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Hadamard-based Soft Decoding forVector Quantization over Noisy ChannelsMikael Skoglund and Per HedelinSubmitted January 1996 toIEEE Transactions on Information TheoryAccepted for publication January 1998Final version submitted April 3, 1998Abstract: We present an estimator-based, or soft, vector quantizer decoder for communication overa noisy channel. The decoder is optimal according to the mean-square error criterion, and Hadamard-based in the sense that a Hadamard transform representation of the vector quantizer is utilized in theimplementation of the decoder. An e�cient algorithm for optimal decoding is derived. We furthermoreinvestigate suboptimal versions of the decoder, providing good performance at lower complexity. Theissue of joint encoder{decoder design is considered both for optimal and suboptimal decoding. Resultsregarding the channel distortion and the structure of a channel robust code are also provided. Throughnumerical simulations, soft decoding is demonstrated to outperform hard decoding in several aspects.Index terms: vector quantization, combined source{channel coding, noisy channels, estimation, softdecoding, index assignment.1 IntroductionTraditionally the source and the channel codes of a communication system are designed and used sepa-rately. As is well-known, the separation of the source and the channel coding gives no loss in optimalityif in�nite complexity (delay) is permitted [1, 2]. However, in practical systems, where delay can be amajor obstacle, combined source and channel coding may give advantages over traditional tandem coding.Motivated by this fact, the study of vector quantization (VQ)1 for noisy channels has become a major�eld of research [3, 4, 5, 6, 7, 8, 9, 7, 10, 11, 12, 13, 14, 15, 16].When designing a VQ system for a noisy channel, essentially one can take on one of two approaches.We will refer to these as the robust VQ (RVQ) approach, and the channel optimized VQ (COVQ)1We will use the acronym \VQ" to mean, interchangeably, \vector quantization" and \vector quantizer".1



approach. In the �rst approach, RVQ, the VQ is trained for a noiseless channel and is subsequently maderobust against channel errors by the use of an index assignment (IA) algorithm. Index assignment is theprocedure of labeling the codevectors of a VQ suitably in order to reduce the impact of channel errors onthe reproduction �delity (c.f., [17, 18, 19]). The RVQ approach gives a system that is inherently robustover a set of channels of various qualities. On the other hand, in the COVQ approach the system istrained for a speci�c channel, that is, given that the channel is known. Such knowledge modi�es the�delity criterion in the design to take the distortion introduced by the channel into account (see, e.g.,[5, 6, 17, 7, 10, 11]).Most previous work on channel robust VQ has considered discrete channel models with an emphasison the binary symmetric channel (e.g., [3, 5, 8, 6, 17, 7, 18, 19, 14]). In this paper we depart fromthis path in that we assume that the VQ decoder can use the soft (unquantized) channel output fordecoding. Such an assumption leads in a natural fashion to a decoder that is a minimum mean-squareerror (MMSE) estimator (c.f., [10, 13]). We will refer to a decoder that uses the analog channel outputas a soft decoder to distinguish it from a conventional VQ decoder based on a hard decision and a tablelook-up. The main contribution of this paper is a framework for soft decoding based on a Hadamardtransform representation of the VQ. We show that this framework has certain advantages over the morestraightforward approach of, e.g., [13].For clarity, we refer to VQ with soft decoding by an additional su�x \SD" in abbreviations (e.g.,VQ-SD, RVQ-SD and COVQ-SD), and to ordinary hard (table look-up) decoding by an additional \HD"(e.g., VQ-HD and COVQ-HD), as was also done in [20].1.1 Historical survey and related workThe overarching subject of this paper is \vector quantization over a noisy channel". Much presentresearch in this area originates in [5], where criteria for optimality were �rst formulated. Subsequentlandmarks in the development of the subject include [17, 18, 7]. The �rst two of these concentrate onthe IA problem, and [7] investigates the design and structure of COVQs. The �rst treatment of softdecoding for VQ over a noisy channel can be found in [10]. This work considered a linear approximationto the generally nonlinear MMSE decoder for the AWGN channel. The results of [10] were extended tothe nonlinear optimal decoder in [13]. Later work, related to [13] and by the same authors, utilizing thenonlinear decoder on a channel with uncorrelated fading can be found in [21, 22]. Furthermore, an earlytreatment of soft decoding for trellis coded quantization over the AWGN channel can be found in thethesis [23]. The version of the Hadamard-based soft decoder that is referred to as the full entropy decoderbelow, was introduced in [20, 24] and was later generalized to the optimal nonlinear case in [25, 26]. Anapplication of the optimal Hadamard-based soft decoder to image transmission can be found in [25], andan application to speech coding in [27].The Hadamard transform representation of a VQ plays an important role in the present study. It was2



�rst described for VQ-HD in [28], and was further investigated in the thesis [12]. A related frameworkfor construction of constrained VQs having good channel distortion robustness was presented in [14, 29].Also, the two book chapters [15, 16] provide a thorough treatment of Hadamard methods for VQ-HDanalysis.1.2 Organization of the paperWe begin with a preliminary section stating the problem under consideration and introducing the notationused. Then, in Section 3, we derive and analyze the the Hadamard-based MMSE decoder having theleading role of this paper. Here we also state an algorithm for decoder computations. In Section 4 wehandle the special case of decoding for full entropy encoding. Next, in Section 5, we investigate someaspects of system design and present design algorithms. In Section 6, the channel distortion of a systemwith Hadamard-based soft decoding is analyzed and results concerning the structure of a robust systemare given. Finally we present numerical results and comparisons in Section 7. Section 8 is a summary ofthe paper.2 PreliminariesWe study block source coding, or vector quantization, over a noisy channel. The investigation is basedon the communication system model depicted Figure 1. In the following three sub-sections we describethe basic assumptions made about the di�erent blocks of the system.2.1 The source and the VQ encoderWe will consider a d-dimensional vector source fXng where one source vector is described by the marginalprobability density function (pdf) fX(x). The source is a zero mean, stationary, and ergodic stochasticprocess. Because of the stationarity of the source, we will omit the speci�cation of the time index n. Thedecoder X̂channelencoderX I RFigure 1: The communication system.encoder of the block source code is a mapping " : Rd ! f0; 1; : : : ; N�1g, such that "(X) = I for the sourcevector X. The mapping of the encoder is described by X 2 Si ) I = i where fSigN�1i=0 is a partition ofRd , and where N = 2k (thus the rate of the source code is R = k=d bits per dimension). The sets fSig arecalled the encoder regions. When I = i, let bi = (b1(i); b2(i); : : : ; bk(i))T , where bm(i) 2 f�1;+1g, be avector containing the bits2 of the index, i. We assume that the bits, bm(i), are determined by the natural2We will use the term bit for the number bm(I) 2 f�1g, even if this notation is perhaps more common when bm(I) 2f0; 1g. 3



binary code for the index i, replacing logical \zero" with the integer +1, and logical \one" with �1. LetPi , Pr(I = i) = Pr(X 2 Si) denote the a-priori probability that index i is chosen by the encoder. Theencoder entropy is de�ned as the entropy of the random variable I , H(I) = �PN�1i=0 Pi � log2 Pi. In thefollowing we will say that the encoder is a full entropy encoder3 if Pi = 1=N; 8i and, thus, H(I) = k(bits). Decoding for full entropy encoders will be investigated as a special case in Section 4. Finally, forlater reference, de�ne the encoder centroids fcigN�1i=0 , as ci , E[XjI = i] = E[XjX 2 Si].2.2 Channel modelsIn the most general case we consider, the channel is given by an arbitrary pdf, fRjI (r ji) , which describesthe stochastic relationship between the transmitted index, I , and the received L-dimensional vector R.We assume that the channel introduces no memory between vectors corresponding to indices transmittedat di�erent times. One common special case of this general channel, is the L-dimensional additive whiteGaussian noise (AWGN) channel, where the received vector is given byR = si+W. Here, the transmittedL-dimensional vector si is chosen from a �nite set fsigN�1i=0 of channel symbols, andW is zero-mean, whiteand Gaussian; E[WWT ] = �2W I. (I denotes the identity matrix.) For this channel we assume, withoutloss of generality, that the mapping from an input vector,X, to a channel symbol, s, is s = s"(X). Anotherimportant special case is a binary input channel with an unquantized (soft) output. Here, the channeloutput, Rm, corresponding to the input bit, bm(I), isRm = Am � bm(I) +Wm; m = 1; 2; :::; k (1)where fAmg describes amplitude variation and the additive noise fWmg is white and zero-mean Gaussianwith variance �2W . The received vector, corresponding to one transmitted index I , isR = (R1; R2; :::; Rk)T(thus the channel dimension is L = k, the number of transmitted bits). We refer to a channel describedby (1) as an unquantized binary memoryless channel, or just a binary channel for convenience. Forbinary channels, we treat two cases; (i) The known-amplitude binary (KAB) channel, with Am = a; 8m,and; (ii) The Rayleigh-amplitude binary (RAB) channel, where fAmg has the marginal pdf fA(a) =a=�2A exp[�a2=(2�2A)]. We assume the process fAmg to be white, with the physical interpretation of aperfect interleaving in the transmission. The quality of the channel is expressed in terms of the channelSNR (CSNR), which is a2=�2W for the KAB channel and E[A2n]=�2W = 2��2A=�2W for the RAB channel. Wede�ne the corresponding hard binary channels as the binary symmetric channels obtained when takinghard decisions, b̂hardm = sign(rm), on the soft channel outputs, rm. The average bit error rate (BER), q, forthe corresponding hard binary channels is q = 0:5�erfc(pa2=2�2W ), where, erfc(x) = 2=p��R1x exp(�t2)dt,for the KAB channel and q = 0:5 � [1�p�2A=(�2A + �2W )] for the RAB channel (c.f. [30]). In this paper we3Note that this property depends on the source. Thus a more correct notation would be a full entropy source/encoderpair. However, we will refer to the encoder as a full entropy encoder, under the assumption that the encoder is used on thesource for which it was designed. See Section 4 for a further discussion.4



will emphasize the KAB and the RAB channels since, as will be seen, the Hadamard-based VQ decoderexhibits particularly useful structure for these channels.2.3 The soft VQ decoderWe study the class of decoders that can be described by vector valued mappings � : RL ! Rd . Thedecoder makes use of the channel output, R, and maps it into a source vector estimate �(R). We callsuch decoders soft decoders since it is assumed that the decoder can utilize the unquantized (soft) channeloutput, R. Such decoders can also be referred to as estimator-based (c.f., [10]) contrasting the detector-based decoders that are usually employed in vector quantization. In detector-based decoding the decoderis simply a table look-up based on hard decisions. We also assume that the decoder is a function of thechannel output, R, corresponding to one transmitted encoder index, I . A more general case is where thedecoder regards all channel outputs from time zero (or a subset thereof). This case was studied in [31]for a discrete channel, and in [22] for soft decoding.By an \optimal" decoder we will throughout refer to optimal in the minimum mean-square error sense.That is, a decoder, ��, is optimal if E kX� ��(R)k2 � E kX� �(R)k2 ; 8�, where � denotes an arbitrarymapping � : RL ! Rd . We refer to the mean-square error D = E kX� �(R)k2 as the distortion D.Consequently, we will con�ne the discussion to the class of MMSE soft decoders. The mean-square erroris by far the most popular �delity criterion in vector quantizer design [32] and is well suited for theoreticalanalysis. The structure of the optimal decoder will be investigated next.3 The Hadamard-Based Optimal DecoderIn this section we study an implementation of the optimal decoder. The decoder is expressed in termsof a Hadamard framework. This Hadamard formulation of the optimal decoder is the main contributionof this paper. In deriving the optimal decoder we assume that the encoder (as de�ned by the encoderregions, fSig) is known and �xed.3.1 Decoder structureFrom estimation theory we know that the decoder function, �, that minimizes the distortion D can bewritten as the conditional expected value ��(r) = E[XjR = r]: (2)In [10] a linear approximation to (2) was studied. The results of [10] were later generalized in [13] wherethe generally nonlinear MMSE decoder of (2) was investigated. The conditional expectation of (2) can beexpressed in terms of the conditional pdf, fXjR(xjr), for the source vector,X, given the channel output,R,5



as E[XjR = r] = R x fXjR(xjr)dx. Since fXjR(xjr) = fX(x)fRjX(rjx)=fR(r) and fRjX(rjx) = fRjI(rji)when x 2 Si, (2) can be rewrittenE[XjR = r] = N�1Xi=0 ZSi x � fRjI(rji)fX(x)fR(r) dx = N�1Xi=0 fRjI(rji)PifR(r) ZSi x � fXjI(xji)dx= N�1Xi=0 Pr(I = ijR = r) �E[XjI = i] = N�1Xi=0 Pr(I = ijR = r) � ci:Consequently, the optimal decoder is the conditional expectation (c.f. also [10] and [13])��(r) = N�1Xi=0 Pr(I = ijR = r) � ci = E[cI jR = r]: (3)Note that the soft estimate, ��(r), is formed as a convex combination of encoder centroids, and that theset of all possible source vector estimates is a subset of the convex hull of the set of encoder centroids.The treatment of optimal decoding is based on (3). As will be illustrated, the Hadamard matrix andthe related Hadamard transform are useful tools in describing the soft decoder. We refer to the setof analytical tools related to the Hadamard matrix as the Hadamard framework. As we will see, theHadamard framework is useful since it provides a description of the optimal source vector estimate interms of estimates of the individual bits of the transmitted index. We say that a decoder is Hadamard-based when it is expressed in the Hadamard framework, while, on the other hand, we refer to (3) asthe general form of the soft MMSE decoder. The basics of the Hadamard framework is described inAppendix A.We take the �rst step in the description of the Hadamard-based decoder by expressing the ith encodercentroid as ci = Thi where hi is the ith column of an N by N Sylvester-type Hadamard matrix H (seeAppendix A). The Hadamard column hi = [h0(i); : : : ; hN�1(i)]T can (by de�nition) be expressed in termsof the bits, bl(i) 2 f�1g, of the index, i, ashi = 264 1bk(i)375
 � � � 
 264 1b1(i)375 = [1; b1(i); b2(i); b1(i)b2(i); : : : ; b1(i)b2(i) � � � bk(i)]T (4)where 
 denotes the Kronecker matrix product. Thus, the expression ci = Thi gives an explicit rela-tionship between the bits if the index i and the encoder centroid, ci. The matrix T, the encoder matrix,is fully speci�ed by the encoder centroids. By utilizing ci = Thi we see that the optimal decoder, ��,can be written ��(r) = T � E[hI jR = r]. De�ne ĥ(r) , E[hI jR = r], that isĥ(r) = N�1Xi=0 Pr(I = ijR = r) � hi = PN�1i=0 hiPifRjI(rji)PN�1j=0 PjfRjI(rjj) : (5)This quantity is an estimate of the Hadamard column corresponding to the encoder region that was6



chosen by the encoder. The estimate, ĥ(r), is referred to as the soft Hadamard column in the following.For later reference, let the components of ĥ(r) be denoted as4 ĥn = ĥn(r); n = 0; 1; : : : ; N � 1.It is easy to show that the Hadamard columns are orthogonal; hTnhm = �nm �N (where �nm denotesthe Kronecker delta-function). Consequently, we may write5ĥ(r) = PN�1i=0 hiPifRjI(rji)PN�1j=0 PjfRjI(rjj) = PN�1i=0 PihihTi N�1PN�1n=0 hnfRjI(rjn)PN�1j=0 PjhjN�1PN�1m=0 hmfRjI(rjm) : (6)To continue, let Rhh ,PN�1i=0 PihihTi andmh ,PN�1i=0 Pihi. Also let p̂(r) , E[hI jR = r;Pi = 1=N;8i].Note that p̂(r) is the a-posteriori expectation of hI conditioned on full encoder entropy. Now, sinceN�1PN�1n=0 hnfRjI(rjn) = [N�1PN�1i=0 fRjI(rji)] � p̂(r), we have, using (6) and canceling common terms,that ĥ(r) = [mTh � p̂(r)]�1Rhh � p̂(r). Note that in this expression for ĥ(r) the a-priori information,stemming from the source statistics, is contained in the entities Rhh and mh, and that the structure ofp̂(r) depends on the channel only. We summarize the above results in the following theorem:Theorem 1 (The Hadamard-based soft decoder) Let the encoder centroids be given as ci = Thi,i = 0; 1; : : : ; N � 1, where hi is the ith Hadamard column (4). Consider a general channel described byfRjI(rji). Over this channel the MMSE decoder, ��(r), can be expressed as ��(r) = X̂(r) whereX̂(r) , Tĥ(r) (7)and ĥ(r) = Rhh � p̂(r)mTh � p̂(r) : (8)The statistic p̂(r) is de�ned as p̂(r) = E[hI jR = r;Pi = 1=N;8i]: (9)The a-priori index probability information is separated from p̂(r) and is con�ned to Rhh =PN�1i=0 PihihTiand mh =PN�1i=0 Pihi.The explicit form of the decoder expression depends on the channel model used. As a �rst, reasonablygeneral, example consider the L-dimensional AWGN channel. Note that a useful characterization of thischannel is obtained when expressing the channel symbols in the Hadamard-framework (c.f., Appendix A).That is, si = Khi where K 2 RL�N is the transform matrix associated with the channel signals. Thenwe get an explicit relationship between the bits, bn(i), of the encoder index i, the corresponding encoder4Generally, throughout the paper, we will also use the notation fagn and fAgn;m for the elements of the vector a andthe matrix A, respectively. Unless otherwise stated 0 is the lowest index (n = 0; 1; 2; : : : ; m = 0; 1; 2; : : : )5Note that we have e.g. that (Pi PihihTi )PnN�1hnfRjI(rjn) = Pi;n(N�1Pihi)hTi hnfRjI(rjn) = Pi;nN�1Pihi �N�in � fRjI(rjn) =Pi PihifRjI(rji). 7



centroid ci = Thi and the channel symbol si = Khi. Using such a representation for the channel andthe encoder centroids, the following result is proved in Appendix B.Theorem 2 (The L-dimensional AWGN channel) Consider the L-dimensional AWGN channel, R =si +W. Let the signals be given as si = Khi, where K 2 RL�N is a transform matrix. Similarly, letjjsijj2 = gThi where g is a transform vector. Furthermore, let the matrix F 2 R2N�N be de�ned by theequations 264 1hN�1(i)375
 264 1hN�2(i)375
 � � � 
 264 1h0(i)375 = Fhi; i = 0; 1; : : : ; N � 1: (10)Then p̂(r) = FTq(r)fFTq(r)g0 (11)where q(r) = 264 1tanh(r0N�1=(2�2W ))375
 264 1tanh(r0N�2=(2�2W ))375
 � � � 
 264 1tanh(r00=(2�2W ))375 (12)with r0l = f2KT r� ggl. Hence, the Hadamard-based optimal decoder can be expressed as X̂(r) = T � ĥ(r)where ĥ(r) = Rhh � FTq(r)mTh � FTq(r) : (13)Proof of Theorem 2. See Appendix B.The matrix F is well de�ned, since all elements of the vector in the left-hand side of (10) are alsoelements of hi. Consequently, F has exactly one non-zero element, the number +1, in each row. Thus,the elements of ~q(r) , FTq(r) are sums of elements from the vector q(r) which are real numbers in theinterval (�1;+1). Note, however, that using ~q(r) directly as a basis for decoding is impractical, since Fis a matrix of size 2N �N and thus of exponential size in N . On the other hand, since the componentf~q(r)gn is formed as a sum of elements taken from q(r), only the positions of these elements have to bestored (for each n). Each such sum will consist of relatively few terms. Also, given ftanh(r0l=(2�2W ))gN�1l=0an arbitrary element in q(r) can be computed using less than N multiplications. Thus, generally ~q(r)can be computed much more e�ciently than a �rst glance at Theorem 2 suggests6. Once ~q(r) is knownĥ(r) can be computed using an order of N � logN operations (see Section 3.3 below).Without further speci�cation of the channel symbols, si = Khi, it is hard to give Theorem 2 an6Note also that the calculation can be performed without storing q(r) and F.8



intuitive interpretation. One example where the theorem becomes easier to interpret is when; (i) jjsijj isconstant over i, and; (ii) si = ~Kbi for some matrix ~K (that is, si depends linearly on the bit-vector bi).Then Theorem 2 gives p̂(r) = 264 1�k375
 264 1�k�1375
 � � � 
 264 1�1375where �l = �l(r) = tanh(f ~KT rgl�1=�2W ). Comparing this expression to (4) suggests that �l is a softestimate of the bit, bl(I). Hence, the decoding is built up from soft bit-estimates, or soft bits (c.f.[20]), from to the interval (�1;+1) rather than from \hard" bits belonging to f�1g, giving the decoderexpression (13) an enlightening interpretation in this case. As we will see, the interpretation that softVQ decoding is based on soft bits is a feature of the binary channels as well7. Since the main emphasisin this paper is on the binary channels, we will treat them with some extra care next. However, weemphasize that Theorem 2 holds for a very large class of channels, and that most of the results below,derived assuming a binary channel, can be modi�ed to hold for more general channels as well.In the rest of the paper we will frequently consider the binary channels (KAB and RAB). The main rea-son for this is that these channels are speci�cally straightforward to handle in the Hadamard-framework.To see this, note that since independence8 allows for splitting the conditional expectation in (9) intoproducts of expectations, we have for the binary channels thatp̂(r) = 264 1b̂(rk)375
 � � � 
 264 1b̂(r1)375 = (1; b̂(r1); b̂(r2); b̂(r1)b̂(r2); b̂(r3); : : : ; b̂(r1) � � � b̂(rk))T (14)where b̂(rn) , E[bn(I)jRn = rn; Pr(bn = +1) = 1=2] is the MMSE estimate of the bit bn(I) conditionedon equally likely bit-values. We summarize this result in the following theorem:Theorem 3 (Binary channels) For a binary channel the statistic p̂(r) can be formed according to (14)in terms of the estimates b̂(rn) = E[bn(I)jRn = rn; Pr(bn = +1) = 1=2] (15)of the transmitted bits bn(I).We employ Theorem 3 for the two binary channels as follows: First, for the KAB channel it is straight-forward to show that, b̂(rn) = tanh(arn=�2W ). Consequently we have the following result:7For the KAB channel this is not surprising, since it is a special case of the channel described by (i) and (ii). However,the RAB channel is not. Still, it turns out that the RAB channel �ts well into the Hadamard framework for VQ decoding.8Note that bk(I); : : : ; b1(I) are statistically independent when conditioning that Pi = N�1. Together with the assump-tion of a memoryless channel, (14) follows. 9



Corollary 1 (The known-amplitude binary channel) For the known-amplitude binary channel (withAn = a), we have X̂(r) = Tĥ(r) with ĥ(r) = fmTh p̂(r)g�1Rhhp̂(r), where p̂(r) is formed according to(14), using b̂(rn) = tanh(arn=�2W ).Note that since the KAB channel can be treated as a special case of the L-dimensional AWGN channel,this result also follows from Theorem 2. Similarly, for the RAB channel we have the following corollary:Corollary 2 (The Rayleigh-amplitude binary channel) For the Rayleigh-amplitude binary chan-nel we have X̂(r) = Tĥ(r) with ĥ(r) = fmTh p̂(r)g�1Rhhp̂(r), where p̂(r) is formed according to (14),using b̂(rn) = rn � ��2Wp2=(�s) � exp(�sr2n2�4W ) + rn � �1� erfc(ps=2 � rn�2W )���1 (16)where s = �2W�2A=(�2W + �2A).This corollary follows from Theorem 3 in deriving the expression for b̂(rn), which is straightforward.(However, it does not follow from Theorem 2, since the RAB channel is not a special case of the L-dimensional AWGN channel).In the rest of the paper we will refer to the VQ decoder X̂(r) = T � ĥ(r) as the soft Hadamardcolumn decoder (SHCD), since the decoding is based on the soft Hadamard column (5). At this point wewould like to identify some important advantages of the SHCD over the general form (3) of the MMSEdecoder, assuming a binary channel for simplicity: (i) The SHCD is based on the soft bit-estimates (softbits), b̂(rn), which is conceptually appealing and of practical value since such estimates can be calculatedfrom soft information already present in many practical systems; (ii) Constrained versions of the SHCDhaving lower decoding complexity are readily formulated. We will treat such decoders in Section 4 below;(iii) The concept of VQ by a linear mapping of a block code [29, 14], which has proven very useful forchannel robust VQ-HD, is straightforwardly generalized to soft decoding using the SHCD as a basis. Wewill comment some more on this in Section 4; (iv) The Hadamard-based optimal decoder permits foran enlightening interpretation of how soft MMSE decoding is built up. The following sub-section is adiscussion of this latter aspect.3.2 Interpretation of the decoder structureThis sub-section provides an interpretation of the decoder structure. We assume a binary channel forsimplicity, but we stress that the ideas are applicable to more general channels as well. In Figure 2 wehave divided the decoding into three stages. The �rst stage, the demodulation, is the forming of p̂(r) fromthe received vector r, and named so since demodulation can be seen as an operation that converts thereceived data into a form more useful for decoding, and the subsequent stages operate on p̂(r) to buildthe source vector estimate. The next stage, the forming of ĥ(r) from p̂(r), is referred to as the channel10



demodulation channel decoding source decodingfmTh � p̂(r)g�1Rhh Tr p̂(r) ĥ(r) X̂(r)Figure 2: Separation of the decoding procedure.decoding stage. To motivate this, consider that for full entropy encoding we have [c.f. the de�nition (9) ofp̂(r)], that ĥ(r) = p̂(r). On the other hand, if there is redundancy in the encoder output, then generallyĥ(r) 6= p̂(r). Redundancy in the encoder output can be utilized by an MMSE decoder to counteractchannel noise. Thus, the mapping from p̂(r) to ĥ(r) can be interpreted as channel decoding in the sensethat it makes use of the error protecting redundancy. Among the three decoding stages only the channeldecoding uses the knowledge of the a-priori information fPig. The �nal stage in the decoding is thesource decoding, where the estimate ĥ(r) of the Hadamard column hI is mapped into the source spaceby the encoder matrix T.The separation of the decoding can be compared to the traditional approach for decoding, whichis usually based on the ML-criterion (not taking information about the source statistics into account).This corresponds to the demodulation stage. The impact of a-priori knowledge can be subsequentlyaccounted for by the channel decoding stage where the \ML-statistic" p̂(r) is transformed into the\MMSE-statistic" ĥ(r).3.3 Relation to the Hadamard transform and an algorithm for computationsUsing the relationship between the Hadamard matrix and the Hadamard transform (Appendix A), it isstraightforward to show that the components, ffgn, of the vector f(r) = Rhhp̂(r) in (8), can be expressedin terms of the components, fp̂(r)gn, of p̂(r) as ffgn = PN�1m=0 ~P (n �m)fp̂(r)gm where f ~P (n)gN�1n=0 isthe Hadamard transform of the encoder output probabilities fPigN�1i=0 , and � denotes bit-wise modulo-2 addition. Furthermore, the scalar mTh � p̂(r) can be identi�ed as ff(r)g0. Consequently, the nthcomponent, ĥn(r), of ĥ(r) can be expressed asĥn(r) = PN�1m=0 ~P (n�m)fp̂(r)gmPN�1l=0 ~P (l)fp̂(r)gl : (17)Note that the numerator of (17) is a convolution of the sequences fp̂(r)gn and ~P (n). Thus, since convolu-tion corresponds to multiplication in the Hadamard-transform domain, (17) can easily be computed (see,e.g., [16]). Also, since the Hadamard transform is a fast transform, the complexity of the computation isof the order N � logN . For the special case of a binary channel, we provide a constructive proof of thisclaim in terms of an algorithm. The derivation of the algorithm is provided in Appendix C.
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Algorithm for computing ĥ(r) in the case of a binary channelInput data: The number of bits k, the probabilities fPigN�1i=0 and the bit-estimates fb̂(rl)gkl=1.Output : The value of ĥ(r).Let ffnmgN=2m�1n=0 be a sequence of column-vectors of size 2m.(0): Initialization; Set fn0 = [Pn]; n = 0; 1; : : : ; N � 1.(1): Recursive calculation of f0k from f00 ; f10 ; : : : ; fN�10 ;FOR m = 1 TO m = kFOR n = 0 TO n = N=2m � 1fnm = 264(1 + b̂(rm))f2nm�1 + (1� b̂(rm))f2n+1m�1(1 + b̂(rm))f2nm�1 � (1� b̂(rm))f2n+1m�1 375 (18)ENDEND(2): Form ĥ(r) from fk0 ; Set ĥ(r) = (ffk0 g0)�1fk0 .For a binary channel, the calculation of fb̂(rm)g from r has a complexity proportional to the number ofbits, k, (generally k << N), and the algorithm above requires an order of N logN operations to computeĥ(r) from fb̂(rm)g. Remaining is a matrix multiplication to obtain X̂(r). Hence, the overall complexityof decoding is, asymptotically, N(C1 logN + C2d) where C1 and C2 are constants (not depending on Nor d). Note that if the encoder matrix T is a sparse matrix (as in \LMBC-VQ", see Section 4 below),the decoding complexity can be signi�cantly reduced since, in such a case, not all of the components ofĥ(r) are needed, and furthermore the complexity of the matrix multiplication Tĥ(r) is reduced.4 The Full Entropy Soft Hadamard Column DecoderIn this section, we investigate decoding for an encoder that givesPr(I = i) = 1N ; 8i: (19)We refer to such an encoder as a full entropy encoder, since H(I) = k. Note that we are implicitlyassuming that the encoder is used on the source for which it was designed. That is, the encoder has fulloutput entropy for this source, while it may have a lower entropy when used on other sources. Note alsothat the index probabilities of (19) can be used as maximum entropy estimates in the decoder design if thetrue index probabilities are unknown. This choice gives robustness to variations in the true probabilities.12



Thus, the probabilities in (19) can either be the true ones or estimates, if the source is (partly) unknown9.We will refer to the encoder as a full entropy encoder in both cases.Now we investigate the structure of the SHCD in the case of a full entropy encoder, assuming thatthe channel is a binary channel. Using (19) we have Rhh = N�1PN�1i=0 hihTi = I and p̂(r)Tmh =p̂(r)TN�1PN�1i=0 hi = p̂(r)T � (1; 0; : : : ; 0)T = 1, giving the simple expression10X̂(r) = T � p̂(r) (20)for the optimal decoder. Hence, MMSE decoding consists in this case of a linear mapping of the statisticp̂(r). We name this form of the SHCD the full entropy SHCD (FE-SHCD). Note that the FE-SHCD isthe optimal MMSE decoder for full encoder entropy over a binary channel. However, one may also regardthe FE-SHCD as a sub-optimal, and less complex, alternative to the SHCD gaining close-to-optimalperformance if the VQ has high, but less than full, encoder entropy. In such a case we will refer to thestructure of the decoder as the FE-SHCD structure.The encoder matrix, T, is determined by the encoder centroids as ci = Thi; i = 0; 1; : : : ; N � 1.To improve the performance when the entropy is not full, we can regard the matrix T as a free designparameter to be determined. That is, given the encoder and the FE-SHCD structure T � p̂(r) on thedecoder, determine the best matrix T. To prevent confusion, we by T continue to denote the encodermatrix, and we let A be the parameter in the FE-SHCD structure. Using the MMSE-criterion we haveA� = argminA EjjX�A � p̂(R)jj2, (letting A� denote the optimal value). Thus, A� is given asA� = Rxp̂(Rp̂p̂)�1 (21)where Rxp̂ = E[Xp̂(R)T ] and Rp̂p̂ = E[p̂(R)p̂(R)T ]. In the following we will refer to A�p̂(r) as theoptimized FE-SHCD (OFE-SHCD), since it is the optimal decoder chosen from the set of decoders thathave the FE-SHCD structure.An important feature of the FE-SHCD structure is that based on this still more constrained decoderscan straightforwardly be constructed. To see this, note that the elements of hi in the expansion ci = Thifor the encoder centroid ci are formed according to (4) as bits and all possible products of di�erent bitsof the index i. In VQ by a linear mapping of a block code (LMBC-VQ), for VQ-HD [14], only the bitsand a subset of the elements of hi that are products of bits are used in the expansion for ci. A blockchannel code is utilized to describe which products (interpreted as \check bits" of the code) are to beused in the expansion. This technique is straightforwardly applicable also to VQ-SD using the FE-SHCDstructure for decoding. The LMBC-VQ approach is in this case equivalent to using a mapping matrix A9Note that, besides the index probabilities, the encoder centroids have to be known in the decoder design. These alsodepend on the source, but are usually treated as a part of the VQ since they form the codebook of the VQ, and can oftenbe assumed known even if the source is partly unknown.10Note that this result also follows (perhaps more straightforwardly) from the de�nition of p̂(r).13



that has a (large) subset of its columns equal to zero. Thus the complexity of forming the product A � p̂for decoding is signi�cantly reduced. Also, the memory requirement is reduced, since a smaller matrixcan be stored. The design techniques described in [14] can be used to design the encoder and the codethat describes the structure of the mapping matrix A. An application of LMBC-VQ with soft decodingto speech coding was presented in [27].5 VQ Encoder and Decoder DesignThis section considers the design of a VQ encoder/decoder pair. However, since the decoder is uniquelygiven when the source, the encoder and the channel are known, we consider the issue of encoder/decoderdesign as one of designing the encoder ; when the encoder is known it speci�es the optimal decoder. Weconsider the two approaches robust VQ with soft decoding (RVQ-SD) and channel optimized VQ withsoft decoding (COVQ-SD), (as discussed in Section 1).5.1 Encoder design for RVQ-SDThe problem of VQ-HD design is a well documented one [32]. For the RVQ approach an index assignmentalgorithm is required to give channel robustness. Several good such algorithms have been described (e.g.,[8, 17, 18, 19]). In the RVQ-SD approach the Voronoi regions of a VQ-HD codebook, with a good indexassignment, is applied to de�ne the encoder. Thus, there is no complexity increase in the encoding, ascompared to the hard decision equivalent, in utilizing the RVQ-SD approach.5.2 Encoder design for COVQ-SD using the SHCDA channel optimized VQ system is, as mentioned in Section 1, a system that is trained for a speci�cchannel. In this case, the criterion for design includes the impact of the channel on the reproduction�delity, and the design strives at �nding an encoder (specifying a decoder) making the encoder/decoderpair jointly optimal for the given channel (according to the MMSE criterion).One straightforward approach to system design is an alternating optimization approach, analogousto the generalized Lloyd algorithm [32]. That is, compute the optimal decoder for a �xed encoder,then compute the optimal encoder for this new decoder, and repeat. It is straightforward to derive anexpression for the optimal (minimizing D = D(fSig) = EjjX� �(R)jj2) encoder regions, fS�i g, given anarbitrary but �xed decoder, �(r), (c.f., [5, 7, 10, 9]). By writing the distortion, D, asD = D(fS�i g) = N�1Xi=0 ZS�i fX(x)�Z fRjI(rji)jjx� �(r)jj2dr� dx (22)we see, since fX(x) is non-negative, that the vectors, x, that shall be assigned to the ith optimal region,S�i , are those that minimize the integral within brackets in (22). Consequently, we have, after some
14



manipulations, that S�i = �x 2 Rd : �i ��j � 2xT (mi �mj); 8j	 (23)where �i = E[jj�(R)jj2jI = i], and mi = E[�(R)jI = i]. For the SHCD, �(r) = X̂(r) = Tĥ(r), wehave �i = tr(T � E[ĥ(R)ĥ(R)T jI = i] � TT ), and mi = T � E[ĥ(R)jI = i]. Using (23) it can be shownthat the optimal encoder regions, S�i , are convex polytopes. That is, convex regions that are boundedby hyperplanes. Consequently, an implication of (23) is that the encoder regions have the same kindof structure as Voronoi regions. As is well known the optimal encoder regions of a VQ-HD are Voronoiregions, or nearest neighbor regions. Thus, most of the various search algorithms applicable to VQwith hard decisions can be used for searching. This is an important feature for applications. Next, weformulate a design algorithm, based on (23), for a COVQ-SD system. (Entities calculated at the mthiteration are denoted by a subscript m.)VQ encoder design for the SHCD (general channel)(0) Let fSig0 be an initial partition. Set m = 0.(1) Estimate fcigm using the partition fSigm. Set Tm = N�1CmH, where Cm is a matrix withthe centroids fcigm as columns. Also estimate E[ĥ(R)ĥ(R)T jI = i]m and E[ĥ(R)jI = i]m fori = 0; 1; : : : ; N � 1.(2) Use �i = tr(Tm � E[ĥ(R)ĥ(R)T jI = i]m � TTm) and mi = Tm � E[ĥ(R)jI = i]m in (23) to de�ne anew partition fSigm+1. Set m m+ 1.(3) Repeat from (1) until convergence.Using this algorithm we obtain a �nal partition fS�i g which, together with the source, de�nes the SHCD.In practice, expectations over the source are replaced by averages over a training set. The initial partitionof step (0) can, e.g., be de�ned by the Voronoi regions of a RVQ-HD trained for the source underconsideration. The convergence [step (3)] can be tested by any of the standard methods mentioned in[32], for example the relative improvement in performance can be used.5.3 Encoder design for COVQ-SD using the FE-SHCD over a binary channelWe conclude this section with a discussion of the design of a VQ system employing the full-entropySHCD (the FE-SHCD or the OFE-SHCD), assuming a binary channel. In this case, the only parametersdepending on the channel statistics needed in the design are E[p̂(R)jI = i] and E[p̂(R)p̂(R)T jI = i].Letting � = E[b̂(Rn)jbn(I) = +1], it can be shown thatfE[p̂(R)jI = i]gn = hn(i) � �w(n) (24)15



and that fE[p̂(R)p̂(R)T jI = i]gn;m = hn(i)hm(i) � �w(n�m)+w(n�m) (25)where, w(i) denotes the Hamming weight of the natural binary representation of the integer i, and thesymbol \�" denotes the bit-wise AND operation. We state a design algorithm employing (24) and (25)to calculate the averages over the channel as follows:VQ Encoder design for the FE-SHCD (binary channel)Pre-calculate � = E[b̂(Rn)jbn(I) = 1], calculate and store E[p̂(R)jI = i] and E[p̂(R)p̂(R)T jI = i] fori = 0; 1; : : : ; N � 1, according to (24) and (25).(0) Let fSig0 be an initial partition. Set m = 0.(1a) For the FE-SHCD, Tp̂(r); Estimate fcigm based on fSigm. Set Tm = N�1CmH; or(1b) For the OFE-SHCD,Ap̂(r); Estimate fPigm and fcigm based on fSigm. Use these in computingRxp̂ =Pi PiciE[p̂(R)T jI = i] and Rp̂p̂ =Pi PiE[p̂(R)p̂(R)T jI = i] and set Am = Rxp̂(Rp̂p̂)�1.(2) Use �i = tr(F � E[p̂(R)p̂(R)T jI = i] � FT ) and mi = F � E[p̂(R)jI = i] with F = Tm or F = Am in(23) to de�ne fSigm+1. Set m m+ 1.(3) Repeat from (1) until convergence.If the encoder entropy is full, the expression in step (1a) for T is the optimal one. Alternatively, if theFE-SHCD structure is used as an approximation to the optimal SHCD, using the OFE-SHCD as in step(1b) gives a better choice for the updating of the decoder. We emphasize that one major advantageof the FE-SHCD is that the entities E[p̂(R)jI = i] and E[p̂(R)p̂(R)T jI = i] can be calculated andstored in advance of the training. This is a considerable saving compared to the general case wherethe corresponding parameters (E[ĥ(R)jI = i] and E[ĥ(R)ĥ(R)T jI = i]) have to be estimated in eachiteration.6 On the Channel Distortion and the Structure of a RobustEncoderIn this section we discuss some aspects of channel robustness. We will concentrate the discussion to theencoder structure. The structure of the encoder, or more precisely of the centroids of the VQ encoder, isdescribed by the encoder matrix T.
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6.1 On the channel distortion in the general caseFirst we consider the general case where the SHCD is used for decoding over a general channel andthe encoder is arbitrarily chosen but known. The total distortion, D, can be split into two terms, thequantization distortion DQ and the channel distortion DC , according to (c.f., [17] for VQ-HD)11D = EjjX� X̂(R)jj2 = EjjX� cI jj2 +EjjX̂(R)� cI jj2: (26)The quantization distortion, DQ = EjjX � cI jj2, does not depend on the channel. Thus, in orderto minimize the inuence of the channel on the total distortion, D, the channel distortion, DC =EjjX̂(R) � cI jj2, should be made as low as possible. Since X̂(R) is the MMSE estimate of cI , wecan (using the principle of orthogonality for MMSE estimation) rewrite the channel distortion as DC =E(cTI [cI � X̂(R)]). This expression can, in turn, be written as DC = Pi PiDC(i) where DC(i) ,E(cTI [cI � X̂(R)]jI = i). De�ning mn(i) , E[ĥn(R)jI = i] and denoting by tn the nth column of T, wethus have DC(i) = E(cTI [cI � X̂(R)]jI = i) = N�1Xm=0N�1Xn=0 tTmtnhm(i)[hn(i)�mn(i)]; (27)where mn(i) can be expressed asmn(i) = E "PN�1l=0 ~P (l � n)fp̂(R)glPN�1j=0 ~P (j)fp̂(R)gj jI = i# : (28)In (28) we have used the Hadamard transform expression (17) for ĥn. We can see that the channeldistortion is dependent on the channel through the value of mn(i) only and, as intuition suggests, DC(i)is low if mn(i) is close to hn(i). Unfortunately, a tractable expression for mn(i) is hard to �nd in thegeneral case, where the encoder indices have redundancy and the SHCD is used over a general channel.Because of this, we restrict the rest of this section to some special cases which can be handled in somemore detail.Examining expression (27) further, we note that for encoder/decoder pairs and channels giving mn(i)the form mn(i) = hn(i) � �n, where �n is a positive number independent of the index i, we get DC(i) =PN�1m=0PN�1n=0 tTmtn � hm(i)hn(i)[1 � �n]. As we shall see, one example where mn(i) = hn(i) � �n holds,is full entropy encoding over a binary channel. Now, taking expected value with respect to the encoderindices we have DC = N�1Xm=0N�1Xn=0 tTmtn ~P (m� n)(1� �n); (29)11Note that this division into DQ and DC is always valid since it is made with respect to the \reference vectors" fcig,where ci = E[XjI = i] are the encoder centroids. If the split is not made with respect to the centroids, then generally amixed-term distortion has to be included (c.f. [17] and Sections 3.5{6 of [16]).17



where (as before) f ~P (n)gN�1n=0 is the Hadamard transform of fPigN�1i=0 . Moreover, with the additionalassumption of full encoder entropy it is straightforward to show that ~P (n) = 0; n > 0, givingDc = N�1Xn=0 jjtnjj2(1� �n): (30)The next sub-section considers the implications of (30) in the special case of a binary channel with fullentropy encoding.6.2 Full entropy encoder and a binary channelAssuming full encoder entropy we have ĥ(r) = p̂(r), and for a binary channel we get, employing (24),that mn(i) = hn(i)�w(n). Note that � � 0, thus hn(i) enters as the sign of mn(i). Consequently mn(i)is of the form mn(i) = hn(i)�n, with �n = �w(n). Employing �n = �w(n) in (30), we haveDc = N�1Xn=1 jjtnjj2(1� �w(n)): (31)A similar expression (cited in (33) below) valid for VQ-HD over a binary symmetric channel was presentedin [12] (see also [14, 33, 19]). To proceed further, we consider the class of encoders where members havethe same value of the quantity PT ,PN�1n=1 jjtnjj2. This is, for example, the case when the (unordered)set of centroids fcig is common among the encoders of the class. We name such a set of encoders a classof PT -constrained encoders, using the value of PT to denote the class. Now, observing that 0 � � < 1,we have the important result thatDC = N�1Xn=1 (1� �w(n))jjtnjj2 � (1� �)N�1Xn=1 jjtnjj2 = (1� �)PT (32)with equality i� w(n) > 1 ) tn = 0. Thus, using (32), we have a characterization of the best (interms of minimal channel distortion) possible encoder, within the class of a �xed PT . If there exists anencoder/decoder pair for which w(n) > 1) tn = 0 holds, then this is the best possible pair12. To examinefurther what this condition means, consider the expansion ci = PN�1n=0 tnhn(i). If w(n) > 1 ) tn = 0,then ci = t0 +Pkn=1 t2n�1bn(i). We see that this means that the encoder has to have such structurethat the ith centroid ci can be described by a linear combination of k of the vectors, tn, with the bits ofthe index i as weights. Hence, no products of bits are allowed to enter the Hadamard expansion for ci.Consequently, this kind of structure can be described as a linear mapping from the hypercube f�1gk toRd . We say that a VQ encoder possessing such structure is linear. This linearity result is a generalizationof the corresponding result for full entropy VQ-HD given in [19, 33]. Note that (31) can be utilizedto determine the quality of the IA of a RVQ-SD system. This follows since all encoders resulting from12We refer to the encoder/decoder pair as optimal (minimum channel distortion), since it may be the case that theencoder/decoder is obtained through a procedure that optimizes the pair. In this sense the resulting encoder, de�ning theencoder matrix, depends on the corresponding decoder. 18



di�erent IAs on a �xed set of centroids belong to the same PT -constrained class. The best mapping frombi to ci is linear. However, for an arbitrary full entropy encoder there may be no linear description ofthe centroids. Then the number (1� �)PT serves as a useful lower bound to the channel distortion overall IAs.The expression for the channel distortion in a full entropy system can also be utilized in comparinghard and soft decoding. To make such a comparison we cite, from [19], the expressionDhardC = 2N�1Xn=1 jjtnjj2(1� (1� 2q)w(n)) (33)for the channel distortion of full entropy VQ-HD over a binary symmetric channel of crossover probabilityq. It is easily shown that DhardC � 4qPT , [(33) was utilized in [19] to prove that the lower bound 4qPTto DhardC is met by a linear encoder mapping]. Now, to proceed, assume that we have a �xed encodercharacterized by its centroids. Assume, moreover, that the Voronoi regions of the centroids are used asencoder regions, and that the resulting encoder is a full entropy encoder. Then we can form the ratio� , DsoftCDhardC = PN�1n=1 jjtnjj2(1� �w(n))2PN�1m=1 jjtmjj2(1� (1� 2q)w(m)) (34)between the resulting channel distortion of the optimal soft decoding system and an ordinary VQ-HDdecoder, employing the centroids as codebook vectors. Assume, furthermore, that the centroids have suchstructure that the encoder can be made linear, then we have the ratio between the minimum possiblechannel distortions as �opt , (1� �)PT4qPT = (1� �)4q : (35)The ratio �opt is depicted in Figure 3, for the KAB channel versus the corresponding hard channel.�opt
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that the soft decoder as allowed to adapt to a varying CSNR. We comment that the gain of VQ-SD overVQ-HD is generally larger for encoders not having optimal IAs (see Section 7.2 for a discussion). Hence,in practice the gain is often larger than what is suggested by Figure 3.6.3 Binary channel without the full entropy assumption: Spherically invari-ant codesIf the encoder entropy is not full, the FE-SHCD is generally sub-optimal, and we have to include moreterms in the expression for the channel distortion. Again assuming a binary channel, it can be shownthat DC(i) = N�1Xn=1 N�1Xm=1 tTn tmhn(i)hm(i)fn;m; (36)where fn;m , 1 � �w(n) � �w(m) + �w(n�m)+w(n�m). Note that fn;m is non-negative13. The expression(36) is considerably more di�cult to handle than the full entropy expression (31). Therefore, we treatonly a specially restricted class of encoders for which the channel distortion expression becomes tractable.As we will see, such an analysis can give some insight in how the channel robustness is a�ected whenthe transmitted indices contain redundancy. Hence, consider the class consisting of encoders ful�llingPn6=m tTntmhn(i)hm(i)fn;m = fr;sPn6=m tTn tmhn(i)hm(i) for some pair of integers 0 < r; s � N � 1. Forsuch a class we have DC(i) = N�1Xn=1 jjtnjj2(1� �w(n)) + Xn6=m tTn tmhn(i)hm(i)fn;m= N�1Xn=1 jjtnjj2(1� �w(n)) + fr;s Xn6=m tTntmhn(i)hm(i)= N�1Xn=1 jjtnjj2(1� �w(n)) + fr;s(jjci � t0jj2 � PT ): (37)Consequently, in this case the channel distortion (given a transmitted index, i) is dependent on the index,i, through the term jjci � t0jj2 only. Note that t0 = N�1Pn cn, that is, t0 is the algebraic mean of thecentroids. Thus jjci � t0jj2 is the squared distance from the ith centroid to the average of the centroidset. Since all centroid vectors at the same distance from t0 have the same channel distortion behavior forthe class of encoders which satisfy Pn6=m tTntmhn(i)hm(i)fn;m = fr;sPn6=m tTntmhn(i)hm(i), this classis named the class of spherically invariant codes with parameters r and s (see also [15] pp. 330-331)14.13fn;m = (1 � �w(n))(1 � �w(m)) + �w(n�m)+w(n�m) � �w(n)+w(m) � �w(n�m)+w(n�m) � �w(n)+w(m) ��2w(n�m)+w(n�m) � �w(n)+w(m) = 0, since 0 � � < 1 and w(n) + w(m) = 2w(n �m) +w(n�m).14The term \spherically invariant" refers to the fact that DC(i) does not depend on the direction from t0 to ci but onlyon the distance jjci � t0jj. Hence, all centroids on a sphere centered at t0 give the same contribution to DC(i), and in thissense the code is spherically invariant with respect to channel distortion.
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Now, in averaging over the encoder indices in (37), we haveDC = N�1Xn=1 jjtnjj2(1� �w(n)) + fr;s(VC � PT ) (38)where we have de�ned VC = EjjcI � t0jj2. We see that the �rst term, PN�1n=1 jjtnjj2(1� �w(n)) , of thisexpression is the channel distortion for a full entropy system having the same encoder matrix [c.f. Eq.(31)]. Furthermore, for source pdfs which decrease exponentially with the distance from the mean, suchas the Gaussian or the Laplacian pdfs, we generally have that VC < PT . Hence, since fr;s is non-negative,fr;s(VC � PT ) is negative (or zero). This illustrates that a spherically invariant code can give a lowerchannel distortion, than can a full entropy encoder having the same encoder matrix. Thus, using oneparticular example we have illustrated that redundancy in the encoder output can be used to lower thechannel distortion as compared to the full entropy case.7 Numerical ResultsIn this section we present numerical results and comparisons. First we present results for RVQ-SD versusRVQ-HD. We have simulated the SHCD, the FE-SHCD and the OFE-SHCD. Then we investigate theability of soft decoding to counteract large errors and bad IAs. The section is concluded with results forCOVQ-HD versus COVQ-SD.In all simulations we have assumed a binary channel (the KAB or the RAB channel). In the VQ-HD results the output of the corresponding hard channel (de�ned in Section 2.2) has been used in atable look-up. In the RVQ-HD results the encoder centroids have been used as codevectors, and in theCOVQ-HD results the optimal codevectors [7] have been used. In the simulations we consider �rst orderGauss-Markov sources with correlation a, modeled as Xn = aXn�1+Un where fUng is iid Gaussian. Thevectors of the corresponding vector source (c.f., Section 2.1) are obtained as Xt = [Xtd; : : : ; X(t�1)d+1]T .The source obtained for a = 0 is the iid Gaussian source. Performance is in most cases measured in termsof the output SNR, EjjXjj2=EjjX� X̂jj2 (abbreviated as \SNR" below).A good index assignment is required in RVQ-SD. We have used the linearity increasing swap algorithm(LISA) of [19] and the simulated annealing approach of [7]. The LISA makes the encoder of an RVQ-HDmaximally linear. From the discussion in Section 6 we know that such IAs are good also for RVQ-SD, ifthe encoder has high entropy. In some cases, when the encoder has much redundancy, we have utilizedthe simulated annealing approach instead. In lacking theoretical tools in cases when the entropy is notfull, we have observed that an algorithm giving a good IA for RVQ-HD also gives a good IA for RVQ-SD.
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Figure 4: Source vector estimates, X̂, produced by the SHCD. The encoder is de�ned by an RVQ with k=3 bitsand d=2 dimensions. The source is iid Gaussian. Estimates can be observed as small dots. The larger dots markthe locations of the encoder centroids and the solid lines mark the boundaries of the encoder regions.7.1 Illustrating soft decodingFigure 4 illustrates the principle of soft decoding. In this simulation the encoder is de�ned by theVoronoi regions of a RVQ-HD, trained for an iid Gaussian source. Source vector estimates, as obtainedwhen using the SHCD on the KAB channel, are marked by small dots. We can see estimates markingout lines between centroids having indices that di�er in one bit only. When there is an \uncertainty"about which index was sent, the decoder compensates this by moving the estimate towards the secondmost probable vector. Thus, instead of choosing a codevector (that might be the wrong one), the softdecoder outputs an average over the most probable codevectors [c.f., Eq. (3)]. In many applications thisaveraging not only lowers the mean-square error, but also gives errors a more \pleasant" appearance. Inimage coding, for example, hard decoding tends to give errors that are very distinct and easy to observewhile soft decoding gives errors a \smoother" appearance [25].7.2 Comparing hard and soft decoding for a �xed encoderA comparison between hard and optimal soft decoding is depicted in Figure 5. The channel is the KABchannel, the source is a �rst order Gauss-Markov source with correlation 0:9, and the encoder is �xed andde�ned by the Voronoi regions of an RVQ-HD trained for the source. As we can see, soft decoding clearlyperforms better than hard decoding. At an output SNR of 4 dB, for example, the gain is approximately2 dB in CSNR. Noteworthy is also the small di�erence between the optimal SHCD and the FE-SHCDin this simulation. This latter fact is due to the high encoder entropy (5.87 bits compared to the fullentropy of 6 bits). In Figure 6 we compare the SHCD, the OFE-SHCD and the FE-SHCD for an encoderwith low encoder entropy (4.76 bits compared to the full entropy of 6 bits). (This encoder was obtainedfrom training a COVQ-HD over a channel with a BER of 5%.) As we can see the di�erence between the22



-2 0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12

CSNR (dB)

SNR (dB)

a

b

cFigure 5: Comparison in terms of SNR vs. CSNR between the SHCD, the FE-SHCD and hard decoding. Thesource is �rst order Gauss-Markov with correlation 0:9. The dimension is d = 6 and the rate is R = 1 bit perdimension. (a) The SHCD; (b) The FE-SHCD; (c) Hard decoding. The same encoder is used in all cases. Theencoder entropy is 5.87 bits.SHCD and the FE-SHCD is more prominent in this simulation. Note, however, that the performance ofthe OFE-SHCD is close to that of the SHCD. One conclusion that can be drawn from this example is thusthat the OFE-SHCD can give performance close to that of the SHCD, despite its suboptimal structure,also for encoders not having high entropy.
-2 0 2 4 6 8 10 12

2

3

4

5

6

7

8

9

10

CSNR (dB)

SNR (dB)

a

b

cFigure 6: Comparison between the SHCD and the FE-SHCD. First order Gauss-Markov source with correlation0.9. The dimension is d = 6 and the rate R = 1 bit per dimension. (a) The SHCD; (b) The OFE-SHCD; (c) TheFE-SHCD. The same encoder is used in all cases. The encoder entropy is 4.76 bits.For some applications the number of large errors is as least as important a measure of performanceas is the mean-square error. Figure 7 illustrates the ability of the SHCD to counteract large errors. This�gure shows the relative number of estimates giving a squared error jjX�X̂jj2 larger than 0:5EjjXjj2. Aswe can see the SHCD gives fewer such large errors than the hard decoder and the gain increases for badchannels. Hence, soft decoding can give advantages in applications, such as image coding (c.f., [25]) andin coding the spectral information of a speech coder (c.f., [27]), where large errors can be very annoying.A related comparison is made in Figure 8, where the performance is investigated for two di�erent IAs(a good and a bad). We can see that the SHCD counteracts a bad IA in the sense that the di�erencein performance between the two IAs is more prominent when using hard decoding. Thus, the relativegain of soft over hard decoding is higher for encoders with a bad IA. This is also a useful feature inapplications, since �nding a good IA is generally very di�cult for large codebooks. Soft decoding can beapplied to counteract the imperfections of a suboptimal IA.23



relative number of errors > 0:5EjjXjj2
-2 0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

a

b

CSNR (dB)Figure 7: The relative number of source vector estimates X̂ giving an error jjX� X̂jj2 greater than 0:5EjjXjj2 .Gauss-Markov source with correlation 0.9. The KAB channel. The encoder is de�ned by an RVQ in both cases,k = 6 bits and d = 6 dimensions. (a) Hard decoding; (b) The SHCD.
-2 0 2 4 6 8 10 12

0

5

10

15

a

b

c

d

SNR (dB)

CSNR (dB)Figure 8: The di�erence between a bad IA and a good IA. A Gauss-Markov source with correlation 0:9, encoderwith d = 4 and k = 8 trained for a noiseless channel. Encoder entropy 7:85 bits. (a): Good IA and the SHCD;(b): Good IA and hard decoding; (c): Bad (random) IA and the SHCD; (d): Bad IA and hard decoding. Thechannel is the KAB channel in all cases.7.3 Channel optimized VQFigure 9 illustrates the encoder regions for two di�erent 4-bit 2-dimensional encoders. To the left are theencoder regions of an encoder trained for a noiseless channel, and to the right we see the encoder regionsof an encoder trained for the SHCD over a KAB channel with a CSNR of 2.15 dB (corresponding to aBER of 10%). Note that 3 regions are empty in the latter case. In the experiments, we have observedthat generally more encoder regions become empty sets when the encoder is trained for a soft decoderthan when the encoder is trained for hard decoding over the corresponding hard channel. Hence, theencoder provides a higher amount of redundancy when trained for soft decoding.For reference purposes, Tables 1 and 2 list the dth order OPTA functions at the speci�c CSNRs thatwere used in the COVQ design. The dth order OPTA (optimal performance theoretically achievable)function �d(R) can be computed as �d(R) = Dd(R � C) where Dd is the dth order distortion-ratefunction of the source [34], R is the rate of the VQ in bits per dimension and C is the capacity, in bitsper channel use, of the binary channel. It serves as a lower bound to the performance of rate-R anddimension-d VQ systems over the given channel, and gives an achievable lower bound as the dimensiongoes to in�nity, d!1. In the tables the OPTA is expressed in terms of SNR, that is, EjjXjj2=�d(R).24



Figure 9: Encoder regions for encoders trained for an iid Gaussian source. The dimension is d = 2 and the rateis R = 2 bits per dimension. Left: An encoder trained for a noiseless channel; Right: An encoder trained forthe KAB channel with a CSNR corresponding to a BER of 10%.Table 1: The OPTA function of order d for rate R = 1 VQs over the KAB channel. First order Gauss-Markovsources of correlations 0 and 0:9. The OPTA is given in terms of SNR (in dB)correlation 0.0 correlation 0.9BER d = 4 d = 6 d = 8 d = 4 d = 6 d = 8 CSNR [dB]0.001 5.996 5.996 5.996 11.38 12.00 12.30 9.7990.005 5.899 5.899 5.899 11.28 11.90 12.21 8.2180.010 5.783 5.783 5.783 11.16 11.78 12.09 7.3330.050 4.915 4.915 4.915 10.21 10.85 11.18 4.3220.100 3.940 3.940 3.940 8.994 9.693 10.04 2.154Tables 3 through 5 contain results for COVQ-HD and COVQ-SD. For COVQ-SD both the SHCDand the OFE-SHCD have been investigated. The results were obtained as follows: (i) The channel (theCSNR) was �xed, and the training was initialized using an RVQ-HD system; (ii) A COVQ-HD wastrained (c.f., [7]) for the corresponding hard binary channel; (iii) Using this COVQ-HD as initializationthe COVQ-SD was trained employing the results of Section 5. Tables 3 and 4 show the performance ofCOVQ-SD and COVQ-HD over the KAB channel for an iid Gaussian source and a �rst order Gauss-Markov source of correlation 0.9, respectively. We can observe that the performance of COVQ-SD isbetter in all cases. Note also that the di�erence between hard and soft decoding becomes larger as thechannel noise grows. For the OFE-SHCD we note that the performance coincides with that of the SHCDwhen the encoder entropy is full. This is the case in Table 3, for the iid source. Here, all encoders have(almost) full entropies. On the other hand, when there is redundancy in the encoder output, as is the casein Table 4, the SHCD performs better than the OFE-SHCD. Note, however, that the OFE-SHCD stillperforms signi�cantly better than COVQ-HD. In Table 5 we have listed the results when the systems weredesigned for the RAB channel and a �rst order Gauss-Markov source of correlation 0.9. The performancefollows the same trends as for the KAB channel.The evaluation of the COVQ systems were made at the same CSNRs as those for which the systemswere trained. We have observed, though, that the performance is not critically sensitive for mismatch ofthe encoder with respect to the channel. Regarding the match of the decoder to the channel it is morereasonable in practice to assume perfect knowledge of the channel at the receiver than at the transmitter.25



Table 2: The OPTA function of order d for rate R = 1 VQs over the RAB channel. First order Gauss-Markovsources of correlations 0 and 0:9. The OPTA is given in terms of optimum SNR (in dB)correlation 0.0 correlation 0.9BER d = 4 d = 6 d = 8 d = 4 d = 6 d = 8 CSNR [dB]0.001 5.998 5.998 5.998 11.39 12.00 12.31 26.980.005 5.910 5.910 5.910 11.29 11.91 12.22 19.930.010 5.801 5.801 5.801 11.18 11.80 12.11 16.860.050 4.959 4.959 4.959 10.26 10.90 11.22 9.3080.100 3.984 3.984 3.984 9.053 9.749 10.09 5.509Also, the soft decoder is more straightforwardly updated according to a varying channel than is theencoder.Table 3: SNR in dB for various rate R = 1 (bits per dim) systems trained for the KAB channel with soft decodingand hard decoding. The SHCD and the OFE-SHCD have been employed for decoding in the COVQ-SD results.The source is in all cases the iid Gaussian source.BER 0.001 0.005 0.01 0.05 0.10CSNR [dB] 9.799 8.218 7.333 4.322 2.154d = 8 4.86 4.64 4.46 3.42 2.61SHCD d = 6 4.72 4.57 4.40 3.41 2.60d = 4 4.58 4.45 4.30 3.40 2.61d = 8 4.86 4.64 4.46 3.42 2.61OFE-SHCD d = 6 4.72 4.57 4.40 3.41 2.60d = 4 4.58 4.45 4.30 3.40 2.61d = 8 4.83 4.56 4.32 3.13 2.27HARD d = 6 4.68 4.50 4.30 3.15 2.26d = 4 4.56 4.39 4.21 3.15 2.27
8 Summary and ConclusionsWe have addressed the problem of transmitting a source via vector quantization over a channel producingan analog (unquantized) output. The decoder of the system utilizes the analog channel output forestimation of the transmitted vector. Such decoding is referred to as soft decoding. We have introduced adecoder, the soft Hadamard column decoder (SHCD), being optimal in the sense of minimum mean-squareerror, and we have investigated some special cases of the optimal decoder having certain structure andlower complexity. We have also presented an algorithm for decoding and provided an interpretation of howthe decoding is built up in terms of demodulation, channel decoding and source decoding. Furthermore,we have treated the system design problem, both for the optimal decoder and the suboptimal versions.Moreover, we have analyzed the distortion introduced by the channel and provided results regarding thestructure of a robust system. Finally, we have investigated the performance of the proposed systems interms of numerical simulations.The simulations con�rmed that the SHCD gives better performance than the corresponding harddecoders. The simulations also demonstrated that the constrained versions of the SHCD can give good26



Table 4: SNR in dB for various rate R = 1 (bits per dim) systems trained for the KAB channel with soft decodingand hard decoding. The SHCD and the OFE-SHCD have been employed for decoding in the COVQ-SD results.The source is in all cases the �rst-order Gauss-Markov source with correlation 0.9.BER 0.001 0.005 0.01 0.05 0.10CSNR [dB] 9.799 8.218 7.333 4.322 2.154d = 8 11.2 10.6 10.2 8.48 6.89SHCD d = 6 10.8 10.1 9.63 7.84 6.21d = 4 10.0 9.40 8.77 7.04 5.69d = 8 11.2 10.5 10.1 8.03 6.43OFE-SHCD d = 6 10.8 10.1 9.54 7.34 5.78d = 4 10.0 9.36 8.73 6.68 5.29d = 8 11.1 10.3 9.80 7.51 5.81HARD d = 6 10.7 9.94 9.23 6.83 5.16d = 4 9.92 9.13 8.38 6.24 4.67Table 5: SNR in dB for various rate R = 1 (bits per dim) systems trained for the RAB channel with soft decodingand hard decoding. The SHCD and the OFE-SHCD have been employed for decoding in the COVQ-SD results.The source is in all cases the �rst-order Gauss-Markov source with correlation 0.9.BER 0.001 0.005 0.01 0.05 0.10CSNR [dB] 26.98 19.93 16.86 9.308 5.509d = 8 11.2 10.6 10.3 8.54 6.95SHCD d = 6 10.8 10.2 9.67 7.94 6.27d = 4 10.1 9.46 8.86 7.11 5.45d = 8 11.2 10.5 10.1 8.06 6.46OFE-SHCD d = 6 10.8 10.2 9.57 7.38 5.80d = 4 10.0 9.38 8.75 6.74 5.33d = 8 11.1 10.2 9.79 7.51 5.81HARD d = 6 10.7 9.92 9.22 6.81 5.15d = 4 9.94 9.12 8.37 6.26 4.69performance at lower complexity. Moreover, the soft decoder counteracts large errors and bad indexassignments, which is a valuable feature in many applications.
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Appendix A: Hadamard Matrices for VQ DescriptionA (Sylvester-type) Hadamard matrix, Hk, of size N = 2k is a symmetric square matrix with elementsfrom f�1g, which is de�ned recursively asH1 = 264+1 +1+1 �1375 ; Hk = H1 
Hk�1; k > 1;where the symbol 
 denotes the Kronecker product, i.e., for two matrices A and B we haveA
B = 266664 fAg0;0B � � � fAg0;m�1B... . . . ...fAgn�1;0B � � � fAgn�1;m�1B377775if A is of size n rows and m columns. The recursive nature of the Hadamard matrix gives the usefulfeature that when letting the natural binary representation of the integer i be (bk; bk�1; : : : ; b1), withlogical "zero" represented by +1 and logical "one" by �1, we have thathi = 264 1bk375
 264 1bk�1375
 � � � 
 264 1b1375where hi denotes the ith column of Hk. Another useful property of the Hadamard matrix is that, for anysize N = 2k, we have Hk �Hk = N � I, where I is the unity matrix of size N . Thus, (Hk)�1 = N�1 �Hk.This latter property is often employed to de�ne Hadamard matrices of general sizes (e.g. [35]). TheHadamard transform f~amgN�1m=0 of a sequence famgN�1m=0 (where N = 2k) is de�ned as[~a0; ~a1; : : : ; ~aN�1]T =Hk � [a0; a1; : : : ; aN�1]T :Now, the main reason that we introduce the Hadamard matrix here, is that it has turned out to be veryuseful for VQ-description. To see this, consider a general vector valued function f : f0; 1; : : : ; N�1g ! Rdwhere the domain is an integer set. Such a function can always be represented as f(n) = F � hn; n =0; 1; : : : ; N�1, where hn is the nth column of an N by N Hadamard matrix H, and F is a real transformmatrix. The matrix F is obtained as F = N�1[f(0) f(1) � � � f(N � 1)] �H. In the special case wheref represents the encoder centroids, ci = E[XjI = i], of a VQ we get the representation, ci = T � hi.Hence, we obtain an e�cient way of describing the mapping from the individual bits of the index i tothe corresponding encoder centroid. This representation for the encoder centroids is the key to many ofthe results of the paper. Besides for the representation of VQ centroids the Hadamard representationcan be applied to describe the channel signals of the L-dimensional AWGN channel. Given a �nite setfsigN�1i=0 of L-dimensional channel vectors si we can use the Hadamard matrix to express these signals as28



si = K � hi. This is a useful representation since it gives the relationship between the bits of the index iand the transmitted signal. The received signal R then becomes R = K � hi +W where W is white andGaussian.Appendix B: Proof of Theorem 2The vector p̂(r) can be expressed asp̂(r) = PN�1i=0 hifRjI(rji)PN�1j=0 fRjI(rjj) = PN�1i=0 hi exp ��(2�2W )�1jjKhi � rjj2�PN�1j=0 exp [�(2�2W )�1jjKhj � rjj2]= PN�1i=0 hi exp ��(2�2W )�1(2hTi KT r� jjsijj2)�PN�1j=0 exp ��(2�2W )�1(2hTj KT r� jjsj jj2)� = PN�1i=0 hi exp ��(2�2W )�1hTi (2KT r� g)�PN�1j=0 exp ��(2�2W )�1hTj (2KT r� g)�where we have canceled common terms and utilized the Hadamard expansions for si and jjsijj2. Now, con-sider the function, exp ��(2�2W )�1hTi (2KT r� g)�. It has the form, exp(�1x1) exp(�2x2) � � � exp(�NxN ),where �n 2 f�1g. It is straightforward to show that, exp(�x) = cosh(x)[1 + � tanh(x)], for � 2 f�1gand any real number x. Thus, using the notation �n = tanh[r0n=(2�2W )], where r0n = f2KT r � ggn, wehave p̂(r) = PN�1i=0 hi(1 + h0(i)�0) � � � (1 + hN�1(i)�N�1)PN�1j=0 (1 + h0(j)�0) � � � (1 + hN�1(j)�N�1) = PN�1i=0 hi~hTi q(r)PN�1j=0 ~hTj q(r)where ~hi = 264 1hN�1(i)375
 � � � 
 264 1h0(i)375 ; q(r) = 264 1�N�1375
 � � � 
 264 1�0375 :Noting that ~hi can be written ~hi = Fhi, F 2 R2N�N , we havep̂(r) = PN�1i=0 hihTi � FTq(r)PN�1j=0 hTj �FTq(r) = FTq(r)fFTq(r)g0where we have used that PN�1i=0 hihTi = NI and PN�1i=0 hTi = N [1; 0; : : : ; 0]. Since the term fFTq(r)g0is common among the numerator and the denominator in (8) when the expression for p̂(r) is applied, wehave that ĥ(r) = RhhFTq(r)mThFTq(r) :Thus, Theorem 2 follows.
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Appendix C: Derivation of the Decoding AlgorithmSince mTh p̂(r) = ff(r)g0, where f(r) = Rhhp̂(r), we con�ne this discussion to the computation off = f(r). Hence, we want to derive an algorithm for the calculation of the vector f for a VQ having sizeN = 2k and index probabilities fPigN�1i=0 . Now, let fn(j) denote the vector f for a VQ having arbitrarysize 2n; n � k, and probabilities fPj ; Pj+1; : : : ; Pj+2n�1g, j � 2k � 2n. Also leth(n)i = 264 1bn(i)375
 � � � 
 264 1b1(i)375 ; 0 � i � 2n � 1that is, h(n)i denotes the ith column of a size 2n by 2n Hadamard matrix, and letp̂(n) = 264 1b̂(rn)375
 � � � 
 264 1b̂(r1)375 :Then we havef = fk(0) = "N�1Xi=0 Pih(k)i (h(k)i )T# p̂(k)= 8><>:N�1Xi=0 Pi 264 1 bk(i)bk(i) 1 375
 h(k�1)i (h(k�1)i )T9>=>;8><>:264 1b̂(rk)375
 p̂(k�1)9>=>;= 8><>:N�1Xi=0 Pi 264 1 bk(i)bk(i) 1 375264 1b̂(rk)3759>=>;
 nh(k�1)i (h(k�1)i )T p̂(k�1)o= 2641 + b̂(rk)b̂(rk) + 1375
 N=2�1Xi=0 Pih(k�1)i (h(k�1)i )T p̂(k�1) + 2641� b̂(rk)b̂(rk)� 1375
 N�1Xi=N=2Pih(k�1)i (h(k�1)i )T p̂(k�1)= 2641 + b̂(rk)b̂(rk) + 1375
 fk�1(0) + 2641� b̂(rk)b̂(rk)� 1375
 fk�1(N=2):Consequently, the computation of f = fk(0) can be subdivided into the calculation of fk�1(0) andfk�1(N=2). This proves the recursion of (18) (where we used a somewhat di�erent notation). Thealgorithm is initialized by assigning f0(i) = [Pi]; i = 0; 1; : : : ; N � 1.References[1] C. E. Shannon, \A mathematical theory of communication," Bell System Technical Journal, vol.27, no. 3 and 4, pp. 379{423 and 623{656, July and Oct. 1948.[2] C. E. Shannon, \Coding theorems for a discrete source with a �delity criterion," in IRE NationalConvention Record, 1959, pp. 142{163.[3] J. G. Dunham and R. M. Gray, \Joint source and noisy channel trellis encoding," IEEE Transactionson Information Theory, vol. 27, no. 4, pp. 516{519, July 1981.30
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