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Evaluation of the Reliable Data Rates Supported by
Multiple-Antenna Coded Wireless Links for QAM
Transmissions

Enzo Baccarelli

Abstract—In this paper, we present some novel results about the motivated by these promising information-theoretic results,

reliable information-rate supported by point-to-point multiple-an-  several coding strategies suitable for actual implementations
tenna Rayleigh-faded wireless links for coded transmissions that have also been developed [5]-[7], [9], [16], [17].

employ two-dimensional (QAM or PSK) data constellations. After Si th ded ¢ ’ d d, in th b ited
deriving the symmetric capacity of these links, we preserfast-com- |n_ce_ € co e_ systems cons_l e_re in the above cite
putableanalytical upper and lower bounds that are asymptotically Contributions provide data-transmissions and then rely on
exactboth for high and low SNRs, and give rise to a reliable eval- finite-size QAM/PSK-type constellations, a natural question

uation of the link capacity when perfect channel state informa-  that is still unanswered concerns the reliable rates effectively
tion (C_SI) is available at the receiver. Furthermore, agymptotical!y supported by multiple-antenna point-to-point wireless systems
exact simple upper bounds are also presented for a tight evaluation . - ) - .
of the outage probability. which emponflnlte-3|zedata-cons_teIlatlon_s. In this paper, we
_ ) attempt to give an answer to this question. In particular, we
m&ﬂ?pelé ;ﬁ:;“nsr;:fgg?%gg}fggzhm ' '\/F'{oa)‘/’l‘ggﬁs d‘?g;a Systems,  consider a point-to-point multiple-antenna link affected by flat
' ' ' Rayleigh-distributed fadings and under the assumption of per-
fect CSI at the receiver we compute the (symmetric) Shannon
[. INTRODUCTION AND MOTIVATIONS OF THE WORK capacity of the coded channel for data transmissions which em-

HE GROWING demand for high-throughput wirelessploy two-dimensional QAM/PSK signal constellations. Since

services experienced in the last several years motiva{gg formula for the capacity resists closed-form evaluation, and

the design of digital transmission systems able to convgg computation requires multiple nested numerical integra-

increasing data rates without substantial bandwidth-expansi gsl, we pt;eser:jt (|nh$ehct|on ”(;) so:peblfast-cc()jmputab![etypﬁ)ler
At the present, typical cellular wireless standards support d ower bounds which provide reliable (and asymptotically

services at about 9-10 kb/s. But recently there has been inteF@%"‘lCt) evaluation of the capacity. Furthermore, since actual

in providing more sophisticated services at ISDN—compatibFee lular wireless systems may be impaired by slow-variant (i.e.,

data rates exceeding 100 kb/s using the cellular spectrum [Tgpergodic) fadings that, in fact, makes meaningless the link

Ch. 7]. Since the wireless channel is inherently band-limitecd”lp""city [12], [.1.3’ p. 2631], in_Section M we investigate on the
by multipath phenomena, bandwidth-efficient coding witRutage probability of the considered multiple-antenna systems.

diversity constitutes an effective means for coping with tiumerical results and some concluding remarks are provided

deleterious effects of fading. Although recent progress of multl? Sections VI and VII.

element array (MEA) technology [23] makes wireless systems

with multiple antennas at the receiver today quite common Il. LINK MODELING AND SYSTEM CAPACITY

(3], _[10]_, [13], and references_ therein), several im_porta_uﬂ_ Multiple-Antenna MIMO Wireless System

contributions [1], [2], [9] have pointed out that space diversity ) ) )

at the transmitter can give rise to an extraordinary improvement8Y réferring to the narrow-band system withransmit and

in the reliable rates conveyable by wireless bandwidth-limitdd"€C€ive antennas sketched in Fig. 1, let us assume that the
links when the receiver also employs space-diversity. Mofec0ded streamgz;(n)}, 1 < ¢ < ¢, simultaneously gener-
recently, in [14] and [15], interesting results have been report@E?d by the transmit antennas are zero-mean mutually m_depen-
for the case when the propagation coefficients modelirﬁjgent equal-power memoryless identically dlstr|b_uted stationary
the multiple-antenna wireless link are unknown both at t{&ndom sequences which take values on an assigaegicom-
transmitter and receiver, and the fading fluctuations are dp€X constellationdy = {ai, ..., aq}. The channel is as-
proximately piecewise constant. All these contributions poiitMed flat faded, and the complex path gajpgn) from the

out the large performance improvements which may arise frdfgnsmit antennato receive antennaat the epocte are mod-

the utilization of multiple transmit/receive antennas so thfﬁled asa sa_\mplg of a proper Z€ro-mean complex random vart-
able with unit-variance per real dimension. Therefore, the signal

_ _ _ gx(n) output at timer by antenng is modeled as
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Fig. 1. A simplified block diagram for a point-to-point wireless data-link uditigatnsmit antennas andreceive ones.

where the noise sequencgs;(n) € C'},1 < j < r, are mu- Lack of knowledge of the channel gains at the transmitter is
tually independent zero-mean stationary white Gaussian cotypical of cellular mobile radio systems where a reliable fast
plex processes with variandg, per real dimension. Further-feedback link from the receiver to the transmitter is not avail-
more, we normalize to unity the total power radiated by#heable. In these application scenarios, beamforming of the covari-
antennas so that, after assuming as mutually independenttheance matrix of the transmitted coded streams is not possible so
path-gain sequencdg;;(n)}, the resulting averagéNR% = that the assumption of equal powered transmitted streams natu-
E{>_, g5i(n)zi(n)|?}/E{|wi(n)|?}* at the output of each rally arises [1, Section 2], [4, Section 111.B], [14, Appendix C].
receiving antenna is equal 1gN,,. For future convenience, we Finally, a few words about the assumption of mutually inde-
collect the antennas outputs in (1) into theimensional com- pendent, memoryless, and identically distributed coded streams
plex vectory(n) = [yi(n) --- y-(n)]* and then rewrite the are in order. From an information-theoretic point of view,

scalar relationships in (1) in the following matrix form these assumptions guarantee that the information-throughput
conveyed by the MIMO channel in (2) is maximized, and
y(n) = G(n)z(n) + win) (2) formal proof of this property can be found, for example, in
- [1, Section 3], [4, Section 1lI.B], and [14, Appendix C]. In
where w(n) = [wi(n) --- w.(n)]¥ and the coded vector practice, the codewords generated by the space-time block
z(n) = [z1(n) - x(n)]F € (Ax)tisanN = ¢'-variate codes recently proposed in [16] and analyzed in [6] well match

random variable with outcomes taking values on the expandéese assumptions.

coding constellatioffAx)*.2 Finally, G(n) in (2) is ther x ¢

complex random matrix which collects the path gajpgn), C. The Symmetric Capacity of MIMO Links
1<75<r,1<4<t, attimen. We assumé&(n) known (i.e.,

k X By extending to the present case of MIMO channels a cur-
tracked) at the receiver but not at the transmitter.

rent taxonomy holding for the single-input single-output (SISO)

o ones [8, p. 350], we qualify as “symmetric capacity” of the

B. Validity Limits of the Assumed System Model MIMO channel in (2) the corresponding average mutual in-
The matrix relationship in (2) captures the multiinput multiformation evaluated foequidistributed¢-variate input vector

output (MIMO) representation of the considered link. About the € (Ax)*.

flat fading model here assumed, we note that this last may adeTherefore, after introducing the additional assumptioaref

quately describe application scenarios where the relative delggslic behavior for the path-gain sequendgs;(n)}, 1 < j <

of the multiple copies of the transmitted signal arriving at the, 1 < @ < ¢, the symmetric capacitgy ,. for the MIMO

receiver are less than the signaling periig In general, this channel in (2) with¢ transmit andr receive antennas can be

assumption can be considered well met in indoor wireless agmputed via an application of the (usual) chain rule reported,

plications and outdoor microcellular ones [19, Ch. 4]. for example, in [8, p. 361] for the more standard case of SISO
As far as the mutual independence ofthe- path gains com- channels as summarized below.

posing the matrixz(n) in (2) is concerned, this assumption can

be viewed, indeed, as an approximation which improves when Cy. = lim Ly (XM, v M GM)
the antenna spacing becomes large compared to the RF wave- M=oo Al/[
lengthA. The minimum required antenna spacing generally de- = lim 1 (XM; YMiGM)

pends on the considered application scenarios. For example, a o
spacing below one wavelengthmay be adequate for indoor I 1 Ilu(i): 2(8). Gli
applications while outdoor cellular links planned in urban and Mose M ; (Q(L)’ z(3), —(L))
suburban environments typically require an antenna spacing of _7 ( 1. x1|G1) 3)
about ten wavelengths at the base stations and three wavelengths el

at the mobile units [3], [23]. However, it has also been observe

that the performance loss due to correlated receiving branc%vq’lere (+;-,-) indicates the average mutual information

Unctional (expressed in nats per channel-usand X
is very limited even for correlation values as high as 0.5 [3]. YM GM are subsequences 81 elements picked out from

Y . | indicates the absolute value of scalar entities, whild| denotes the 1z(n)}, {y(n)}, and {G(n)}, respectively. Therefore, as in
norm of vectors and matrices.

2(Ax)* indicates the set given by thefold Cartesian product oft x by 3By referring to the MIMO model in (2), a channel use consists in the trans-
itself. mission of a vector( - ) of t codedq-ary symbols.
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[8, egs. (4.6.14), (4.7.13)], the symmetric capacity, can be By focusing now on the computational aspects related to the
computed by averaging over the fading statistics as capacity evaluation, we note that a direct computatiot’pf.
via the above relationships (4), (5) appears very cumbersome
Cr. = Eg {Ot* T(g)} = /O’t* (@p(@)da.  (4) evenforsmallvalues dfandr and, in principle, it requireat
’ ’ ’ leastr(t + 1) nested numerical integrations over the complex
. ) ) ) . lane together with a number of exponential and logarithmic
7, +(G) in (4) is the symmetric capacity of the MIMO Channegperations growing ag'. Furthermore, an examination of the
in (2) conditionecon the outcomé of the channel gain matrix iyteqral formulas in (4) and (5) does not give direct insight into

in (2) and itis given by the following expression [see eds. (A-Le herformance limits of the considered MIMO coded channel
(A.2) of Appendix AJ: with multiple antennas.

For these reasons, in the following sections we present some
simple asymptotically tight bounds which allow us to point out
¥ 9 the ultimate performance of the MIMO channel in (2). Further-
exp| —5[ly—Gz||
yeCr

Cr (G

1 t 7 T
=tleg— <§) <§) more, since it has been well understood that MIMO systems
with an equal (finite) number of transmit and receive antennas

offer the best tradeoff between performance gain and implemen-

2E(Ax)!

) Yo 2 1 ty2 tation complexity [1, Section 4], [2], [7, Section V], [9, Sec-
X lgel+ Z teXP[Z (ly—Gz|]*—|ly—G'| )} W tion 1], [10, Section 1], in the following we focus on this im-
£ zgi;‘) portant case and indicate &% the symmetric capacity of the
T ) MIMO coded channel in (2) with finit¢ = r.
while p(@G) indicates the corresponding joint pdf of the< r ll. THE PROPOSEDUPPER ANDLOWER BOUNDS ON THE
random elements of the channel matrix which for Rayleigh- SYMMETRIC CAPACITY

faded links assumes the simple form In Appendix A, it is proven that the following limits hold for

the conditional capacity in (5):

P(G) = (%) G CA) O

with Tr{GH G} being is the trace of the matri&” G. .
Remark (Ergodic Assumption)n principle, the ergodic be- where the above conditional bounds assume the forms reported

havior of the path-gain sequencés;;(n)} in (1) guarantees below [see (A-3)~(A.11) and (A.12)~(A.14) of Appendix A]

“information stability” (in the sense of [18, Section I]) for the

channel in (2) so that the limiting operation in (3) is well posed.UBt (@)

In practice, the channel can be assumed ergodic when the vari- _ tlgq—lg {1 4 (g — 1) exp [_7 < qt ) ||G||2:| }
ability of the fading processes over the time inter¥al re- t—1

quested by the transmission ofvliolecodeword is sufficiently (20)
high. This means that the ergodic assumption can be consiﬁ*(g)

ered met when the following inequality is satisfied [13, Sec-

tion I11.B]:

LB;(G) < C}(G) < UB}(G) 9)

=tlgg—1lg 1+% Z Z

Tw >Tcon(y, 1) zC(Ax)" 2/ e(Ax)!
=(Bp(j, )~ 1<i<r1<i<t (D) oA

whereT-op (4, ¢) is the coherence time of the fading path from 5
transmit antennato receiving antenng, while Bp (4, ) is the X exp [—g llz — £/||2®min:| : (11)
corresponding Doppler-spread [19, ch. 4]. After dividing (7) by
the system signaling periads, this last can be equivalently
rewritten as + + . .
The term||G||*> = >7i_; >7)_; lgi;]* in (10) is the squared
M > (TsBp(j, 1) 7*, 1<j<r 1<i<t (8) Euclidean norm of the channel gain matdxin (2), while
Oumin in (11) indicates the minimum eigenvalue of the resulting
whereM = Tiy /T is the interval (in multiple of the signaling Wishart-type complex random matriXG* (see [11, ch. 3-5]
period) spanned by the transmission of an overall codeword. Tiee the definition and the main properties of a complex Wishart
right-hand side of (8) directly relates the minimum codeworahatrix). Therefore, from the conditional bounds in (10) and
length dictated by the ergodic assumption to the time variabilit}1), we obtain the following limits for the corresponding
of the fading processes so that (8) can be utilized for designidgmmetric capacity (see Appendix B):
codes and interleavers effectively matched to the considered ap-
plication scenarios. LBy < Cyf < UBy (12)
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where the above bounds can be expressed as [see (B.1), (BBt 1lg ¢ — LB}, and, then, for large it can be limited as [see

and (B.4) of Appendix B] egs. (15) and (16)]
14t _
3 VD VS
. 1 v z€(Ax) 2'C(Ax)*
LB; =tlgg—lg 1+ 5 >y Vn
2E(AX)t 2’ c(Ax)* <tlgg—Cf
z'#x t2 2

1 (qt _ 1)t +1 _
2l —5— >1). 18
. 1 - <7> (2¢)** 7> 4o

12
x <1 + At lz = 2] ) Remark (Asymptotic Behavior of the Symmetric Capacity for

Vanishing SNRs):Both the proposed bounds in (13) and (14)
approach zero for vanishing SNRs so that they are tight and
o . X asymptotically exacevenfor small7. Furthermore, since the
UB; =tlgq— Z(k — 1)1 <q : 1) following asymptotic approximate expression holds&aB; :

q

(13)

kk=1(_1)m—l qt —¢2 UB: = 2t2_’ (7 - 0) (19)
X { Z m [1 +2m7y <qt_—1>:| } - we can say that the symmetric capacity approaches zero at
m=l most linearly for vanishing;.
(14) Remark (Computational Aspectslrrom a practical point of

. o , view, the most appealing feature of the proposed bounds in (13)
The most appealing feature of the limits (13) and (14) is theif,y (14) and the corresponding asymptotic expressions (15),

simple_ structure which allows us to draw the conclusions a_bOCitG), (19) is that their evaluatictoes not requireumerical in-

the ultimate performance of the MIMO channel (2) summarizgdyrations. More in detail, the computation of the lower bound in

in the following remarks. . . _ (13) and the asymptotic relationships (15), (16), (19) is straight-
_Remark (Asymptotic Behavior of the Symmetric Capacity ffiyard, As far as a reliable evaluation of the upper bound in

high SNRs): Since for finite¢ = r and large SNRs the bounds; 4) js concerned, we have experienced that, independent of the

(13) and (14) collapse to the following asymptotic expressiong,nstellation size; and the numbet of transmit/receive an-

tennas, it can be achieved for moderate SNR values (e.g., for

LB} =tlgq— i4—f Z Z lz— 2|72, ~ ranging from 5-6 dB to 11-12 dB) by retaining only the first
T )t o e(ax) 30 terms of the outer summation in (14).
z'#z
> 1 (15) IV. A BRIEF COMPARISON TOPREVIOUS RESULTS

.1 1\" (¢ — 1)t _ When the coding alphabet is allowed to dentinuousand
UB; =tlgq - <_> (2¢1) 7 y>1 (16) only the averagetransmitted power is upper bounded, it is
known that the capacity-achieving input distribution becomes
we conclude that foff — oo both the above bounds approaclGaussian and the resulting capadity(in nats/channel-use) of
tlgq. Therefore, since”y falls betweenL By and/B} [see the Rayleigh-faded MIMO channel in (2) with perfect CSI at
(12)], even the actual symmetric capacity of the system mugk receiver is given by the following relationship ([1], [2], [4],

reach the same limiting value so that we can write [9], [10] and references therein):
lim Of =tlggq. (17) C,=E {lg [det <I + %GGHH }
Yoo
t —
The above relationship shows that for largthe symmetric ca- = Z E {lg<1 + l@i> } (20)
pacity of the Rayleigh-faded MIMO channel in (2) scalies = 2t

early with the numbert = » of the transmit and receive an- . ) L ) .
tennas. However, due to the finite siz®f the employed con- where®;, 1 5, ¢ < %N _(ZO)I}ndlcates _theth e|ge.nvalu§ .Of
stellation, the ultimate value allowab{&' remainsfinite and the random Wishart matriG™*. The main conclusm_n arising
limited up totlg ¢. Furthermore, the linear scaling in (17) ex_from (20? s that foré - and Ia_rge SNRs the capacity can
hibited by C; with ¢ = r for large® holds in general for every be effectively approximated as in the following [1], [2], [4], [9],
two-dimensional QAM or PSK finite-size data-constellation [10]:

As far' as the behaviors qf thg proposed bounds in (13) 'and C, 2 tlgy + O(t™1), 7> 1) 1)
(14) for fixedt = r and growingy is concerned, the asymptotic
expressions in (15) and (16) lead to the conclusion that baotlere the termO(¢~1) vanishes for large. As in (17), even
these bounds approach the actual valu€pffor largew and, the asymptotic relationship (21) shows that the system capacity
therefore, they arasymptotically exacturthermore, from (12) scales linearly with the numberof the transmit/receive an-
it follows that the gaptlg g — C; falls betweentlgg — UB;  tennas. However, for largg, C; in (17) remains limited up to



BACCARELLI: EVALUATION OF RELIABLE DATA RATES 299

tlg ¢, while Cy in (21) grows unbounded and the behavio€f A. Asymptotic Form of the Chernoff Bound on the

andC, is, in every case, very different. Outage for Large SNRs
It can be proved that for large SNRs (i.e., foover 9-10 dB)
V. ASYMPTOTICALLY TIGHT UPPERBOUNDS ON THE the functionall’( -, -, -) becomes virtually independent of the

OUTAGE PROBABILITY FOR INTERLEAVED CODED PACKET Chernoff parametes and it boils down to
TRANSMISSIONS
. I : t?

When the time variability of the fading processes over U, t) 2tlgqg— —5—, F> 1. (24)
the time interval requested by the transmission of a whole 7 %min
codeword is low, the above introduced ergodic assumpti@yrthermore, in this condition it can be also viewed that an op-
falls short and, as a consequence, the capacity (4) cantfifized value fors in (22) is
longer be considered a meaningful index of the reliable in-
formation-throughput conveyed by the MIMO channel in (2) 5= Y2 i e tlgq
(see, for example, [13, Section 11.B] and references therein T o

for additional details on this subject). In these environments,

actual TDMA and CDMA wireless systems generally achieve® that the insertion of (24) and (25) in (22) leads to the fol-
time diversity by splitting a codeword of overall lengtf in L lowing limiting expression for the outage probability of the con-

deeply interleaved packets built up By coded symbols [12], Sidered multiple-antenna data system:
[13, Section IV]. So doing, the fading can be assurtied in-

(25)

variant(i.e., static) over each packet botlependentrom one Pout (83 L) o ) )

packet to the other [1], [12]-{14]. Therefore, after indicatingas < exp {_ﬂgm le <“ﬂ) I [t legg— # _ 5} } 7
GY =[Gy, ..., G] the set of outcomes of thex ¢ matrix 4t 6 min

gains for the MIMO channel in (2) over thé transmitted o 4¢2

packets, the resulting conditional mutual information [12], 0<6<tlsg yd2 . (26)

[13]: IX(GE) = (/L)% Cr (@) is a random variable _ _ _
whose distribution,., (§; L) = P(IL(@L) < §)is referred to Although the numerical computation of the above bound is

as the outage probabilityof the multiple-antenna data systenpt@ightforward, nevertheless it ssymptotically tightand,

in (2). Now, since (5) resists closed-form computations even f81€n: itapproaches zeréor large L and?, and also for small

¢t = r, an analytical evaluation aP..(8; L) does not appear 6. These properties make the utilization of the proposed bound
feasible. However, a suitable application of the Chernoff bourtfeful for a reliable evaluation of the outage probability when

leads to the followingisymptotically tightimit for the outage: the actual values assumed from this last fall into the region of
practical interest for wireless applications (i.e., around>10

Poue(6; L) < exp{—sL[¥(s, 7, t) — 8]} (22) [10, _Sectign ). Th_e numerical plots reported in Section VI
' ' confirm this conclusion.

wheres > 0 is the Chernoff parameter and the real nonnegati

e .
U(s, 7, 1) functional in (22) assumes the form % Asymptotic Form of the Chernoff Bound on the

Outage for Small SNRs

U(s, 7, t) For small SNRs, the power-series expansion in (23) reduces
1 o0 ‘ 1\ to W(s, 7, t) = 7/2t, so that for vanishing, the overall bound
=-—"lg {1 + Z(—l)’ <‘:> < — ?> in (22) can be recast in the simple form
=1
i, . -1 Pout(6; L) < exp{—sL[y/2t 6]},  0<6<7/2t (27)
X <Ii.) (_1)k <1 + ltd?nin)
b0 4 Furthermore, it can also be seen that, in this case, the optimized

(23) value for the Chernoff parameteiin (27) depends of, ¢, and
6, and a good setting for itis given by the nonnegative maximum
with d2 . indicating the squared minimum Euclidean distano@ot of the following algebraic equation:

between two constellation points. Unfortunately, the optimiza-

tion of the Chernoff parameter> 0 in (22) and (23) must be A_Q - <1 _ i$> s. (28)
carried out by trials; furthermore, from the power-series expan- (2t + 57) 2t
sion in (23) for¥(-, -, -) itis not easy to obtain insight aboutryg poynd in (27) is asymptotically tight, and for positive SNRs

the.ult|mate sy§tem performance. qu t'hese reasons, in the fP‘l;ipproaches zero for vanishirg
lowing subsections, we present the limit forms assumed by the
gvk;el}r/noff bound (22), (23) for large and small SNRs, respec- VI. NUMERICAL RESULTS
Due to the limited sizes of actual portable handsets and

nonlinear distortions typically introduced by power-efficient

45 is the so-called “outage-parameter,” and for the multiple-antenna systeﬁl@ss'c? RF qmpllﬁers [19’ ch. 5]’ wwglgss systems with two
here considered withtransmit antennas it ranges from zero up lg¢. transmit/receive antennas which utilize constant-envelope
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BPSK, L=6, SNR=13 dB 4PSK (t=r=2)
1.E-01 : 4.0
—a— Bound in (26): t=r=1 i » 3.8
—&— Actual Pout: t=r=1 3'5
—8—Bound in (26): t=r=2 — B 3'3
—O— Actual Pout: t=r=2 : 3'0
iy A A /x.: LYy I
= 1E02 |——— : . : - . g .
z s - 2 S0
2 et =
..8 = 23
E g 20
w = 18
) o
x| > 15
5 1.E-03 E 13
o A 1'0
08 Y/ /- —e—Upper Bound in (14)
0.5 2// ——Actual Capacity in (4)
0.3 -1 —a&—Lower Bound in (13)
1.E-04 v — : — : : . 3 0.0 Y v v Y ——p— y y y
@ ° e ° @ 75 5 25 0 25 5 7.5 10 125 15 17.5 20 225
Q:@ 616\ Q@ Q& Q«(? Q‘g\ Bi@ 0& 0@ Q§\ °;§ °§§ QZéP

SNR (dB
& (bits/channel-use) (dB)
i : . ) . Fig. 4. Behaviors oL B in (13) andl B} in (14) for a 4PSK constellation
Fig. 2. Py (inalog,, scale) versus for a BPSK coding constellation with \ith ¢t = = 2. The corresponding values for the actual capaGityin (4) are
L = 6 blocks aty = 13 dB. The plots for the two cases of= r = 1 and 3|59 plotted.
t = r = 2 are reported.

8PSK (t=r=2)
BPSK, L=6, SNR=18 dB

1.E-01 5.5
—e—B d in (26): t=r=2
ound in (26) 5o //'%'
—O—Actual Pout: t=r=2 45 /‘
iy /‘ g .0 A
% 1.E-02 T 35 /7[ S
2 E vo )
=X
£ = [/
-» O 25 /‘,/
) E 2.0 /4
< 1.E-03 1.5 -
5 / 1o b— —o—Upper Bound in (14)
' ——Actual Capacity in (4)
05 | —a—LowerBound in (13)
0.0 — A
1.E-04 75 5 .25 0 25 5 75 10 125 15 175 20 225

1.25 1.275 1.3 1.325 1.35 1.375 1.4 1.425 1.45 1.475 1.5 SNR (dB)

S (bits/channel-use) . o _ o
Fig.5 The same as in Fig. 4 for a 8PSK coding constellation tvithr = 2.

Fig. 3. P, (inalog,, scale) versus for a BPSK coding constellation with
L = 6 blocks aty = 18 dB for? = r = 2. single-antenna system. The improvement due to the utilization
of two transmit/receive antennas becomes more remarkable
PSK-type modulation constellations appear, at the present, tilgen the SNR increases to 18 dB. In fact, the system with
most appealing for practical wireless applications [7], [10], [19wo0 transmit/receive antennas conveys throughputs exceeding
ch. 7). For this reason, in the sequel we focus on the numeridaB bits at an outage of 16, while the information rates
evaluation of the performance of such links. supported by the corresponding single-antenna link remain
From the plots for the outages of Figs. 2 and 3, we can drakviously limited up to 1 bit/channel-use. As far as the capacity
some interesting insights. First, these plots confirm that tle concerned, the numerical plots of Figs. 4 and 5 for PSK
tightness of the bound (26) improves for smglland it gives constellations agree with the asymptotic relationship in (17),
rise to quite reliable evaluations of the actual outages for valumsd confirm that for high SNRy the symmetric capacity in
of P, of practical interest, typically falling below G [10]. (4) grows linearlywith the numbert = » of transmit/receive
Second, an examination of the plots of Fig. 2 shows that fantennas. These curves also support the conclusion that the
¥ = 13 dB and at (measured) outage of £0the throughput capacity limits proposed in (13) and (14)e asymptotically
supported by the system with two transmit/receive antennaact both for small and large SNR&d, in general, closely
is about 10% higher than that conveyed by the correspondiagproach the actual system capacity for SNRs exceeding 10 dB
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TABLE | Now, starting from the definitory relationship of the conditional
SUMMARY OF THE MAIN RELATIONSHIPS PRESENTED IN THEWORK entropyH(g@, G) in (A.1) and resorting to some applications
Lower Upper | High SNRs | LowSNRs  Of the Bayes' rule, we have the following developments:
Bound Bound
Symmetric (13 Eq(14) | Egs.(15)(16) | Eq.(19)
Eq.(13 K s. X q.
Capacity 4 ¢ H (£|Qa G)
Outage Eqs.22),23) Eo.26) Bas@7).28) =—FEx ,XlG{lgP(£|Qa G)}
qs.(22), q. qs.(27),
Probability = —Ex{Eyx, c{lgplzly, G)}}
plylz’, G
=Ex /p(g@, G)lg |1+ p_y|x @ dy
and below 2-3 dB. In this regard, we also note that the actual Z z’E,(Ax)t =7
wireless data systems work, for the most part, at SNRs typically z7E
exceeding 8-9 dB [1], [7], [10], [19, ch. 7], and an examination _ it Z /p(w =y — Gz)
of the reported curves shows that over this range of SNRs the 7" ,“7 . /y -
presented bounds generally differ from actual capacities within -
8%—9%. ,
w=y—z'C
xlg|1+ > plw=y-zG) dy.
plw=y—zG) | =
VIl. CONCLUSION z'€(Ax) =
z'#z
From the main results presented in this paper (summarized (A.2)

in Table 1), some practical guidelines emerge for the design of
actual multiantenna data systems.

. First, at_high SNRs, the symmetric_capac_ity of the link Scaquherefore, after replacing the pgfw) of the noise vector in
linearly with the number of transmit/receive antennas, buf2)ith the corresponding Gaussian expression, from (A.1) and
for finite-size QAM/PSK constellations remains bounded g3 2) the relationship (5) for the conditional symmetric capacity
reported in (17). Second, fc;r large SNRthe gaptlg g — Cf directly arises.

vanishes essentially $/%)" , while for small¥, the capacity  For geriving the conditional upper bound in (10), we begin to

approaches zero substantially &g (see Remarks 1 and 2 of e that the conditional entropy in (A.2) can be lower bounded
Section IlI). Third, from the asymptotic form (26) of the bound,g reported below.

on outage, we conclude that, for largethe outage probability
exponentially vanishes with the numbgérof the interleaved
packets constituting the transmitted codeword according to the Hzly, Q)
law K7 exp(—K>7L), where K7, K, depend on the antenna e
numbert and outage parametéras reported in (26).

Finally, we note that this paper focuses on systems without 1 ) t
feedbacsli link from the recgivgr to the transmi)t/ter. Some re- Z? Z Brixoyle |1+ (¢ - 1) H
cent works consider application scenarios with feedback link,
and address the optimization of the transmitted signal spectrum
under the assumption of continuous Gaussian-shaped coding al-
phabet (among others, see, for example, [4], [13, Section Il] and % <p(w
references therein). Unfortunately, the approaches pursued in w
these contributions are not directly applicable to the case of fi-
nite-size coding alphabet, and so the optimized beamforming of
data constellations looks, indeed, like a nontrivial task, which is
currently being investigated by the author. = BEyix,alg |1+ (¢ — 1)

zE(AL) z'c(Ax)
Z

APPENDIX A
DERIVATION OF CONDITIONAL CAPACITY IN (5) AND THE
RELATED BOUNDS (10) and (11)

Since the components of the transmit random vectan (2)
are mutually independent and equidistributed over a signal con- z'#z
stellation of sizey, the conditional symmetric capacity; ,.(G)

of the MIMO channel (2) can be expressed as
—(y - Gz)'(y - Gz) (A3)

Cro(G) = H(z) — H(zly, @) = tlzg— Hzly. @ (AD
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>L N it - >1g |14 (g~ Dexp | Lo
T sccr)
o] 1
Xexp| o7 Y. Evixclly-Gof Xe—77—— > > llz—2I?
2(¢t —1) 4~ ¢(¢t—1) L= =,
z'C(AL) z€(A:)t 2'C(Ax)
z'#z z'#z
(A.8)
t
_ q
x (y — G) - (y - Gz (y - Ga')) (A4 Zle {1 - Dex ["V@W (W—_ M } (A-9)
where (A.7) follows from (A.6), and (A.8) derives from an
application of Jensen’s inequality to theconvex logarithmic
1 ) . 5 function appearing in (A.7). Furthermore, (A.9) stems from the
T > lg |1+ - Dew ¢ - 1) so-called “Plotkin limit’ [20, Section 3.7.1] which allows us to

zC(Aa)* directly compute the average squared Euclidean distance into
brackets] - - - } of (A.8) as2¢'/(¢' — 1). Although fort = r the
random matrixG¥ G is a Wishart type, nevertheless the pdf of
INH ~H , its maximum eigenvalu® ., resists closed-form evaluation
% Z (2 —2)7G Gz - 2) (A-5) and, in fact, may be computed only via numerical procedures
[11, ch. 6]. Therefore, to bypass this handicap, we resort to
known properties about the spectral norm of semidefinite
positive Hermitian matrices [22, Sections 10.3 and 10.4] which
allows us to upper-boun®,,, via the squared Euclidean
where the first half of (A.3) follows from an application of thenorm |G| = 3i_, 3" _, |gi;|> of G as
usual arithmetic-geometric inequality [21, p. 1126] to the argu- Omax < |G| (A.10)
ment of the logarithmic term in (A.2); the second half of (A.3
stems from the Gaussianity of the pdf of the naisand (A.4) .
has been obtained via an application of the Jensen’s inequalit}q(xw Q) > lg{l—i—(qt—l) exp [_ < q ) 7||G||2} }
to the U-convex logarithmic function in (A.3). Now, after in- ~ ~ — (¢'-1)
dicating as©.,.x the maximum eigenvalue of the Hermitian (A.11)
semidefinite-positive matri&" G, an exploitation of the basic and then the conditional upper bound (10) stems from the inser-
properties of the so-called “Rayleigh quotient” [22, Section 8.2on in (A.1) of the lower bound (A.11).
leads to the inequality Passing now to the derivation of the conditional lower bound
in (11) fort = r, we begin to note that for any assigned channel
matrix G, the resulting symmetric capacifyf (@) of the MIMO
(z-2)"G"Gz— o) < ||z — 2P Omax- (A.-6)  channel (2) is obviously lower-bounded by the corresponding
symmetric cutoff raté®: (&), [8, Section 4.3], [20, Section 3.2]
and then we can write

Therefore, after inserting (A.6) in (A.5), from (A.5) we obtain Ro(G)e < GH(G). (A12)

the chain of limits This parameter can be computed pursuingsame approach
detailed in [8, Section 4.3] for SISO channels, which allows us
to arrive to the following closed-form formula for the link model

)rherefore, after introducing (A.10) in (A.9), we obtain

H(zly, G) in (2):
1 * e § 1
25 S g |1+ - 1) B (@) =tlgg—lgq1+ 5 Z Z
2€(A,)t z€(Az) zt,(;zm)
76111ax 112 _i o 2
X exp —m Z lz—2z'|| ><exp< 8||G(£ £)||> )
2/ €(A)"
z'#z

(A.7) nats/channel-use (A.13)
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Unfortunately, it turns out that this last relationship is still toaninimum eigenvalu®,,;,, in (11) is a nonnegative real random
complex to be effectively exploited to derive closed-form lowerariable with exponential-type pdf given by [11, p. 62]

bounds on the symmetric capactty . Therefore, we proceed to + +

somewhat simplify (A.13) by resorting to basic properties ofthe  P(Omin) = 5 exp<_§@min> ; Omin 2 0. (B.2)
“Rayleigh quotient” of semidefinite-positive Hermitian square

matrices [22, Section 8.2] which allows us to limit the squarednfortunately, the direct average of (11) over the above pdf

norm present in (A.13) as eads to
E{LB}(G
||£_£/||2@min < ||G(£_£l)||2 (A.14) { 2 )}
where®,,;,, is the minimum eigenvalue o G. Hence, the
conditional lower bound (11) directly stems from (A.12) and = tleg—Eqlg |1 + pr Z Z
(A.13) after introducing in (A.13) the left-hand side of (A.14). wC(A )z E(;‘;1 o)
APPENDIX B  ox _ij_x,HQ@ .
DERIVATION OF THE BOUNDS (13) and (140N THE SYMMETRIC PA7glE™ & i

CAPACITY C}

For the derivation of the unconditional bounds (13) and (14) (B.3)

from the corresponding conditional ones (11), (10), we must &nd the above expectation resists analytical closed-form evalu-
erage these last over the statistics of the fading processes afign. However, an application of Jensen’s inequality which ex-
far as the upper bound (10) is concerned, from the Rayleigh goits then-convexity of the logarithmic function allows us to

sumption on the fading of Section II-A it follows that the ternyrrive at the following simpler (but looser) bound:
IG||? in (10) is a real nonnegative random variable described

by the central chi-squared pdf with? degrees of freedom re- £ LB*(G)}
ported, for example, in [8, eq. 2.2.53]. Moreover, the develop-
ments reported below hold for the expectatio/a8; (G):

>tlgg—1g 1+— Z Z

UB;(G) N T ol 2'€(A.)"
EE{UB;“-(G)} oAz

el () < Blen(- T viPe. )| @4
X‘[eXp(—<qtq71)w||Gn2)—1”} =l )

(B.2) according to [21, 3.310], from (B.4) we obtain the lower

<qt _ 1>k Hence, after evaluating the expectation in (B.4) over the pdf
k=1 4 boundLB; in (13).
t 1 5 k
x E [GXP<— < - ) G ) - 1} REFERENCES
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