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Abstract

Context-dependent phone models are used in modern speech

recognition systems to account for co-articulation effects. Due

to the vast number of possible context-dependent phones, state-

tying is typically used to reduce the number of target classes for

acoustic modeling. We propose a novel approach for state-tying

which is completely data dependent and requires no domain

knowledge. Our method first learns low-dimensional embed-

dings of context-dependent phones using deep canonical cor-

relation analysis. The learned embeddings capture similarity

between triphones and are highly predictable from the acous-

tics. We then cluster the embeddings and use cluster IDs as tied

states. The bottleneck features of a DNN predicting the tied

states achieve competitive recognition accuracy on TIMIT.

Index Terms: context-dependent phone embeddings, deep

canonical correlation analysis, state-tying

1. Introduction

In most typical speech recognition systems, the states used in

recognition correspond to clusters of tied context-dependent

sub-phonetic triphone states. Each such clustered state is as-

sociated with a target of a deep network classifer (DNN, CNN,

RNN, etc.) or a Gaussian mixture model (GMM) observation

density. The state clustering is done in order to handle the very

large number of possible triphone states, some of which occur

too infrequently for robust training.

Decision tree state tying [1] is one approach for state clus-

tering that has stood the test of time, and is still currently be-

ing used in popular speech recognition systems [2]. Every sub-

phonetic state is assigned a cluster according to the trained deci-

sion tree, and every state within a cluster shares the same DNN

target or GMM. The tree is typically trained by maximizing the

likelihood of the data under a model where each leaf’s density

is Gaussian, subject to a stopping condition on likelihood in-

crease and/or cluster occupancy. At each step of decision tree

construction, a tree leaf is split by asking a question about a

property of the leaf, such as the identity of the left or right con-

text phones, their phonetic features, or their membership in ad

hoc phone subsets. The set of questions might themselves be

constructed by a clustering procedure, as in the Kaldi toolkit [2].

In this paper, we revisit the state tying problem from a

new perspective. The idea relies on learning low-dimensional

embeddings of the triphone labels that capture the semantics

of the label space, and then cluster those embeddings with a

simple vanilla clustering such as K-means. The algorithm we

use to learn the embedding is deep canonical correlation analy-

sis [3, 4], which projects acoustic inputs and triphone labels into

a common subspace using deep neural networks (DNNs), such

that the projections are maximally correlated, i.e. are predic-

tive from each other. As a result, the triphones that are acous-

tically similar (according to the learned deep neural network)

are mapped to similar locations in the embedding space. We

then simply perform K-means clustering in the label embed-

ding space and use each resulting cluster of triphone labels as

a tied state. Our approach is completely data dependent and

requires no domain knowledge. We demonstrate our state ty-

ing approach on the TIMIT dataset [5], and find that bottleneck

features trained to predict our tied states achieve comparable

phone error rates to a standard DNN/HMM system, while using

a much smaller number of tied triphone states.

2. Label embedding via deep CCA

We first review deep canonical correlation analysis (deep CCA),

which has been one of the most successful methods for unsu-

pervised learning of representations (features) from multi-view

data for a variety of tasks [3, 6, 7, 8].

In the multi-view representation learning setting, we have

access to different types of measurements of the same under-

lying signal during representation learning. If the views pro-

vide complementary information, learning compact represen-

tations from the multi-view data can capture useful informa-

tion provided about each view by the other view (“soft super-

vision”) or remove uncorrelated noise from the original input

measurements. This approach has been applied to multi-view

data such as audio+articulation [9, 4], audio+video [10, 11], im-

ages+text [12, 13, 8], and multilingual text [14, 15, 16, 17, 7].

Unlike previous work that uses deep CCA for unsupervised

feature learning [4], here we work in a supervised setting and

learn low-dimensional representation of the labels. That is, we

consider the two views to be the acoustic inputs and the tri-

phone state labels. Formally, the training data consist of pairs

of observations {(xi,yi)}
N
i=1, where xi ∈ R

Dx and yi ∈ R
Dy

represent acoustic features computed over one frame and the

properly encoded triphone label for that frame. We also denote

X = [x1, . . . ,xN ], Y = [y1, . . . ,yN ].
In deep CCA, we use two deep neural networks (DNNs)

f : RDx → R
dx and g : RDy → R

dy to transform the view

1 and view 2 inputs respectively, such that the canonical corre-

lation between the outputs of the DNNs, measured by CCA, is

maximized. The objective of CCA is to find L ≤ min(dx, dy)
pairs of linear projection vectors U ∈ R

dx×L and V ∈ R
dy×L

such that the projections of each view are maximally correlated

with their counterparts in the other view, constrained such that

the dimensions in each view are uncorrelated with each other.

Therefore, the objective of deep CCA can be written as

max
Wf ,Wg,U,V

1

N
tr
(

U
⊤
f(X)g(Y)⊤V

)

(1)

s.t.
1

N
U

⊤(f(X)f(X)⊤)U =
1

N
V

⊤(g(Y)g(Y)⊤)V = I,

where f(X) = [f(x1), . . . , f(xN )] ∈ R
dx×N , g(Y) =

[g(y1), . . . ,g(yN )] ∈ R
dy×N . (We assume that f(X) and
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Figure 1: Schematic diagram of state tying with deep CCA-based label embeddings.

g(Y) are centered at the origin for notational simplicity; in

practice, we perform a centering operation for computing the

objective.) The parametric form of deep CCA makes it faster

to train and test for data sets of reasonable size for speech

tasks than the kernel extension of CCA [18]. The final CCA

features (projections) are f̃(x) = U⊤f(x) for view 1 and

g̃(y) = V⊤g(y) for view 2.

To get some intuition for this approach, note that the CCA

objective is equivalent to a constrained regression problem. By

switching max(·) with min−(·), and adding 1/2 times the con-

straints, we observe that (1) is equivalent to the following ob-

jective:

min
U,V

1

2N

N
∑

i=1

∥

∥

∥
f̃(xi)− g̃(yi)

∥

∥

∥

2

s.t.
1

N

N
∑

i=1

f̃(xi)f̃(xi)
⊤ =

1

N

N
∑

i=1

g̃(yi)g̃(yi)
⊤ = I.

That is, CCA minimizes the distance between the projections

of the two views, subject to the whitening constraints. This is

our first motivation for learning triphone embeddings with deep

CCA: The deep CCA objective ensures that the triphone em-

beddings are highly predictable from the acoustic inputs trans-

formed by DNNs, while the constraints encourage each learned

dimension to add new information. It has been validated em-

pirically that the uncorrelatedness constraints are crucial to the

good performance of CCA-based feature learning [6].

Another motivation is the successful application of CCA-

based methods in the supervised learning setting in prior work.

First, it is known that for multi-class classification problems

where the two views are inputs and target labels, CCA is equiva-

lent to linear discriminant analysis when the labels are encoded

as one-hot vectors [19]. Second, for multi-label classification

problems where the label for each input contains a subset of

relevant classes, the CCA projections for labels can capture the

label correlations [20]. For our application, the triphone labels

have a clear structure: there are really 3 labels for each input

frame, namely, the phone (state) for the current frame and the

previous and next phones in the utterance. Therefore, learning

triphone label embeddings with deep CCA should allow us to

exploit the correlation between each phone and its context.

3. State tying

Figure 1 provides a schematic diagram of our approach to label

embedding and state tying.

3.1. Learning triphone embeddings

We learn the triphone embeddings on the TIMIT dataset [5],

using the standard training set with the typical 61 phone labels.

For deep CCA, the acoustic view inputs are based on 13-

dimensional mel-frequency cepstral coefficients (MFCCs) com-

puted every 10ms over a 25ms window, along with their first

and second derivatives, resulting in 39-dimensional frames.

Per-utterance cepstral mean normalization (CMN) is performed

when extracting MFCCs. To incorporate context information

for the acoustics inputs, we further concatenate the MFCCs over

a 15-frame window around each frame. No speaker information

is used in our experiments.

The second view inputs for deep CCA are triphone labels

obtained as follows. We first divide each phone segment in the

manually labeled training data into three sub-segments, whose

lengths are 30%/40%/30% of the original segment. We then

assign a label of the form ‘<phone>-begin’, or ‘<phone>-

middle’, or ’<phone>-end’ to this frame. This gives 61× 3 =
183 possible (central) labels for each frame, whose purpose is

to mimic the 3 states used by typical ASR systems. (An al-

ternative would be to use an alignment produced by a baseline

system. Our approach avoids dependence on any particular sys-

tem.) We then find for each frame its previous and next phone

in the utterance. The final input to deep CCA for each frame is

the combined ‘previous label’ (61 classes) + ‘central label’ (183

classes) + ‘next label’ (61 classes). We represent each compo-

nent with a one-hot vector, so the second view inputs are 305-

dimensional binary vectors where precisely 3 dimensions are

1.

This coding scheme has certain advantages over potential

alternatives. First, there are 67554 unique triphone labels in

the training set. Our 305-dimensional coding scheme is much

more compact than a 67554-dimensional one-hot representa-

tion, with a correspondingly smaller number of parameters in

the DNN g. Second, unlike a one-hot coding, our approach ad-

dresses the problem of unseen triphone labels; as long as all in-

dividual phones are seen in training, all possible triphones will

have a parametrically defined embedding. Finally, in our struc-

tured coding scheme, each phone has different representations

depending on its location in the triphone (previous phone, center

state, or next phone). The final triphone embeddings are com-

positions of such location-dependent representations, which are

sensitive to the different effects of the same phone in different

roles.

Our view 1 network f has three hidden layers of 2048 Re-

LUs each [22]. The view 2 network g’s architecture (depth

and hidden layer width) is tuned over a coarse grid; the best-

performing architecture has three hidden layers of 1024 ReLUs

3445



em-aa1-axr

m-aa1-dcl
m-aa1-fm-aa1-l

m-aa1-nm-aa1-nx
m-aa1-q

m-aa1-th

b-aa2-r

f-aa2-r

h#-aa2-r

hv-aa2-r

m-aa2-r

pau-aa2-r

q-aa2-er

t-aa2-r

axr-aa1-bcl

axr-aa2-kcl

er-aa2-s

r-aa1-kclr-aa1-pcl

r-aa2-bcl
r-aa2-l

r-aa2-zh

ao-aa3-v

f-aa3-v

iy-aa3-dcl

l-aa3-zh

p-aa3-dx

r-aa3-dcl

t-aa3-bcl

y-aa3-tcl

ao-aa2-v

d-aa2-n

h#-aa2-n

k-aa2-ng

n-aa3-y

q-aa2-l

t-aa2-n

z-aa2-nx

ao-aa1-v

l-aa1-n

l-aa2-kcl

ow-aa1-l

uw-aa1-n

w-aa1-l

w-aa2-dx

w-aa2-z

axr-aa3-n

d-aa3-nx

hh-aa3-nx

k-aa3-nx
n-aa3-nxr-aa3-m

uw-aa3-n

z-aa3-nx

epi-aa1-ls-aa1-dcl

s-aa1-gcl

s-aa1-n

s-aa1-zh
z-aa1-dcl

z-aa1-gcl
z-aa1-m

z-aa1-r

f-aa1-axr

f-aa1-v

hh-aa1-q

hv-aa1-h#

p-aa1-dcl

p-aa1-pcl

t-aa1-dcl

v-aa1-dx

b-aa3-s
el-aa3-z

g-aa3-sh

iy-aa3-thm-aa3-f

p-aa3-s

r-aa3-sh
w-aa3-z

axr-aa3-kcl
d-aa3-kcl

iy-aa3-kcl

m-aa3-kcl

p-aa3-tcl

s-aa3-kcl

ux-aa3-kcl

b-aa1-ao
b-aa1-dh

b-aa1-hv

b-aa1-l

b-aa1-n

b-aa1-nx
b-aa1-rb-aa1-tcl

h#-aa1-bclh#-aa1-rpau-aa1-r

q-aa1-bcl

q-aa1-dx
q-aa1-gcl

q-aa1-m

q-aa1-pclq-aa1-tcl

ax-aa1-r

dx-aa2-r

gcl-aa3-r

iy-aa1-r

n-aa2-axr

sh-aa1-dx

v-aa1-ix
z-aa2-rbcl-aa1-dx

d-aa1-nx

dx-aa1-f

n-aa1-bcl

n-aa1-l

n-aa1-s

ng-aa1-r

nx-aa1-w

g-aa1-bcl
g-aa1-qg-aa1-tcl

k-aa1-dx

k-aa1-l

k-aa1-ng

k-aa1-q

k-aa1-tcl

t-aa1-n

b-aa3-pcl

d-aa3-pcl

k-aa3-pcl

m-aa3-pcl
ow-aa3-pcl

q-aa3-pcl

sh-aa3-pcl

w-aa3-pcl

b-aa2-bcl
dx-aa2-th

hv-aa2-q

k-aa2-pcl

n-aa2-q

q-aa2-dx

t-aa2-dcl

z-aa2-f

’aa’, # training frames=27566, # clusters=18

axr-ae1-f

er-ae1-l

r-ae1-dcl

r-ae1-l

r-ae1-pcl

r-ae1-v

r-ae2-dx

r-ae2-s

ay-ae1-l

d-ae2-l

en-ae3-l

h#-ae2-l

ih-ae2-l

m-ae2-l

q-ae3-l

t-ae2-l

axr-ae3-f

b-ae3-th

f-ae3-s

ih-ae3-f

l-ae3-s

nx-ae3-th

r-ae3-f

t-ae3-s

aw-ae2-kcl

b-ae2-kcl

el-ae2-kcl

iy-ae2-kcl

l-ae2-kclow-ae2-kclq-ae2-kcl
t-ae2-kclv-ae2-kcl

ay-ae3-n

dx-ae3-nx

h#-ae3-n

jh-ae3-n

n-ae3-m

pau-ae3-n

sh-ae3-m y-ae3-m

ay-ae3-pcl
f-ae3-bcl

hh-ae3-bcl
hv-ae3-tclk-ae3-tcl

n-ae3-tcl

r-ae3-bcl
uw-ae3-pcl

ch-ae1-dx
jh-ae1-bcljh-ae1-n

s-ae1-kcl

s-ae1-ng

sh-ae1-dx

sh-ae1-m

z-ae1-n

aw-ae3-kcl
b-ae3-kclel-ae3-kcl

iy-ae3-kcl

l-ae3-kcl
ow-ae3-kclq-ae3-kclt-ae3-kclv-ae3-kcl

ay-ae1-kcl

dx-ae2-dx

h#-ae2-tcl

iy-ae2-bcl

m-ae2-gcl

pau-ae2-zh

t-ae2-epi

z-ae2-gcl

ch-ae3-z
epi-ae3-z

f-ae3-zhh-ae3-zk-ae3-z
q-ae3-z

v-ae3-z

f-ae1-bcl

k-ae1-fk-ae1-pclk-ae1-v

p-ae1-kcl

t-ae1-ch

t-ae1-kclt-ae1-sh

m-ae1-dcl
m-ae1-fm-ae1-kclm-ae1-m

m-ae1-ng

m-ae1-pclm-ae1-sm-ae1-tclm-ae1-zh
b-ae3-sh
dx-ae3-sh

ey-ae3-sh

f-ae3-shg-ae3-sh
k-ae3-sh

l-ae3-sh

m-ae3-shn-ae3-sh
q-ae3-sh

r-ae3-sh

t-ae3-sh

d-ae1-dcl
dh-ae1-dx

dx-ae1-l

g-ae1-ax
g-ae1-tcl

n-ae1-r

th-ae1-lv-ae1-z

ay-ae3-gcl

dx-ae3-dxhv-ae3-dh

l-ae3-tcl

ow-ae3-gclr-ae3-gcl

t-ae3-epi

z-ae3-dcl

h#-ae1-bcl

h#-ae1-q

h#-ae2-n

pau-ae1-nx

q-ae1-dx

q-ae1-n

q-ae1-sq-ae1-zh

ay-ae1-f

ey-ae1-m

hh-ae3-ax

iy-ae2-m

m-ae2-m

p-ae3-axr

t-ae2-n

epi-ae1-z

f-ae1-z
hh-ae1-f

hh-ae1-pcl

hv-ae1-bcl

hv-ae1-n

hv-ae1-tcl

p-ae1-r

aw-ae1-kcl

l-ae1-bcl
l-ae1-kcl
l-ae1-pcl

l-ae2-dx

uw-ae1-dcl

w-ae1-kcl

b-ae1-bclb-ae1-dclb-ae1-dxb-ae1-f
b-ae1-gcl
b-ae1-kcl

b-ae1-l

b-ae1-n
b-ae1-ng

b-ae1-s
b-ae1-sh

b-ae1-tclb-ae1-th

’ae’, # training frames=31003, # clusters=20

ao-ah2-dcl

dh-ah2-dcl

g-ah3-tcl
k-ah3-dx

m-ah3-gcl

pau-ah3-tcl

sh-ah3-dx

z-ah3-dcl

ae-ah1-m

dh-ah1-tcl

ey-ah2-v

hh-ah3-ix

l-ah1-qow-ah2-v

sh-ah2-tcl

z-ah3-f

ao-ah2-s

aw-ah3-z

dx-ah3-z
hh-ah3-z

k-ah3-z
n-ah3-z

r-ah3-z

w-ah3-s

b-ah1-bclb-ah1-dxb-ah1-f
b-ah1-hvb-ah1-l
b-ah1-n

b-ah1-q

b-ah1-sb-ah1-tcl

b-ah1-z

epi-ah1-n

s-ah1-fs-ah1-pcl

s-ah1-tcl

z-ah1-bcl

z-ah1-hv

z-ah1-nx

z-ah1-v

em-ah1-n

m-ah1-f
m-ah1-s

m-ah2-l

n-ah1-bcl
n-ah1-pau

n-ah2-l

nx-ah1-nx

s-ah2-bcl

s-ah2-f

s-ah2-pcl

s-ah2-sh

z-ah2-bclz-ah2-f

z-ah2-n

z-ah2-s

ao-ah3-s

dh-ah3-sg-ah3-shk-ah3-shn-ah3-s

r-ah3-s

t-ah3-shz-ah3-s

ch-ah1-dh

d-ah1-s

g-ah1-tcl

jh-ah1-m

k-ah1-pcl

p-ah1-pcl

t-ah1-dx

th-ah1-nx

axr-ah3-pcld-ah3-pcler-ah3-pcl

l-ah3-kcl

nx-ah3-kcl
q-ah3-pclsh-ah3-kcl

v-ah3-pcl

ae-ah2-m
dh-ah3-m

f-ah3-m

hv-ah3-ng

l-ah2-n

p-ah2-m
t-ah2-n

y-ah2-ng

axr-ah1-pcl

er-ah1-s

r-ah1-bcl

r-ah1-l

r-ah1-q

r-ah2-bcl

r-ah2-l

r-ah2-s
el-ah1-kcl

l-ah1-gcl

l-ah1-tcl
uw-ah1-l

w-ah1-dxw-ah1-nx

w-ah2-dx

w-ah2-q

’ah’, # training frames=20053, # clusters=13

aa-ao3-tcl
em-ao3-kcl

hh-ao3-nx

k-ao3-tcl

nx-ao3-bcl

r-ao3-dx

t-ao3-kcl

z-ao3-nx

b-ao2-r

hh-ao2-axrhv-ao2-r

m-ao2-axr pau-ao2-axr
q-ao2-r

w-ao1-axrw-ao1-r

w-ao2-er

b-ao1-ah

b-ao1-bcl

b-ao1-dx

b-ao1-gclb-ao1-l
b-ao1-n

b-ao1-q

b-ao1-r

b-ao1-s

b-ao1-tcl
b-ao1-th

bcl-ao1-l
dx-ao1-pau

g-ao1-nx

k-ao1-ax

m-ao1-en n-ao1-tcl

t-ao1-kcl

v-ao1-tcl

ax-ao2-r

el-ao1-r
f-ao2-y

ix-ao2-r
nx-ao2-r

r-ao2-r

th-ao1-axr

axr-ao3-f

dx-ao3-th
f-ao3-s

l-ao3-f

n-ao3-s

q-ao3-t

t-ao3-s

w-ao3-f

f-ao1-axrf-ao1-r

epi-ao1-aw

s-ao1-ah
s-ao1-dxs-ao1-ih
s-ao1-ms-ao1-q

s-ao1-y

z-ao1-n

z-ao1-w

aa-ao1-l

er-ao2-l

h#-ao2-l

l-ao3-l

pau-ao1-q

q-ao1-t

sh-ao3-l

z-ao3-lax-ao3-r
dx-ao3-rh#-ao3-axriy-ao3-r

m-ao3-axr
pau-ao3-axr

t-ao3-r

y-ao3-axr

f-ao2-axrf-ao2-rp-ao2-er

ax-ao1-r

axr-ao2-n

ih-ao1-axr

iy-ao1-n

r-ao1-ix

r-ao1-v

ux-ao1-l

y-ao2-w
ch-ao1-kcl

ch-ao1-vjh-ao1-axr

jh-ao1-dxjh-ao1-n

jh-ao1-r

sh-ao1-ix
sh-ao1-n

sh-ao1-q

zh-ao1-dx

aw-ao1-n

l-ao1-ml-ao2-dcll-ao2-th

uw-ao1-dx

w-ao1-kcl

w-ao2-dxw-ao2-th

aa-ao1-tcl
dx-ao2-pau

hh-ao2-s

l-ao2-pau

p-ao2-z

s-ao2-ix
t-ao2-s

’ao’, # training frames=22735, # clusters=15

ao-t1-ow

h#-t1-w

kcl-t1-ix

n-t1-ix

pcl-t1-er

tcl-t1-em
tcl-t1-pau

ux-t1-hh

b-t2-r

dcl-t2-axr

dcl-t2-rh#-t2-r

kcl-t2-er

n-t2-r

pau-t2-r
pcl-t2-r

s-t2-r

tcl-t2-er
bcl-t1-ax

dcl-t1-ix

h#-t1-ao

h#-t1-uh

pau-t1-aa

pcl-t1-ey

tcl-t1-ay

tcl-t1-uh

bcl-t3-ay

dcl-t3-ao
gcl-t3-aa

h#-t3-ah

h#-t3-ay

kcl-t3-ah

pau-t3-aytcl-t3-aa

tcl-t3-ao

tcl-t3-ay

bcl-t2-ay
dcl-t2-aa

dcl-t2-ay
gcl-t2-aa

h#-t2-aah#-t2-aypau-t2-aa

pau-t2-ay

tcl-t2-aa
tcl-t2-ay

bcl-t3-ax

dcl-t3-uw
h#-t3-ix

ix-t3-uw

kcl-t3-ux
pau-t3-ux

pcl-t3-y

tcl-t3-ixtcl-t3-y

dcl-t2-s

eh-t2-s

eh-t3-s

en-t2-s

n-t2-s

tcl-t1-s

tcl-t2-s

tcl-t2-sh
tcl-t3-s

tcl-t3-sh

bcl-t2-ey

h#-t2-aeh#-t2-ey

kcl-t2-aw

pau-t2-eh
pcl-t2-eh

tcl-t2-ao

tcl-t2-ow

b-t3-r

dcl-t3-axr

dcl-t3-rh#-t3-r

kcl-t3-er

n-t3-axr

pau-t3-er
pcl-t3-er

s-t3-r

tcl-t3-er

dcl-t2-ax-h

kcl-t2-dh

kcl-t3-hh

pcl-t1-h#

pcl-t3-h#

tcl-t2-kcl

tcl-t3-epi

tcl-t3-v

bcl-t2-axdcl-t2-uw

h#-t2-ix

ix-t2-uw

kcl-t2-ux
pau-t2-ux

pcl-t2-y

tcl-t2-ix

tcl-t2-y

ao-t2-ow

dcl-t3-eyh#-t3-ey
kcl-t3-eh

pau-t2-w

pcl-t3-ehtcl-t3-eh

tcl-t3-w

’t’, # training frames=19145, # clusters=12

aa-m3-bcl
ah-m3-f

ax-m3-hh
eh-m3-bcl

ey-m3-dcl

ix-m3-dcliy-m3-v

uw-m3-epi

aa-m2-ahah-m2-dh
aw-m2-eh

axr-m2-ax
el-m2-ae

l-m2-axr-m2-ax

uw-m2-l

aa-m1-bcl

ae-m1-y

ax-m1-dh

ay-m1-h#

eh-m1-q

ih-m1-s

ow-m1-epi

ux-m1-z

bcl-m2-ah

h#-m1-ao

h#-m2-eh
h#-m3-ey

pau-m1-ah

pau-m2-ow

sh-m3-ah

z-m3-eh

aa-m2-aaax-m2-ah
axr-m2-ay

en-m2-aa

ey-m2-ay
iy-m2-aaow-m2-aoux-m2-aa

ax-m2-ae

en-m1-ow

gcl-m1-ao ix-m2-ax

iy-m2-ey
n-m1-er

oy-m2-ix

aa-m3-ax

ax-m3-wdcl-m1-iy

ey-m3-uw

kcl-m2-ax

pcl-m3-ix

tcl-m1-iy

z-m3-ix

aa-m3-aa
ax-m3-ay

dcl-m3-ow

er-m3-oyiy-m3-aa

n-m3-ow

r-m3-aw

v-m3-aa

aa-m3-ehaxr-m3-ix

el-m3-ehih-m3-ey

kcl-m3-er

ow-m3-ae

sh-m3-eh

v-m3-uw

aa-m2-zah-m3-zay-m2-s
eh-m3-z

ih-m2-s

iy-m2-t

ow-m3-s
ux-m3-s

aa-m1-aa

ah-m1-ih

ax-m1-aoaxr-m1-ah
eh-m1-ow

er-m1-oy

ow-m1-ix

uh-m1-ix

ae-m1-iy

ey-m1-axr

ih-m1-ao
ix-m1-aaix-m1-oy

iy-m1-ey

uw-m1-ix

y-m1-ey

ax-h-m2-ae

epi-m1-eh

epi-m2-ahepi-m2-uh

s-m1-ow

t-m1-ao

z-m1-ay

z-m2-ih

aa-m2-bclah-m2-h#

ax-m3-h#

eh-m2-h#

ey-m2-h#

ix-m2-th

ow-m2-epi

’m’, # training frames=22339, # clusters=14

Figure 2: 2D t-SNE [21] visualization of triphone embeddings (subsampled to avoid clutter). Each color represents a cluster.
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Table 1: Test phone error rates (PER, %) obtained with MFCC inputs and with bottleneck features of DNNs predicting deep CCA tied

states and decision tree tied states.

Features mono PER tri1 PER dnn PER

MFCCs (2500 states) 35.9 30.4 22.3

Bottleneck, decision tree tying (2500 states) 23.9 20.9 19.3

Bottleneck, Deep CCA tying (735 states) 23.6 20.2 19.2

each. The output layer width for both networks, or the dimen-

sionality of triphone embeddings, is tuned over {64, 128}; 128
tends to perform better and we use this dimensionally in all re-

maining experiments. Our tuning criterion is the recognition

performance of a tandem system (described in Section 3.3) on

the TIMIT held-out dev set. We use the stochastic training algo-

rithm of deep CCA [4] with a minibatch size of 8000, learning

rate of 0.01, and momentum of 0.99. Training typically con-

verges fairly quickly, after roughly 10 epochs.

3.2. Clustering

After training the deep CCA networks, we obtain a 128-

dimensional embedding of all 67554 triphones. We now need

to categorize the triphone states into a manageable number of

groups, such that each group has sufficient training frames for

acoustic modeling.

This is achieved by the following clustering process. For

each of the 61 phones, we collect embeddings of triphones for

which the phone appears as the ‘central label’. Then we repli-

cate each embedding as many times as the corresponding tri-

phone appears in the training set; this ensures that the relative

frequency of each triphone is taken into account during cluster-

ing. Finally, we perform K-means clustering on the replicated

set of embeddings for each central phone. The triphones in each

cluster therefore share the same central phone. This mimics the

typical practice of learning separate clustering trees for each

phone, but in principle it need not be the case. The number of

clusters K is simply set to

K ← ⌈
#training frames with the same central phone

p
⌉

p is tuned over {400, 800, 1000, 1600}, resulting in a total

number of clusters of 2786, 1434, 1156, and 735 respectively.

In the recognition experiments below, we find that 1156 and

735 clustered states achieve the best performance.

Figure 2 provides 2D visualizations (via t-SNE [21]) of the

label embeddings for triphones associated with two of the cen-

tral phones, with colors indicating cluster identity. These visu-

alizations demonstrate that the learned embeddings and clusters

group the labels in intuitive ways, with contexts that we might

expect (from linguistic considerations) to have similar effects

typically being clustered together.

3.3. Recognition

Here we use a simple protocol for evaluating the learned em-

beddings and state tying. We train a frame classifier DNN with

a bottleneck layer to predict the tied states (clusterID) from the

acoustic inputs, and then use the bottleneck features for recog-

nition. The DNN has 3 hidden layers of 3000 ReLUs each,

followed by a linear bottleneck layer of 128 units, and a final

softmax output layer of 735 units. It has been shown that having

a linear bottleneck prior to the softmax layer causes little degra-

dation in classification and recognition performance [23, 24].

The DNN is trained with the cross-entropy objective using sto-

chastic gradient descent, with a minibatch size of 256, an ini-

tial learning rate of 0.01 which is halved every time the dev

set frame error rate increases, for a maximum of 30 epochs.

Dropout training [25] with a rate of 0.5 is used at all ReLU

hidden layers.

For comparison, we train a DNN of the same architecture

to predict the triphone state alignments produced by a standard

Kaldi [2] tri1 HMM-GMM system, which has 2500 leaves in

the decision trees. Both sets of bottleneck features are further

reduced to a lower dimensionality by PCA (with dimensional-

ity tuned on the dev set) and fed to a modified Kaldi TIMIT

recipe with the pipeline mono → tri1 → dnn, again not

using any speaker information. These initial experiments were

designed to allow quick tuning and experimentation, but many

alternatives for experimental comparison are possible and are

the subject of future work.

Phone error rates (PERs, %) obtained by both bottleneck

features and MFCCs on the test set are reported in Table 1. We

observe that both types of bottleneck features significantly out-

perform the MFCC features. While the two types of bottleneck

features achieve about the same accuracy, our method uses a

much smaller number of states.

4. Conclusions

We have proposed a completely data-dependent approach for

triphone state tying, based on low-dimensional triphone label

embeddings learned by deep canonical correlation analysis. We

have shown that our triphone clusters are suitable targets for

acoustic modeling, and lead to competitive phone recognition

performance while using a smaller number of clusters.

There are many directions for going beyond these initial ex-

periments. To fully exploit the power of our state tying, we will

use the tied states in a hybrid approach, i.e., instead of using

the bottleneck features of DNN classifiers predicting the cluster

ID, we could directly use the predicted posterior probabilities,

together with suitable transition probabilities between the clus-

ters or states, for decoding.

There are also many potential variants of the approach that

can be explored. For example, any clustering can be applied

instead of simple K-means. A hierarchical clustering may be

appropriate, and may also hold independent interesting as a way

of learning the structure in a speech data set. We can also con-

sider different alternatives for the initial structured coding of the

labels, such as including binary phonetic feature encodings of

the central and context phones; this would bring back some of

the flavor of typical decision tree questions, while being learned

in a more discriminative way governed by the CCA objective.
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