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A Robust Approach to Independent Component
Analysis of Signals With High-Level
Noise Measurements

Jianting CapMember, IEEENoboru Murata, Shun-ichi AmarkFellow, IEEE Andrzej Cichocki, and
Tsunehiro Takeda

Abstract—in this paper, we propose a robust approach for in-  wherex(t) = [z1(t), ..., rm(t)]T represents the transpose
dependent component analysis (ICA) of signals that observations of 1, observations at time. Each observation;(¢) contains

are contaminated with high-level additive noise and/or outliers. T
- ~ o ; common components (sources)) = t), ..., t
The source signals may contain mixtures of both sub-Gaussian n P ( )) [s1(2), (1)

and super-Gaussian components, and the number of sources is"’md a unique component (additive noise), which is included in

unknown. Our robust approach includes two procedures. In the the vecto(t) = [£1(1), ..., &m(1)]". A is a full-rankm x n
first procedure, a robust prewhitening technique is used to reduce mixing matrix.

the power of additive noise, the dimensionality and the correlation In the model, the sourcesand their numben, additive noise
among sources. A cross-validation technique is introduced 10 ¢ ang matrixA are unknown, but the sensor signalsre ac-
estimate the number of sources in this first procedure. In the . . . .

second procedure, a nonlinear function is derived using the pa- cessible. The.sensor signalsontain mlxt!,lres of both sub-and
rameterized t-distribution density model. This nonlinear function ~ SUper-Gaussian source components. It is assumed that the com-
is robust against the undue influence of outliers fundamentally. ponents of are mutually statistically independent, as well as
Moreover, the stability of the proposed algorithm and the robust  statistically independent of the noise componentsloreover,
property of misestimating the parameters (kurtosis) have been the noise componenésthemselves are assumed to be mutually

studied. By combining thet-distribution model with a family of d lated. O lis t timate the ind dent
light-tailed distributions (sub-Gaussian) model, we can separate ecorrelated. Lur goal 1s 1o estimate the independent sources

the mixture of sub-Gaussian and super-Gaussian source compo- Under these challenging conditions or assumptions.
nents. Through the analysis of artificially synthesized data and  The topics considered in the present paper are related to var-

real-world magnetoencephalographic (MEG) data, we illustrate jous original contributions. They include the ICA noisy model

the efficacy of this robust approach. in [7], [20], [24], [27]-[29], the estimation of the number of
Index Terms—Cross-validation method, independent compo- sources in [21], [32], the natural gradient and/or the relative gra-

nent analysis (ICA), parametric estimation method, principal dient-based ICA algorithms with stability analysis in [1]-[5],
32?5&"%2%2? ?Jlr)::fer(:g%g)éirrl%tl):j:i;; r&“é?;'tﬁg'tlga?;'j;?sb“t")“ [16], the optimal nonlinear functions or separation of mixtures
' ' of sub- and super-Gaussian source signals in [11], [17], [19],

[23], [25], [34], [37], and the applications of ICA to averaged

|. INTRODUCTION and unaveraged MEG/EEG data in [10], [12]-[14], [29], [30],

LIND separation of independent sources has receivgﬁs]' [38].Th¢se references will be referred to again in the sub-
B a great deal of attention due to various applications FFAUent sections. . .
science and technology. The problem of blind source separatio” t€ analysis ofreal-world MEG/EEG data one is faced with
(BSS) and/or ICA has been studied by many researchersPipblems such as the dn‘fe_rent nature of source signals (e.g.,
the fields of neural networks and statistical signal processingth sub- and super-Gaussian sources exist), unknown number
[1]-[5], [9], [15], [16], [18], [22], [26], [31], [36] during the OF SOurces, and contamination of the sensor signals with a high

past ten years, and many interesting theoretical and practiyfe! (Power) of additive noise and outliers. We propose a robust
results have been achieved. approach to the solution of these problems based on the sub-

The particular ICA model considered in this paper is space and the parametric methods_ to analyze the independent
components. Our robust approach includes two procedures. In
x(t) = As(t) + &(b), t=1,2, ... (1) the first procedure, observations (noisy data) possessing high
dimensionality are first decomposed into a source signal sub-
, _ _ , space and a noise subspace; the dimensionality is reduced op-
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tion Il. The parameterized-distribution model and its robust Using this result, the covariance matrix is obtained as
properties, as well as the stability of the developed algorithi{zz”} = I,, which means that are orthogonal, or the
are presented in Section lll. Experimental results using thiemponents are decorrelated in the new set of transformation
new approach on artificially synthesized data and real-wortthta.
unaveraged single-trial MEG data are presented in Section IV.This standard approach or a similar decorrelation procedure
The MEG data are from an experiment studying the auditohas been adopted in some promising ICA algorithms [9], [15],
evoked fields (AEF) task. Some conclusions are drawn affb] for the prewhitening procedure. Applying these algorithms
presented in Section V. to the analysis of averaged EEG/MEG data (SNR is high), some
successful results have been reported [35], [38].

II. ROBUST PREWHITENING TECHNIQUE o _ _ _
B. Prewhitening With Noise Reduction

In this section, we first describe the standard principal compo- id difficul hall . h
nents analysis (PCA) approach, which has been adopted in som'eit_ ur‘:’ tchonSI era T?r:e imeu t olr cha tehnglrl(ﬁ Ctasft’h owever,
promising ICA algorithms [9], [15], [26] for the prewhiteningIn which the power of the noise IS farger than that of the source

step. Next, we show that this standard PCA approach can be %i)g_nal (SNR< 0 dB). This situation usually happens with MEG

tended to prewhitening of data with noise reduction. Finally, tH&W Qata. In this case, the diagonal eleme_nts N th? mdtiExe
latively large and, therefore, cannot be ignored in the model.

ractical implementation of the robust prewhitening algorithiif 21V X
P b P gayg Similar to the standard PCA approach, here we can fit

'S E(re?suesn:g\(/jv.rite (1) in a data matrix form as AAT to C — ¥ using the eigenvalu_e decomposition method.
We choose the columns oA as eigenvectors o — ¥

corresponding to the largest eigenvalues so that the sum of

the squares in each column is identical to the corresponding

whereN denotes data samples. When the sampleizesuf- eigenvalue.

ficiently large, the covariance matrix of the observed data canlt should be noted that the noise covariadeés assumed to

be written as be known in the above case. However, the noise covaridmise
usually unknown in the real-world problem and, therefore, it has

S=AAT+ @ (3) to be estimated. Motivated by this, we employ the cost function

X(mxN) = Almxn)SnxN) T EmxN) 2

whereX = XX” /N, and¥ = EE7 /N is a diagonal matrix. ~ L(A, ¥) = tr [AAT — (C — ¥)][AAT — (C - \II)]T
Since the sources are mutually independent, as well as indepen- @)
dent from the noise, the tern$$” /N — T andSET /N — 0,

disappearing in (3). For convenience, we assume Xadtas and minimize it by(OL(A, ¥))/0¥ = 0, whereby the esti-
been divided by/N so that the covariance matrix can be givemate of & can be obtained as

by C = XXT. . -
y ¥ = diag (C - AAT) . @8)

A. Standard PCA for Prewhitening ] . o )
) . . . . . In (8), the estimaté\ can be obtained in the same way as in (5).
Let us first consider an ideal case in which the noise vari- Note that both the matriA and the diagonal elements f
antpe\I'SERc Iqse to Z‘;TOE oIr mﬂ:)ther vtvortds,ftg_e mgg_al—':o—_nmsr?eed to be estimated together from the data. The estifase
ratio ( . ) IS very high. In the context ot biomedical SIgNg, ineq by the standard PCA approach using the eigenvalue
processing, this condition can usually be achieved by taking t Scomposition method. The estimabeis obtained by the un-

average_of ".’1 large number of trials.. " weighted least squares method, which is one of the estimation
For this kind of data, a cost function for fitting the model t91ethods used in factor analysis [33]

T - .
the data can be employed to make- AA™ as small as pos Once the estimateA and ¥ converge to stable values, we

Sf'ble' Itis \.Nel.l known that the star_1dard PC.A approach is usedﬁged to finally compute the score matrix, or the pseudoinverse
f|_nd the principal components usmgq‘Ehe elgenyalue (?quompométrix_ Since the solution for a pseudoinverse matrix is not
tion methO(tj, that 'E’ thitsqlutl(;)rE)AfA for seeking: principal unique, in this paper, we employ the Bartlett method [8], which
components can be obtained by is an unbiased model. The noise variankds taken into the
AAT = U,A,UT @) calculation, that is
-1
_ | ATEG -1 A ATg -1

whereA,, is a diagonal matrix whose elements arestHargest Q= [A b A} AT ©)
eigenvalues ofC. The columns ofU,, are the corresponding

. . L g Using this result, a new set of transformation data can be ob-
eigenvectors. In (4), let one possible solution fobe g '

tained byz = Qx.
A=U,AY2, (5) Note that the covariance matrix #8{zz” } = I,, + C¥CT,
" which implies that the source signals are decorrelated in this
Note thatA” A = A,,, and the principal-component scores cafubspace. Therefore, the robust prewhitening technique plays
be obtained fronx = Az, that is the same role in decorrelation as in standard PCA, but the noise
varianceW is taken into account with the former. The differ-
z=A;Y?UTx. (6) ence between the two methods is that standard PCA fits both
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diagonal and off-diagonal elements @f whereas the robust
prewhitening technique fits only the off-diagonal elements of
C. Based on this property, one can take advantage in reducing
the high-power noise using the robust prewhitening technique,
particularly in the case in which the power of noise is larger
than that of the signal. Another advantage is that the robust
prewhitening technique is robust to non-Gaussian unigue out-
lier, since it does not assume close adherence to the normal dis-
tribution in the model assumption.

Some similar noise reduction approaches using statistical
methods such as the maximum-likelihood method of factor
analysis has been proposed in [7], [29]. The advantage of these
methods is that there is a statistical measure available for as-
sessing how well the model fits the data. However, when sensor
signals are contaminated with high-power Gaussian noise or
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2) Given an initial number, such & = 1, divide the
data matrix aX,; € R™*"/K then calculate the error
using (10).

3) Calculate thé) largest eigenvalueA;, and the associ-
ated eigenvector¥/,, of C.

4) Calculate the estimat& using (5) and the estimatk
using (8).

5) Repeat calculations 3) and 4) until the estimates con-
verge to stable values.

6) Setthe conjectured numberias= 7 + 1, repeat 2) to
5) until the conditiom: < (1/2)(2m +1—+/8m + 1)
is satisfied.

7) Seek the minimum error af using (10) and calculate
the pseudoinverse of estimateusing (9); finally, ob-
tain a new set of transformation databy= Qx.

non-Gaussian outliers, such as with single-trial, MEG data, the|t should be noted that it is necessary to use the robust

algorithms derived using these methods work inefficiently.  prewhitening technique (i.e., decorrelation procedure) to re-

duce the power of the noise as well as the number of parameters

to be estimated. It is insufficient to obtain the independent

. . S components, since an orthogonal matrix in general contains

The cross-validatory techniques have been injudiciously 8P ditional dearees of freedom. Therefore. the remainin

plied in multivariate statistics [32]. The basic idea of a cross- 9 ; ’ ' 9

validatory method is that it divides the data into several Suggrameters need to be estimated by ICA.

groups. One group is used to determine some features of the

data, and the other groups are used to verify the features. Usitly ROBUST NONLINEAR FUNCTION IN THE ICA ALGORITHM

this technigue, WE propose a criterion' for estimr?lting th.e nurnberAfter prewhitening of the noisy observations, the transformed

of sources; based on the error of estimated noise variance. signalsz = Qx are obtained through a procedure in which
Let us first divide the data matriX into several disjoint yhe hower of noise, mutual correlation and dimensionality have

groups, such aX; € R™* /X, whereN is the number of data peen reduced, The decomposed independent soyree®R”
samples and the group numbes 1, ..., K. Next, we delete .5, then be obtained from a linear transformation as
each group in turn from the data matrix and compute one esti-
mate of the noise variance dig(¥;); we use remaining data

to compute another estimate of the noise varianctag ¥ ),
wherej # i. Itis obvious when the estimate of source number ) o ) _
has not been matched to its true value, there will be a larger erfdpereW € R™*" is the demixing matrix, which can be com-
between the noise variance and its estimate. Based on this pfied using several kinds of ICA algorithms [1], [15], [26]. In

erty, we define the criterion for each conjectured source numiBBIS Paper, we employ the nature gradient-based ICA algorithm
n as to compute matrixW.

The Kullback—Leibler divergence is one ICA contrast func-
tion that measures the mutual stochastic independence of the
output signalgy; between the joint probability density function
(pdf) p,(y) and the marginal pdfs;(y;) as

C. Estimation of the Number of Sources

y(t) = Wz(t) (11)

Error(n) = % i tr [diag (@Sn)) — diag (‘i’gn))r
i=1

(10)

When the “disjoint” condition is relaxed, we can replace one D(y|W) = /py(y) log Py(y) dy. (12)
of the estimatesliag(¥ (™) Ordiag(‘II](»n)), using the estimate . ﬁ pi(yi)
diag(¥ (™) that will be computed for the total data samples. i=1

It should be noted that it is unnecessary to compute ?rlll

the estimates of the source number, such as fiom 1 to H’ndependence condition,(y) = [T, pi(x:) is satisfied

n = m, wherem denotes the number of sensors, since the oY — =1 Pt '
estimated number of sources should be within the bound [6] RI% 2:? [T]atg]al[gzg??;;if;: d(aarigtglgrg;néa\;v;(?sc?ev\;iligﬁeveasy
n < — . ' 1 - . l

< (1/2)@m +1 8m +1) termed the relative gradient [16]. It has been proven that the
natural gradient greatly improves learning efficiency in blind

source separation. Applying the natural gradient to minimize
The computation for the robust prewhitening technique KL divergence (12), the general learning rule for updafivg
summarized as follows. can be developed as [1]

1) Calculate the covariance matfxfrom data and setan
initial guess of®, e.g.,¥(0) = diag(C~1)~%.

(12), the KL divergenceD(y|W) = 0, if and only if the

D. Summary

AW () =n[I—o(y(t))y" (t)] W(1). (13)
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When prewhitening has been performed and the demixing ma-the source distribution. Preliminary results from applying

trix W is restricted to be orthogonal in form, the algorithm cathe t-distribution density model was reported in [11]. Some

be extended to the following form as [5]: extensions, such as the robust property in misestimating the

shape parameters (or kurtosis) and its application to a real-world

problem, are presented in this paper.

AW(t) = = [p(y(1)y" (1) = y ()" (y(1))] W(t). (14)

When the prewhitening is included in the separation process, fbﬁ'e Proposed Unimodal Distribution Density Model

algorithm becomes the EASI algorithm [16] In this paper, we present a unimodal distribution density
model that combines the-distribution density model and a
family of light-tailed distributions, which are a part of the

AW(t) =n [I-y()y" (t) — o(y(t)y" (1) generalized Gaussian distributions density model (see Fig. 1).

+ y(t)e" (y(t))] W(t). (15)  The pdf of thet-distribution with a shape parameférand a

scaling factor)s is defined by

In (13)-(15),n > 0 is a learning rate, ang(-) is the vector of

activation functions whose optimal components are

Mgl (252 2\ —(1/2)(8+1)
@i(yi) = —5—log pi(yi) = _pf(y’f) (16) V7B (5)
dyi pi(ys)

whereI'(-) is a Gamma function defined by
wherep; (yi) = dpi(yi)/dy;.
Typical ICA algorithms, including algorithms (13)—(15), rely -
on the appropriate choice of nonlinear score functions. The op- I(z) = / t*~Lexp(—t) dt. (18)
timal function (16) depends on the probability distribution of the 0
source, which is usually not available in the ICA task. Therefor . -
one practical solution to this problem is to employ a hypothe -hanging the shape paramegewithin 0 < § < oo, we can

ical probability density model. Several algorithms have been ch;tain a family of heavy-tailed distributions (super-Gaussian)

veloped for separating the mixtures of sub- and super-Gauss} at have much higher peaks than the Gaussian distribution [see

sources [11], [17], [19], [23], [25], [34], [37]. 9. _1(a).]. In particular, wheg = 1, it is.id.er_1ticgl tothe Cauchy
For bimodal distributed sources, employing a mixed Gaussigﬁmbgt'orgin% vJ\[/.her;B approaches infinity, it reduces to the

density model has been proposed in [25], [34]. The develop itusilanldlsl; rbu ,'[Og'th t onlv the h tailed distributi

algorithm based on this model is elegant and enables us to se should be note at only the heavy-lared distributions

rate the mixtures of sub- and super-Gaussian sources. Howe per-Gaussian) exist in thedistribution. In order to establish

the sign of the hyperbolic-tangent function in the algorithm | uhimodal distribution density model that includes not only the
determined by the sign of the kurtosis, which does not alwa gavy—tailed distributions but also the light-tailed distributions
correspond to the source distribution ’ sub-Gaussian), we subtract a family of light-tailed distributions

The generalized Gaussian distributions are comprised of UHIQm the generalized Ga_ussmn d|st_r|but|_ons_. . .
modal heavy-tailed (super-Gaussian) and light-tailed distribu-The pdfof the gener_allzed Gausgan distribution with a shape
tions (sub-Gaussian). The parametric method using the gglq_rameten and a scaling factok, is represented by
eralized Gaussian density model has been developed in [37],
[17]. In the method, a shape parameter is introduced to repre- g o
sent not only the distribution of source but also the value of paly) = or (1) exp(—|Aay[*) (19)
the source kurtosis. However, several discontinuities exist in the “
heavy-tailed distribution density model, and these discontinwherea = 2 is the pdf of Gaussian distribution. When< 2,
ities lead to the instability of algorithm. a family of the heavy-tailed distributions (super-Gaussian) are
In this paper, we introduce the-distribution, which is a similar to that of thet-distribution. Whena > 2, they are a
family of heavy-tailed distributions with degrees of freedorfamily of light-tailed distributions (sub-Gaussian) and are much
(a shape parameter). Two advantages exist in applying thiler than the Gaussian distribution [see Fig. 1(b)].
t-distribution density model: 1) no discontinuity exists in the The generalized Gaussian distribution density model is
t-distribution density model, hence, the derived algorithm smple. Both heavy-tailed and light-tailed distributions can
always locally stable; and 2) the nonlinear function derivelse controlled using only one parameter. However, since the
from the parameterizettdistribution density model is robust parameterized heavy-tailed distributions model is not always
to the undue influence of outlier. stable and not as robust, it is worthwhile to replace it with
By combining thet-distribution density model with a family the parameterized-distribution model, represented by an
of light-tailed distributions (sub-Gaussian) density model, wadditional parameter. In this paper, we propose a unimodal
can separate the mixtures of sub-Gaussian and super-Gausgistnibution density model that is a combination of thdistri-
source components. In this case, the nonlinear function is deteution density model and the light-tailed distribution density
mined by the estimated value of the kurtosis, which corresponuedel [see Fig. 1(c)].
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Fig. 1. Relationship between the kurtosis and the proposed unimodal distribution density madeis{ebution. (b) Light-tailed distributions subtracted from
the generalized Gaussian distributions. (c) Proposed unimodal distribution density model. (d) Relationship between the kurtosis and théistriatidal
model.

B. Kurtosis and Proposed Unimodal Distribution Density .00 34T (%)
Model my = / yips(y) dy = ————2, B>4 (22)
is i oo anr (%)
Kurtosis is a quantity used to measure the peakedness or flat- B \2

ness ofthefreque_ncy q|str|but|on ofarandom variable. The n(\)/\r/here the scaling factokg can be derived using one of the
malized kurtosis is defined by

equations in (21) and (22). For example, using (21), we obtain

K(y) - :égf; -3 (20) 1/2
wherem;(y) = E[y?] andmy(y) = E[y*] are the second- and Ag = 2 _ (23)
fourth-order moments, respectively. A positive kurtosis corre- ’ 2msl (L;)
sponds to a super-Gaussian distribution and a negative kurtosis
corresponds to a sub-Gaussian distribution. Substituting (21) and (22) into (20), we obtain the relative for-

It should be emphasized that the value of the kurtosis cQfjy1a petween the kurtosis; and the shape parameténs
responds to the shape parameter only in the unimodal distribu-

tion model. Based on this property, the relationship between the s (u) r ([_,)
value of the kurtosis and the shape parameters irt-histri- s = ma g 2 2] _3 (24)
bution model and the generalized Gaussian distribution density P m2 2 (%)

model can be established.
The second- and fourth-order moments of thdistribution

; ) It should be noted that wh 36 given, iti t
can be derived by using formula (17). They are should be noted that when parametes given, itis easy to

calculate the value of kurtosiss using (24). However, in most
oo 6r (%) cases, we need to obtain parametenhen given kurtosis:s.
ma = / Vps(y)dy=——"-+4£,  [>2 (21) This can be done by establishing a lookup table in advance, and
e ”‘%F (g) then seeking the value ¢fin the table that is close t©s.
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Outlier in unaveraged MEG data Comparison of functions (super-Gaussian)
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Fig. 2. (a) Example of an outlier occurring in unaveraged MEG data. (b) Comparison of the functions derived by from the heavy-tailed distribdépn mode
1) t-distribution model (solid line3 = 5); 2) heavy-tailed distributions from the generalized Gaussian distribution model (dash-dotteddink); and 3) mixture

of Gaussian density model (dash-dotted line). It is clear that the function derived by frandtsigibution model is robust to the undue influence of an outlier,
which often occurs in MEG records.

Similarly, the second- and fourth-order moments of the gemheres; is the estimate of kurtosis defined by = 1, /13 —3.
eralized Gaussian distribution and the scaling factor can be dbean be obtained by estimating the second- and fourth-order

tained by moments using the moving-average algorithm as
= r(2 () = [L— iyt = D) +ml(t),  j=2,4 (3
ma = / yzpa(y) dy = % (25)
T 4t where0 < n < 1is a learning rate. According to the estimate
o ~ ) dy = r(2) (26) i, the function in (29) or (30) is selected automatically. Some
4= ) Y P = () coefficients in the functions, such s or A, can be calculated

12 using (23) or (27), respectively.
T (%) Let us consider an example in which we compare the acti-
Ao = m (27)  vation functions derived by the-distribution density model,

0‘ the heavy-tailed distributions in the generalized Gaussian dis-
tribution density model and the mixed Gaussian density model.
The result is shown in Fig. 2(b). From this result, it is clear
that the functiony;(y;) derived by thet-distribution density
model approaches zero when the valug;abruptly increases.

and the relative formula between the kurtasisand shape pa-
rametera can be obtained by

o — r2)r() _3 (28) This means that the proposed function is robust to the undue
“ 2 (3) influence of an outlier that often occurs in MEG raw data [see
Fig. 2(a)].
where the heavy-tailed distributions< 2 are restricted. The implementation of the proposed ICA algorithm is sum-

The relationship between the kurtosis and the proposed umiarized as follows.
modal distribution density model is shown in Fig. 1(d). Note < Calculate the outpyt using (11) when given observations
that the curves in Fig. 1(d) are similar to those in Fig. 1(c).  z and an initial value oW.
This means that the unimodal distribution curves can be rep- * Calculate the kurtosis using (20) where the second- and
resented not only by the parameterized unimodal distribution  fourth-order moments are estimated using (31).

density model but also by the kurtosis. * Establish two look-up tables for (24) and (28) in advance,
and seekx or  from the table according to the value of
C. Proposed Algorithm and Its Implementation Ri.

« Calculate the scaling factor using (23) or (27) according
to the value of%;.

* Calculate the nonlinear function using (29) or (30) and
updateW using (13), (14) or (15).

The optimal functions [see (16)] derived using thdistribu-
tion density model (17) and the light-tailed distribution density
model (19) are

oi(ys) = %7 kg = ki >0 (29) D. Stability Analysis of the Proposed Algorithm
yi bY The stability conditions for algorithm (13) were developed
|1, ke = k; <0 (30) by Amariet al.in [2]. The goal of the stability analysis is to

©i(yi) = o sgn(yi)| Aayi
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seek some conditions that guarantee the behavior of the learnin@ase 3:a < 2 (For Super-Gaussian Signals)Vhena < 2,
system approaching the equilibrium. It has been proven ti{&B) is positive. However, (39) and (40) do not always have a
when the Jacobia( E[I—¢(y )y |W)/OW has negative real solution since many discontinuities (for examples 0.2, 0.5,
parts, the equilibrium is asymptotically stable. For each of trec.) exist in the Gamma functidi((« — 1)/«), and these dis-
pairwise sources j (i # j), the necessary and sufficient con€ontinuities lead to stability conditions (33) and (34) being un-
ditions are developed as [2] satisfied in some situations.
5. As mentioned in the previous subsections, one advantage of
Ely; i(y)] +1>0 (32) employing thet-distribution density model is that the devel-

Elpi(y:)] >0 (33) oped nonlinear function is robust to outliers [see Fig. 2(b)]. As
E[yf]E[y?]E[%(yi)]E[%(yj)] —1>0 (34) we can see here, another advantage of employing-tistri-
bution model is that it always maintains stability. The cost for
whereE[-] denotes expectation agd= dy/dy. employing thet-distribution model is that it introduces an ad-

Applying these conditions, we investigate the stability effegfitional shape parametg
of the nonlinear functions based on thalistribution density
model and the generalized Gaussian distribution density model. Robust to Misestimation of the Parameter
bu';g?a‘gg;:;’?ggiﬁ;ggztr')oer:_gz&g;gxeg&%ﬁg tﬁ}fl;tirs"ca%ln Section 3-D, the stability of developed functions was in-
the conditions in (32)—(34) are always satisfied since the ten&Stlgated under an ideal case in which the parameter 3

= » "MShtained from the estimatg) is a true value, or is estimated
on the left-hand side in (35)~(37) are positive (see Appendix rrectly. In this subsection, we investigate the case in which

. 20 the estimatey or[f deviates from the true value or g with an
2 . . e —
Blyiily)] +1 = 3r3° 0 (35)  arrore as
A(B+1) B=B+e (41)
Elpi(yi)]=—F5——%—>0 (36)

[Py p+3 d=a+e. (42)

BB+ 1r (%) For the case of misestimation, the following questions may

—1>0. (37 arise: 1) Are the stability conditions (32)—(34) still satisfied?

E[y?Elgi(y)] — 1=

8
2(p+3)C (2) 2) If they are conditionally satisfied, what are the new condi-

In (37), the same assumptigh> 2, as in (21), is necessary_tions? or How large an intervalis allowed for the estimate de-
Moreover B2 E i ()] approach,es one if and onlyjifap- Viating from the true value? In this case, the functions (29) and

proaches infinity. This is the case for the Gaussian distribut&3f) become

signal. (14 B+ ¢e)y:
Next, we investigate function (30) derived from the general- 0 5(i) = 42/2 4 B1= (43)
ized Gaussian distribution density model. Similar to thais- ¢ X5
tribution model, the stability conditions can be derived as (see ©ia(yi) = a+ edasgn(y) | Aayi|* T (44)
Appendix I1): . . . . .
Applying stability conditions (32)—(34) to investigate func-
Ely?¢i(yi)] +1=a>0 (38) tions (43) and (44), we can derive new conditions as
Aa(a— 1) (1) 2. (B+e+1)(B-3)
. . _ « a c N - 1 = 1
Blgin)) = === >0 (39 Blue; )] 41 =" w10 (49)
a- AN(B+e+1)
: ala =D ()T (25) b, 5(yi)] = "
E[y}]Elpi(yi)] - 1 = r (1) —1>0. Elp; 5(y:)] et (46)
40 . +e+ 1D)I(B/2-1
Let us consider the following three cases (47)

Case 1l:a > 2 (For Sub-Gaussian Signals)Vhena > 2,

the stability conditions (38)—(40) are always satisfied since tRed )
((a+e)y—a—e)(a+e+1)/q]

left terms are positive. Elv2e: ~(u; 1=

Case 2:a = 2 (For Gaussian Signals)Whena = 2, (38) [y s, aw)] + ['(1/a)
and (39) are positive. In (40), for the Gaussian distributed signal +1>0 (48)
yi, the termE[y2]E[¢:(y:)] = 1. If another signal; is also A2(a? + ae)l(2a+ e—1/a)
Gaussian distributed, then stability condition (34) is not satisfied Eli a(yi)] = — (1 /o) >0

sinceE[y; | E[¢i(vi)Ely:1El¢;(y;)] — 1 = 0. Itis well known

that two Gaussian signals cannot be separated. We prove this

from the stability analysis point of view. However, if anotherEcIy;;]E[(p‘ )] —1= (0 + ae)TB/a)T(2a 4+ ¢ —1/a)
signaly; is super-Gaussian or sub-Gaussian, then it is easy to”" ARt I'2(1/a)

prove that condition (34) is satisfied sinEéy?]E[gbj(yj)] > 1. -1>0 (50)

(49)
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Fig. 3. Robustness to parameter misestimation. (a) and (b) Robustness to misestimating the super-Gaussian signals under the conditiongdh &48) (%7
robustness to misestimating the sub-Gaussian signals under the conditions in (48)—(50).

respectively. In (45)—(47) and (48)—(50), we seek the value ofising a 7x 2 random numeric matribA. Seven uncorrelated

that will satisfy the new stability conditions. Gaussian additive noise signals with their varianEﬁ], or
Let us consider two examples to illustrate these results (see @) = [1.2499 101.0902 02577 0.0001

Fig. 3). The first example shows that function (43) derived usin“Eag( ) =1L : : :

the t-distribution density model is robust to misestimation of 0.0001 0.9823 1.0078]

super-Gaussian signals [see Fig. 3(a) and (b)]. As showngfq o gutiier with amplitude 100 were added to an associated

Fig. 3(a), when the true valye= 4, the condition (45) is satis- gjement ofx(t) [see Fig. 4(b)].

fiedif e > —40. Similarly, in Fig. 3(b), wheri = 4, conditions 14 compare the power of the source to that of the noise

(46) and (47) are satisfieddf> —5 ande > —1.5, respectively. and outlier, we define the signal-to-noise ratio (SNR) and the
In summary, conditions (45)—(47) are satisfied when —1.5,  sjgnal-to-outlier ratio (SOR) as

or when the estimatg is greater than 2.5 (noted that it is not )
necessary to be exactly equal to four). The second example SNR= 101 Elsi] SOR=
. . : ) o 08 ooy :

shows that function (44) derived from the light-tailed distribu- E[¢]] max(|£;])

tion density model is robust to misestimation of sub-Gaussi@sing these formulas, we know that the maximum SNR

signals [see Fig. 3(c) and (d)]. In this case, the true valee4, 20 dB (high-level noise) at sensar,. This means that the

when the estimaté is greater than 3.1 (ar > —0.9); condi- power of the noise is 100 times that of the source signal. The am-

tions (48)—(50) are always satisfied. plitude of the outlier (at sensar) is 21 times that of the max-
imum amplitude of a source, as SGR 21 (an overwhelming

_ max(]si)

IV. EXPERIMENTAL RESULTS transient). , ,
_ o . The proposed robust algorithm (see Section 1I-D) was used
A. Experiment With Artificially Synthesized Data for prewhitening with noise reduction. The estimated variances

We have performed a simulation experiment with one supdif the additive noise [see (8)] are
Gaussian source,s = 4 and one sub-Gaussian sourgg, = . A .
—1.5. The total number of data samples was 10000. We plb*8 (‘I') =[1.2594 101.0757 0.2877 0.1125
2000 samples in Fig. 4(a). Two sources were artificially mixed 0.0073 0.9931 1.0120]
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Fig. 4. Results from application of proposed ICA procedures for artificially synthesized signals. (a) Two super- and sub-Gaussian sourbg Seyeaisnixed
signals with noise and outlier. (c) Result for robust prewhitening using the proposed algorithm in Section Il. (d) Result for decomposing sidr-@adssign
source signals using proposed algorithm in Section IIl.

which are very close to the true values given above. As se Source number estimation
from the result shown in Fig. 4(c), the high-level noise was a
most completely removed, but the sources still overlapped. F 7
lowing this result, the proposed algorithm [see Section IlI-C

n = 0.005 for (15) andn = 0.01 for (31)] was used to further -
separate the overlapping sub- and super-Gaussian compong
The result shown in Fig. 4(d) indicates that the source sign:
are accurately estimated.

In the previous experiment, the number of sources and its
timate are assumed to be knownras= n = 2. In the next s
experiment, we assume the number of sources is unknown, i
we apply the proposed criterion (10) to estimate the number 2-
sources. We first divided the data matd into five disjoint

Error

4 —

groups, such aX; € R7*290 (j = 1_ ... 5) Next, we use |

one of the groups’ data to compute one estimate of the no |

variancediag(¥;), and use the remaining data to compute a1~ . S 5 4 . i z 2

other estimate of the noise variandag(¥ ;) wherej # . The number of sources

Repeating this calculation, we obtain the error of the estimated

number of sourceError(n) fori =1, ..., 7 (see Fig. 5). AS Fig. 5. Result for estimation of the source number. The optimal number is

seen in Fig. 5, when the estimated number of sourceés=2, 7 = 2.
the error is at a minimum. This result indicates that the dimen-
sionality was reduced optimally.
It should be noted that although we have computed all of tipdying the conditionn < (1/2)(2m + 1 — +/8m + 1). Under
estimates fromi, = 1to#n = 7, it is not necessary when ap-the conditionn < 3, we know the result is the same.
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(a)

Averaged

(b) (c)

Fig. 6. Experiment, records, and mapping of averaged AEF. (a) Experimental setup for the AEF task. (b) MEG data with 64-channels recorded tazer 630 trai
(c) Ttypical result for the localization of averaged AEF. Two dipoles appear on the left and right sides of the brain.

B. Experiment With UnavagedSingle-Trial AEF Data for AEF analysis, as shown in Fig. 6(c). This result illustrates

inth licat fICA | Id MEG/EEG d that the estimated locations are reliable, but the amplitude of
n the application o to real-wor ata, most, o, evoked response corresponding to the stimulus is not avail-

researchers have treated the subjected averaged data to the gal- |, order to visualize the amplitude of the evoked response,
ysis [35], [38], [29]. We are more interested in analyzing Unye annly the proposed ICA with the robust prewhitening ap-
averaged single-trial data [12]-{14], [30], since many kinds fioach (Sections Il and I11) to unaveraged single-trial data. For
important information, such as the strength (amplitude) of §e first single-trial data, two active components (IC1 and IC3),
evoked response and its dynamics, can be visualized, which Qffich correspond to N100 evoked responses, are successfully
erwise might be “smoothed” out in averaged trials. extracted [see Fig. 7(a)]. The IC2 component is a typical 10 Hz
The MEG data for an AEF task were recorded using aflpha-wave, and the high frequency IC4 component may be an
Omega-64 (CTF Systems Inc., Canada), whole-cortex ME€pvironmental interference component.
system [see Fig. 6(a)]; the experiment was conducted at the Naprojecting the decomposed components IC1, IC2 and IC3
tional Institute of Bioscience and Human-Technology, Japadnto the sensor space individually, we can virtually visualize a
The sensor arrays consist of 64 MEG channels. A healtlyntribution by a single source at the sensors. This can be done
male adult participated in the AEF experiment. Auditoryy usingx(k) = a;5;(k), wherek is an index of data samples,
stimulation consisted of a 1 kHz tone, presented binaurally is decomposed source, afdis :th column of the estimated
through headphones. There were 630 sets of single-trial datatrix AW ~! obtained from Sections Il and IlI, respectively.
recorded over 379.008 s. The duration of each trial was 0.6018_ocalizing the components IC1, IC2 and IC3 independently
s, and the stimulus was presented 0.2 s after recording. Tusing the virtual contributiok, we obtain the head maps, as
sampling rate for the MEG was 312.5 Hz [see Fig. 6(b)]. shown in Fig. 7(b)—(d), respectively. The map in Fig. 7(b) in-
Taking the average of 630 trials and localizing the evokaticates that IC1 is located on the right temporal cortex, and
fields using the dipole fitting method, we obtain a typical resuthe maximum amplitude of IC1 is 184 fT, which corresponds
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Fig. 7. Results for unaveraged AEF data using the proposed approach. (a) Result for decomposed independent sources. (b) Source localizatiokedr IC1 (
response N100 on the right side). (c) Source localization for IC2 (a typical alpha-wave component). (d) Source localization for IC3 (evokedl i€€ponsiee
left side).

to the first stimulus. The map in Fig. 7(c) indicates that IC2 ivity strength) of each individual evoked response has been vi-
a 10 Hz alpha wave and is located near the back of the headalized. Moreover, we find that the evoked response on the left
The map in Fig. 7(d) indicates that IC3 is on the left temporé&&mporal cortex, IC3, [see Fig. 7(d)] is much stronger than that
cortex, and the maximum amplitude of IC3 is 721 fT (i.e., vergn the right side, IC1, [see Fig. 7(b)] when the first stimulus is
strong). Comparing two maps derived using ICA in Fig. 7(lpresented.

and (d) with the averaged map in Fig. 6(c), we find that the two The same robust prewhitening technique with JADE algo-
evoked responses, IC1 and IC3, correspond to the averaged rithen [15] was applied to the same unaveraged single-trial data
in terms of the source location. It is impossible to obtain anas above. The result for decomposed individual components is
plitude information corresponding to a particular stimulus frorshown in Fig. 8(a). The maps for IC1, IC2, and IC3 are shown in
the averaged data. However, by applying the proposed appro&ap 8(b)—(d), respectively. Comparing the results derived using
to unaveraged, single-trial data, the amplitude information (atADE with those derived using the natural gradient-based algo-
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Robust pre—whitening with JADE
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Fig. 8. Results for unaveraged AEF data using JADE with robust prewhitening. (a) Result for decomposed sources. (b) Source localization fac#C1 (a typ
alpha-wave component). (c) Source localization for IC2. (d) Source localization for IC3. Note that the location of IC1, IC2 and IC3 are diffecsmesftooated
on the left and right side of the brain shown in Fig. 6(c) or Fig. 7(b) and (d).

rithm, we find that the time courses are very similar in Figs. 7(a) V. CONCLUSION

apd 8(a). However, the maps forthe evokgd N100 responses [seﬁ] this paper, we have proposed a novel approach for inde-
Fig. 8(c) and (d); IC2 and IC3] derived using JADE are notidenss nqent component analysis under the conditions of the sensor
tical to the averaged map [Fig. 6(c)] in terms of location. This rejgnals are contaminated with a high-level additive noise and

su!t proves that the natural gradient-based ICA algorithm workgjiers. overlapped sub-Gaussian and super-Gaussian source
efficiently for real-world measured AEF data. components, and the number of sources is unknown.
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The main advantages of our approach are as follows: 1)where,C, denotesthe combinationafthings taken- atatime.
robust prewhitening technique based on the subspace methodsing (53), the result can be obtained as
is presented for reducing high-level additive noise and for re-

ducing the dimensionality in an optimal manner. It plays the ) pr (%)
same role in decorrelation as standard PCA, but the noise vari- Ely?] = N () (54)
ance is taken into account. 2) The parameterized unimodal dis- 22T (_)

tribution density model, which combines thlistribution den-
Note that this result is the same as (21).

sity model with the light-tailed distribution model, is proposed Next, using (17) and (51), we can calculate the expectation of
for separating the mixtures of sub-Gaussian and super-Gaussi
sources. It has been proven that functions (29) and (30) derivel Zﬂh ) as
from the proposed model are robust to misestimation of kuE[ ()]
tosis. Moreover, function (29) derived by thelistribution den- oo
sity model is always locally stable (without any discontinuity) = / ©i(vi)ps(vi) dy;
and is robust to outliers.

Applying the proposed approach to the analysis of unaver= 2¢;c(/2(%+ (5 4 1)
aged single-trial AEF data, we obtained the following novel oo c oo y2
results: 1) overlapping N100 responses were successfully de- X [/ W dy /0 W y]
composed into individual responses; 2) the locations of the de- o
composed N100 responses were identical to the dipoles in the 2c;c/2E+D (3 4 1)

J —oo

most reliable averaged map; and 3) the strength (amplitude) of r (1) r (%) (i)
each evoked response corresponding to a single stimulus in one ,, 2 2 2
single-trial can be visualized. We believe this amplitude infor- 2¢(B8/2)+1T (5;5) 2¢(B8/2)+17 (3 )

mation will be very useful for neuroscientists in their studies of
the information processing mechanisms of the temporal cortex. )\%(ﬂ +1)

55
3+3 (55)
APPENDIX | o ] ] .
DERIVATION OF THE STABILITY CONDITIONS OF Similar to (55), the expectation gf;(y;) with y can be calcu-
t-DISTRIBUTION BASED FUNCTION lated as
The differential of function (29) based on thedistribution  E[y?;(y;)]
density model is derived as /oo 2 65 (i) (0i) d
= Yi Pi\Yi)Pp\Yi) AYi
o (4B (e—vd) J o :
Pilbs) = 2+ (51) (1/2)(B+1)
Yi = 2cgc PB4+ 1)
where we define = /3. « /°° cy; d '_/OO y; du:
Let us first calculate the expectationgf as o (Y2 + ¢)0-5(6+5) Yi o (y? +¢)05(F+5) Yi
0o =92 (1/2)(B+1) 1
Elyf] = / yipa(yi) dy coc (B+1)
Pr(E) () ) s
o y2\ ~(/DE+D y 2 2 _B-3 (56)
~ [ steal1+ ﬁl) " N CONEE, (a DY RS
a— 1 r41 i i
B 2cﬁc(1/2)(@+1) Z —1)rt O Using the results of (54) and (55), we obtain
ct1-1 2r+1 17 5_2
. B8+1r (%52)
R Ely; ] El¢i(y:)] = ~ (57)
Vi te _ . .
0 Using the results of (55)—(57), we can easily obtain the sta-
where bility conditions (35)—(37) for the function derived from the
t-distribution density model.
()
\/— ( ) and ¢ =p/2 APPENDIX I
DERIVATION OF THE STABILITY CONDITIONS OF GENERALIZED
we use the formula of the finite series including the binomial GAUSSIAN DISTRIBUTION-BASED FUNCTION
coefficients The differential of function (30) based on the generalized

Gaussian distribution density model is derived as

"L (—=1)" <n> _ D(n+1)I'(a)
; e \r) T Thvar ©9 Gi(yi) = ala — DAL Aay]* 72 (58)
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Using the definition in (19), we can calculate the expectation[4] S. Amari, “Natural gradient works efficiently in learningReural

of y2 as

E[y?] =/ Yipa(yi) dy

Comput, vol. 10, no. 2, pp. 251-276, Feb. 1998.

[5] —, “Natural gradient for over- and under-complete bases in ICA,”
Neural Comput.vol. 11, no. 8, pp. 1875-1883, Nov. 1999.

[6] T. W. Anderson,An Introduction to Multivariate Statistical Anal-
ysis  New York: Wiley, 1984.

[7] H. Attias, “Independent factor analysis\eural Comput.vol. 11, no. 4,
pp. 803-851, May 1999.

[8] M. S. Bartlett, “Factor analysis in psychology as a statistician sees it,”
Proc. Uppsala Symp. Psychological Factor Analysis. 3, pp. 4-23,
1953.

[9] A.T.Belland T. J. Sejnowski, “An information maximization approach
to blind separation and blind deconvolutiomNéural Comput.vol. 7,
no. 6, pp. 1004-1034, 1995.

Using (19) and (58), we can calculate the expectation 0[10] J. Cao, N. Murata, S. Amari, A. Cichocki, and T. Takeda, “MEG data

ara [T, i
- 08y ot exp( )
_a TG)_ T
TT(D) e T Rr() (59)
©i(y;) as
E[Sbi(yi)]:/_ @i(yi)palys) dy;
CMa(a-1) [ o
_W/o (Aayi)*~? exp(—(Aayi)®) dy;

Aetla?(a—1)
= X
ey X
_ Aala=1T (23
- I (3)
Similar to (60), the expectation gf;(y;) with y? can be calcu-
lated as

Bly?eitu)] = | " 20 pays) dy:

(60)

Aetla?(a—1 <, o
_daTofel) / e exp(— (Aagi)®) dyi
0

r'(3)
_aata’(a—1) T(5H)
= F(é) Nty =a—1. (61)
Using the results of (59) and (60), we obtain
1D (3)T (2=t
Bl Blaitu) - 20— DL ITES) gy

r(3)

20
Using the results of (60)—(62), we can easily obtain the stabilit);
conditions (38)—(40) for the function derived from the general-[21

ized Gaussian distribution density model.

In the same manner, the stability conditions (45)—(47) and
(48)—(50) in the case of misestimation of the parameter can bi@2]

(23]

derived.
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