band system withtransmit and
receive antennas sketched in Fig. 1, let us assume that the
coded streams , , simultaneously gener-

ated by the transmit antennas are zero-mean mutually indepen-
dent equal-power memoryless identically distributed stationary
random sequences which take values on an assigned-ary com-
plex constellation . The channel is as-
sumed flat faded, and the complex path gains from the
transmit antennato receive antennaat the epoch are mod-
eled as a sample of a proper zero-mean complex random vari-
able with unit-variance per real dimension. Therefore, the signal

output at time by antenna is modeled as

(1)
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Fig. 1. A simplified block diagram for a point-to-point wireless data-link usingt transmit antennas andr receive ones.

where the noise sequences , , are mu-
tually independent zero-mean stationary white Gaussian com-
plex processes with variance per real dimension. Further-
more, we normalize to unity the total power radiated by the
antennas so that, after assuming as mutually independent the
path-gain sequences , the resulting average

1 at the output of each
receiving antenna is equal to . For future convenience, we
collect the antennas outputs in (1) into the-dimensional com-
plex vector and then rewrite the
scalar relationships in (1) in the following matrix form

(2)

where and the coded vector
is an -variate

random variable with outcomes taking values on the expanded
coding constellation .2 Finally, in (2) is the
complex random matrix which collects the path gains ,

, , at time . We assume known (i.e.,
tracked) at the receiver but not at the transmitter.

B. Validity Limits of the Assumed System Model

The matrix relationship in (2) captures the multiinput multi-
output (MIMO) representation of the considered link. About the
flat fading model here assumed, we note that this last may ade-
quately describe application scenarios where the relative delays
of the multiple copies of the transmitted signal arriving at the
receiver are less than the signaling period. In general, this
assumption can be considered well met in indoor wireless ap-
plications and outdoor microcellular ones [19, Ch. 4].

As far as the mutual independence of the path gains com-
posing the matrix in (2) is concerned, this assumption can
be viewed, indeed, as an approximation which improves when
the antenna spacing becomes large compared to the RF wave-
length . The minimum required antenna spacing generally de-
pends on the considered application scenarios. For example, a
spacing below one wavelengthmay be adequate for indoor
applications while outdoor cellular links planned in urban and
suburban environments typically require an antenna spacing of
about ten wavelengths at the base stations and three wavelengths
at the mobile units [3], [23]. However, it has also been observed
that the performance loss due to correlated receiving branches
is very limited even for correlation values as high as 0.5 [3].

1j � j indicates the absolute value of scalar entities, whilek � k denotes the
norm of vectors and matrices.

2(A ) indicates the set given by thet-fold Cartesian product ofA by
itself.

Lack of knowledge of the channel gains at the transmitter is
typical of cellular mobile radio systems where a reliable fast
feedback link from the receiver to the transmitter is not avail-
able. In these application scenarios, beamforming of the covari-
ance matrix of the transmitted coded streams is not possible so
that the assumption of equal powered transmitted streams natu-
rally arises [1, Section 2], [4, Section III.B], [14, Appendix C].

Finally, a few words about the assumption of mutually inde-
pendent, memoryless, and identically distributed coded streams
are in order. From an information-theoretic point of view,
these assumptions guarantee that the information-throughput
conveyed by the MIMO channel in (2) is maximized, and
formal proof of this property can be found, for example, in
[1, Section 3], [4, Section III.B], and [14, Appendix C]. In
practice, the codewords generated by the space-time block
codes recently proposed in [16] and analyzed in [6] well match
these assumptions.

C. The Symmetric Capacity of MIMO Links

By extending to the present case of MIMO channels a cur-
rent taxonomy holding for the single-input single-output (SISO)
ones [8, p. 350], we qualify as “symmetric capacity” of the
MIMO channel in (2) the corresponding average mutual in-
formation evaluated forequidistributed -variate input vector

.
Therefore, after introducing the additional assumption ofer-

godicbehavior for the path-gain sequences ,
, , the symmetric capacity for the MIMO

channel in (2) with transmit and receive antennas can be
computed via an application of the (usual) chain rule reported,
for example, in [8, p. 361] for the more standard case of SISO
channels as summarized below.

(3)

where indicates the average mutual information
functional (expressed in nats per channel-use)3 and ,

, are subsequences of elements picked out from
, , and , respectively. Therefore, as in

3By referring to the MIMO model in (2), a channel use consists in the trans-
mission of a vectorx( � ) of t codedq-ary symbols.
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[8, eqs. (4.6.14), (4.7.13)], the symmetric capacity can be
computed by averaging over the fading statistics as

(4)

in (4) is the symmetric capacity of the MIMO channel
in (2) conditionedon the outcome of the channel gain matrix
in (2) and it is given by the following expression [see eqs. (A.1),
(A.2) of Appendix A]:

(5)

while indicates the corresponding joint pdf of the
random elements of the channel matrix which for Rayleigh-
faded links assumes the simple form

(6)

with being is the trace of the matrix .
Remark (Ergodic Assumption):In principle, the ergodic be-

havior of the path-gain sequences in (1) guarantees
“information stability” (in the sense of [18, Section I]) for the
channel in (2) so that the limiting operation in (3) is well posed.
In practice, the channel can be assumed ergodic when the vari-
ability of the fading processes over the time interval re-
quested by the transmission of awholecodeword is sufficiently
high. This means that the ergodic assumption can be consid-
ered met when the following inequality is satisfied [13, Sec-
tion III.B]:

(7)

where is the coherence time of the fading path from
transmit antennato receiving antenna, while is the
corresponding Doppler-spread [19, ch. 4]. After dividing (7) by
the system signaling period , this last can be equivalently
rewritten as

(8)

where is the interval (in multiple of the signaling
period) spanned by the transmission of an overall codeword. The
right-hand side of (8) directly relates the minimum codeword
length dictated by the ergodic assumption to the time variability
of the fading processes so that (8) can be utilized for designing
codes and interleavers effectively matched to the considered ap-
plication scenarios.

By focusing now on the computational aspects related to the
capacity evaluation, we note that a direct computation of
via the above relationships (4), (5) appears very cumbersome
even for small values ofand and, in principle, it requiresat
least nested numerical integrations over the complex
plane together with a number of exponential and logarithmic
operations growing as . Furthermore, an examination of the
integral formulas in (4) and (5) does not give direct insight into
the performance limits of the considered MIMO coded channel
with multiple antennas.

For these reasons, in the following sections we present some
simple asymptotically tight bounds which allow us to point out
the ultimate performance of the MIMO channel in (2). Further-
more, since it has been well understood that MIMO systems
with an equal (finite) number of transmit and receive antennas
offer the best tradeoff between performance gain and implemen-
tation complexity [1, Section 4], [2], [7, Section IV], [9, Sec-
tion III], [10, Section I], in the following we focus on this im-
portant case and indicate as the symmetric capacity of the
MIMO coded channel in (2) with finite .

III. T HE PROPOSEDUPPER ANDLOWER BOUNDS ON THE

SYMMETRIC CAPACITY

In Appendix A, it is proven that the following limits hold for
the conditional capacity in (5):

(9)

where the above conditional bounds assume the forms reported
below [see (A.3)–(A.11) and (A.12)–(A.14) of Appendix A]

(10)

(11)

The term in (10) is the squared
Euclidean norm of the channel gain matrix in (2), while

in (11) indicates the minimum eigenvalue of the resulting
Wishart-type complex random matrix (see [11, ch. 3–5]
for the definition and the main properties of a complex Wishart
matrix). Therefore, from the conditional bounds in (10) and
(11), we obtain the following limits for the corresponding
symmetric capacity (see Appendix B):

(12)
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where the above bounds can be expressed as [see (B.1), (B.3),
and (B.4) of Appendix B]

(13)

(14)

The most appealing feature of the limits (13) and (14) is their
simple structure which allows us to draw the conclusions about
the ultimate performance of the MIMO channel (2) summarized
in the following remarks.

Remark (Asymptotic Behavior of the Symmetric Capacity for
high SNRs):Since for finite and large SNRs the bounds
(13) and (14) collapse to the following asymptotic expressions:

(15)

(16)

we conclude that for both the above bounds approach
. Therefore, since falls between and [see

(12)], even the actual symmetric capacity of the system must
reach the same limiting value so that we can write

(17)

The above relationship shows that for largethe symmetric ca-
pacity of the Rayleigh-faded MIMO channel in (2) scaleslin-
early with the number of the transmit and receive an-
tennas. However, due to the finite sizeof the employed con-
stellation, the ultimate value allowable remainsfinite and
limited up to . Furthermore, the linear scaling in (17) ex-
hibited by with for large holds in general for every
two-dimensional QAM or PSK finite-size data-constellation.

As far as the behaviors of the proposed bounds in (13) and
(14) for fixed and growing is concerned, the asymptotic
expressions in (15) and (16) lead to the conclusion that both
these bounds approach the actual value offor large and,
therefore, they areasymptotically exact. Furthermore, from (12)
it follows that the gap falls between

and , and, then, for large it can be limited as [see
eqs. (15) and (16)]

(18)

Remark (Asymptotic Behavior of the Symmetric Capacity for
Vanishing SNRs):Both the proposed bounds in (13) and (14)
approach zero for vanishing SNRs so that they are tight and
asymptotically exactevenfor small . Furthermore, since the
following asymptotic approximate expression holds for :

(19)

we can say that the symmetric capacity approaches zero at
most linearly for vanishing .

Remark (Computational Aspects):From a practical point of
view, the most appealing feature of the proposed bounds in (13)
and (14) and the corresponding asymptotic expressions (15),
(16), (19) is that their evaluationdoes not requirenumerical in-
tegrations. More in detail, the computation of the lower bound in
(13) and the asymptotic relationships (15), (16), (19) is straight-
forward. As far as a reliable evaluation of the upper bound in
(14) is concerned, we have experienced that, independent of the
constellation size and the number of transmit/receive an-
tennas, it can be achieved for moderate SNR values (e.g., for

ranging from 5–6 dB to 11–12 dB) by retaining only the first
30 terms of the outer summation in (14).

IV. A B RIEF COMPARISON TOPREVIOUS RESULTS

When the coding alphabet is allowed to becontinuousand
only the averagetransmitted power is upper bounded, it is
known that the capacity-achieving input distribution becomes
Gaussian and the resulting capacity(in nats/channel-use) of
the Rayleigh-faded MIMO channel in (2) with perfect CSI at
the receiver is given by the following relationship ([1], [2], [4],
[9], [10] and references therein):

(20)

where , , in (20) indicates theth eigenvalue of
the random Wishart matrix . The main conclusion arising
from (20) is that for and large SNRs the capacity can
be effectively approximated as in the following [1], [2], [4], [9],
[10]:

(21)

where the term vanishes for large. As in (17), even
the asymptotic relationship (21) shows that the system capacity
scales linearly with the numberof the transmit/receive an-
tennas. However, for large, in (17) remains limited up to
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, while in (21) grows unbounded and the behavior of
and is, in every case, very different.

V. ASYMPTOTICALLY TIGHT UPPERBOUNDS ON THE

OUTAGE PROBABILITY FOR INTERLEAVED CODED PACKET

TRANSMISSIONS

When the time variability of the fading processes over
the time interval requested by the transmission of a whole
codeword is low, the above introduced ergodic assumption
falls short and, as a consequence, the capacity (4) can no
longer be considered a meaningful index of the reliable in-
formation-throughput conveyed by the MIMO channel in (2)
(see, for example, [13, Section II.B] and references therein
for additional details on this subject). In these environments,
actual TDMA and CDMA wireless systems generally achieve
time diversity by splitting a codeword of overall length in
deeply interleaved packets built up bycoded symbols [12],
[13, Section IV]. So doing, the fading can be assumedtime in-
variant (i.e., static) over each packet butindependentfrom one
packet to the other [1], [12]–[14]. Therefore, after indicating as

the set of outcomes of the matrix
gains for the MIMO channel in (2) over the transmitted
packets, the resulting conditional mutual information [12],
[13]: is a random variable
whose distribution is referred to
as the outage probability4 of the multiple-antenna data system
in (2). Now, since (5) resists closed-form computations even for

, an analytical evaluation of does not appear
feasible. However, a suitable application of the Chernoff bound
leads to the followingasymptotically tightlimit for the outage:

(22)

where is the Chernoff parameter and the real nonnegative
functional in (22) assumes the form

(23)

with indicating the squared minimum Euclidean distance
between two constellation points. Unfortunately, the optimiza-
tion of the Chernoff parameter in (22) and (23) must be
carried out by trials; furthermore, from the power-series expan-
sion in (23) for it is not easy to obtain insight about
the ultimate system performance. For these reasons, in the fol-
lowing subsections, we present the limit forms assumed by the
Chernoff bound (22), (23) for large and small SNRs, respec-
tively.

4� is the so-called “outage-parameter,” and for the multiple-antenna systems
here considered witht transmit antennas it ranges from zero up tot lg q.

A. Asymptotic Form of the Chernoff Bound on the
Outage for Large SNRs

It can be proved that for large SNRs (i.e., forover 9–10 dB)
the functional becomes virtually independent of the
Chernoff parameter and it boils down to

(24)

Furthermore, in this condition it can be also viewed that an op-
timized value for in (22) is

(25)

so that the insertion of (24) and (25) in (22) leads to the fol-
lowing limiting expression for the outage probability of the con-
sidered multiple-antenna data system:

(26)

Although the numerical computation of the above bound is
straightforward, nevertheless it isasymptotically tightand,
then, itapproaches zerofor large and , and also for small
. These properties make the utilization of the proposed bound

useful for a reliable evaluation of the outage probability when
the actual values assumed from this last fall into the region of
practical interest for wireless applications (i.e., around 10
[10, Section III]). The numerical plots reported in Section VI
confirm this conclusion.

B. Asymptotic Form of the Chernoff Bound on the
Outage for Small SNRs

For small SNRs, the power-series expansion in (23) reduces
to , so that for vanishing, the overall bound
in (22) can be recast in the simple form

(27)

Furthermore, it can also be seen that, in this case, the optimized
value for the Chernoff parameterin (27) depends on, , and
, and a good setting for it is given by the nonnegative maximum

root of the following algebraic equation:

(28)

The bound in (27) is asymptotically tight, and for positive SNRs
it approaches zero for vanishing.

VI. NUMERICAL RESULTS

Due to the limited sizes of actual portable handsets and
nonlinear distortions typically introduced by power-efficient
class-C RF amplifiers [19, ch. 5], wireless systems with two
transmit/receive antennas which utilize constant-envelope
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Fig. 2. P (in a log scale) versus� for a BPSK coding constellation with
L = 6 blocks at
 = 13 dB. The plots for the two cases oft = r = 1 and
t = r = 2 are reported.

Fig. 3. P (in a log scale) versus� for a BPSK coding constellation with
L = 6 blocks at
 = 18 dB for t = r = 2.

PSK-type modulation constellations appear, at the present, the
most appealing for practical wireless applications [7], [10], [19,
ch. 7]. For this reason, in the sequel we focus on the numerical
evaluation of the performance of such links.

From the plots for the outages of Figs. 2 and 3, we can draw
some interesting insights. First, these plots confirm that the
tightness of the bound (26) improves for small, and it gives
rise to quite reliable evaluations of the actual outages for values
of of practical interest, typically falling below 10 [10].
Second, an examination of the plots of Fig. 2 shows that for

dB and at (measured) outage of 10the throughput
supported by the system with two transmit/receive antennas
is about 10% higher than that conveyed by the corresponding

Fig. 4. Behaviors ofLB in (13) andUB in (14) for a 4PSK constellation
with t = r = 2. The corresponding values for the actual capacityC in (4) are
also plotted.

Fig. 5 The same as in Fig. 4 for a 8PSK coding constellation witht = r = 2.

single-antenna system. The improvement due to the utilization
of two transmit/receive antennas becomes more remarkable
when the SNR increases to 18 dB. In fact, the system with
two transmit/receive antennas conveys throughputs exceeding
1.3 bits at an outage of 10, while the information rates
supported by the corresponding single-antenna link remain
obviously limited up to 1 bit/channel-use. As far as the capacity
is concerned, the numerical plots of Figs. 4 and 5 for PSK
constellations agree with the asymptotic relationship in (17),
and confirm that for high SNR the symmetric capacity in
(4) grows linearlywith the number of transmit/receive
antennas. These curves also support the conclusion that the
capacity limits proposed in (13) and (14)are asymptotically
exact both for small and large SNRsand, in general, closely
approach the actual system capacity for SNRs exceeding 10 dB
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TABLE I
SUMMARY OF THE MAIN RELATIONSHIPSPRESENTED IN THEWORK

and below 2–3 dB. In this regard, we also note that the actual
wireless data systems work, for the most part, at SNRs typically
exceeding 8–9 dB [1], [7], [10], [19, ch. 7], and an examination
of the reported curves shows that over this range of SNRs the
presented bounds generally differ from actual capacities within
8%–9%.

VII. CONCLUSION

From the main results presented in this paper (summarized
in Table I), some practical guidelines emerge for the design of
actual multiantenna data systems.

First, at high SNRs, the symmetric capacity of the link scales
linearly with the number of transmit/receive antennas, but
for finite-size QAM/PSK constellations remains bounded as
reported in (17). Second, for large SNR, the gap
vanishes essentially as , while for small , the capacity
approaches zero substantially as (see Remarks 1 and 2 of
Section III). Third, from the asymptotic form (26) of the bound
on outage, we conclude that, for large, the outage probability
exponentially vanishes with the numberof the interleaved
packets constituting the transmitted codeword according to the
law , where , depend on the antenna
number and outage parameteras reported in (26).

Finally, we note that this paper focuses on systems without
feedback link from the receiver to the transmitter. Some re-
cent works consider application scenarios with feedback link,
and address the optimization of the transmitted signal spectrum
under the assumption of continuous Gaussian-shaped coding al-
phabet (among others, see, for example, [4], [13, Section II] and
references therein). Unfortunately, the approaches pursued in
these contributions are not directly applicable to the case of fi-
nite-size coding alphabet, and so the optimized beamforming of
data constellations looks, indeed, like a nontrivial task, which is
currently being investigated by the author.

APPENDIX A
DERIVATION OF CONDITIONAL CAPACITY IN (5) AND THE

RELATED BOUNDS (10) and (11)

Since the components of the transmit random vectorin (2)
are mutually independent and equidistributed over a signal con-
stellation of size , the conditional symmetric capacity
of the MIMO channel (2) can be expressed as

(A.1)

Now, starting from the definitory relationship of the conditional
entropy in (A.1) and resorting to some applications
of the Bayes’ rule, we have the following developments:

(A.2)

Therefore, after replacing the pdf of the noise vector in
(2) with the corresponding Gaussian expression, from (A.1) and
(A.2) the relationship (5) for the conditional symmetric capacity
directly arises.

For deriving the conditional upper bound in (10), we begin to
note that the conditional entropy in (A.2) can be lower bounded
as reported below.

(A.3)
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(A.4)

(A.5)

where the first half of (A.3) follows from an application of the
usual arithmetic-geometric inequality [21, p. 1126] to the argu-
ment of the logarithmic term in (A.2); the second half of (A.3)
stems from the Gaussianity of the pdf of the noiseand (A.4)
has been obtained via an application of the Jensen’s inequality
to the -convex logarithmic function in (A.3). Now, after in-
dicating as the maximum eigenvalue of the Hermitian
semidefinite-positive matrix , an exploitation of the basic
properties of the so-called “Rayleigh quotient” [22, Section 8.2]
leads to the inequality

(A.6)

Therefore, after inserting (A.6) in (A.5), from (A.5) we obtain
the chain of limits

(A.7)

(A.8)

(A.9)

where (A.7) follows from (A.6), and (A.8) derives from an
application of Jensen’s inequality to the-convex logarithmic
function appearing in (A.7). Furthermore, (A.9) stems from the
so-called “Plotkin limit” [20, Section 3.7.1] which allows us to
directly compute the average squared Euclidean distance into
brackets of (A.8) as . Although for the
random matrix is a Wishart type, nevertheless the pdf of
its maximum eigenvalue resists closed-form evaluation
and, in fact, may be computed only via numerical procedures
[11, ch. 6]. Therefore, to bypass this handicap, we resort to
known properties about the spectral norm of semidefinite
positive Hermitian matrices [22, Sections 10.3 and 10.4] which
allows us to upper-bound via the squared Euclidean
norm of as

(A.10)

Therefore, after introducing (A.10) in (A.9), we obtain

(A.11)

and then the conditional upper bound (10) stems from the inser-
tion in (A.1) of the lower bound (A.11).

Passing now to the derivation of the conditional lower bound
in (11) for , we begin to note that for any assigned channel
matrix , the resulting symmetric capacity of the MIMO
channel (2) is obviously lower-bounded by the corresponding
symmetric cutoff rate [8, Section 4.3], [20, Section 3.2]
and then we can write

(A.12)

This parameter can be computed pursuing thesame approach
detailed in [8, Section 4.3] for SISO channels, which allows us
to arrive to the following closed-form formula for the link model
in (2):

nats/channel-use (A.13)
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Unfortunately, it turns out that this last relationship is still too
complex to be effectively exploited to derive closed-form lower
bounds on the symmetric capacity . Therefore, we proceed to
somewhat simplify (A.13) by resorting to basic properties of the
“Rayleigh quotient” of semidefinite-positive Hermitian square
matrices [22, Section 8.2] which allows us to limit the squared
norm present in (A.13) as

(A.14)

where is the minimum eigenvalue of . Hence, the
conditional lower bound (11) directly stems from (A.12) and
(A.13) after introducing in (A.13) the left-hand side of (A.14).

APPENDIX B
DERIVATION OF THEBOUNDS(13) and (14)ON THE SYMMETRIC

CAPACITY

For the derivation of the unconditional bounds (13) and (14)
from the corresponding conditional ones (11), (10), we must av-
erage these last over the statistics of the fading processes. As
far as the upper bound (10) is concerned, from the Rayleigh as-
sumption on the fading of Section II-A it follows that the term

in (10) is a real nonnegative random variable described
by the central chi-squared pdf with degrees of freedom re-
ported, for example, in [8, eq. 2.2.53]. Moreover, the develop-
ments reported below hold for the expectation of :

(B.1)

where the first part of (B.1) is a consequence of elementary al-
gebraic manipulations on the argument of the logarithm in (10);
while the second part stems from the power series expansion of
the logarithmic function. Finally, the expectation in (B.1) over
the pdf of can be evaluated by resorting to [21, eq. 3.381.4]
which directly leads to the relationship (14) for .

As far as the lower bound (11) is concerned, we recall that for
the matrix is complex Wishart [11, ch. 3] and its

minimum eigenvalue in (11) is a nonnegative real random
variable with exponential-type pdf given by [11, p. 62]

(B.2)

Unfortunately, the direct average of (11) over the above pdf
leads to

(B.3)

and the above expectation resists analytical closed-form evalu-
ation. However, an application of Jensen’s inequality which ex-
ploits the -convexity of the logarithmic function allows us to
arrive at the following simpler (but looser) bound:

(B.4)

Hence, after evaluating the expectation in (B.4) over the pdf
(B.2) according to [21, 3.310], from (B.4) we obtain the lower
bound in (13).
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