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Abstract: We present an estimator-based, or soft, vector quantizer decoder for communication over
a noisy channel. The decoder is optimal according to the mean-square error criterion, and Hadamard-
based in the sense that a Hadamard transform representation of the vector quantizer is utilized in the
implementation of the decoder. An efficient algorithm for optimal decoding is derived. We furthermore
investigate suboptimal versions of the decoder, providing good performance at lower complexity. The
issue of joint encoder—decoder design is considered both for optimal and suboptimal decoding. Results
regarding the channel distortion and the structure of a channel robust code are also provided. Through

numerical simulations, soft decoding is demonstrated to outperform hard decoding in several aspects.

Index terms: vector quantization, combined source channel coding, noisy channels, estimation, soft

decoding, index assignment.

1 Introduction

Traditionally the source and the channel codes of a communication system are designed and used sepa-
rately. As is well-known, the separation of the source and the channel coding gives no loss in optimality
if infinite complexity (delay) is permitted [1, 2]. However, in practical systems, where delay can be a
major obstacle, combined source and channel coding may give advantages over traditional tandem coding.
Motivated by this fact, the study of vector quantization (VQ)* for noisy channels has become a major
field of research [3, 4, 5, 6, 7, 8,9, 7, 10, 11, 12, 13, 14, 15, 16].

When designing a VQ system for a noisy channel, essentially one can take on one of two approaches.

We will refer to these as the robust VQ (RVQ) approach, and the channel optimized VQ (COVQ)

'We will use the acronym “VQ” to mean, interchangeably, “vector quantization” and “vector quantizer”.



approach. In the first approach, RVQ, the VQ is trained for a noiseless channel and is subsequently made
robust against channel errors by the use of an index assignment (TA) algorithm. Index assignment is the
procedure of labeling the codevectors of a VQ suitably in order to reduce the impact of channel errors on
the reproduction fidelity (c.f., [17, 18, 19]). The RVQ approach gives a system that is inherently robust
over a set of channels of various qualities. On the other hand, in the COVQ approach the system is
trained for a specific channel, that is, given that the channel is known. Such knowledge modifies the
fidelity criterion in the design to take the distortion introduced by the channel into account (see, e.g.,
5,6, 17, 7, 10, 11]).

Most previous work on channel robust VQ has considered discrete channel models with an emphasis
on the binary symmetric channel (e.g., [3, 5, 8, 6, 17, 7, 18, 19, 14]). In this paper we depart from
this path in that we assume that the VQ decoder can use the soft (unquantized) channel output for
decoding. Such an assumption leads in a natural fashion to a decoder that is a minimum mean-square
error (MMSE) estimator (c.f., [10, 13]). We will refer to a decoder that uses the analog channel output
as a soft decoder to distinguish it from a conventional VQ decoder based on a hard decision and a table
look-up. The main contribution of this paper is a framework for soft decoding based on a Hadamard
transform representation of the VQ. We show that this framework has certain advantages over the more
straightforward approach of, e.g., [13].

For clarity, we refer to VQ with soft decoding by an additional suffix “SD” in abbreviations (e.g.,
VQ-SD, RVQ-SD and COVQ-SD), and to ordinary hard (table look-up) decoding by an additional “HD”
(e.g., VQ-HD and COVQ-HD), as was also done in [20].

1.1 Historical survey and related work

The overarching subject of this paper is “vector quantization over a noisy channel”. Much present
research in this area originates in [5], where criteria for optimality were first formulated. Subsequent
landmarks in the development of the subject include [17, 18, 7]. The first two of these concentrate on
the TA problem, and [7] investigates the design and structure of COVQs. The first treatment of soft
decoding for VQ over a noisy channel can be found in [10]. This work considered a linear approximation
to the generally nonlinear MMSE decoder for the AWGN channel. The results of [10] were extended to
the nonlinear optimal decoder in [13]. Later work, related to [13] and by the same authors, utilizing the
nonlinear decoder on a channel with uncorrelated fading can be found in [21, 22]. Furthermore, an early
treatment of soft decoding for trellis coded quantization over the AWGN channel can be found in the
thesis [23]. The version of the Hadamard-based soft decoder that is referred to as the full entropy decoder
below, was introduced in [20, 24] and was later generalized to the optimal nonlinear case in [25, 26]. An
application of the optimal Hadamard-based soft decoder to image transmission can be found in [25], and
an application to speech coding in [27].

The Hadamard transform representation of a VQ plays an important role in the present study. It was



first described for VQ-HD in [28], and was further investigated in the thesis [12]. A related framework
for construction of constrained VQs having good channel distortion robustness was presented in [14, 29].
Also, the two book chapters [15, 16] provide a thorough treatment of Hadamard methods for VQ-HD

analysis.

1.2 Organization of the paper

We begin with a preliminary section stating the problem under consideration and introducing the notation
used. Then, in Section 3, we derive and analyze the the Hadamard-based MMSE decoder having the
leading role of this paper. Here we also state an algorithm for decoder computations. In Section 4 we
handle the special case of decoding for full entropy encoding. Next, in Section 5, we investigate some
aspects of system design and present design algorithms. In Section 6, the channel distortion of a system
with Hadamard-based soft decoding is analyzed and results concerning the structure of a robust system
are given. Finally we present numerical results and comparisons in Section 7. Section 8 is a summary of

the paper.

2 Preliminaries

We study block source coding, or vector quantization, over a noisy channel. The investigation is based
on the communication system model depicted Figure 1. In the following three sub-sections we describe

the basic assumptions made about the different blocks of the system.

2.1 The source and the VQ encoder

We will consider a d-dimensional vector source {X,,} where one source vector is described by the marginal
probability density function (pdf) fx(x). The source is a zero mean, stationary, and ergodic stochastic

process. Because of the stationarity of the source, we will omit the specification of the time index n. The

encoder channel decoder

Figure 1: The communication system.

encoder of the block source code is a mapping e : RY — {0,1,..., N—1}, such that ¢(X) = I for the source

vector X. The mapping of the encoder is described by X € §; = I = i where {Si}i]\gl

is a partition of
R?, and where N = 2% (thus the rate of the source code is R = k/d bits per dimension). The sets {S;} are
called the encoder regions. When I =i, let b; = (b1 (i), b2(i), ... ,bg(i))”, where b, (i) € {=1,+1}, be a

vector containing the bits? of the index, i. We assume that the bits, b,,(7), are determined by the natural

2We will use the term bit for the number b, (7) € {£1}, even if this notation is perhaps more common when b, (1) €

{0,1}.



binary code for the index i, replacing logical “zero” with the integer +1, and logical “one” with —1. Let
P; £ Pr(I = i) = Pr(X € S;) denote the a-priori probability that index i is chosen by the encoder. The
encoder entropy is defined as the entropy of the random variable I, H(I) = — Z:\LB] P; -log, P;. In the
following we will say that the encoder is a full entropy encoder® if P; = 1/N, Vi and, thus, H(I) = k
(bits). Decoding for full entropy encoders will be investigated as a special case in Section 4. Finally, for

later reference, define the encoder centroids {c;}1 ', as ¢; = E[X|I = i] = E[X|X € Sj].

2.2 Channel models

In the most general case we consider, the channel is given by an arbitrary pdf, fg; (r|i), which describes
the stochastic relationship between the transmitted index, I, and the received L-dimensional vector R.
We assume that the channel introduces no memory between vectors corresponding to indices transmitted
at different times. One common special case of this general channel, is the L-dimensional additive white
Gaussian noise (AWGN) channel, where the received vector is given by R = s;+W. Here, the transmitted
L-dimensional vector s; is chosen from a finite set {SZ}Z\LB] of channel symbols, and W is zero-mean, white
and Gaussian; E[WW"] = ¢2,1. (I denotes the identity matrix.) For this channel we assume, without
loss of generality, that the mapping from an input vector, X, to a channel symbol, s, is s = s_(x). Another
important special case is a binary input channel with an unquantized (soft) output. Here, the channel

output, R,,, corresponding to the input bit, b, (I), is
Ry =An bpn(I)+ Wy, m=1,2,....k (1)

where {A,,} describes amplitude variation and the additive noise {W,,} is white and zero-mean Gaussian
with variance o3;,. The received vector, corresponding to one transmitted index I, is R = (Ry, Ra, ..., Ry)T
(thus the channel dimension is L = k, the number of transmitted bits). We refer to a channel described
by (1) as an unquantized binary memoryless channel, or just a binary channel for convenience. For
binary channels, we treat two cases; (i) The known-amplitude binary (KAB) channel, with 4, = a, Vm,
and; (i) The Rayleigh-amplitude binary (RAB) channel, where {4,,} has the marginal pdf fa(a) =
a/o? exp[—a?/(20%)]. We assume the process {4,,} to be white, with the physical interpretation of a
perfect interleaving in the transmission. The quality of the channel is expressed in terms of the channel
SNR (CSNR), which is a? /o, for the KAB channel and E[A2]/o}, = 2-0% /o3y, for the RAB channel. We
define the corresponding hard binary channels as the binary symmetric channels obtained when taking
hard decisions, Brnérd = sign(r,, ), on the soft channel outputs, r,,,. The average bit error rate (BER), ¢, for

the corresponding hard binary channels is ¢ = 0.5-erfc(y/a? /203, ), where, erfc(z) = 2//7- [ exp(—t?)dt,
for the KAB channel and ¢ = 0.5-[1 — /0% /(0% + o%,)] for the RAB channel (c.f. [30]). In this paper we

3Note that this property depends on the source. Thus a more correct notation would be a full entropy source/encoder
pair. However, we will refer to the encoder as a full entropy encoder, under the assumption that the encoder is used on the
source for which it was designed. See Section 4 for a further discussion.



will emphasize the KAB and the RAB channels since, as will be seen, the Hadamard-based VQ decoder

exhibits particularly useful structure for these channels.

2.3 The soft VQ decoder

We study the class of decoders that can be described by vector valued mappings § : R — R?. The
decoder makes use of the channel output, R, and maps it into a source vector estimate 6(R). We call
such decoders soft decoders since it is assumed that the decoder can utilize the unquantized (soft) channel
output, R. Such decoders can also be referred to as estimator-based (c.f., [10]) contrasting the detector-
based decoders that are usually employed in vector quantization. In detector-based decoding the decoder
is simply a table look-up based on hard decisions. We also assume that the decoder is a function of the
channel output, R, corresponding to one transmitted encoder index, I. A more general case is where the
decoder regards all channel outputs from time zero (or a subset thereof). This case was studied in [31]
for a discrete channel, and in [22] for soft decoding.

By an “optimal” decoder we will throughout refer to optimal in the minimum mean-square error sense.
That is, a decoder, §*, is optimal if E ||X — 6*(R)||> < E||X — §(R)||”, V0, where & denotes an arbitrary

% as the distortion D.

mapping 6 : R — R?. We refer to the mean-square error D = E|X — §(R)||
Consequently, we will confine the discussion to the class of MMSE soft decoders. The mean-square error
is by far the most popular fidelity criterion in vector quantizer design [32] and is well suited for theoretical

analysis. The structure of the optimal decoder will be investigated next.

3 The Hadamard-Based Optimal Decoder

In this section we study an implementation of the optimal decoder. The decoder is expressed in terms
of a Hadamard framework. This Hadamard formulation of the optimal decoder is the main contribution
of this paper. In deriving the optimal decoder we assume that the encoder (as defined by the encoder

regions, {S;}) is known and fixed.

3.1 Decoder structure

From estimation theory we know that the decoder function, §, that minimizes the distortion D can be

written as the conditional expected value
0*(r) = E[X|R =1]. (2)

In [10] a linear approximation to (2) was studied. The results of [10] were later generalized in [13] where
the generally nonlinear MMSE decoder of (2) was investigated. The conditional expectation of (2) can be

expressed in terms of the conditional pdf, fx g (x|r), for the source vector, X, given the channel output, R,



EXR=r]= ffo‘R(X\r)dx. Since fX‘R(x|r) = fx(x)fR‘X(r|X)/fR(r) and fR‘X(I‘|X) = fRu(r|z')

when x € §;, (2) can be rewritten

fryr(rli) fx(x) X_Nﬂ fry1(x]i) P .. i\ dx
EX|R=r1] = Z/ —) d _gifR(r) /S fxi(xli)d

= ZPr(I:i\R:r) E[X|I =i] = ZPrI—z\R—r)
Consequently, the optimal decoder is the conditional expectation (c.f. also [10] and [13])

6*(r) = ZPr(I:i\R:r)-ci = Elc;/R =1]. (3)

Note that the soft estimate, §*(r), is formed as a convex combination of encoder centroids, and that the
set of all possible source vector estimates is a subset of the convex hull of the set of encoder centroids.
The treatment of optimal decoding is based on (3). As will be illustrated, the Hadamard matrix and
the related Hadamard transform are useful tools in describing the soft decoder. We refer to the set
of analytical tools related to the Hadamard matrix as the Hadamard framework. As we will see, the
Hadamard framework is useful since it provides a description of the optimal source vector estimate in
terms of estimates of the individual bits of the transmitted index. We say that a decoder is Hadamard-
based when it is expressed in the Hadamard framework, while, on the other hand, we refer to (3) as
the general form of the soft MMSE decoder. The basics of the Hadamard framework is described in
Appendix A.

We take the first step in the description of the Hadamard-based decoder by expressing the ith encoder
centroid as ¢; = Th; where h; is the ith column of an N by N Sylvester-type Hadamard matrix H (see
Appendix A). The Hadamard column h; = [ho(i), ... ,hxy—_1(i)]T can (by definition) be expressed in terms

of the bits, bj(i) € {£1}, of the index, i, as

1
h; = 2 ® =1, bi(i), ba(i), br(i)ba(i), ..., ba(i)ba(i)--- by(i)]" (4)
br (i) b1 (i)

where ® denotes the Kronecker matrix product. Thus, the expression ¢; = Th; gives an explicit rela-
tionship between the bits if the index 7 and the encoder centroid, ¢;. The matrix T, the encoder matriz,
is fully specified by the encoder centroids. By utilizing ¢; = Th; we see that the optimal decoder, 6*,

can be written 0*(r) = T - E[h;|R = r]. Define h(r) £ E[h;|R = r], that is

Zﬁgl hiPifR\I(r”)'
Z_,N:Bl Pj fri(r]j)

N—-1
h(r) = ZPr(I:HR:r)-h,;: (5)

This quantity is an estimate of the Hadamard column corresponding to the encoder region that was



chosen by the encoder. The estimate, lAl(r)7 is referred to as the soft Hadamard column in the following.
For later reference, let the components of fl(r) be denoted as?* h,, = izn(r), n=20,1,... , N —1.
It is easy to show that the Hadamard columns are orthogonal; h’h,, = §,,,, - N (where 6,,,,, denotes

the Kronecker delta-function). Consequently, we may write®

h(r) = Yo h P fryp(x)i) _ Sy PhhI NV S Uy, fyp(rin)

. L n . (6)
SN Pifri(rl) XN Py N Chyy fryi (xlm)

To continue, let Rpp 2 ' Pih;h? and my, 2 "N " Ph;. Also let p(r) £ E[h;|R = r; P, = 1/N, Vi].
Note that p(r) is the a-posteriori expectation of h; conditioned on full encoder entropy. Now, since
NIy N hy, fgr)(x[n) = [N ! PR frji(x]i)] - p(r), we have, using (6) and canceling common terms,
that h(r) = [m] - p(r)] 'Rnn - P(r). Note that in this expression for h(r) the a-priori information,

stemming from the source statistics, is contained in the entities Ry and my, and that the structure of

p(r) depends on the channel only. We summarize the above results in the following theorem:

Theorem 1 (The Hadamard-based soft decoder) Let the encoder centroids be given as ¢; = Th,,
i=20,1,... ,N — 1, where h; is the ith Hadamard column (4}). Consider a general channel described by

Tryr(x]i). Over this channel the MMSE decoder, 6*(r), can be expressed as 6*(r) = X (r) where

X(r) 2 Th(r) (7)
and
~ r) — th- A(I‘)
M e )
The statistic p(r) is defined as
b(x) = Elhy[R = r; P, = 1/N, Vil. (9)

The a-priori index probability information is separated from p(r) and is confined to Ry = Zi]\;}] P;h;h?!

and my, = Zi]\;] P;h;.

The explicit form of the decoder expression depends on the channel model used. As a first, reasonably
general, example consider the L-dimensional AWGN channel. Note that a useful characterization of this
channel is obtained when expressing the channel symbols in the Hadamard-framework (c.f., Appendix A).
That is, s; = Kh; where K € REXVN is the transform matrix associated with the channel signals. Then

we get an explicit relationship between the bits, b, (i), of the encoder index i, the corresponding encoder

4Generally, throughout the paper, we will also use the notation {a}, and {A}, ., for the elements of the vector a and
the matrix A, respectively. Unless otherwise stated 0 is the lowest index (n =0,1,2,..., m =0,1,2,...)

Note that we have e.g. that (3; Pih;hT) > N=lh, frir(rin) = 3, (N "'Pihy)hT h, fri;(rin) = 3, , N~ ' Ph; -
Néin - fryr(rin) = 32; Pih; frir(r]i).



centroid ¢; = Th; and the channel symbol s; = Kh;. Using such a representation for the channel and

the encoder centroids, the following result is proved in Appendix B.

Theorem 2 (The L-dimensional AWGN channel) Consider the L-dimensional AWGN channel, R =
s; + W. Let the signals be given as s; = Kh;, where K € R'"*N s a transform matriz. Similarly, let

|si||* = g"h; where g is a transform vector. Furthermore, let the matriz F € R2V XN pe defined by the

equations
1 1 1
® X ® =Fh;, i=0,1, N -1 (10)
hn_1(7) hn_2(7) ho(7)
Then
. _ Flq(r)
P = T, .
where
1 1 1
q(r) = ® ® - ® (12)
tanh(riy_/(20%,)) tanh(rly_,/(207)) tanh(rg/(20%;))

with v} = {2KTr — g};. Hence, the Hadamard-based optimal decoder can be expressed as X(r) = T -h(r)
where

~ _ th . FTq(I‘)

h(r) = T FTq(e] (13)

Proof of Theorem 2. See Appendix B.

The matrix F is well defined, since all elements of the vector in the left-hand side of (10) are also
elements of h;. Consequently, F has exactly one non-zero element, the number +1, in each row. Thus,
the elements of q(r) 2 F q(r) are sums of elements from the vector q(r) which are real numbers in the
interval (—1,+1). Note, however, that using q(r) directly as a basis for decoding is impractical, since F
is a matrix of size 2V x N and thus of exponential size in N. On the other hand, since the component
{q(r)}, is formed as a sum of elements taken from q(r), only the positions of these elements have to be
stored (for each n). Each such sum will consist of relatively few terms. Also, given {tanh(r}/(20%))}~
an arbitrary element in g(r) can be computed using less than N multiplications. Thus, generally q(r)
can be computed much more efficiently than a first glance at Theorem 2 suggests®. Once q(r) is known

h(r) can be computed using an order of N -log N operations (see Section 3.3 below).

Without further specification of the channel symbols, s; = Kh;, it is hard to give Theorem 2 an

6Note also that the calculation can be performed without storing q(r) and F.



intuitive interpretation. One example where the theorem becomes easier to interpret is when; (i) ||s;|| is
constant over i, and; (ii) s; = Kb; for some matrix K (that is, s; depends linearly on the bit-vector by).

Then Theorem 2 gives

p(r) = & - ®
Pk Pk—1 P1

where p; = pi(r) = tanh({K”r};_;/0%,). Comparing this expression to (4) suggests that p; is a soft
estimate of the bit, b;(I). Hence, the decoding is built up from soft bit-estimates, or soft bits (c.f.
[20]), from to the interval (—1,+1) rather than from “hard” bits belonging to {£1}, giving the decoder
expression (13) an enlightening interpretation in this case. As we will see, the interpretation that soft
VQ decoding is based on soft bits is a feature of the binary channels as well”. Since the main emphasis
in this paper is on the binary channels, we will treat them with some extra care next. However, we
emphasize that Theorem 2 holds for a very large class of channels, and that most of the results below,
derived assuming a binary channel, can be modified to hold for more general channels as well.

In the rest of the paper we will frequently consider the binary channels (KAB and RAB). The main rea-
son for this is that these channels are specifically straightforward to handle in the Hadamard-framework.
To see this, note that since independence® allows for splitting the conditional expectation in (9) into

products of expectations, we have for the binary channels that

p(r) = ® - ® = (1,b(ry), b(ra), b(ry)b(rs), b(rs), ..., b(ry) - b(ry))T (14)

where b(r,) 2 E[b,(I)|R, = r; Pr(b, = +1) = 1/2] is the MMSE estimate of the bit b, () conditioned

on equally likely bit-values. We summarize this result in the following theorem:

Theorem 3 (Binary channels) For a binary channel the statistic p(r) can be formed according to (14)

in terms of the estimates

b(r,) = E[b,(I)|R,, = ry; Pr(b, = +1) = 1/2] (15)

of the transmitted bits b, (I).

We employ Theorem 3 for the two binary channels as follows: First, for the KAB channel it is straight-

forward to show that, b(r,,) = tanh(ar, /o3,). Consequently we have the following result:

"For the KAB channel this is not surprising, since it is a special case of the channel described by (i) and (ii). However,
the RAB channel is not. Still, it turns out that the RAB channel fits well into the Hadamard framework for VQ decoding.

8Note that by (7),...,b1(I) are statistically independent when conditioning that P, = N~1. Together with the assump-
tion of a memoryless channel, (14) follows.



Corollary 1 (The known-amplitude binary channel) For the known-amplitude binary channel (with
A, = a), we have X(r) = Th(r) with h(r) = {m[p(r)} 'Runp(r), where p(r) is formed according to

(14), using b(r,,) = tanh(ar,/o%).

Note that since the KAB channel can be treated as a special case of the L-dimensional AWGN channel,

this result also follows from Theorem 2. Similarly, for the RAB channel we have the following corollary:

Corollary 2 (The Rayleigh-amplitude binary channel) For the Rayleigh-amplitude binary chan-

nel we have X(r) = Th(r) with h(r) = {m{p(r)} ' Runp(r), where p(r) is formed according to (14),

using
2 71
N 9 —sr,, n
b(rn) =1y - {UW 2/(ms) - exp(m—=) + 70 - |1 — erfc( 3/27)}} (16)
20y, O

where s = oty,04 /(0 + 0%).

This corollary follows from Theorem 3 in deriving the expression for i)(rn), which is straightforward.
(However, it does not follow from Theorem 2, since the RAB channel is not a special case of the L-
dimensional AWGN channel).

In the rest of the paper we will refer to the VQ decoder X(r) = T - h(r) as the soft Hadamard
column decoder (SHCD), since the decoding is based on the soft Hadamard column (5). At this point we
would like to identify some important advantages of the SHCD over the general form (3) of the MMSE
decoder, assuming a binary channel for simplicity: (i) The SHCD is based on the soft bit-estimates (soft
bits), B(T‘n), which is conceptually appealing and of practical value since such estimates can be calculated
from soft information already present in many practical systems; (ii) Constrained versions of the SHCD
having lower decoding complexity are readily formulated. We will treat such decoders in Section 4 below;
(7i7) The concept of VQ by a linear mapping of a block code [29, 14], which has proven very useful for
channel robust VQ-HD, is straightforwardly generalized to soft decoding using the SHCD as a basis. We
will comment some more on this in Section 4; (iv) The Hadamard-based optimal decoder permits for

an enlightening interpretation of how soft MMSE decoding is built up. The following sub-section is a

discussion of this latter aspect.

3.2 Interpretation of the decoder structure

This sub-section provides an interpretation of the decoder structure. We assume a binary channel for
simplicity, but we stress that the ideas are applicable to more general channels as well. In Figure 2 we
have divided the decoding into three stages. The first stage, the demodulation, is the forming of p(r) from
the received vector r, and named so since demodulation can be seen as an operation that converts the
received data into a form more useful for decoding, and the subsequent stages operate on p(r) to build

the source vector estimate. The next stage, the forming of fl(r) from p(r), is referred to as the channel

10



demodulation channel decoding source decoding

r p(r) h(r)

— {m{ - p(r)} 'Run

X(r)

T —

Figure 2: Separation of the decoding procedure.

decoding stage. To motivate this, consider that for full entropy encoding we have [c.f. the definition (9) of
p(r)], that fl(r) = p(r). On the other hand, if there is redundancy in the encoder output, then generally
h(r) # p(r). Redundancy in the encoder output can be utilized by an MMSE decoder to counteract
channel noise. Thus, the mapping from p(r) to fl(r) can be interpreted as channel decoding in the sense
that it makes use of the error protecting redundancy. Among the three decoding stages only the channel
decoding uses the knowledge of the a-priori information {FP;}. The final stage in the decoding is the
source decoding, where the estimate fl(r) of the Hadamard column h; is mapped into the source space
by the encoder matrix T.

The separation of the decoding can be compared to the traditional approach for decoding, which
is usually based on the ML-criterion (not taking information about the source statistics into account).
This corresponds to the demodulation stage. The impact of a-priori knowledge can be subsequently
accounted for by the channel decoding stage where the “ML-statistic” p(r) is transformed into the

“MMSE-statistic” h(r).

3.3 Relation to the Hadamard transform and an algorithm for computations

Using the relationship between the Hadamard matrix and the Hadamard transform (Appendix A), it is

straightforward to show that the components, {f},,, of the vector f(r) = Rpnp(r) in (8), can be expressed

N—1

in terms of the components, {p(r)},, of p(r) as {f}, = SN P m){p(r)},, where {P(n)} ) is

m=0

the Hadamard transform of the encoder output probabilities {Pi}i]\;], and ¢ denotes bit-wise modulo-

2 addition. Furthermore, the scalar m{ - p(r) can be identified as {f(r)}o. Consequently, the nth

component, h,(r), of h(r) can be expressed as

() = Somms P & ) D) b
o' PO{B()):

(17)

Note that the numerator of (17) is a convolution of the sequences {p(r)},, and P(n). Thus, since convolu-
tion corresponds to multiplication in the Hadamard-transform domain, (17) can easily be computed (see,

g., [16]). Also, since the Hadamard transform is a fast transform, the complexity of the computation is
of the order IV - log V. For the special case of a binary channel, we provide a constructive proof of this

claim in terms of an algorithm. The derivation of the algorithm is provided in Appendix C.
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Algorithm for computing h(r) in the case of a binary channel

Input data: The number of bits k, the probabilities {P;}Y5! and the bit-estimates {b(r;)}_,.

Output: The value of h(r).

Let {f,?l}nNﬁ)m*1 be a sequence of column-vectors of size 2™.

(0): Initialization; Set £ = [P,], n=10,1,... ,N — L.

(1): Recursive calculation of £2 from £9, £}, ... £V 7"

FORm=1TO m=k%k
FORn=0TOn=N/2™ -1

END
END

(2): Form h(r) from £¥: Set h(r) = ({£}}o) £

For a binary channel, the calculation of {i)(rm)} from r has a complexity proportional to the number of
bits, k, (generally k¥ << N), and the algorithm above requires an order of N log N operations to compute
h(r) from {b(r,,)}. Remaining is a matrix multiplication to obtain X(r). Hence, the overall complexity
of decoding is, asymptotically, N(C, log N + Cyd) where Cy and Cy are constants (not depending on N
or d). Note that if the encoder matrix T is a sparse matrix (as in “LMBC-VQ”, see Section 4 below),
the decoding complexity can be significantly reduced since, in such a case, not all of the components of

h(r) are needed, and furthermore the complexity of the matrix multiplication Tfl(r) is reduced.

4 The Full Entropy Soft Hadamard Column Decoder

In this section, we investigate decoding for an encoder that gives

1

—, Vi. 19
- (19)
We refer to such an encoder as a full entropy encoder, since H(I) = k. Note that we are implicitly
assuming that the encoder is used on the source for which it was designed. That is, the encoder has full
output entropy for this source, while it may have a lower entropy when used on other sources. Note also
that the index probabilities of (19) can be used as maximum entropy estimates in the decoder design if the

true index probabilities are unknown. This choice gives robustness to variations in the true probabilities.
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Thus, the probabilities in (19) can either be the true ones or estimates, if the source is (partly) unknown®.

We will refer to the encoder as a full entropy encoder in both cases.
Now we investigate the structure of the SHCD in the case of a full entropy encoder, assuming that
the channel is a binary channel. Using (19) we have Rpn = N=' SN "h;h! = T and p(r)"m), =

p(r)" NN Thy = p(r)” - (1,0,...,0)" = 1, giving the simple expression'®
X(r) = T p(r) (20)

for the optimal decoder. Hence, MMSE decoding consists in this case of a linear mapping of the statistic
p(r). We name this form of the SHCD the full entropy SHCD (FE-SHCD). Note that the FE-SHCD is
the optimal MMSE decoder for full encoder entropy over a binary channel. However, one may also regard
the FE-SHCD as a sub-optimal, and less complex, alternative to the SHCD gaining close-to-optimal
performance if the VQ has high, but less than full, encoder entropy. In such a case we will refer to the
structure of the decoder as the FE-SHCD structure.

The encoder matrix, T, is determined by the encoder centroids as ¢; = Th;, i = 0,1,... ,N — 1.
To improve the performance when the entropy is not full, we can regard the matrix T as a free design
parameter to be determined. That is, given the encoder and the FE-SHCD structure T - p(r) on the
decoder, determine the best matrix T. To prevent confusion, we by T continue to denote the encoder
matrix, and we let A be the parameter in the FE-SHCD structure. Using the MMSE-criterion we have

A* = argmina E||X — A - p(R)||?, (letting A* denote the optimal value). Thus, A* is given as
A" = Rup(Rpp) (21)

where Ry = E[Xp(R)"] and Rpp = E[P(R)p(R)”]. In the following we will refer to A*p(r) as the
optimized FE-SHCD (OFE-SHCD), since it is the optimal decoder chosen from the set of decoders that
have the FE-SHCD structure.

An important feature of the FE-SHCD structure is that based on this still more constrained decoders
can straightforwardly be constructed. To see this, note that the elements of h; in the expansion ¢; = Th;
for the encoder centroid ¢; are formed according to (4) as bits and all possible products of different bits
of the index i. In VQ by a linear mapping of a block code (LMBC-VQ), for VQ-HD [14], only the bits
and a subset of the elements of h; that are products of bits are used in the expansion for ¢;. A block
channel code is utilized to describe which products (interpreted as “check bits” of the code) are to be

used in the expansion. This technique is straightforwardly applicable also to VQ-SD using the FE-SHCD

structure for decoding. The LMBC-V(Q approach is in this case equivalent to using a mapping matrix A

9Note that, besides the index probabilities, the encoder centroids have to be known in the decoder design. These also
depend on the source, but are usually treated as a part of the VQ since they form the codebook of the VQ, and can often
be assumed known even if the source is partly unknown.

10Note that this result also follows (perhaps more straightforwardly) from the definition of p(r).
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that has a (large) subset of its columns equal to zero. Thus the complexity of forming the product A - p
for decoding is significantly reduced. Also, the memory requirement is reduced, since a smaller matrix
can be stored. The design techniques described in [14] can be used to design the encoder and the code
that describes the structure of the mapping matrix A. An application of LMBC-VQ with soft decoding

to speech coding was presented in [27].

5 VQ Encoder and Decoder Design

This section considers the design of a VQ encoder/decoder pair. However, since the decoder is uniquely
given when the source, the encoder and the channel are known, we consider the issue of encoder/decoder
design as one of designing the encoder; when the encoder is known it specifies the optimal decoder. We
consider the two approaches robust VQ with soft decoding (RVQ-SD) and channel optimized VQ with
soft decoding (COVQ-SD), (as discussed in Section 1).

5.1 Encoder design for RVQ-SD

The problem of VQ-HD design is a well documented one [32]. For the RVQ approach an index assignment
algorithm is required to give channel robustness. Several good such algorithms have been described (e.g.,
[8, 17, 18, 19]). In the RVQ-SD approach the Voronoi regions of a VQ-HD codebook, with a good index
assignment, is applied to define the encoder. Thus, there is no complexity increase in the encoding, as

compared to the hard decision equivalent, in utilizing the RVQ-SD approach.

5.2 Encoder design for COVQ-SD using the SHCD

A channel optimized VQ system is, as mentioned in Section 1, a system that is trained for a specific
channel. In this case, the criterion for design includes the impact of the channel on the reproduction
fidelity, and the design strives at finding an encoder (specifying a decoder) making the encoder/decoder
pair jointly optimal for the given channel (according to the MMSE criterion).

One straightforward approach to system design is an alternating optimization approach, analogous
to the generalized Lloyd algorithm [32]. That is, compute the optimal decoder for a fixed encoder,
then compute the optimal encoder for this new decoder, and repeat. It is straightforward to derive an
expression for the optimal (minimizing D = D({S;}) = E||X — §(R)||?) encoder regions, {S;}, given an

arbitrary but fixed decoder, d(r), (c.f., [5, 7, 10, 9]). By writing the distortion, D, as

D= D({Si}) = Ng /S fx(x) {/ Fe (el 5(r>|2dr} dx (22)

we see, since fx(x) is non-negative, that the vectors, x, that shall be assigned to the ith optimal region,

S}, are those that minimize the integral within brackets in (22). Consequently, we have, after some
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manipulations, that
81* = {X € Rd : Zz — E]‘ S 2XT(mi — m]')7 V]} (23)

where ; = EJ[||6(R)||?|I = i], and m; = E[§(R)|I = i]. For the SHCD, §(r) = X(r) = Th(r), we
have ¥; = tr(T - E[b(R)h(R)”|I = i] - T"), and m; = T - E[h(R)|I = i]. Using (23) it can be shown
that the optimal encoder regions, S}, are convex polytopes. That is, convex regions that are bounded
by hyperplanes. Consequently, an implication of (23) is that the encoder regions have the same kind
of structure as Voronoi regions. As is well known the optimal encoder regions of a VQ-HD are Voronoi
regions, or nearest neighbor regions. Thus, most of the various search algorithms applicable to VQ
with hard decisions can be used for searching. This is an important feature for applications. Next, we
formulate a design algorithm, based on (23), for a COVQ-SD system. (Entities calculated at the mth

iteration are denoted by a subscript m.)

VQ encoder design for the SHCD (general channel)

(0) Let {S;}o be an initial partition. Set m = 0.

(1) Estimate {c;},, using the partition {S;},,. Set T,, = N 'C,,H, where C,, is a matrix with
the centroids {c;}m as columns. Also estimate E[h(R)h(R)”|I = i],, and E[b(R)|I = il,, for
i=0,1,...,N—1.

(2) Use ; = tr(Ty, - E[h(R)W(R)T|I = i],, - TZ) and m; = T,, - E[h(R)|I = i],, in (23) to define a

new partition {S;}m+1. Set m + m + 1.

(3) Repeat from (1) until convergence.

Using this algorithm we obtain a final partition {S;}} which, together with the source, defines the SHCD.
In practice, expectations over the source are replaced by averages over a training set. The initial partition
of step (0) can, e.g., be defined by the Voronoi regions of a RVQ-HD trained for the source under
consideration. The convergence [step (3)] can be tested by any of the standard methods mentioned in

[32], for example the relative improvement in performance can be used.

5.3 Encoder design for COVQ-SD using the FE-SHCD over a binary channel

We conclude this section with a discussion of the design of a VQ system employing the full-entropy
SHCD (the FE-SHCD or the OFE-SHCD), assuming a binary channel. In this case, the only parameters
depending on the channel statistics needed in the design are E[p(R)|I = i] and E[p(R)p(R)T|I = i].

Letting u = E[b(R,,)|b,(I) = +1], it can be shown that

{BBMR)|T =i}, = ha(i) - ™ (24)
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and that

{EBR)PR)"|T = ilbnm = hn(i)hy (i) - penEmtetnem) (25)

where, w(i) denotes the Hamming weight of the natural binary representation of the integer i, and the

[{Pt
[e]

symbol denotes the bit-wise AND operation. We state a design algorithm employing (24) and (25)

to calculate the averages over the channel as follows:

VQ Encoder design for the FE-SHCD (binary channel)

Pre-calculate pn = E[b(R,)|b,(I) = 1], calculate and store E[p(R)|I = i] and E[p(R)p(R)"|I = i] for

i=0,1,...,N =1, according to (24) and (25).
(0) Let {S;}o be an initial partition. Set m = 0.
(1a) For the FE-SHCD, Tp(r); Estimate {c;},, based on {S;},,. Set T, = N"1C,,H; or

(1b) For the OFE-SHCD, Ap(r); Estimate {P;},, and {c¢;},, based on {S;},,. Use these in computing
Rxf) = 21 PZCZE[IS(R)T|I = Z] and Rﬁf, = 21 PZE[IA)(R)[A)(R)T‘I = Z] and set Am = Rxf,(Rf)f))fl.

(2) Use %; = tr(F - E[p(R)p(R)"|T =i]-F") and m; = F - E[p(R)|] = i] with F=T,, or F = A, in

(23) to define {S;}.41. Set m < m + 1.
(3) Repeat from (1) until convergence.

If the encoder entropy is full, the expression in step (la) for T is the optimal one. Alternatively, if the
FE-SHCD structure is used as an approximation to the optimal SHCD, using the OFE-SHCD as in step
(1b) gives a better choice for the updating of the decoder. We emphasize that one major advantage
of the FE-SHCD is that the entities E[p(R)|I = i] and E[p(R)p(R)”|I = i] can be calculated and
stored in advance of the training. This is a considerable saving compared to the general case where
the corresponding parameters (E[h(R)|I = i] and E[h(R)h(R)”|I = i]) have to be estimated in each

iteration.

6 On the Channel Distortion and the Structure of a Robust
Encoder

In this section we discuss some aspects of channel robustness. We will concentrate the discussion to the
encoder structure. The structure of the encoder, or more precisely of the centroids of the VQ encoder, is

described by the encoder matrix T.
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6.1 On the channel distortion in the general case

First we consider the general case where the SHCD is used for decoding over a general channel and
the encoder is arbitrarily chosen but known. The total distortion, D, can be split into two terms, the

quantization distortion Dg and the channel distortion D¢, according to (c.f., [17] for VQ-HD)!!
D= E|X - XR)|]* = E|IX —c/|* + E|IX(R) — /[ (26)

The quantization distortion, Dg = E||X — ¢/|[?, does not depend on the channel. Thus, in order
to minimize the influence of the channel on the total distortion, D, the channel distortion, Do =
E||X(R) — ¢;||%, should be made as low as possible. Since X(R) is the MMSE estimate of ¢y, we
can (using the principle of orthogonality for MMSE estimation) rewrite the channel distortion as D¢ =
E(cT[c; — X(R)]). This expression can, in turn, be written as Do = >; PiDc (i) where De(i) =

E(cT[c; — X(R)]|I = i). Defining m,, (i) £ E[h,(R)|I = i] and denoting by t, the nth column of T, we

thus have
Dei) = B(ler ~ XN =) = 3 34Tt ()n(i) — ma(i)], (27)

m=0 n=0

where m,, (i) can be expressed as

o' PU&n){BR)}
YN P(H{BR)}

my(i) = E |7 =1if. (28)
In (28) we have used the Hadamard transform expression (17) for h,. We can see that the channel
distortion is dependent on the channel through the value of m, (i) only and, as intuition suggests, D¢ (i)
is low if m,, (i) is close to h,(i). Unfortunately, a tractable expression for my,(i) is hard to find in the
general case, where the encoder indices have redundancy and the SHCD is used over a general channel.
Because of this, we restrict the rest of this section to some special cases which can be handled in some
more detail.

Examining expression (27) further, we note that for encoder/decoder pairs and channels giving m, (i)
the form my, (i) = hy(i) - vn, where v, is a positive number independent of the index i, we get D¢ (i) =
Zg;:} g;ol tL ¢, - By (i)hn(i)[1 — v,]. As we shall see, one example where m,, (i) = h,(i) - v,, holds,
is full entropy encoding over a binary channel. Now, taking expected value with respect to the encoder

indices we have

N—-1N-1

Do =Y > tht,Pmaen)(1-wv,), (29)

m=0 n=0

"Note that this division into Dg and D¢ is always valid since it is made with respect to the “reference vectors” {c;},
where ¢; = E[X]|I = i] are the encoder centroids. If the split is not made with respect to the centroids, then generally a
mixed-term distortion has to be included (c.f. [17] and Sections 3.5 6 of [16]).
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where (as before) {P(n)}N_! is the Hadamard transform of {P;}N'. Moreover, with the additional

assumption of full encoder entropy it is straightforward to show that P(n) =0, n > 0, giving

N-1
De= Y lltal*(1 — vn). (30)

The next sub-section considers the implications of (30) in the special case of a binary channel with full

entropy encoding.

6.2 Full entropy encoder and a binary channel

Assuming full encoder entropy we have fl(r) = p(r), and for a binary channel we get, employing (24),
that m, (i) = h,(i)u”™). Note that u > 0, thus h, (i) enters as the sign of m,,(i). Consequently m,, (i)

is of the form m,, (i) = hy,(i)v,, with v, = p*™. Employing v, = p*™ in (30), we have

Z [[ta]*(1 = ™). (31)

A similar expression (cited in (33) below) valid for VQ-HD over a binary symmetric channel was presented
n [12] (see also [14, 33, 19]). To proceed further, we consider the class of encoders where members have
the same value of the quantity Py = ZN "||tn||?. This is, for example, the case when the (unordered)
set of centroids {c;} is common among the encoders of the class. We name such a set of encoders a class
of Pr-constrained encoders, using the value of Pr to denote the class. Now, observing that 0 < u < 1,

we have the important result that

Z )62 > Znt 112 = (1~ u)Pr (32)

with equality iff w(n) > 1 = t, = 0. Thus, using (32), we have a characterization of the best (in
terms of minimal channel distortion) possible encoder, within the class of a fixed P . If there exists an
encoder/decoder pair for which w(n) > 1 = t,, = 0 holds, then this is the best possible pair'?. To examine
further what this condition means, consider the expansion ¢; = Zg;()] tphp(i). If wn) >1=t, =0,
then ¢; = tg + 22:1 tyn—10,(i). We see that this means that the encoder has to have such structure
that the ith centroid c; can be described by a linear combination of k of the vectors, t,,, with the bits of
the index i as weights. Hence, no products of bits are allowed to enter the Hadamard expansion for c;.
Consequently, this kind of structure can be described as a linear mapping from the hypercube {£1}* to
R?. We say that a VQ encoder possessing such structure is linear. This linearity result is a generalization
of the corresponding result for full entropy VQ-HD given in [19, 33]. Note that (31) can be utilized

to determine the quality of the TA of a RVQ-SD system. This follows since all encoders resulting from

12We refer to the encoder/decoder pair as optimal (minimum channel distortion), since it may be the case that the
encoder/decoder is obtained through a procedure that optimizes the pair. In this sense the resulting encoder, defining the
encoder matrix, depends on the corresponding decoder.
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different TAs on a fixed set of centroids belong to the same Pp-constrained class. The best mapping from
b; to c¢; is linear. However, for an arbitrary full entropy encoder there may be no linear description of
the centroids. Then the number (1 — u) Pr serves as a useful lower bound to the channel distortion over
all TAs.

The expression for the channel distortion in a full entropy system can also be utilized in comparing

hard and soft decoding. To make such a comparison we cite, from [19], the expression

N—-1
D =2 [tall*(1 — (1 - 2¢)"™) (33)
n=1

for the channel distortion of full entropy VQ-HD over a binary symmetric channel of crossover probability
q. Tt is easily shown that D4 > 4qPr, [(33) was utilized in [19] to prove that the lower bound 4¢Py
to D}g“d is met by a linear encoder mapping]. Now, to proceed, assume that we have a fixed encoder
characterized by its centroids. Assume, moreover, that the Voronoi regions of the centroids are used as

encoder regions, and that the resulting encoder is a full entropy encoder. Then we can form the ratio

Dsoft N-1 t,12(1 — w(n)
;% ' _ E:n:] H ‘|( 1 ) (34)

0 =
Derrd 23 llem (1 — (1 2g)vm)

between the resulting channel distortion of the optimal soft decoding system and an ordinary VQ-HD
decoder, employing the centroids as codebook vectors. Assume, furthermore, that the centroids have such
structure that the encoder can be made linear, then we have the ratio between the minimum possible

channel distortions as

A (1 —p)Pr _ (1—p)
o & St = S0 (35)

The ratio f,p¢ is depicted in Figure 3, for the KAB channel versus the corresponding hard channel.

90pt
-1.2
1.3
-1.4
1.5
CSNR (dB)
0 2 4 6 8 10

Figure 3: The ratio fop¢ (in dB) as a function of the CSNR.

In Figure 3 we can observe that the gain of soft decoding, in terms of lower channel distortion, varies

between 1 and 1.6 dB in the CSNR interval under consideration. One fact that contributes to the gain is
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that the soft decoder as allowed to adapt to a varying CSNR. We comment that the gain of VQ-SD over
VQ-HD is generally larger for encoders not having optimal TAs (see Section 7.2 for a discussion). Hence,

in practice the gain is often larger than what is suggested by Figure 3.

6.3 Binary channel without the full entropy assumption: Spherically invari-

ant codes

If the encoder entropy is not full, the FE-SHCD is generally sub-optimal, and we have to include more
terms in the expression for the channel distortion. Again assuming a binary channel, it can be shown

that

Zj Zj £ P (8) B (1) frmn s (36)

where f 21— p@() — ywim) 4 umem)twin®m) - Note that f,,, is non-negative'®. The expression
(36) is considerably more difficult to handle than the full entropy expression (31). Therefore, we treat
only a specially restricted class of encoders for which the channel distortion expression becomes tractable.
As we will see, such an analysis can give some insight in how the channel robustness is affected when
the transmitted indices contain redundancy. Hence, consider the class consisting of encoders fulfilling
> nstm 60t (D)o (8) from = fros > ntm t 7t by (i) By, (i) for some pair of integers 0 < r,s < N — 1. For

such a class we have

N-1
Do) = > l6nll? (1= ") + >t tmhn () (i) fum

n=1 n#m
N-1

=D enlPU = p"M) + oo D tE b b (i) (0)
n=1 n#m
N-—1

=D lenllP(1 = 1) + frsllei — tol|> = Pr). (37)
n=1

Consequently, in this case the channel distortion (given a transmitted index, ) is dependent on the index,
i, through the term ||c; — to||? only. Note that to = N=' )" ¢, that is, to is the algebraic mean of the
centroids. Thus ||e; — to||? is the squared distance from the ith centroid to the average of the centroid
set. Since all centroid vectors at the same distance from tg have the same channel distortion behavior for
the class of encoders which satisfy >-, . t 0t () R (0) fom = fros > ngm t 7t b (i) By (), this class

is named the class of spherically invariant codes with parameters r and s (see also [15] pp. 330-331)'*

l?f — (1 _ w(n))(l _ uw(m)) + uw(nom)+w(n@m) o u1n(n)+w(m,) > u1n(nom,)+m(nﬂ)m,) o u1n(n)+w(m,) >
u2"’("°m)+"’("@m) — pe(m)twim) — o since 0 < p < 1 and w(n) + w(m) = 2w(n om) + w(n & m).

The term “spherically invariant” refers to the fact that D¢ (i) does not depend on the direction from tg to ¢; but only
on the distance ||c; — to||. Hence, all centroids on a sphere centered at to give the same contribution to D¢ (), and in this
sense the code is spherically invariant with respect to channel distortion.
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Now, in averaging over the encoder indices in (37), we have
N-1
Do =Y ftallP(1 = p*™) + frs(Vo — Pr) (38)
n=1

NoU 6, ]2(1 = @) | of this

n=

where we have defined Vo = El|c; — to||>. We see that the first term,
expression is the channel distortion for a full entropy system having the same encoder matrix [c.f. Eq.
(31)]. Furthermore, for source pdfs which decrease exponentially with the distance from the mean, such
as the Gaussian or the Laplacian pdfs, we generally have that Vo < Pr. Hence, since f, s is non-negative,
fr.s(Vo — Pr) is negative (or zero). This illustrates that a spherically invariant code can give a lower
channel distortion, than can a full entropy encoder having the same encoder matrix. Thus, using one
particular example we have illustrated that redundancy in the encoder output can be used to lower the

channel distortion as compared to the full entropy case.

7 Numerical Results

In this section we present numerical results and comparisons. First we present results for RVQ-SD versus
RVQ-HD. We have simulated the SHCD, the FE-SHCD and the OFE-SHCD. Then we investigate the
ability of soft decoding to counteract large errors and bad IAs. The section is concluded with results for
COVQ-HD versus COVQ-SD.

In all simulations we have assumed a binary channel (the KAB or the RAB channel). In the VQ-
HD results the output of the corresponding hard channel (defined in Section 2.2) has been used in a
table look-up. In the RVQ-HD results the encoder centroids have been used as codevectors, and in the
COVQ-HD results the optimal codevectors [7] have been used. In the simulations we consider first order
Gauss-Markov sources with correlation a, modeled as X,, = aX,,_1 +U,, where {U,,} is iid Gaussian. The
vectors of the corresponding vector source (c.f., Section 2.1) are obtained as X; = [Xyq, . .. 7X(t71)d+1]T
The source obtained for a = 0 is the iid Gaussian source. Performance is in most cases measured in terms
of the output SNR, E||X||2/E||X — X||? (abbreviated as “SNR” below).

A good index assignment is required in RVQ-SD. We have used the linearity increasing swap algorithm
(LISA) of [19] and the simulated annealing approach of [7]. The LISA makes the encoder of an RVQ-HD
maximally linear. From the discussion in Section 6 we know that such TAs are good also for RVQ-SD, if
the encoder has high entropy. In some cases, when the encoder has much redundancy, we have utilized
the simulated annealing approach instead. In lacking theoretical tools in cases when the entropy is not

full, we have observed that an algorithm giving a good IA for RVQ-HD also gives a good IA for RVQ-SD.

21



Figure 4: Source vector estimates, X, produced by the SHCD. The encoder is defined by an RVQ with k=3 bits
and d=2 dimensions. The source is iid Gaussian. Estimates can be observed as small dots. The larger dots mark
the locations of the encoder centroids and the solid lines mark the boundaries of the encoder regions.

7.1 Illustrating soft decoding

Figure 4 illustrates the principle of soft decoding. In this simulation the encoder is defined by the
Voronoi regions of a RVQ-HD, trained for an iid Gaussian source. Source vector estimates, as obtained
when using the SHCD on the KAB channel, are marked by small dots. We can see estimates marking
out lines between centroids having indices that differ in one bit only. When there is an “uncertainty”
about which index was sent, the decoder compensates this by moving the estimate towards the second
most probable vector. Thus, instead of choosing a codevector (that might be the wrong one), the soft
decoder outputs an average over the most probable codevectors [c.f., Eq. (3)]. In many applications this
averaging not only lowers the mean-square error, but also gives errors a more “pleasant” appearance. In
image coding, for example, hard decoding tends to give errors that are very distinct and easy to observe

while soft decoding gives errors a “smoother” appearance [25].

7.2 Comparing hard and soft decoding for a fixed encoder

A comparison between hard and optimal soft decoding is depicted in Figure 5. The channel is the KAB
channel, the source is a first order Gauss-Markov source with correlation 0.9, and the encoder is fixed and
defined by the Voronoi regions of an RVQ-HD trained for the source. As we can see, soft decoding clearly
performs better than hard decoding. At an output SNR of 4 dB, for example, the gain is approximately
2 dB in CSNR. Noteworthy is also the small difference between the optimal SHCD and the FE-SHCD
in this simulation. This latter fact is due to the high encoder entropy (5.87 bits compared to the full
entropy of 6 bits). In Figure 6 we compare the SHCD, the OFE-SHCD and the FE-SHCD for an encoder
with low encoder entropy (4.76 bits compared to the full entropy of 6 bits). (This encoder was obtained

from training a COVQ-HD over a channel with a BER of 5%.) As we can see the difference between the
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Figure 5: Comparison in terms of SNR vs. CSNR between the SHCD, the FE-SHCD and hard decoding. The
source is first order Gauss-Markov with correlation 0.9. The dimension is d = 6 and the rate is R = 1 bit per
dimension. (a) The SHCD; (b) The FE-SHCD; (c) Hard decoding. The same encoder is used in all cases. The
encoder entropy is 5.87 bits.

SHCD and the FE-SHCD is more prominent in this simulation. Note, however, that the performance of
the OFE-SHCD is close to that of the SHCD. One conclusion that can be drawn from this example is thus
that the OFE-SHCD can give performance close to that of the SHCD, despite its suboptimal structure,

also for encoders not having high entropy.
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Figure 6: Comparison between the SHCD and the FE-SHCD. First order Gauss-Markov source with correlation
0.9. The dimension is d = 6 and the rate R = 1 bit per dimension. (a) The SHCD; (b) The OFE-SHCD; (¢) The
FE-SHCD. The same encoder is used in all cases. The encoder entropy is 4.76 bits.

For some applications the number of large errors is as least as important a measure of performance
as is the mean-square error. Figure 7 illustrates the ability of the SHCD to counteract large errors. This
figure shows the relative number of estimates giving a squared error ||X — X||? larger than 0.5E||X||%. As
we can see the SHCD gives fewer such large errors than the hard decoder and the gain increases for bad
channels. Hence, soft decoding can give advantages in applications, such as image coding (c.f., [25]) and
in coding the spectral information of a speech coder (c.f., [27]), where large errors can be very annoying.
A related comparison is made in Figure 8, where the performance is investigated for two different TAs
(a good and a bad). We can see that the SHCD counteracts a bad IA in the sense that the difference
in performance between the two IAs is more prominent when using hard decoding. Thus, the relative
gain of soft over hard decoding is higher for encoders with a bad TA. This is also a useful feature in
applications, since finding a good IA is generally very difficult for large codebooks. Soft decoding can be

applied to counteract the imperfections of a suboptimal TA.

23



relative number of errors > 0.5F|| X||?
0.5

&\
0.4

b \
0.3

\l
|
\.\%%

-2 0 4 10 12

CSNR (dB)

Figure 7: The relative number of source vector estimates X giving an error ||X — X||? greater than 0.5E||X||2.
Gauss-Markov source with correlation 0.9. The KAB channel. The encoder is defined by an RV(Q in both cases,
k = 6 bits and d = 6 dimensions. (a) Hard decoding; (b) The SHCD.
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Figure 8: The difference between a bad TA and a good IA. A Gauss-Markov source with correlation 0.9, encoder
with d = 4 and k = 8 trained for a noiseless channel. Encoder entropy 7.85 bits. (a): Good IA and the SHCD;
(b): Good IA and hard decoding; (¢): Bad (random) IA and the SHCD; (d): Bad IA and hard decoding. The
channel is the KAB channel in all cases.

7.3 Channel optimized VQ

Figure 9 illustrates the encoder regions for two different 4-bit 2-dimensional encoders. To the left are the
encoder regions of an encoder trained for a noiseless channel, and to the right we see the encoder regions
of an encoder trained for the SHCD over a KAB channel with a CSNR of 2.15 dB (corresponding to a
BER of 10%). Note that 3 regions are empty in the latter case. In the experiments, we have observed
that generally more encoder regions become empty sets when the encoder is trained for a soft decoder
than when the encoder is trained for hard decoding over the corresponding hard channel. Hence, the
encoder provides a higher amount of redundancy when trained for soft decoding.

For reference purposes, Tables 1 and 2 list the dth order OPTA functions at the specific CSNRs that
were used in the COVQ design. The dth order OPTA (optimal performance theoretically achievable)
function Ay(R) can be computed as Ay(R) = Dy4(R - C) where D, is the dth order distortion-rate
function of the source [34], R is the rate of the V(Q in bits per dimension and C' is the capacity, in bits
per channel use, of the binary channel. It serves as a lower bound to the performance of rate-R and

dimension-d VQ systems over the given channel, and gives an achievable lower bound as the dimension

goes to infinity, d — co. In the tables the OPTA is expressed in terms of SNR, that is, E||X]||?/A4(R).
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Figure 9: Encoder regions for encoders trained for an iid Gaussian source. The dimension is d = 2 and the rate
is R = 2 bits per dimension. Left: An encoder trained for a noiseless channel; Right: An encoder trained for
the KAB channel with a CSNR corresponding to a BER of 10%.

Table 1: The OPTA function of order d for rate R = 1 VQs over the KAB channel. First order Gauss-Markov
sources of correlations 0 and 0.9. The OPTA is given in terms of SNR (in dB)

I correlation 0.0 | correlation 0.9 I
BER | d—=4 | d=06|d=8]d=4]d=6] d=28 | CSNR [dB]
0.001 || 5.996 | 5.996 | 5.996 11.38 | 12.00 | 12.30 9.799
0.005 || 5.899 | 5.899 | 5.899 11.28 | 11.90 | 12.21 8.218
0.010 || 5.783 | 5.783 | 5.783 || 11.16 | 11.78 | 12.09 7.333
0.050 || 4.915 | 4.915 | 4.915 10.21 | 10.85 | 11.18 4.322
0.100 || 3.940 | 3.940 | 3.940 || 8.994 | 9.693 | 10.04 2.154

Tables 3 through 5 contain results for COVQ-HD and COVQ-SD. For COVQ-SD both the SHCD
and the OFE-SHCD have been investigated. The results were obtained as follows: (i) The channel (the
CSNR) was fixed, and the training was initialized using an RVQ-HD system; (ii) A COVQ-HD was
trained (c.f., [7]) for the corresponding hard binary channel; (7ii) Using this COVQ-HD as initialization
the COVQ-SD was trained employing the results of Section 5. Tables 3 and 4 show the performance of
COVQ-SD and COVQ-HD over the KAB channel for an iid Gaussian source and a first order Gauss-
Markov source of correlation 0.9, respectively. We can observe that the performance of COVQ-SD is
better in all cases. Note also that the difference between hard and soft decoding becomes larger as the
channel noise grows. For the OFE-SHCD we note that the performance coincides with that of the SHCD
when the encoder entropy is full. This is the case in Table 3, for the iid source. Here, all encoders have
(almost) full entropies. On the other hand, when there is redundancy in the encoder output, as is the case
in Table 4, the SHCD performs better than the OFE-SHCD. Note, however, that the OFE-SHCD still
performs significantly better than COVQ-HD. In Table 5 we have listed the results when the systems were
designed for the RAB channel and a first order Gauss-Markov source of correlation 0.9. The performance
follows the same trends as for the KAB channel.

The evaluation of the COVQ systems were made at the same CSNRs as those for which the systems
were trained. We have observed, though, that the performance is not critically sensitive for mismatch of
the encoder with respect to the channel. Regarding the match of the decoder to the channel it is more

reasonable in practice to assume perfect knowledge of the channel at the receiver than at the transmitter.
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Table 2: The OPTA function of order d for rate R = 1 VQs over the RAB channel. First order Gauss-Markov
sources of correlations 0 and 0.9. The OPTA is given in terms of optimum SNR (in dB)

I correlation 0.0 | correlation 0.9 I
BER ||d=4|d=6 | d=8|d=4|d=6| d=28 | CSNR [dB]
0.001 || 5.998 | 5.998 | 5.998 || 11.39 | 12.00 | 12.31 26.98
0.005 || 5.910 | 5.910 | 5.910 11.29 | 11.91 | 12.22 19.93
0.010 || 5.801 | 5.801 | 5.801 11.18 | 11.80 | 12.11 16.86
0.050 || 4.959 | 4.959 | 4.959 10.26 | 10.90 | 11.22 9.308
0.100 || 3.984 | 3.984 | 3.984 || 9.053 | 9.749 | 10.09 5.509

Also, the soft decoder is more straightforwardly updated according to a varying channel than is the
encoder.
Table 3: SNR in dB for various rate R = 1 (bits per dim) systems trained for the KAB channel with soft decoding

and hard decoding. The SHCD and the OFE-SHCD have been employed for decoding in the COVQ-SD results.
The source is in all cases the iid Gaussian source.

BER 0.001 | 0.005 | 0.01 0.05 | 0.10

CSNR [dB] | 9.799 | 8.218 | 7.333 | 4.322 | 2.154

d=28 486 | 464 | 446 | 3.42 | 261

SHCD d=56 4.72 | 4.57 | 440 | 3.41 2.60
d=4 458 | 4.45 | 430 | 3.40 | 2.61

d=28 486 | 464 | 446 | 342 | 261

OFE-SHCD d==6 4.72 | 4.57 | 440 | 341 2.60
d=4 458 | 4.45 | 430 | 3.40 | 2.61

d=28 483 | 456 | 432 | 3.13 | 2.27

HARD d==6 468 | 450 | 430 | 3.15 | 2.26
d=4 456 | 439 | 4.21 3.15 | 2.27

8 Summary and Conclusions

We have addressed the problem of transmitting a source via vector quantization over a channel producing
an analog (unquantized) output. The decoder of the system utilizes the analog channel output for
estimation of the transmitted vector. Such decoding is referred to as soft decoding. We have introduced a
decoder, the soft Hadamard column decoder (SHCD), being optimal in the sense of minimum mean-square
error, and we have investigated some special cases of the optimal decoder having certain structure and
lower complexity. We have also presented an algorithm for decoding and provided an interpretation of how
the decoding is built up in terms of demodulation, channel decoding and source decoding. Furthermore,
we have treated the system design problem, both for the optimal decoder and the suboptimal versions.
Moreover, we have analyzed the distortion introduced by the channel and provided results regarding the
structure of a robust system. Finally, we have investigated the performance of the proposed systems in
terms of numerical simulations.

The simulations confirmed that the SHCD gives better performance than the corresponding hard

decoders. The simulations also demonstrated that the constrained versions of the SHCD can give good
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Table 4: SNR in dB for various rate R = 1 (bits per dim) systems trained for the KAB channel with soft decoding
and hard decoding. The SHCD and the OFE-SHCD have been employed for decoding in the COVQ-SD results.
The source is in all cases the first-order Gauss-Markov source with correlation 0.9.

BER 0.001 | 0.005 | 0.01 | 0.05 | 0.10

CSNR [dB] | 9.799 | 8.218 | 7.333 | 4.322 | 2.154

d=238 11.2 | 10.6 | 10.2 | 8.48 | 6.89

SHCD d==6 10.8 | 10.1 | 9.63 | 7.84 | 6.21
d=4 10.0 | 9.40 | 877 | 7.04 | 5.69

d=28 11.2 | 105 | 10.1 | 803 | 6.43

OFE-SHCD d==6 10.8 | 10.1 | 9.54 | 7.34 | 5.78
d=14 10.0 | 9.36 | 873 | 6.68 | 5.29

d=28 111 10.3 | 9.80 | 7.51 | 5.81

HARD d==6 10.7 | 9.94 | 9.23 | 6.83 | 5.16
d=14 9.92 | 9.13 | 838 | 6.24 | 4.67

Table 5: SNR in dB for various rate R = 1 (bits per dim) systems trained for the RAB channel with soft decoding
and hard decoding. The SHCD and the OFE-SHCD have been employed for decoding in the COVQ-SD results.
The source is in all cases the first-order Gauss-Markov source with correlation 0.9.

BER 0.001 | 0.005 | 0.01 | 0.05 | 0.10

CSNR [dB] | 26.98 | 19.93 | 16.86 | 9.308 | 5.509

d=238 11.2 | 10.6 | 10.3 | 854 | 6.95

SHCD d=26 10.8 | 10.2 | 9.67 | 7.94 | 6.27
d=14 10.1 | 946 | 886 | 7.11 | 5.45

d=238 11.2 | 10.5 | 10.1 | 8.06 | 6.46

OFE-SHCD d==6 10.8 | 10.2 | 9.57 | 7.38 | 5.80
d=14 10.0 | 938 | 875 | 6.74 | 5.33

d=238 111 10.2 | 9.79 | 7.51 | 5.81

HARD d=56 10.7 | 9.92 | 9.22 | 6.81 | 5.15
d=14 9.94 | 9.12 | 837 | 6.26 | 4.69

performance at lower complexity. Moreover, the soft decoder counteracts large errors and bad index

assignments, which is a valuable feature in many applications.
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Appendix A: Hadamard Matrices for VQ Description

A (Sylvester-type) Hadamard matrix, Hy, of size N = 2F is a symmetric square matrix with elements

from {£1}, which is defined recursively as

+1 +1
Hl_ ; Hk:H1®Hk717k>1:

+1 -1

where the symbol ® denotes the Kronecker product, i.e., for two matrices A and B we have

{A}ooB - {A}om 1B
A®B= ’ .

{A}nfLOB e {A}nfl,mle

if A is of size n rows and m columns. The recursive nature of the Hadamard matrix gives the useful
feature that when letting the natural binary representation of the integer i be (by,br_1,...,b1), with

logical "zero” represented by +1 and logical ”one” by —1, we have that

1 1 1
h; = ® ® - ®
bk bk,] b]
where h; denotes the ith column of H;. Another useful property of the Hadamard matrix is that, for any
size N = 2%, we have Hy, - Hy = N - I, where I is the unity matrix of size N. Thus, (H;)™' = N~ - H;.

This latter property is often employed to define Hadamard matrices of general sizes (e.g. [35]). The

Hadamard transform {a,}Y_} of a sequence {a,, }N_} (where N = 2¥) is defined as
[ao, a1, ... ,an—1)" = Hy - [ag,a1,... ,an—1]"

Now, the main reason that we introduce the Hadamard matrix here, is that it has turned out to be very
useful for VQ-description. To see this, consider a general vector valued function f : {0,1,... ,N—1} — R¢
where the domain is an integer set. Such a function can always be represented as f(n) = F - h,,, n =
0,1,...,N—1, where h,, is the nth column of an N by N Hadamard matrix H, and F is a real transform
matrix. The matrix F is obtained as F = N~'[f(0) f(1)--- f(N — 1)] - H. In the special case where
f represents the encoder centroids, ¢; = E[X|I = i], of a VQ we get the representation, ¢; = T - h;.
Hence, we obtain an efficient way of describing the mapping from the individual bits of the index i to
the corresponding encoder centroid. This representation for the encoder centroids is the key to many of
the results of the paper. Besides for the representation of VQ centroids the Hadamard representation

can be applied to describe the channel signals of the L-dimensional AWGN channel. Given a finite set

{si ?:01 of L-dimensional channel vectors s; we can use the Hadamard matrix to express these signals as
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s; = K - h;. This is a useful representation since it gives the relationship between the bits of the index i
and the transmitted signal. The received signal R then becomes R = K - h; + W where W is white and

Gaussian.

Appendix B: Proof of Theorem 2
The vector p(r) can be expressed as

i hifrr(xli) _ Y05 hiexp [~(20%,) 7 [[Kh; —x|]?]

D) = SN al) S exp - 2ey) KDy 1]
_ 2L hiexp [~(20%) (20K r — [|si*)] _ 3, hiexp [-(207) "hf (2K"r — g)]
SV oTexp [—(20%,) 2hTK T — [|s;1[2)] 0o exp - (20%,)'hT(2Kr — g)]

where we have canceled common terms and utilized the Hadamard expansions for s; and ||s;||?. Now, con-
sider the function, exp [—(20%,)""h! (2K”"r — g)]. It has the form, exp(81z1) exp(B222) - - -exp(Byz N ),
where 3, € {£1}. It is straightforward to show that, exp(8z) = cosh(z)[1 + S tanh(z)], for § € {£1}

and any real number z. Thus, using the notation p,, = tanh[r!, /(20%)], where r!, = {2K"r — g},,, we

have
o) — Sig Bl hoDpo) (14 Ay 1 @on 1) _ XL hibTa()
Yo (14 ho(i)po) -+ (1+ b1 (i)pn 1) >N hTq(r)
where

- 1 1 1 1
h; = ®-® ;oa(r) = ®- - ®
hy-1(i) ho (i) PN-1 Po

Noting that h; can be written h; = Fh;, F € R2" *N we have

o) — Lo bib! Fla@) _ Flq()
S ! FTar)  {FTa(}o

where we have used that Zil\;gl h;h! = NT and Zil\;gl h! = N[1,0,...,0]. Since the term {F"q(r)}o
is common among the numerator and the denominator in (8) when the expression for p(r) is applied, we

have that

() — RunF7q(r)
h(r) = m/F7q(r)’

Thus, Theorem 2 follows.
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Appendix C: Derivation of the Decoding Algorithm

Since my\p(r) = {f(r)}o, where f(r) = Runp(r), we confine this discussion to the computation of
f = f(r). Hence, we want to derive an algorithm for the calculation of the vector f for a VQ having size

N = 2% and index probabilities {Pi}i]igl. Now, let f,,(j) denote the vector f for a VQ having arbitrary

size 2", n < k, and probabilities {P}, Pj11,... , Pjjan_1}, j < 2F — 27 Also let
(n) 1 1
h,” = R ® ; 0<i<2" -1
bn (i) b (i)

1 1
f)(") = Q- ® |
b(ry) b(ry)
Then we have
N-1
f=£0)=]> plhg“(hgk)y] p)
i=0
N1 1 by (1 1
_ P, k( ) ®h(k—1)(h§k71))7ﬂ A ®f)(k,])
i=0 bp(i) 1 b(ri)
Nl 1 (i) 1 - -
Iy PR ) @ (D 0yp
i=0 bk(Z) 1 b(’l“k)
T+ b(ry)| N - B 1—b(ry)| N2 B B
- | k 2 Z Pihz(-k D(hgk 1))T15(k71) + | k ® ch(k 1)(h§k 1))Tf)(’“’])
b(ry) +1 i=0 b(ry) — 1 i=N/2
1+ i)(’l“k) IVl — B(Tk)-‘
= 1. @ fr1(0)+ | ® fi,_1(N/2).
b(T'k) +1 b(T'k) -1

Consequently, the computation of f = f;(0) can be subdivided into the calculation of fj_;(0) and
fi._1(N/2). This proves the recursion of (18) (where we used a somewhat different notation). The

algorithm is initialized by assigning fo(i) = [P], i =0,1,... ,N — 1.
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