
Visfer: Camera-Based Visual Data
Transfer for Cross-Device Visualization

Information Visualization
XX(X):1–19
©The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Sriram Karthik Badam and Niklas Elmqvist

Abstract
Going beyond the desktop to leverage novel devices—such as smartphones, tablets, or large displays—for visual
sensemaking typically requires supporting extraneous operations for device discovery, interaction sharing, and view
management. Such operations can be time-consuming and tedious, and distract the user from the actual analysis.
Embodied interaction models in these multi-device environments can take advantage of the natural interaction and
physicality afforded by multimodal devices and help effectively carry out these operations in visual sensemaking. In this
paper, we present cross-device interaction models for visualization spaces, that are embodied in nature, by conducting
a user study to elicit actions from participants that could trigger a portrayed effect of sharing visualizations (and
therefore information) across devices. We then explore one common interaction style from this design elicitation called
Visfer, a technique for effortlessly sharing visualizations across devices using the visual medium. More specifically, this
technique involves taking pictures of visualizations, or rather the QR codes augmenting them, on a display using the
built-in camera on a handheld device. Our contributions include a conceptual framework for cross-device interaction and
the Visfer technique itself, as well as transformation guidelines to exploit the capabilities of each specific device and a
web framework for encoding visualization components into animated QR codes, which capture multiple frames of QR
codes to embed more information. Beyond this, we also present the results from a performance evaluation for the visual
data transfer enabled by Visfer. We end the paper by presenting the application examples of our Visfer framework.

Keywords
Collaborative visualization, cross-device interaction, embodiment, sensemaking, software toolkits

Introduction

Visualization is increasingly spreading to multi-device
settings, where separate devices—such as smartphones,
tablets, laptops, wall displays, and tabletops—are used
to show interactive visual representations.1–3 This is
known as cross-device visualization and is often used for
collaborative sensemaking, where several analysts work
together on a sensemaking task.4 The motivation is simple:
we are surrounding ourselves with an ensemble of digital
devices capable of networking, computation, and high-
performance graphics, and it makes sense to employ all
of these devices for ubiquitous analytics:5 sensemaking
anytime and anywhere. However, even if frameworks for
such ubiquitous analytics are beginning to appear in the
literature,6 building such environments is still challenging
due to the need for fast and efficient methods for device
discovery, view management, and interaction handling.
Furthermore, existing frameworks mostly fail to capture—let
alone leverage—the embodied nature7 of a physical cross-
device visualization space: the fact that the analysts are there,
in situ, in the environment and are navigating physically in
relation to the visualizations and devices.8

The fundamental operation for cross-device sensemaking
activities including device discovery, view management, and
interaction sharing, is the transfer of information9;10 between
devices such as between a wall-mounted display and a
handheld mobile device. For example, view management
can involve transferring a part of the large display to

a small display (as described by Badam et al.9), while
interaction sharing can be seen as capturing activities on
one display and sending the corresponding data bindings
to other displays.6 To develop embodied interactions7 to
carry out this operation, we first elicit interaction designs
through a user study by placing novice computer science
students within fictional visual exploration scenarios. We
present the observations from this design elicitation as a
conceptual framework for cross-device interactions based on
the proximity of devices and the sensemaking task.

A common interaction mechanism for cross-device
visualization from our user study was based on actions
that capture the visual focus of target devices (similar to
taking a picture). Motivated by this, we propose VISFER
(VISualization TransFER): an interaction technique for
cross-device visualization environments through the use of
QR codes decorating each of the component visualizations
within the interface. The idea behind Visfer is simple: the
user can capture a fully functional version of a visualization
from a display to their handheld device simply by taking
a picture of it—or, more specifically, of the QR code
associated with the visualization. This simple physical

University of Maryland, College Park, MD, USA.

Corresponding author:
Sriram Karthik Badam, 2117 Hornbake Building—South Wing, University
of Maryland, College Park, MD 20742, USA.
Email: sbadam@umd.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Information Visualization XX(X)

A B

C

D

Figure 1. The Visfer framework enables transferring visualizations across devices to support cross-device visual sensemaking. (A)
User captures a QR code; (B, C, D) visualizations loaded on personal devices from the large display. Transferred visualizations are
adapted to the target device.

gesture draws upon current common practice for millions
of mobile users—pulling out your phone to take a picture
of something worth remembering, sharing with friends, or
capturing for posterity—that has become a natural part of
the vocabulary of smartphone usage. The gesture is also
popular as a depiction of physical computing in movies such
as Minority Report (2002) and Iron Man (2008). The Visfer
framework, developed around this technique, embeds not
only a URL in the QR code, which is the most common
use for QR codes today, but it also uses the QR code as a
transport layer to transfer visualization source code, pipeline,
and state changes as a result of interaction, over the visual
channel to the target device. This allows the target device
to receive the current state of the captured visualization,
including any filters, selections, or annotations. Finally, the
framework also supports plastic visual representations5 that
can adapt to the capabilities of a device; for example, a node-
link diagram of a social network on a large display can be
automatically aggregated into communities when rendered
on a smartphone display.

We have implemented our Visfer framework as a web
application toolkit in JavaScript that is integrated with the
standard web visualization toolkit D3.11 To enable the
transfer of large amounts of data using QR codes, we propose
the use of animated QR-codes: a QR code with multiple
frames of data that is animated over time,12 increasing the
information-carrying capacity of the code. We implemented
a reader and generator of such animated QR codes as part
of the Visfer framework using animated GIFs, making it
trivially compatible with existing web browsers. As part
of the validation of our toolkit, we tested the performance
of this QR GIF reader, and found an average transfer rate
of more than 500 Bytes/sec for an animated QR code
with 10 fps. While this is not comparable to the typical
network connection bandwidths, we found that this provides
a sufficiently fast visual transfer of information for our
application examples and scenarios.

Overall, the contributions of this paper include,

1. Embodied interactions for transfer-related tasks across
devices during visual sensemaking in multi-device
environments based on a design elicitation study.

2. Visfer framework for camera-based visual data
transfer using QR codes for cross-device visualization
and multiple application examples that take advantage
of this framework.

3. Results from a performance evaluation revealing
the performance of our framework and its effective
bandwidth, as well as a comparison to previous
techniques for visual data transfer.

Usage Scenarios
As Chung et al.13 pointed out, the advantages of cross-
device workspaces include (1) providing additional display
and interaction space to enhance the visual perception
and spatial interaction, (2) supporting collaboration among
users by satisfying their individual analytical processes, and
(3) allowing opportunistic use cases to take advantage of
specific technologies for suitable tasks. There are many
applications for the multi-display environments and cross-
device interaction techniques (e.g., visual data transfer via
QR codes) presented in this paper:

Collaborative Data Analysis in Office Settings
A well-established example for multiple devices in the data
analysis space involves multiple users working together
in the same location.9;13;14 Consider a group of experts
studying traffic flows within a city. Traffic data has multiple
facets with real-time feeds, historical trends, and variable
information such as signals, transit options, and weather.
Modern visualization platforms* that support traffic data
analysis store this data on a server and fetch multiple
visualizations of the data when needed. It is however
challenging to develop insights from this dataset by just
showing these representations on a single interface for a
single analyst. In this scenario, a real-time traffic feed
is presented on a shared large display with contextual
information shown on handheld devices. Analysts can
connect this contextual information, such as weather,
construction activity, and historical/seasonal trends, with
patterns shown on the large display through cross-device
interaction. Furthermore, multiple experts can quickly work
together by focusing on specific geographical regions. They
can take advantage of the visual data transfer mechanism
by taking a picture to quickly extract information from
the shared large display containing the real-time feed and
combine it into the visualization space on their personal
device. They can also use it as a way to share information

∗RITIS: http://www.cattlab.umd.edu/?portfolio=ritis

Prepared using sagej.cls

http://www.cattlab.umd.edu/?portfolio=ritis

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 3

with other analysts surrounding them by just letting
them take a picture with their handheld device. Physical
interactions, involving an explicit action for transferring
information, can help maintain awareness for the analysts
within this co-located space and further help them coordinate
the analysis. For instance, in air traffic control, MacKay15

identified that physical operations on paper strips containing
flight information aid the social processes in a control
room, acting as a means for non-verbal communication,
coordination, and cooperation between controllers.

Dedicated visualization environments also contain user
and device tracking mechanisms that can further help utilize
physical navigation and spatial awareness of the users, and
enable collaborative visual exploration. In such visualization
spaces, the content transferred during visual data transfer
can contain (or link to) the visualizations and the user
interactions during visual exploration.

Casual and Serendipitous Workspaces
These scenarios include opportunistic use of devices to
support collaborative visual analytics.

• Consider a group of business analysts discussing a
planned stock acquisition around the water cooler:
one analyst shows a new projection that she has been
working on her tablet, and the other analysts can
quickly take pictures of the financial visualization to
acquire the new proposal to their smartphones without
having to bother about sharing URLs via email or
instant messaging.

• Consider a casual traveler coming across a retirement
savings visualization on an electronic billboard in
the airport: the traveler can easily grab an interactive
version of it by capturing the QR code without ever
connecting to a remote and untrusted cloud server.

• Consider an interactive installation on urban issues in
a public city square: passing citizens can download
and view interactive visualizations of their local
community merely by snapping pictures of the charts
that interest them, allowing them to study and interact
with the data on their personal devices.

In these public scenarios, there is a need to avoid
logins and going through untrusted sources to download the
content. At the same time, as identified by Isenberg et al.,16

it is not unusual for large groups of people to perform these
interactions in public settings. As such, the user experience
should not be affected (due to delays) in the presence of
multiple users performing the same interaction at the same
time. In such cases, the content transferred during visual data
transfer should be enough to recreate the visualization.

Public Presentations
During a lecture in a classroom or a presentation at a
conference, there are often multiple devices owned by the
audience. The learning experience of the audience can be
enhanced by allowing them to test the content being covered.
For example, a visualization lecture can be made more
engaging by allowing the students to extract a visualization
from the presentation and explore it on their personal device
(e.g., to change the visual representation or add interaction

components to it). With a visual data transfer mechanism for
cross-device interaction, they could just take a picture of the
current slide (by zooming with the camera if needed) and
get the visualization content of the slide directly on their
computer. However, this scenario can span settings where
a dedicated server to fetch and serve visual representations
or even a fast internet connection may not be present (e.g.,
at a conference with thousands of attendees). At the same
time, the audience should still be engaged in the presentation
and should not be going through logins or indirect URLs that
could deviate them. In these presentation spaces, the content
shared during the visual data transfer itself can contain
the visualization pipeline (or even the code) and a sample
small dataset to recreate the visualization, which could be
manipulated by the audience on their computers.

Background
Our visual communication technique for cross-device visu-
alization was inspired by existing cross-device interaction
models for using multiple devices together, approaches for
enabling visual sensemaking beyond a single desktop com-
puter, and finally existing methods for visual data transfer
through screen-camera communication. Here, we review
research in these areas and highlight specific inspirations.
Considering that a major focus of this paper is on developing
cross-device interactions for visual exploration, we start with
a review of existing cross-device interactions in general HCI.

Cross-Device Interaction in HCI
With the recent surge in smart devices—smartphones,
tablets, smart eyewear—cross-device interaction to share
information, chain tasks, and manage sessions across devices
has become popular.17 Pick and Drop18 was one of the
first cross-device techniques to exploit the physicality of
large displays and mobile devices in an environment using
a pen. Hinckley et al.19 presented a cross-device interaction
technique called stitching to interact with multiple mobile
devices. Duet20 enables joint interaction across watch and
phone using multi-device gestures (for instance, flip watch
and tap phone). More recently, WatchConnect21 toolkit was
created for rapid prototyping of cross-device applications
for smart devices through a rich set of input and output
events that are created from on-surface, over-the-surface,
and proxemics-based interaction. In workspaces with large
displays, SleeD22 uses a sleeve display to interact with
a large display wall. Compared to hand-held devices, a
sleeve display allows free use of both hands, thus improving
physical coupling between the displays.

In the past few years, there have also been many frame-
works developed for cross-device interaction across smart
portable devices and large displays. Panelrama23 supported
creation of cross-device web applications by splitting views
and synchronizing interaction across devices. The Conduc-
tor17 and WatchConnect21 frameworks are built with specific
low-level cross-device interactions in picture, however, they
do not fully extend to complex device coupling scenarios that
need interaction flow and output display management. For
example, supporting private and public interaction spaces
during an activity requires control over when the interaction
is synchronized and how display information is transferred

Prepared using sagej.cls

4 Information Visualization XX(X)

across devices.2 PolyChrome9 provides framework-level
support for creating these hierarchies in different collabo-
ration modes (synchronous vs. asynchronous, co-located vs.
distributed), while managing concurrent use.

Visualization beyond the Desktop
Large displays have been shown to improve productivity
in office settings.24 For sensemaking through visualization,
they provide a large space to think25 and support better
collaboration4 between analysts, which in turn leads to better
hypothesis generation. Bradel et al.26 studied the spatial and
territorial behaviors exhibited by users when working with
a large display using document analysis tools. Apart from
large displays, tabletop displays have been used for creating
visualization systems for tree comparison,27 collaborative
document analysis,28 and mixed-presence collaboration in
general.14 For tabletops, interaction techniques within the
physical space around the display have been developed using
tangibles that can be freely carried around such as physical
transparent lenses29 and paper lenses. This was further
extended to create graspable tangible views.30 Isenberg et
al.16 compared the tabletop interfaces in office workspaces
and public settings such as museums.

In the large display environments, physical navigation
(moving eyes, head, and body) is found to be more effi-
cient and preferred than virtual navigation (zooming and
panning).8 To explore this pattern, the use of proxemics31—
the social relationships between users and objects in an
environment—has been proposed for interacting with visu-
alizations on large displays.1 This relates to their distance,
orientation, position, movement, and identity.32 Badam et
al.33 designed proxemic interactions for performing sim-
ple UI tasks in a visualization interface on a wall-sized
display, and evaluated them against gestural interaction to
create a balanced model. Kister et al.34 presented the con-
cept of BodyLenses, an egocentric interaction style through
magic lenses controlled by body movement. Furthermore,
the effects of this body movement and physical navigation
in front of a large display on the human perception of visual
encodings have been studied by Endert et al.35

An alternative is to develop interaction that is more direct
in nature through gestures (for multi-touch or in 3D space).
Andrews et al.36 discussed the ability of gestures such as
pinch and two-handed lateral selection to replace traditional
control panels in InfoVis. The aforementioned work does not
apply to visualization across devices, which brings about its
own advantages. McGrath et al.2 found that the ability to
branch into a private interaction space on a local display and
merge when needed empowers users to freely collaborate in
a co-located space. However, their work was focused on the
usage patterns of these spaces rather than how to build them.

Ball et al. applied embodied interaction (EI) models—
interaction based on our familiarity and facility with the
everyday world—to visualization on large displays.37;38

They found that EI devices such as 3D gyro mouse, touch
screens, and head tracking equipment dramatically increase
the user performance by improving their physical range
of movement and performance time. These devices were
also rated to be most preferred. Andrews and North25;39

discussed the importance of embodiment for sensemaking on
large displays through a new analytical environment called

Analyst’s Workspace. This workspace aims at permitting
the use of space as a cohesive whole where position has a
meaning to the analyst.

For future visual interfaces that aim to support sense-
making in large display and multi-device environments,
embodied interaction models can be beneficial to leverage
our innate knowledge of naı̈ve physics, body awareness, and
social awareness.40

Camera-Based Discovery and Communication
The development of spatially immersive displays41 through
multiple projectors and device displays triggered the use of
cameras for discovery and calibration of the displays in the
3D environment,42 and furthermore, for stereoscopic vision
and gestural interaction. While latter applications are very
popular in modern HCI systems utilizing commercial depth
cameras such as PrimeSense Carmine, Microsoft Kinect, and
Leap Motion, we are more interested in the former for using
cameras for device discovery and transfer of its content.
For device discovery, popular methods include using visual
tags/patterns43 and fiducial markers for tracking objects.44;45

Alternative methods include using vision-based algorithms
to discover the device silhouttes.46 Rohl and Zweifel47

introduced a conceptual framework for interaction using
camera phones and visual codes. They presented interaction
models based on pointing, rotating, tilting, distance, and
movement of the camera phone in front of a visual code, and
studied the usability of the interactions from these primitives.

Our technique for cross-device visualization targets
the use of built-in cameras for data transfer between
devices during the visual sensemaking process. In the past,
Hesselmann et al.48 used the built-in cameras (and flash-
light) on mobile phones to establish a communication
channel with a tabletop when the phone is placed on it. They
establish this connection through a color-based encoding
directly underneath the phone on the tabletop. They further
used an external camera on the tabletop and the flash-
light on the phone to create bidirectional communication.
Langlotz and Bimber49 introduced 4D barcodes by encoding
data in four dimensions: width, height, color, and time, for
visual communication. The participants from their user study
criticized the decoding time for this representation, but gave
positive usability ratings overall. Animated QR codes have
been utilized in the SENSeTREAM approach by Yonezawa
et al.,12 to augment videos with captured sensor data (e.g.,
the performer’s movement within the video) embedded
within the QR codes (in each animation frame). As they
describe, this approach promises a high theoritical maximum
of 88,590 bytes/sec for a 30fps animation and 60fps camera
capture, but there are many factors in reality such as
QR size, lighting conditions, and the camera parameters
that significantly change the transfer rates. One of their
application scenarios includes an augmented TV experience
where smartphones and tablets are used as a second screen to
visualize human-motion graphics by decoding the animated
QR codes, to enhance TV sports and musical programs.

More recently, HiLight50;51 bypassed using barcodes
to directly transfer information by hiding it in the
transparency channel of the displayed computer graphics
(e.g., images and videos). The throughput of this approach
was influenced by the screen-camera distance, environment

Prepared using sagej.cls

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 5

factors, foreground image colors, and hand motion. The
foreground images and videos were also affected when
encoded with information. For cross-device visualization,
we considered these obtrusive (with codes) and unobtrusive
approaches (using transparency) for visual communication
and decided to use animated QR codes as they promise a
high theoretical transfer rate without being too obtrusive12

or changing the foreground visualizations themselves.51

Embodied Interaction for Sensemaking
Sensemaking as a process involves developing insights from
information for decision making. This can happen in a
range of application scenarios in office spaces and public
settings (as introduced in Usage Scenarios section). Multi-
device environments containing a set of heterogeneous input
and output devices including large wall-mounted displays,
tabletop displays, portable tablets, and smartphones can (1)
aid in the analytical process by providing more display and
interaction space and (2) also facilitate collaboration among
analysts, where goals, hypotheses, observations, and insights
developed during sensemaking are coordinated within
the group. However, such sensemaking support requires
methods for leveraging the input and output modalities,13;33

providing flexible means for coupling analysts’ work in a
group,52 support coordination mechanisms among analysts
to manage shared resources without conflicts,53 and support
development of territories common in group activity.26

Multi-device environments are advantageous due to
their natural support for some of these aspects. Having
heterogeneous devices in the environment can better support
the visual exploration process (e.g., large wall-sized displays
improved quality and breadth of insights54). Due to the
presence of multiple devices, the conflicts are mitigated to a
good extent when analysts work in groups as they can work
on their individual devices, and share their findings when
they want to. In co-located collaborations, spatial aspects
such as position and orientation of analysts can be used to
understand which analysts are working together,32;33 and
provide adapted UI features for coupling their interactions.
Similarly, large displays naturally facilitate creation of
territories,26;34 while these territories span across devices
in multi-device environments.2 Finally, the users’ body can
itself be used to create contextual interactions.55

These particular aspects support specific user needs during
the sensemaking process in multi-device environments.
Physical navigation techniques take advantage of the fact
that the analysts are situated within the environment along
with the devices to provide different types of control
over the information based on the context—a user can
remotely interact with a large display or even directly
manipulate the information when close to the display.
Branch-Explore-Merge protocol2 uses the personal and
public displays to allow a flexible coupling style where
analysts use personal devices as their territory to explore
the data by themselves and then coordinate with others
over the public displays. Furthermore, fluid interaction56

in these contexts can help seamlessly share information—
hypotheses, observations, or insights–from one device
to another. Existing frameworks9;10 for collaborative
sensemaking support data pushing operations to send the

Figure 2. Sensemaking in multi-device environments. Analysts
can take advantage of the unique device technologies,
collaborate with others, and also flexibly work from different
physical locations (on the field or in an office) at any time. This
phenomenon was called ubiquitous analytics.5 Figure
reproduced with permission from Elmqvist and Irani.5

interface content of a remote user’s device to the shared
display space during collaboration.

At a device level, the devices used for sensemaking
can have different roles based on the context. Handheld
devices act as private interaction spaces when branched from
the public display,2 aid many unit tasks to filter content
and change visualization parameters on other displays57,
and create additional views into the data presented on
a large shared display.30 Beyond this, the large displays
themselves have multiple roles aiding the analytical process
of a single user or multiple users. To associate these roles
to devices and still maintain a fluid interaction platform for
visual sensemaking,56 the intent of the user to perform a
particular operation should be seamlessly conveyed to the
system. By formulating cross-device interactions that ideally
convey the user intent, we can developed systems for visual
sensemaking directly based on the ubiquitous computing
paradigm to enable analysis of data anywhere, anytime, and
over any device5 (Figure 2).

The above goal can be achieved by developing cross-
device interaction models that use the physicality and spatial
nature of the devices spread around the environment to
convey user intent and expected outcomes of interactions.
Embodied interaction enables this to an extent by exploiting
the embodiment of the devices in the environment—the
participative status in the physical and social world.7 As
defined by Paul Dourish, embodied interaction exploits our
familiarity and facility with the everyday world. It relies
on tangibility (physicality) of the interaction medium as
well as the social aspects from how we experience such an
interaction in the everyday world.

Over the past decade, the principles of embodied
interaction have been applied to various domains in HCI
focusing on learning,58 gaming, and sensemaking.37;38

The gaming industry has explored this interaction through
devices such as Nintendo Wii, PlayStation Move, and
Microsoft Kinect to leverage the player’s innate knowledge
and skills of the physical world.

There are two distinct patterns of exploiting physicality
and social familiarity in interaction models between devices:

Prepared using sagej.cls

6 Information Visualization XX(X)

1. Implicit interaction: The physical attributes of
the devices such as their presence, position, and
orientation within a space are used as implicit triggers
for interaction.21;59

2. Explicit interaction: Explicit actions by the user such
as touch, tap, and drag actions using the devices, are
used as input to the multi-device system.2;17;19;20

One of the goals for this paper is to develop embodied
interactions for visual exploration across devices in multi-
device environments. We are interested in knowing (1) what
kind of interactions the users would perform for transferring
information from one device to another, and (2) would these
interactions differ for different physical contexts within the
multi-device environment and visual exploration tasks.

Design Elicitation: Formative Evaluation
We conducted a formative evaluation to elicit interactions
that enable the use of multiple devices for different tasks
in visual sensemaking. This study was conducted with a
protocol similar to Wobbrock et al.,60 where we explained to
participants the expected outcome of an interaction (effect),
and asked them to perform a physical action (signal) they
thought appropriate for the effect. We focused on a specific
device coupling between a fixed wall-mounted large display
and a portable handheld device, but we believe that these
observations can be extended to other combinations.

Participants
We recruited 9 unpaid participants (2 female, 7 male)
from the student population in our university. Participants
were between 23 to 32 years of age. All participants
had experience working with visualizations including
creating charts for reporting and two participants developed
visualization tools. All participants are avid users of touch
devices (six of them also used large displays in the past).
Participants were all right-handed.

We motivate the choice of using university students as
a representative population as the focus of this study is to
extract cross-device interactions that make sense in particular
sensemaking contexts (which were explained) and therefore
no specific expertise except the experience of using handheld
or portable devices was needed.

Apparatus
Multi-device environments contain devices of different
input and output modalities. In sensemaking, the type of
visualization interface can also play a major role in guiding
the cross-device interaction. We limited our study to cross-
device interaction between a large wall-mounted display
and a handheld smartphone, and simple visual exploration
tasks including filtering, accessing details, and creating
overviews for data of interest. The large display showed a
grid layout with multiple visualizations (like a dashboard).
The participants were also shown what will appear on
the smartphone—the effect of their interaction. We used a
Microsoft Perceptive Pixel† (55-inch display) as the large
wall-mounted display and an Apple iPhone 7 (4.7-inch
touch display) as the handheld device to elicit cross-device
interactions within our study.

Methods
We identified three effects when coupling a large display
with a handheld device during sensemaking. Table 1 captures
these scenarios which cover (1) filtering, (2) extracting
details, and (3) developing overviews for regions of interest
(visualizations) from a large display. For these three
scenarios, participants were asked to invent the interactions
(signals) at three distances from the large display (d <
.75m: close; d < 1.5m: middle; d > 1.5m: far). To focus
on cross-device interactions, participants were asked to
invent interactions that span/involve both the large display
and the smartphone. A counter example was given to
help them understand what would not constitute a cross-
device interaction: showing the large display interface on
the smartphone and using pan/zoom for selection. While
such an interaction is useful in some scenarios, it is not our
focus as it does not take advantage of the physicality (or the
embodiment) of one of the displays in the environment.

During each session, the participants performed one trial
for each effect in a fixed sequence of filtering, showing
details, and then generating overviews. For each effect,
participants were presented with a region within the large
display and asked to invent a cross-device interaction (a
signal) that would trigger the effect. Participants were
suggested to think aloud their ideas and reasons. At the
end, they were interviewed to gain their feedback about the
importance/benefits of the interactions they designed and
their basis for inventing them (Table 2). Sessions lasted for
less than 20 minutes. This procedure is similar to the user
study conducted by Wobbrock et al.60 to develop a taxonomy
of tabletop gestures.

Results: Cross-Device Interaction Patterns
The main cross-device interactions that were brought up in
our study are highlighted in Figure 3.

Interaction Styles: Participants designed three cross-
device interactions when they are not close to the large
display. Six participants (all except P1, P3, P7) suggested
interactions around holding the smartphone vertically
parallel to the large display (posture of taking a picture with a
phone camera). Some participants (P1-P3, P5, P7) imagined
holding the smartphone horizontally to point and select a
region of interest (similar a remote laser pointer). When
far from the display, participants coupled these interactions
with traditional zoom and pan to precisely select regions.
One participant (P6) thought about spatial interactions where
moving the smartphone along the perpendicular to the region
of interest filters it (with distance mapped to size of the
region selected). Participants coupled these interactions with
an explicit tap on the handheld device to actually trigger the
effects after the physical action.

Effect of Exploration Task: Most participants (all except
P1, P8) saw cross-device interactions for showing details and
overviews to be a small variant of the ones designed for the
filtering operation described above. This was expected since
these operations are in fact related from a visual exploration
standpoint. For example, showing details is essentially
filtering together with more visual embedding. Participants

†Perceptive Pixel: http://www.perceptivepixel.com/

Prepared using sagej.cls

http://www.perceptivepixel.com/

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 7

Table 1. Types of effects used in our design elicitation study.

Type Effects
Filter Extract region from large display to smartphone (or vice versa).
Detail Show details for region of interest from large display on the smartphone.
Overview Overview or aggregate a visual representation from large display on the smartphone.

Figure 3. Three cross-device interactions suggested by the participants during our design elicitation study. Participants suggested
holding the mobile device vertically to capture a region of interest (pink) in the field-of-view (left), using the handheld device to point
to a region on the large display (middle), and using the handheld device to tap a visualization when close to the large display (right).

Table 2. Questions asked during the post-session interview.

Question
Q1 Do you think coupling two devices—a large display and a handheld device—is useful?
Q2 What do you think is the purpose for combining two devices in the context of visualization and data analysis?
Q3 How did you come up with the cross-device interactions?

Q4
A common design alternative for multiple devices is using multiple windows (focii) on the same device. What are the
strengths and weaknesses of each (is one better than the other in some scenarios)?

Q5
Can you think of any strengths and weaknesses of using multiple devices for collaboration in front of the wall-
mounted display?

saw showing details as combining two visualizations from
the large display (e.g., get X, Y dimensions from one and
Z from the another) and then switching between different
modes of details on the smartphone (e.g., Z will be captured
by color by default and can be changed). For camera and
pointer-style interactions (from earlier), this is done by
performing them twice or more to combine aspects within
visualizations. Participant (P6) suggested to show details
based on spatial locations in the 3D space around the
user to find these details (guided by the organization of
attributes on the large display). P1 and P8 suggested a
physical drag (or brush) action with the smartphone where
the movement of the phone decides the visualizations on
the large display to combine. Participants imagined creating
overviews by removing features from a visualization with
gestures. For example, participants (P1-P6, P9) suggested to
remove dimension X by shaking or swiping the phone in that
direction in front of the large display.

Effect of Device Distance: All participants suggested
different interactions based on the distance from the large
display. Most participants (all except P4) preferred tapping
with phone when close to the large display to convey a region
of interest. P4 suggested using the front camera of the phone
to reflect a region (like a mirror) and use it for the selection.
When far from the display, participants suggested camera-
style and pointer-style interactions depending on the size
of the region of interest. Pointing can be hard to precisely
choose regions on the large display when far away and
therefore using the camera to select and zoom into a region
was seen as more tractable. At a moderate distance from the

large display (middle), participants (all except P1, P5, P7)
preferred holding the phone vertically to grab a region.

Observations: Participant Feedback
All participants agreed with the utility of multiple devices
(Q1, Q2) for reasons including, (1) the ability to add an
additional layer of information through the handheld device
on top of the large display, (2) the added interaction abilities
through the smartphone to easily manipulate the content of
the large display, and (3) support for multiple users to work
together through their devices without affecting the large
display. They built their interactions based on their social
familiarity with other technologies—participants who came
up with remote pointer interaction often cited the modern
television as a source of inspiration (Q3) and some of them
stated that their interactions just felt natural in that context.

Participants identified that the ability to work more
flexibly with a handheld device (remote or in front of the
public display) makes it more suitable for working with
data compared to having multiple windows on the interface.
On the other hand, some of them (P1, P2, P6, P7) also
identified the potential drawback of dividing their attention
between devices (Q4). Few participants (P2, P6) in fact used
it as a motivation for using the camera-style interaction as
it requires the user to hold the handheld device vertically,
which would keep the large display in the line of sight. Also,
the added advantage of directly interacting with other users
through a smartphone-smartphone connection was identified
as a benefit. Finally, the ability to collaborate with others
more naturally was apparent; all participants noticed that

Prepared using sagej.cls

8 Information Visualization XX(X)

they could access interesting data and interact with it without
affecting the views of others (Q5). They suggested a push
gesture when far and a tap gesture when close to send the
information back to the shared large display (this connects to
bi-directional communication between the displays).

Cross-Device Interaction for Visualization
Based on our user study, we found three distinct physical
cross-device interaction styles, based on the social familiarity
of our participants with such interactions, for sharing
information across devices during visual sensemaking
(Figure 3). This was because the users saw differences
in the type of interactions based on the distance from
a large display that is shared between users in the co-
located multi-device environment. They felt that directly
grabbing a region of interest by taking a picture was the
easiest and a natural thing to do at a moderate distance.
Depending on the size of the region of interest, they also
suggested using the handheld device as a pointer. When
close to the display, users preferred the interactions to be
even more direct in nature based on the contact of one
device with another (or proximity to a region on the large
display) to perform the same operations. To extend this to
different visualization tasks, adapting the above interactions
by combining them with other actions (e.g., taking a
picture and then performing a gesture to develop overview)
was preferred than developing completely new cross-device
interactions. Together these cross-device interactions create
a complete embodied interaction framework for visual
exploration in multi-device environments.

Visfer: Visual Data Transfer
Cross-device visualizations are visual representations that
are distributed across two or more displays and/or interaction
surfaces. This form of visualizations has been previously
used to combine a public tabletop display with individual
private mobile displays for visual sensemaking.2 These
representations enable analysts not only work efficiently with
each other, but also physically with the interaction surfaces
including wall-mounted displays, tabletops, tablets, and
smartphones. To develop these cross-device visualizations,
we need methods to share representations across devices.

As identified in our study, one of the main cross-device
interactions developed by our participants was based on the
notion of holding up a handheld device vertically to directly
capture what is in front of it (similar to taking a picture with
a camera). We enable this cross-device interaction through
a camera-based visual data transfer technique called Visfer
(Figure 4). This technique encodes visualizations in QR
codes, which can be captured by using the cameras that
are now built into most mobile devices. We thus extend
the common practice of “taking a picture” to capture visual
information through the camera. Furthermore, we develop
this technique as part of a web-based framework that couples
with existing web visualization framework such as D3.11

To support our motivating usage scenarios through
the Visfer framework, we define design guidelines that
guide the content and position of the QR codes on the
visualization interface, and enable fluid interaction56 and
spatial interaction models1;61 within the environment.

Make the QR code context-aware. The content shared
through the QR code should be based on the available
software infrastructure and the application scenario. Our
usage scenarios introduced earlier in the paper demonstrate
the differences among various multi-device application
settings. For example, a casual capture of visualization and
underlying data from a public display at an airport could
use a different QR code content compared to, say, a cross-
device visualization being used by a co-located collaboration
of analysts in front of immersive displays connected to a
high-performance server.62 The QR codes should remove
the need for using indirect dialogs and control panels for
sharing visualizations and focus on providing a direct and
minimalistic interaction model based on the scenario.

Augment, not replace. The QR codes should be shown
on demand to the user. When created, they should not
occlude important information on the visualization—the
visualization itself should give precedence to the user’s eyes,
not to the camera. The QR codes should be automatically
placed in the free space or placed manually using a drag-
and-drop user interaction. It should be possible to resize or
remove them to save some display space. This guideline also
makes the QR code based visual data transfer more closer to
the interaction proposed by our participants.

Adapt visualizations to the device. To actually use
visualizations across private and public devices with a
branch-explore-merge protocol,2 they should be perceivable
and interactive on any device modality. For this purpose,
we adapt Thevenin and Coutaz’s notion of plasticity:63

transforming a user interface to a form that best uses the
device’s modality. Upon transferring a visualization from
one device to another, it should be possible to interact with
the visualization right away using the input capabilities of
the target device. The transferred visualizations should also
be responsively adapted to the display size of the target,
either by scaling them, or by transforming them to compact
representations for small displays.

Adapt cross-device representations to the task. The
transferred visualizations should also maintain the flow56

and engagement of the analyst by expanding the notion of
plasticity further based on standard visualization tasks,64–66

such as creating an overview, considering details, and linking
patterns across data. For example, it should be possible
to use a smartphone as the medium for overviewing data
visualizations on a large display. This type of adaptive
visualizations is defined by Elmqvist and Irani5 as plastic
visualizations or plastic visual representations.

Create spatially-aware representations. The QR code
on a display can provide a low-fidelity tracking of
distance and orientation between the display and the
camera(s).61 This information can be used to control
visualization parameters such as zoom and detail levels.
Similar interactions have been proposed using proxemic
relationships31 for updating visualizations based on the
user’s spatial attributes.1 This can promote physical
navigation among users in the multi-device environment.

The Visfer Framework
The philosophy behind the Visfer technique is to support
cross-device and collaborative visualization spaces by

Prepared using sagej.cls

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 9

Find something interesting
in a visualization

Capture
QR Code

Get a closer look at the
visualization on a

personal device

Figure 4. The simplest Visfer interaction scenario is when interacting with a large display, a user can simply take a picture of the
QR code augmenting a visualization and load it on a personal tablet for further visual exploration.

visually transferring information between devices (large
display to mobile, and mobile to mobile) using built-in
cameras on smartphones and tablets. For example, as seen
in Figure 4, a user interacting with a large display can simply
take a picture of the QR code attached to a visualization
and get a closer look at it on a personal device, while still
keeping the large display visualization intact. To prototype
this technique, we developed the Visfer framework to create
cross-device visualization spaces over the web based on the
design guidelines described in the previous section.

The Visfer framework is built upon the D3 toolkit11

for web-based visualization. Visfer provides modules to
augment web visualizations with QR codes through a QR
generator. On a personal mobile device, the framework
provides access to the device camera directly from the
web application, along with a QR decoder (Figure 5). The
framework also supports plastic visual representations and
provides options to (1) transform the captured visualization
by default to the target device modality (input and output
capabilities), (2) transform some standard visualizations
directly based on the InfoVis tasks being performed by the
user, and (3) support explicit transformation logic from the
application developer and the end-user (analyst).

The motivating usage scenarios for Visfer typically
contain different types of infrastructures. Co-located
collaborative sensemaking by analysts in an office setting
can have the necessary server-side technologies to store the
data, generate dynamic links to access all the visualizations,
and keep track of the visual exploration of all the users.
This scenario may require a coupling between devices that
needs bidirectional communication to allow the analysts
have a private visual exploration space on the smartphone
and also coordinate with other collaborators through the
large display. On the other hand, a more opportunistic use
case at an airport or at a public square does not require
bidirectional communication but rather just the flow of
the information from the public display to the personal
device. To support these different sensemaking scenarios, the
framework supports three types of content within QR codes
for cross-device visualization. Figure 5 shows these content
types (levels 1-3) along with the features supported by each.

Visualization Transfer: Levels of Content

The three content levels primarily differ in the type of
the content encoded into the QR codes including data,
visualization pipeline, and dynamic state:

• Level 1: At the basic level, the framework supports
creating static QR codes containing URLs or links to
the data driving the visualization. This data, which
is stored on a server, can range from open standard
formats for communication to byte code and database
indices. Due to the support for generic data types,
the application developer using the Visfer framework
has complete control over how to handle the content
once the QR code is decoded by the framework. The
developer can connect the data from the URL to the
plastic representation modules of the framework or use
the data to carry out some other application logic. Due
to the simplicity and flexibility of the content being
encoded here (just URLs), there needs to be enough
application support to generate the URLs on a server
and network-level support to transfer the actual data
once the URL is decoded by the end-user application.

• Level 2: The second type of content is the visual
representation itself, or rather the pipeline to recreate
the visual representation. Here, Visfer supports
transfer of the static visualization pipeline in the form
of JavaScript code through the QR code. This level
supports simple application scenarios for cross-device
visualization on non-interactive public displays such
as ones at airports or restaurants, by offloading the
visualizations to the personal devices of the users. The
dataset for the visual representation can be either hard-
coded in the JS code (avoiding indirection through
a server), or provided through a link depending on
the size and the available infrastructure. To support
embedding the JS code without increasing the physical
size of the QR code on the large display, the framework
supports animated QR codes that contain multiple QR
codes played one after the other and looped.

• Level 3: Here, the content takes the form of the
visual representation and its dynamic state, which
is represented by the interactions performed by the
user. For this level, we developed a custom Visfer
transfer protocol using the JSON communication for-
mat, based on Vega67 grammar.‡ This protocol helps
encode the data, scales, marks (the granular represen-
tations such as rectangles, lines, and circles), as well
as interaction styles for the visualization pipeline and
the visualization state through user selections. These
attributes are automatically transformed by the plastic

‡Vega: https://vega.github.io/

Prepared using sagej.cls

https://vega.github.io/

10 Information Visualization XX(X)

Framework

Web Visualization Modules (D3)

Web Browser

Visualization
Generator

QR Generator

Plastic
Representation

QR Decoder

Camera Control
Level 3

QR Code
Physical Interaction

QR GIF (JS code)

Cross-device Interaction

QR GIF (Pipeline + State)

Plastic Visual Representation

(Infrastructure) (Content levels)

Level 2

Level 1

Figure 5. Visfer framework infrastructure and the three content
levels along with framework-level support provided.

Indirect Static Visualization Dynamic Visualization

web link

Link to Data on
Server Visualization Pipeline

Visualization
Pipeline + State

Figure 6. Types of content communicated in a cross-device
visualization setting. This includes transfer of arbitrary data
through a link, static visualizations, and interactive dynamically
generated visualizations.

representation modules to fit the device modality by
changing the width, height, and locations, and also
converting between mouse interaction and touch inter-
action. Furthermore, in this level, the representation
(marks and scales) are also be changed by the Visfer
framework and the application developer, to fit to
the InfoVis tasks (detailed later in the application
examples). This level differs from the second level due
to its support for the dynamic state of the visualizations
(based on user interaction), and targets a different
application scenario. This level can use animated QR
codes in the absence of a server to transfer information
as the JSON content representation can go beyond the
content handled by a single QR code.

Note that these three levels in the framework capture three
types of information that are needed to share visualizations
across devices in different application settings. These levels
have different infrastructure requirements as well—level 1
needs a server and level 2 and level 3 need a high-resolution
camera on the phone quickly capture the animated QR
codes. However, these levels have an inheritance structure
(explaining the hierarchy in Figure 5); for example, the
JSON representation of level 3 can be embedded into a
URL by storing it on a server (which was introduced in
level 1). Overall, by supporting these three content types
and QR representations (Figure 6), we can create a common
interaction style for a wide range of usage scenarios. The
difference between these levels is also the additive design
considerations supported by the framework. For Level 1,
the application developer has the complete responsibility
to handle the transferred information across devices by
initiating the framework methods to encode/decode content
maintained by a server and transforming the visualizations
using the framework or by explicit application logic. Level

3 can utilize higher framework capabilities to automatically
create plastic visualizations that are responsive just by
reading the custom JSON representation within the animated
QR codes. The common aspect among them is the embodied
interaction of taking a picture by holding up a phone (as
identified in our design elicitation study), made possible
through the use of QR codes.

The QR codes, both static and animated representations,
can be repositioned by drag-and-drop operations, and resized
through pinch-to-zoom operations. While the codes are
initially placed in the corners of the visualizations to reduce
occlusion, more topology-aware strategies are required to
appropriately place them in free spaces on the interface. The
resize operation spreads the QR content over more (or fewer)
frames when the size is increased (or decreased), to maintain
the readability of the individual QR code frames.

Visualization Adaptivity
The Visfer framework converts cross-device visualizations
into plastic representations that adapt to device modality
and visualization tasks being performed by the user. These
plastic representations are an integral part of the cross-
device interaction as they actually make this interaction more
scalable by adapting any region of interest on the large
display (however big it is) to the small screen space on
the handheld device. This is carried out by transforming
the visualization attributes within the JSON representation
(defined in level 3) based on Vega.67

Visfer JSON Content Representation. The JSON repre-
sentation consists of (1) definitions of width, height, posi-
tion, and padding of the visualization; (2) a data key with
value as the raw data table or an array of links pointing
to the raw data stored on the file system (or server); (3)
scales defining the mapping between data attributes to visual
boundaries and presentation attributes (e.g., color, opacity
levels); (4) axes definitions pointing to the scales; (5) marks
storing the graphical primitives assigned to each datum,
corresponding properties based on the scales, and update
definitions for handling interactions; and (6) signals driving
the membership of data points in selections (predicates) from
the user interaction (for example, brushing). The signals
also drive the scales to change them based on the current
interaction. These attributes are directly borrowed from
Vega’s JSON-based grammar67 to provide a generic way
to recreate visualizations. Beyond this representation, the
Visfer framework also stores the current state in the JSON
by saving the current selection of data points either in an
intensional predicate form (for e.g., 5 < data.variable <
10) or an extensional predicate form (for e.g., select points
#10,#25,#30, . . .) based on the interaction.

Adapting to Device. Based on the JSON representation
described above, adapting to a specific device is a process
of changing the layout attributes such as width, height, and
padding, and interaction events to the target device. The
JSON representation stores the layout attributes along with
the source device width and height (global attributes), which,
when passed to the target device, are transformed to the
new resolution. The Visfer framework also uses a 1D layout
on small-resolution devices by stacking visualizations one
below the other rather than a 2D arrangement to make them

Prepared using sagej.cls

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 11

A
S
P

A
S
P

A
S
P

A
S
P

A
S
P

A
S
P

Overview Zoom Filter

Detail Relate Extract

Figure 7. In this figure, A, S, and P stand for the analytical abstraction, spatial layout, and presentation layers in a visualization
pipeline. Plastic visualizations are created by modifying the pipeline by branching out from any of these layers to create new and
interesting visual representations on a target device. In Visfer, we combined this with visualization tasks to come up with a
structured way to generate plastic visual representations. For example (top left), you can capture a phrase net and branch out from
its analytical abstraction layer to create a sentiment histogram. The transformations happen by changing the scales, marks, and
other attributes in Visfer JSON representation (based on Vega’s visualization grammar) of the visualization pipeline and state.

more readable. The interaction definitions are translated to
the input type on the target: converting mouse interaction
handlers to touch and vice versa.

Adapting to Visualization Task. To further extend plastic
representations, the attributes within the JSON representa-
tion should be transformed to fit the visualization tasks65

being performed by the user of the cross-device visualiza-
tion. There are multiple design choices in applying these
transformations in terms of where to branch out from the
original visualization pipeline. For example, as seen in
LARK,68 this can happen at the levels of analytical data
abstraction, spatial layout, and presentation. As identified in
our design elicitation study, the Visfer interaction technique
is augmented with simple options to select the appropriate
transformations. Figure 7 provides examples of these trans-
formations for each visualization task. Here, we describe
the conditions under and mechanisms through which these
transformations are handled by the framework, or through
explicit specification from the Visfer application developer.

• Overview: This transformation across devices take
three different forms: (1) creating alternate representa-
tions to show aggregation at data abstraction layer—
for instance, a word cloud visualization of product
reviews can be transformed into a bar chart by abstract-
ing the data as the review sentiment; (2) transforming
visualization into alternate layouts—for instance, by
sorting the words in a word cloud based on frequen-
cies; and (3) changing the presentation attributes—
for instance, coloring based on frequency ranges for
words in the word cloud. While the latter two forms are
automatically performed by changing the properties
of the marks in the JSON representation, overview

at abstraction requires explicit application developer
logic to define the new abstraction.

• Zoom: The framework allows semantic69 and
geometric zooming by manipulating the spatial layout
and presentation layers. This is carried out by updating
the dimensions and positions of the marks in the
JSON representation based on a zoom position. At the
data abstraction layer, a zoom transformation means
looking at more attributes associated with each data
point, which should be assigned by the developers
based on their application. While the framework
uses a default zoom position based on distance and
orientation, it can be further controlled by the end user
(e.g, analyst) using the Visfer applications.

• Filter: This transformation can also be seen as
branching from the original visualization based on
the selections on the source device. The framework
handles branching the pipeline at spatial layout and
presentation layers for this transformation by changing
the visibility (e.g., through transparencies) of the
selection. For example, a scatterplot matrix with
brush-and-link selections transferred to a target device,
is transformed to only show the current brushes by
making the rest of the points completely transparent.
Filtering at an abstraction level is similar to the
overview transformation as it involving removing a
data variable from the visual representation.

• Details: The inverse of the overview transformation
is details-on-demand. The framework requires explicit
definitions from the application developer to create
details. The details can be of different kinds, ranging
from more data attributes encoded in the visualization
at the data abstraction level, to switching to more

Prepared using sagej.cls

12 Information Visualization XX(X)

granular and categorized visual representations at
the spatial layout and presentation layers. Due to
the sheer amount of design opportunities here, the
developer should define which visual attributes should
be attached to the visualization to show details in
terms of the graphical primitives (marks), layout, and
presentation attributes.

• Relate: A relate transformation shows relationships
between data. The Visfer framework supports combin-
ing two visual representations to create composite/hy-
brid visualizations70 by capturing their QR codes
consecutively. The visualizations corresponding to the
captured QR codes are automatically overlaid on the
spatial layout. For transformation at the presentation
level, the overlay can also be based on a particular pre-
sentation attribute, which requires specification from
the application developer. The relate operation at an
abstraction layer requires definition of the new abstrac-
tions and is handled by the application developer.

• History and extract: By maintaining the visualization
states (from the QR codes), the framework supports
storage and extraction of historical states of the
visualization collected during collaboration.

Overall, by taking control over the pipeline, the framework
handles transformation at the presentation and spatial layouts
for most task types. In case of conflicting automatic trans-
formation choices, the framework gives higher preference
to layout. The application developer handles the remaining
transformations, especially at the abstraction layer, based on
their design. Beyond these features, the application user can
switch between transformations on the target device.

Spatial Awareness
The use of visual markers (QR codes) allows for a low-
fidelity tracking of the spatial attributes—including screen-
camera proximity and orientation—that could be used
for creating spatial interactions. The parameters during
overview, zoom, filter, and showing details (visualization
tasks) can be associated by the Visfer’s application developer
to the device position and orientation deduced from these
spatial attributes. For example, when showing more details,
the proximity to the large display can define the level of
detail provided—being close can add an additional layer to
the visualization with colors or annotations, while being far
from the display can create a new visual representation.

As Jakobsen et al.1 identified, some interesting uses
of these proxemics data include adjusting level of detail
on visualizations, controlling aggregation, and selecting
attribute values within visualizations. Examples of using
the spatial attributes from our particular cross-device setting
include (1) for the overview transformation, the QR code
sizes can be used as a way to determine the binning
parameters; (2) the orientation of the QR codes can
determine the zoom parameters and the position to zoom in
the 2D space; and (3) spatial aspects of the QR code can
determine where the user is physically located, which can
be used to control the type of visual representation shown.
However, as mentioned earlier, this is a low-fidelity measure
and may not always reflect the actual proxemics of the users

and the devices since the users can freely move around in
front of the large display when taking pictures.

Developer and End-User Controls
The Visfer framework prototypes the camera-based visual
data transfer via QR codes during visual exploration across
devices. While doing so, it further supports visualization
tasks65 by adapting Visualizations to the target device and
the task itself. Furthermore, the spatial awareness creates a
way to extend the camera-capture action to a more spatial
interaction style by utilizing the low-fidelity measures of
the user proxemics. Overall, these three aspects of our
framework need to be controlled by the developers based on
their applications, and further utilized by the end users to
ease their visual exploration process. Here, we reiterate the
specific controls left within the framework to the developer
and the end users of Visfer applications.

Firstly, the three levels of QR content open up the space
for more flexible usage scenarios based on the available
infrastructure and the application setting. In most scenarios,
the choice of the levels is made by the application developer.
For instance, in casual and serendipitous scenarios, the
developer can choose level 2 or level 3 QR codes (QR GIFs)
to isolate the data transfer mechanism from maintaining
the content on a server. However, there can also be
application scenarios where multiple levels of content might
be used. This is common in hybrid application scenarios
where visualizations are transferred from one setting to
another; from instance, when the insights from a co-located
sensemaking session are opened up to a general audience
who are outside the sensemaking environment. In this
particular case, the end users can control the QR content by
switching from embedding URLs, to creating animated QR
codes with specific data of interest that could used to transfer
the visualizations outside the sensemaking environment.
From a user interface perspective, this end-user control can
be a control option through a button or a menu that changes
the mode of QR encoding. Furthermore, the control over
which visualizations are augmented with QR codes for cross-
device interaction, as well as the size and other properties of
the QR codes, can be provided to the end user through toggle
buttons, menu options, and direct manipulation.

For visualization adaptation, there are two types of
controls. From a developer perspective, the layer in the
visualization pipeline used to guide the adaptation of the
visualization (Figure 7) needs to be configured. Once this
information is encoded in the application, the end user can
control the appropriate transformations based on the task
being performed.65 With this control, the user can, say,
capture a QR code corresponding to a visualization and select
the filter task on their personal tablet to add specific filters
to the viewed content. At the current stage, the framework
does not automatically figure out these adaptations; however,
this is a potential direction for improvement to better support
cross-device visual exploration.

Spatial awareness helps develop spatial interactions and
support physical navigation in front of the large display.
However, the mapping from the spatial attributes to the
data shown in visualizations is not straightforward. While
the framework currently captures the spatial attributes, this
mapping needs to be set by the application developer using

Prepared using sagej.cls

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 13

the Visfer framework. For example, when close to the large
display, more details for the data items in visualizations can
be shown on the personal device through additional visual
encodings. Finally, entering the spatial interaction mode can
by itself be explicit. The end user can control whether or not
to utilize the spatial attributes for visual exploration, with a
control option on their personal device.

Implementation

We implemented the Visfer framework using standard web
technologies. It is written in JavaScript and currently couples
with the D311 and Vega67 frameworks. This means that the
users could just access it by opening their web browser to
a URL (hosting the web application created with Visfer)
without the need for any installations. We developed the
three types of QR content as discussed in the previous
section. The framework is available on GitHub§ for public
use and we are developing more examples to make cross-
device visualization design as convenient as using D3.11

In terms of the QR code content levels, the first level
that can encode a link or a URL into a QR code
currently requires the application developers to maintain
a server component. For the second level of content
design, which involves sharing the JavaScript code, the
framework currently assumes that the application developers
solves the dependencies in terms of the JS objects and
application context required to execute the web application
code on the browsers (i.e., the applications running on all
devices use the same dependencies). For the third level,
which promises plastic visual representations by capturing
the state along with the pipeline, some transformations
require explicit application-level logic or end-user control as
described in the previous section. At its current stage, the
framework performs transformations at the spatial layout and
presentation layers, and it was used to develop the examples
described in the next section. However, these transformations
are not generic and we are currently expanding them to
other visual representations. By studying different usage
scenarios with Visfer, we also plan to further develop more
implicit/automatic logics to adapt visualizations.

QR code generation. The animated (multi-frame) QR
code is created by the QR generator by simply splitting the
content into a predefined number of individual frames (based
on the discussion given later in performance evaluation). The
content in each frame is also attached with metadata about
the frame number and total frame count. The QR codes can
be made invisible and loaded whenever needed with a toggle
button to reduce the distraction caused by the animation.
Proximity sensing can be an alternative for showing/hiding
the QR codes, however, this remains to be part of the future
work. During the QR generation process, each QR code has
error correction features implemented by the Reed-Solomon
Code71 added to the original content. This includes four
levels of error correction: level L (7% content restored), level
M (15% content restored), level Q (25% content restored),
and level H (30% content restored). The Visfer framework
uses level H correction by default, however, this can be
changed by the application developer. To keep the content
size of the QR codes to as minimal as possible, we used a

JSON compression library¶ that can compress up to 55% of
the original content size.

QR code decoding. The animated QR codes are decoded
frame-by-frame following the standard procedure.12;72

While the correction mechanism provides a good amount
of leverage in capturing it from a range of distances and
orientations, the decoding process is still affected by the
lighting, and camera parameters leading to frame dropping
and processing delays. Furthermore, the frame rate of the
animation (fa) and the frame rate of the camera capture (fc)
should be matched for fast decoding (fa

fc
≤ 1; fa

fc
= 0.5 by

default). Finally, auto-focus options on the camera also delay
the process further.

Examples
We developed three application examples with the Visfer
framework focusing on environments with one large display
and a few portable multi-touch devices. These examples are
available with the Visfer source code. Our most advanced
example is a Yelp data visualization called BusinessVis.

BusinessVis
This cross-device application was created to visualize
business data from the Yelp academic dataset, covering
about 10,000 businesses in Phoenix, Arizona and 300,000
user reviews, across multiple devices. It was completely
created with web technologies: HTML, JS, and CSS.
The BusinessVis application supports collaboration among
users and devices to analyze this big dataset through the
Visfer framework. The interface has three default views: a
geospatial map of the businesses, a category treemap, and a
rating view showing the list of companies along with their
user ratings (Figure 8). These views are connected to each
other through brush-and-link interaction—any selection on
one view is reflected on the rest. The goal of this application
is to provide insights into the spatial locations, popular and
top rated businesses, and feedback from the reviews. The
users can explore the data without being restricted to a
single screen, which is packed with information, and without
interfering with each other’s work.

The BusinessVis application is showcases the possibilities
brought about by cross-device visualizations augmented with
QR codes for visual discovery and data transfer. BusinessVis
uses all three types of QR contents presented in the
framework description. It uses level 1 to share the business
data among the devices. Level 2 is used to share visualization
pipelines initially, when no user interaction is performed yet.
The third level is most commonly used to share the pipeline
and the dynamic state of the visualizations. Setting up these
sharing mechanisms is quite simple, requiring instantiating
the appropriate classes and methods in less than 15 lines of
code for each visualization.

The interaction principle behind BusinessVis is to first
support exploration of the visualizations on the large
display, and then provide an additional “layer” to view
other perspectives through handheld devices into the

§Visfer framework: URL hidden for anonymity.
¶jsonpack: https://github.com/sapienlab/jsonpack

Prepared using sagej.cls

https://github.com/sapienlab/jsonpack

14 Information Visualization XX(X)

Geospatial Visualization

QR Code (animated)

Button to disable QR codes

Ratings View

Category Treemap

Figure 8. BusinessVis allows visual exploration of business
reviews on Yelp through three visualizations. QR codes are
shown/hidden in the interface when the button on top left of the
interface is clicked. To further explore the data, the QR codes
can be captured with a handheld device (tablet/smartphone as
seen in Figure 1) by multiple users.

data underlying the large-display visualizations. This will
help us create flexible analytical scenarios that happen
through visual exploration on the large display, as well as
opportunistic interaction on mobile devices.

Beyond the aforementioned views, the BusinessVis
interface creates plastic visualizations to show overviews,
filtered views, and more details by adapting these
visualizations from different levels of their pipelines
(Figure 1). The geospatial visualization transforms into, (1)
a heatmap of the business categories upon overview to show
their spatial distribution, and (2) a filtered view based on the
user selections in the connected visualizations (Figure 9).
These transformations are automatically performed by the
framework and can also be controlled by the user (through
a button tap). This map visualization also transforms into
a detail view to show the categories and business ratings
using presentation attributes such as opacity, size, and color
(Figure 9). The treemap visualization can transform to show
more details such as aggregate user ratings for each category
and their popularity, and filter to show current user selection
from the brush-and-link operations (part C in Figure 1).
Finally, the ratings view can transform into a overview
word cloud of all the user reviews, and details with the
sentiment data (part D in Figure 1). For relate tasks, the
framework automatically merges the states of geospatial
and rating visualizations to create a hybrid visualization.
While the current implementation does not fully utilize the
spatial awareness aspects, we discuss some example spatial
interactions relevant to this application within the workflow
to illustrate the full capabilities of the Visfer technique.

Workflow. Let’s consider Eva, a business analyst,
interested in understanding the public opinions about the
businesses within Phoenix, Arizona. Eva can visualize this
data using BusinessVis on a large display in her office.
She uses her personal tablet along with the large display
for cross-device visual exploration. Using the large display,
she can observe the distributions of businesses on the
geographical map and query it by selecting categories on the
treemap or top companies on the ratings view. This helps her
understand where the top businesses are located and which
business categories are most common in different areas in

Filtered view featuring
top 5 (best rated) Pizza places Details view with color-coded business categories

Food
Mexican

Bars
Active Life

Figure 9. Two plastic representations of the map visualization
(in Figure 8). (Left) A filtered view shown on the handheld
device capturing five best-rated Pizza restaurants in Pheonix.
(Right) A details view shown on the handheld device adding
more visual encodings into the map visualization with circle
colors capturing top 4 popular business categories, opacity
encoding the average reviews, and size encoding popularity of
businesses. Each view on a user’s handheld device can also be
augmented with a QR code to share it with other analysts.

Phoenix. However, the large display interface just gives a
simple picture of the businesses based on their ratings. Eva
understands that the real value of any company is often
reflected in the actual reviews. To explore the reviews, she
first scans the QR code of the map visualization and requests
details to see the business category and popularity captured
with color and size of the points on the map (Figure 9). She
notices that the most popular businesses are restaurants in
the Downtown area. She then selects the Downtown area
of Phoenix on the large display to see the business ratings
on the ratings view. She scans the QR code attached to the
ratings view to get more details about the actual reviews
on her personal tablet. This creates a word cloud of the
popular words used to describe the businesses on her tablet
without changing the visualization on the large display.
To understand the reviews attached to specific business
categories related to restaurants (Figure 9), she points the
camera again to the QR code attached to the ratings view and
then enters a spatial filtering mode on the tablet (accessed
with a button click). In this mode, the business categories
are grouped in alphabetical order and filtered based on the
distance from the large display, which is estimated using the
size of the QR code in the view of the tablet’s camera. This
allows for physical navigation in front of the large display,
where Eva can move forward and backward in front of the
large display to observe the common phrases in word clouds
for different business categories. While Eva is exploring the
restaurants in the Downtown area, another business analyst,
Lana, picks the Pizza restaurants in a university campus
in the northern part of Phoenix. Lana can extract the data
items to her own tablet using the QR code attached the
geographical map without interrupting Eva due to the visual
data transfer process facilitated by Visfer. She can then open
the filter view on her tablet for the best Pizza restaurants
(Figure 9). Once she has some insights about the ratings
and common phrases used in the northern region, Lana
can capture the QR code on Eva’s tablet to compare their
visualizations and consolidate their observations. Finally,
when writing a report to share their insights within their
company, Eva and Lana can embed the visualizations (e.g.,
word clouds) that were created for specific businesses in

Prepared using sagej.cls

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 15

Phoenix through level 3 QR codes by clicking a “share and
embed button on their tablets. This will create a shareable
version of the visualizations along with the corresponding
data filters. Now, a new analyst who wants to expand this
analysis can scan the QR codes to replicate the visualizations
along with the interactive filters applied. Note that due to
the co-located nature of the scenario within the analytics
company and the size of the dataset, the QR codes contain
links to the dataset hosted on the company’s public server.

We implemented many of the design choices in content
and plastic representations available through Visfer in
this example. Other examples are based on casual web
visualizations created with the D311 and Vega67 frameworks.

HaloCloud
HaloCloud is a web application to augment legacy webpages
with cross-device interaction abilities. HaloCloud can add
a QR GIF to a webpage that can be captured by a
portable/personal device with a camera running the web
application. For example, while browsing a Wikipedia page,
HaloCloud can generate a QR GIF of the text, which
transforms into a tag cloud on a target device when captured.
This example showcases how QR codes can be used to create
a visual connection for transferring data across platforms.

The HaloCloud web application has two components:
(1) a Chrome extension for capturing webpage content
and creating a QR GIF with the Visfer, and (2)
visualization components that can create a predefined set
of visualizations—a word cloud, line chart, and bar chart—
from the passed data.

Workflow: HaloCloud is useful when reading long
textual articles on the web. In this application, QR codes
containing data and the visualization pipeline are attached
to the webpages. When a user captures the QR codes
with a personal device, HaloCloud creates a cross-device
experience to quickly understand the webpage content with
the help of visual aids (a tag cloud of the text). The QR codes
in this example are level 2 by default, as they contain the
textual data in the webpage along with the pipeline for the
visualization. When the user scrolls through the webpage, the
QR codes become level 3, by capturing the text in the active
viewing area of the user. Since this application targets a
casual and opportunistic scenario where the developer cannot
control the hosting of the webpage content, the textual data is
embedded within the QR code itself using the animated QR
representation (QR GIF).

QR-Vega
Vega is a declarative grammar language for creating and
sharing visualization designs. It uses a JSON specification
containing declarations of the data, scales, marks (graphical
primitives), and the interaction definitions. As an application
example, we were interested in connecting the Visfer
framework with the Vega toolkit to transfer visualizations
across devices. Therefore, we augmented the examples in
the Vega toolkit to create a animated QR codes containing
the underlying specifications. The decoded QR code on a
target device, say a tablet, is fed directly into the Vega
toolkit to create an interactive visualization on the tablet
(Figure 11). The examples from the Vega toolkit include

Visualization created on tablet

Browsing a webpage on a large display

Figure 10. HaloCloud augmenting a Wikipedia page along with
the QR GIF. The personal device reads the QR codes and
creates a word cloud.

Visualization on tablet created
through the QR Code

VEGA example on a large display

Figure 11. QR-Vega showcases QR code enabled
cross-device versions of Vega toolkit examples (figure shows
one of them). This image was processed to be more legible.

interactive visualizations of line charts, bar charts, area plots,
scatterplots, and some abstract representations.

Performance Evaluation

As a performance evaluation of our Visfer framework, we
tested the animated QR codes (QR GIFs) since they are the
major component of our cross-device interaction that will
affect the user experience. We recorded how long it takes
for our QR decoder to read QR GIFs containing fictional
data (alphanumerical) of different sizes over different frame
counts (Table 3), to find a balance between the number of
frames and the embedded content. Note that the user aspects
of having time-multiplexed barcodes and animated QR codes
have also been studied to an extent,12;49 and they were found
to be not too disruptive in terms of the viewing experience.

After testing some popular QR code readers for the
Android platform, we realized that even these applications
cannot read normal QR codes (single frame) that encode
more than 500 characters, unless the physical size of the
code itself is increased drastically. This is because QR
codes with large content have closely packed patterns that
are error-prone during the decoding process. In essence,
there is a tradeoff between the content size and QR code
dimensions for accurate visual transfer. With QR GIFs, we
can circumvent this tradeoff and go beyond the regular limits
of a single-frame QR code. However, the only drawback of

Prepared using sagej.cls

16 Information Visualization XX(X)

the QR GIF is the drastic effects of missing frames during
the decoding process, as there is now a waiting time to catch
the frame at the next loop. While storing all the frames as
they are captured before processing might help, it does not
reduce the delay in the case when the camera-captured QR
frame has too much error for efficient decoding.

Table 3. Read time (sec) for different content sizes and frame
counts in a QR GIF, avoiding trivially good and bad
combinations.

#Characters
#Frames 1 3 5 7 9 11 13 15

300 0.38 0.90
500 0.55 0.90 2.08

1000 1.31 2.28 2.70 3.75
2000 2.66 3.92 3.83 3.62 6.02
4000 6.17 7.90 6.49 11.11 19.16
7000 10.45 14.35 21.91

10000 16.13

In the performance evaluation, we increased the content
size and proportionally increased the range of the number
of frames to find the ideal content per frame to get the
maximum bandwidth through visual transfer. We used a
HTC One X smartphone (product released in May 2012)
to read the QR GIFs using a web application, created with
Visfer framework, running on Firefox browser and recorded
the time taken to capture and decode them. We placed
the smartphone at a distance of appx. 1.5m from the large
display. The dimensions of the QR codes being read are
200 × 200 pixels on the smartphone with 10 fps rate. For
these specifications, we found that in order to get transfer
rates of at least 500 characters per second, an average of 432
characters should be placed in each frame. Note that each
character is of one byte size. This throughput is much lower
than the theoretical maximum (88,590 bytes/sec) discussed
by Yonezawa et al.12 as the smartphone hardware and the
web browser restrictions limit the decoder performance.

For this performance evaluation, we focused on a specific
distance between middle and far regions in front of the
display hosting the visualizations. By doing so, we ensured
that the QR codes have a fixed size (200×200 pixels) on the
smartphone when captured. While the effect of distance on
reading performance is not evaluated, it depends on this pixel
resolution of the captured QR code. With higher resolutions
for the captured codes, the speed of the decoding process will
increase since the chance of decoding errors that could lead
to longer waiting times is less.

Discussion
Embodied interaction in a multi-device environment can
allow better use of the physical space, thus, supporting better
collaboration. However, little research exists on how we
can fully leverage this physicality within an environment
for visualization and visual analytics. Our design elicitation
revealed three main cross-device interaction styles between
a large display and a handheld device, (1) capturing the
visual focus (field-of-view) of the handheld device covering
the large display by holding it vertically (similar taking a
picture), (2) pointing and drawing a region within the large
display by holding the handheld device horizontally (similar
to a TV remote or a laser pointer), and (3) tapping the
large display with the handheld device when close to the

display. Participants of our study felt that these interactions
felt natural and often motivated by interactions they perform
in their everyday life (like using a camera or a TV remote).

To support these interactions, we need technological sup-
port for tracking individual device positions, orientations,
and field-of-view, as well as traditional interaction mecha-
nism on each device (e.g., direct touch). This can be achieved
through NFC, depth sensing, infrared tracking, and even
native sensors within modern devices (e.g., accelerometer,
gyroscope, camera, and pressure sensors). We focused on
most common interaction suggested in our study—cross-
device interaction based on visual data transfer (similar
taking a picture). Instead of relying on additional hardware
components to enable this, we relied on a more universal
interaction of using the built-in device camera to capture QR
codes in the context of visual exploration.

In Visfer, we created a distinction between the three
types of content encoded in the QR codes based on the
different usage scenarios. The basic content representation—
a link or a URL to the content—is a generic way to create
cross-device visualizations. The content connected to the
link can be varied depending on the scenario, ranging from
data in CSV format to state variables for synchronizing
visualizations. However, it leaves development of the client-
server platform, to capture each state of a visualization and
generate links, to the Visfer application developer using
the framework. For the other types of content, some of
the usage scenarios may involve casual analytics settings
where the necessary infrastructure to create client-server
platforms is absent. As discussed in our usage scenarios,
these can be casual sensemaking at a water cooler, at a
public square, or in an airport. For this, we need a QR
representation of the data that is more scalable than a simple
QR code. Our animated QRs expand the application space
of the Visfer framework to such analytics settings. The
JSON content representation used in Visfer further supports
adapting visual representations to the target device (plastic
visual representation). The spatial interaction made possible
by analyzing the captured dimensions of the QR codes also
expands the interaction opportunities possible through our
visual data transfer mechanism.

Visfer introduces the idea of plasticity for visual repre-
sentations and extends its notion to support visualization
tasks in cross-device visualization settings. This goes further
beyond the philosophy of responsive web design. The frame-
work also provides a structured approach for transforming
visual representations based on the pipeline and task. The
design space for these transformations is still complex and
depends on the visual representation itself. However, there
are few choices that could be handled by the framework, as
showcased in the application examples. Concrete guidelines
for plasticity require a deep analysis and evaluation of
common visualizations, types of aggregations and sampling
approaches for handling the corresponding data, and visual
variations in presentation and layout attributes. This will be
a significant part of our future work, along with creating the
rest of the interaction techniques elicited in our user study
for visual exploration across devices.

Prepared using sagej.cls

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 17

Comparison of Visfer’s Performance
Our performance evaluation provides evidence that the
Visfer framework can scale to even complex visualization
pipelines. The bandwidth for our visual transfer is found to
be 500 characters per second, which is equivalent to 4kbps.
While this bandwidth is small compared to modern network
connections, it was sufficient for our examples. Compared to
our animated QR code implementation, past embodied visual
data transfer approaches have only achieved similar or lower
performance, which makes Visfer’s method promising:

• FlashLight48 enabled a tabletop-phone optical com-
munication through a color-based encoding, leading to
33bps (with no error) and possibly up to 150bps.

• Langlotz and Bimber’s 4D barcodes49 could encode
70 characters per 2D barcode, leading to a maximum
of 1400 characters per minute (23 characters/sec).

• Li et al.’s screen-camera communication51 led to a
throughput of 1.1Kbps for static foreground images
when decoded with an iPhone 5s, and 6.6Kbps with
a Canon 60D SLR camera.

More work is needed to improve the performance of our
animated QR codes for complex pipelines, by parallelizing
the decoding process (e.g., handling multiple frames at
once), and developing better content representations.

Limitations
A limitation of our Visfer technique and framework is
the lack of direct support for bidirectional communication
unless both devices involved in the cross-device interaction
have a camera. Considering that some commercial large
displays may not have a built-in camera, Visfer requires an
additional equipment to send information from a handheld
device to the large display. Using an external camera for
bi-directional communication is not uncommon.48 With the
external camera mounted on the large display, the user can
hold their phone up to the large display so that the external
camera can capture the QR codes. The act of showing
animated QR codes on the smartphones to the external
camera is also embodied (it involves physical movement
and is based on the social act of showing information to
another person). Another plausible solution for bi-directional
communication is to maintain a web URL (if possible) to the
large display visualization, and merge through the URL with
a “push” gesture rather than the visual channel (as suggested
by the participants of our study).

The act of taking pictures also does not fully suite
continuous interactions—for example, for dynamically
synchronizing views between two displays at all times, a user
cannot be expected to keep taking pictures. In such settings,
intervention through a server is required to react to the action
of taking a picture for the first time and create a permanent
connection between the two devices for synchronization,
which could be stopped by the user if needed. Note that
such an expectation of dynamic synchronization is unusual
in casual and serendipitous scenarios discussed in this
paper, and occurs more often in collaborative sensemaking
scenarios in dedicated visualization environments where
sufficient infrastructure exists to continuously synchronize
views after the initial cross-device interaction (a handshake).

Conclusion and Future Work
In this paper, we introduced the concept of cross-device
visualization for environments with multiple devices, where
visual representations are inherently developed for sharing
and working on multiple devices. We conducted a user study
to elicit embodied interactions for cross-device visualization
that take advantage of the physicality of the devices within
the environment. We have presented the Visfer framework
for visual data transfer, based on a popular interaction
style that emerged from our study. Visfer utilizes QR code
based visual communication through the built-in camera on
devices. The framework also supports multiple levels of QR
code content, plastic visual representations that adapt to the
device, and low-fidelity spatial interaction. We have provided
a detailed account of the Visfer framework, including
implementation details and three application examples.
Finally, through a performance evaluation, we found an ideal
content per frame to reach high bandwidth of data transfer
using the animated QR codes.

Our future plans include exploring plastic visualizations
by studying what fits in different collaboration scenarios.
We intend to understand the requirements for automatically
transforming visualization based on the user activities
when transferred across devices. Apart from creating
more examples of Visfer, we intend to explore other
communication techniques (for instance, through NFC) and
develop more cross-device interactions for sensemaking in
multi-device environments.

Acknowledgements

The authors thank the reviewers for their feedback during the
review cycle. They also thank Dr. Senthil Chandrasegaran for
his feedback that further helped improve this manuscript. This
work was partially supported by US National Science Foundation
award IIS-1539534. Any opinions, findings, and conclusions or
recommendations expressed in this article are those of the authors
and do not necessarily reflect the views of the funding agency.

References

1. Jakobsen MR, Sahlemariam Haile Y, Knudsen S et al.
Information visualization and proxemics: design opportunities
and empirical findings. IEEE Transactions on Visualization
and Computer Graphics 2013; 19(12): 2386–2395.

2. McGrath W, Bowman B, McCallum D et al. Branch-explore-
merge: Facilitating real-time revision control in collaborative
visual exploration. In Proceedings of the ACM Conference on
Interactive Tabletops and Surfaces. pp. 235–244, 2012.

3. Roberts J, Ritsos P, Badam SK et al. Visualization beyond the
desktop—the next big thing. IEEE Computer Graphics and
Applications 2014; 34(6): 26–34.

4. Isenberg P, Elmqvist N, Scholtz J et al. Collaborative
visualization: definition, challenges, and research agenda.
Information Visualization 2011; 10(4): 310–326.

5. Elmqvist N and Irani P. Ubiquitous analytics: Interacting with
big data anywhere, anytime. IEEE Computer 2013; 46(4): 86–
89.

6. Badam SK, Fisher E and Elmqvist N. Munin: A peer-to-peer
middleware for ubiquitous analytics and visualization spaces.
IEEE Transactions on Visualization and Computer Graphics
2015; 21(2): 215–228.

Prepared using sagej.cls

18 Information Visualization XX(X)

7. Dourish P. Where the Action Is: The Foundations of Embodied
Interaction. MIT press, 2004.

8. Ball R, North C and Bowman DA. Move to improve:
promoting physical navigation to increase user performance
with large displays. In Proceedings of the ACM Conference
on Human Factors in Computing Systems. pp. 191–200, 2007.

9. Badam SK and Elmqvist N. PolyChrome: A cross-device
framework for collaborative web visualization. In Proceedings
of the ACM Conference on Interactive Tabletops and Surfaces.
pp. 109–118, 2014.

10. Marrinan T, Aurisano J, Nishimoto A et al. Sage2: A
new approach for data intensive collaboration using scalable
resolution shared displays. In IEEE International Conference
on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom). pp. 177–186, 2014.

11. Bostock M, Ogievetsky V and Heer J. D3: Data-driven
documents. IEEE Transactions on Visualization and Computer
Graphics 2011; 17(12): 2301–2309.

12. Yonezawa T, Ogawa M, Kyono Y et al. Sensetream: Enhancing
online live experience with sensor-federated video stream using
animated two-dimensional code. In Proceedings of the ACM
International Joint Conference on Pervasive and Ubiquitous
Computing. pp. 301–305, 2014.

13. Chung H, North C, Self JZ et al. VisPorter: facilitating
information sharing for collaborative sensemaking on multiple
displays. Personal and Ubiquitous Computing 2014; 18(5):
1169–1186.

14. Kim K, Javed W, Williams C et al. Hugin: A framework for
awareness and coordination in mixed-presence collaborative
information visualization. In Proceedings of the ACM
Conference on Interactive Tabletops and Surfaces. pp. 231–
240, 2010.

15. MacKay WE. Is paper safer? the role of paper flight strips
in air traffic control. ACM Transactions on Computer-Human
Interaction (TOCHI) 1999; 6(4): 311–340.

16. Isenberg P, Hinrichs U, Hancock M et al. Information
visualization on interactive tabletops in work vs. public
settings. Collaborative Visualization on Interactive Surfaces-
CoVIS’09 2010; .

17. Hamilton P and Wigdor DJ. Conductor: enabling and
understanding cross-device interaction. In Proceedings of the
ACM Conference on Human Factors in Computing Systems.
pp. 2773–2782, 2014.

18. Rekimoto J. Pick-and-drop: a direct manipulation technique
for multiple computer environments. In Proceedings of the
ACM Symposium on User Interface Software and Technology.
pp. 31–39, 1997.

19. Hinckley K, Ramos G, Guimbretiere F et al. Stitching: pen
gestures that span multiple displays. In Proceedings of the
ACM Conference on Advanced Visual Interfaces. pp. 23–31,
2004.

20. Chen X, Grossman T, Wigdor DJ et al. Duet: exploring
joint interactions on a smart phone and a smart watch. In
Proceedings of the ACM Conference on Human Factors in
Computing Systems. pp. 159–168, 2014.

21. Houben S and Marquardt N. WATCHCONNECT: A toolkit
for prototyping smartwatch-centric cross-device applications.
In Proceedings of the ACM Conference on Human Factors in
Computing Systems. pp. 1247–1256, 2015.

22. von Zadow U, Büschel W, Langner R et al. SleeD: Using a
sleeve display to interact with touch-sensitive display walls. In

Proceedings of the ACM Conference on Interactive Tabletops
and Surfaces. pp. 129–138, 2014.

23. Yang J and Wigdor D. Panelrama: enabling easy specification
of cross-device web applications. In Proceedings of the ACM
Conference on Human Factors in Computing Systems. pp.
2783–2792, 2014.

24. Czerwinski M, Smith G, Regan T et al. Toward characterizing
the productivity benefits of very large displays. In Proceedings
of INTERACT. pp. 9–16, 2003.

25. Andrews C, Endert A and North C. Space to think: large high-
resolution displays for sensemaking. In Proceedings of the
ACM Conference on Human Factors in Computing Systems.
pp. 55–64, 2010.

26. Bradel L, Endert A, Koch K et al. Large high resolution
displays for co-located collaborative sensemaking: Display
usage and territoriality. International Journal of Human-
Computer Studies 2013; 71(11): 1078–1088.

27. Isenberg P and Carpendale S. Interactive tree comparison
for co-located collaborative information visualization. IEEE
Transactions on Visualization and Computer Graphics 2007;
13(6): 1232–1239.

28. Isenberg P and Fisher D. Collaborative brushing and linking
for co-located visual analytics of document collections. In
Computer Graphics Forum, volume 28. Wiley Online Library,
pp. 1031–1038, 2009.

29. Kim K and Elmqvist N. Embodied lenses for collaborative
visual queries on tabletop displays. Information Visualization
2012; : 1473871612441874.

30. Spindler M, Tominski C, Schumann H et al. Tangible
views for information visualization. In Proceedings of the
ACM International Conference on Interactive Tabletops and
Surfaces. ACM, pp. 157–166, 2010.

31. Hall ET. The Hidden Dimension. Garden City, NY: Anchor
Books, 1966.

32. Ballendat T, Marquardt N and Greenberg S. Proxemic
interaction: designing for a proximity and orientation-aware
environment. In Proceedings of the ACM Conference on
Interactive Tabletops and Surfaces. pp. 121–130, 2010.

33. Badam SK, Amini F, Elmqvist N et al. Supporting visual
exploration for multiple users in large display environments. In
IEEE Conference on Visual Analytics Science and Technology
(VAST). 2016.

34. Kister U, Reipschläger P, Matulic F et al. Bodylenses:
Embodied magic lenses and personal territories for wall
displays. In Proceedings of the ACM International Conference
on Interactive Tabletops & Surfaces. pp. 117–126, 2015.

35. Endert A, Andrews C, Lee YH et al. Visual encodings that
support physical navigation on large displays. In Proceedings
of Graphics Interface. Canadian Human-Computer Communi-
cations Society, pp. 103–110, 2011.

36. Andrews C, Endert A, Yost B et al. Information visualization
on large, high-resolution displays: Issues, challenges, and
opportunities. Information Visualization 2011; 10(4): 341–355.

37. Ball R, DellaNoce M, Ni T et al. Applying embodied
interaction and usability engineering to visualization on large
displays. In Proceedings of the ACM British HCI-Workshop on
Visualization & Interaction. pp. 57–65, 2006.

38. Ball R and North C. Realizing embodied interaction for visual
analytics through large displays. Computers & Graphics 2007;
31(3): 380–400.

Prepared using sagej.cls

Badam and Elmqvist: Camera-Based Visual Data Transfer for Cross-Device Visualization 19

39. Andrews C and North C. Analyst’s workspace: An embodied
sensemaking environment for large, high-resolution displays.
In Proceedings of the IEEE Conference on Visual Analytics
Science and Technology. pp. 123–131, 2012.

40. Jacob RJK, Girouard A, Hirshfield LM et al. Reality-
based interaction: a framework for post-WIMP interfaces. In
Proceedings of the ACM Conference on Human Factors in
Computing Systems. pp. 201–210, 2008.

41. Raskar R, Welch G, Cutts M et al. The office of the future:
A unified approach to image-based modeling and spatially
immersive displays. In Proceedings of the ACM Conference on
Computer Graphics and Interactive Techniques. pp. 179–188,
1998.

42. Raskar R, Brown MS, Yang R et al. Multi-projector displays
using camera-based registration. In Proceedings of the IEEE
Conference on Visualization. pp. 161–522, 1999.

43. Scott D, Sharp R, Madhavapeddy A et al. Using visual tags to
bypass bluetooth device discovery. ACM SIGMOBILE Mobile
Computing and Communications Review 2005; 9(1): 41–53.

44. Kaltenbrunner M and Bencina R. reactivision: a computer-
vision framework for table-based tangible interaction. In
Proceedings of the ACM International Conference on Tangible
and Embedded Interaction. pp. 69–74, 2007.

45. Klokmose CN, Kristensen JB, Bagge R et al. Bullseye: High-
precision fiducial tracking for table-based tangible interaction.
In Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces. pp. 269–278, 2014.

46. Rädle R, Jetter HC, Marquardt N et al. HuddleLamp:
Spatially-aware mobile displays for ad-hoc around-the-table
collaboration. In Proceedings of the ACM Conference on
Interactive Tabletops and Surfaces. pp. 45–54, 2014.

47. Rohs M and Zweifel P. A conceptual framework for
camera phone-based interaction techniques. In International
Conference on Pervasive Computing. Springer, pp. 171–189,
2005.

48. Hesselmann T, Henze N and Boll S. Flashlight: optical
communication between mobile phones and interactive
tabletops. In Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces. pp. 135–138, 2010.

49. Langlotz T and Bimber O. Unsynchronized 4d barcodes. In
Advances in Visual Computing. Springer, 2007. pp. 363–374.

50. Li T, An C, Campbell AT et al. Hilight: Hiding bits in pixel
translucency changes. ACM SIGMOBILE Mobile Computing
and Communications Review 2015; 18(3): 62–70.

51. Li T, An C, Xiao X et al. Real-time screen-camera
communication behind any scene. In Proceedings of the ACM
Conference on Mobile Systems, Applications, and Services. pp.
197–211, 2015.

52. Tang A, Tory M, Po B et al. Collaborative coupling over
tabletop displays. In Proceedings of the ACM Conference on
Human Factors in Computing Systems. pp. 1181–1190, 2006.

53. Morris MR, Ryall K, Shen C et al. Beyond ’social protocols’:
multi-user coordination policies for co-located groupware. In
Proceedings of the ACM Conference on Computer Supported
Cooperative Work. pp. 262–265, 2004.

54. Reda K, Johnson AE, Papka ME et al. Effects of display size
and resolution on user behavior and insight acquisition in visual
exploration. In Proceedings of the ACM Conference on Human
Factors in Computing Systems. pp. 2759–2768, 2015.

55. Shoemaker G, Tsukitani T, Kitamura Y et al. Body-
centric interaction techniques for very large wall displays.
In Proceedings of the ACM Nordic Conference on Human-
Computer Interaction: Extending Boundaries. pp. 463–472,
2010.

56. Elmqvist N, Moere AV, Jetter HC et al. Fluid interaction
for information visualization. Information Visualization 2011;
10(4): 327–340.

57. Langner R, Horak T and Dachselt R. Towards combining
mobile devices for visual data exploration. In Poster Program
of the 2016 IEEE Conference on Information Visualization
(InfoVis). 2016.

58. Abrahamson D and Trninic D. Toward an embodied-interaction
design framework for mathematical concepts. In Proc. ACM
Conference on Interaction Design and Children. pp. 1–10,
2011.

59. Marquardt N and Greenberg S. Proxemic Interactions: From
Theory to Practice. Morgan & Claypool Publishers, 2015.

60. Wobbrock JO, Morris MR and Wilson AD. User-defined
gestures for surface computing. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems.
pp. 1083–1092, 2009.

61. Rohs M. Marker-based embodied interaction for handheld
augmented reality games. Journal of Virtual Reality and
Broadcasting 2007; 4(5): 1860–2037.

62. Amatriain X, Kuchera-Morin J, Hollerer T et al. The
Allosphere: Immersive multimedia for scientific discovery and
artistic exploration. IEEE Multimedia 2009; 16(2): 64–75.

63. Thevenin D and Coutaz J. Plasticity of user interfaces:
Framework and research agenda. In Proceedings of
INTERACT, volume 99. pp. 110–117, 1999.

64. Heer J and Shneiderman B. A taxonomy of tools that support
the fluent and flexible use of visualizations. ACM Queue 2012;
10(2): 1–26.

65. Shneiderman B. The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of the
IEEE Symposium on Visual Languages. pp. 336–343, 1996.

66. Yi JS, ah Kang Y, Stasko JT et al. Toward a deeper
understanding of the role of interaction in information
visualization. IEEE Transactions on Visualization and
Computer Graphics 2007; 13(6): 1224–1231.

67. Satyanarayan A, Wongsuphasawat K and Heer J. Declarative
interaction design for data visualization. In Proceedings of the
ACM Symposium on User Interface Software and Technology.
pp. 669–678, 2014.

68. Tobiasz M, Isenberg P and Carpendale S. Lark: Coordinating
co-located collaboration with information visualization. IEEE
Transactions on Visualization and Computer Graphics 2009;
15(6): 1065–1072.

69. Perlin K and Fox D. Pad: An alternative approach to the
computer interface. In Computer Graphics. pp. 57–64, 1993.

70. Isenberg P, Dragicevic P, Willett W et al. Hybrid-
image visualization for large viewing environments. IEEE
Transactions on Visualization and Computer Graphics 2013;
19(12): 2346–2355.

71. Wicker SB and Bhargava VK. Reed-Solomon codes and their
applications. John Wiley & Sons, 1999.

72. Chen W, Yang G and Zhang G. A simple and efficient
image pre-processing for QR decoder. In Proceedings of
the International Conference on Electronic & Mechanical
Engineering and Information Technology. 2012.

Prepared using sagej.cls

	Introduction
	Usage Scenarios
	Collaborative Data Analysis in Office Settings
	Casual and Serendipitous Workspaces
	Public Presentations

	Background
	Cross-Device Interaction in HCI
	Visualization beyond the Desktop
	Camera-Based Discovery and Communication

	Embodied Interaction for Sensemaking
	Design Elicitation: Formative Evaluation
	Participants
	Apparatus
	Methods
	Results: Cross-Device Interaction Patterns
	Observations: Participant Feedback
	Cross-Device Interaction for Visualization

	Visfer: Visual Data Transfer
	The Visfer Framework
	Visualization Transfer: Levels of Content
	Visualization Adaptivity
	Visfer JSON Content Representation.
	Adapting to Device.
	Adapting to Visualization Task.

	Spatial Awareness
	Developer and End-User Controls

	Implementation
	Examples
	BusinessVis
	HaloCloud
	QR-Vega

	Performance Evaluation
	Discussion
	Comparison of Visfer's Performance
	Limitations

	Conclusion and Future Work

