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G protein-coupled receptors (GPCRs) constitute the largest
known family of cell-surface receptors. With hundreds of
members populating the rhodopsin-like GPCR superfamily
and many more awaiting discovery in the human genome,
they are of interest to the pharmaceutical industry because
of the opportunities they afford for yielding potentially
lucrative drug targets. Typical sequence analysis strategies
for identifying novel GPCRs tend to involve similarity
searches using standard primary database search tools.
This will reveal the most similar sequence, generally without
offering any insight into its family or superfamily relation-
ships. Conversely, searches of most ‘pattern’ or family
databases are likely to identify the superfamily, but not
the closest matching subtype. Here we describe a diagnostic
resource that allows identification of GPCRs in a hierarch-
ical fashion, based principally upon their ligand preference.
This resource forms part of the PRINTS database, which
now houses ~250 GPCR-specific fingerprints (http://
www.bioinf.man.ac.uk/dbbrowser/gpcrPRINTS/). This col-
lection of fingerprints is able to provide more sensitive
diagnostic opportunities than have been realized by related
approaches and is currently the only diagnostic tool for
assigning GPCR subtypes. Mapping such fingerprints on
to three-dimensional GPCR models offers powerful insights
into the structural and functional determinants of subtype
specificity.
Keywords: drug targets/fingerprint database/motif analysis/
multi-gene families/receptor subtypes

Introduction
G protein-coupled receptors (GPCRs) constitute a vast cell-
surface receptor family that includes hormone, neurotransmitter
and light receptors, all of which transduce extracellular signals
through interaction with guanine nucleotide-binding (G) pro-
teins (e.g. Stadel et al., 1997; Bockaert and Pin, 1999; Marchese
et al., 1999). Several different types of GPCR are now known,
which together constitute a ‘clan’ [by analogy with the complex
family of peptidases (Rawlings and Barrett, 1993), we use the
term clan to refer to a group of families for which there are
indications of an evolutionary relationship, but between which
there is no statistically significant sequence similarity]. Cur-
rently known clan members include the rhodopsin-like
superfamily, the secretin-like receptor superfamily, the meta-
botropic glutamate receptor-like superfamily, the fungal phero-
mone mating factor families (STE2 and STE3), the cAMP-
type receptors and the frizzled family of receptors (Bockaert
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and Pin, 1999). In the rhodopsin-like superfamily, ~60 families
are populated by hundreds of receptor subtypes. These may
invoke diverse cellular responses because individual receptor
subtypes can couple to a variety of different effector systems
and the same ligand may activate different family members
(e.g. 13 receptor subtypes are known to be activated by
serotonin).

GPCRs provide the targets for the majority of prescription
drugs, whether β-blockers for high blood pressure, β-adrenergic
agonists for asthma, anti-histamine (H1 antagonist) for allergy,
etc. Yet many therapies involving such drugs have some
efficacy problems and limiting side effects, because the com-
pounds do not differentiate between receptor subtypes. There
is therefore considerable pharmaceutical interest in attaining
therapeutic specificity by identifying the single receptor sub-
type that affects a particular physiology or pathophysiology
and thereby defining an appropriate intervention point. Ulti-
mately, the aim is to design drugs that eliminate or reduce
unwanted effects, while still conferring the desired therapeutic
benefit. For example, muscarinic agonists, especially those
that activate the M1 receptor subtype, are potentially useful in
treating Alzheimer’s disease because the cardiovascular and
gastrointestinal side effects associated with non-specific musca-
rinic agents may be avoidable: the M1 receptor, which is found
in the brain, may be involved with cognition, while other
subtypes regulate heart and gastrointestinal functions.

Another primary focus of many companies is the identifica-
tion of novel GPCRs, and subsequent characterization of their
cognate ligands and determination of their involvement in
human physiology. With hundreds of receptors known and yet
more to be discovered, there are clearly many opportunities
ahead for pinpointing new drug targets (Herz et al., 1997).

Typical computational strategies for identifying novel GPCR
sequences tend to involve similarity searches using primary
database search tools [e.g. BLAST (Altschul et al., 1990)],
sometimes coupled with searches of pattern databases [e.g.
PROSITE (Hofmann et al., 1999), BLOCKS (Henikoff et al.,
2000) and Pfam (Bateman et al., 2000)]. However, while
resources such as PROSITE provide patterns for some of
the GPCR superfamilies (rhodopsin-like, secretin-like and
metabotropic receptors), only one signature is offered at the
family level, characterizing the opsins. Clearly, within large
multi-gene families, a superfamily level diagnosis is of limited
value should one’s interest be, for example, in the aetiology
of obesity and diabetes and one specifically wishes to identify
melanocortin 4 receptors (e.g. Yeo et al., 1998).

Given their pharmaceutical relevance and the importance of
being able to identify particular GPCR subtypes, part of the
PRINTS fingerprint database (Attwood et al., 2000) has been
devoted to the development of a diagnostic resource for GPCRs
(Attwood, 2001). To date, more than 250 fingerprints have
been created that distinguish GPCRs at the levels of superfam-
ily, family and specific receptor subtype. For a given query, it
is therefore possible to determine to which GPCR superfamily
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Fig. 1. Illustration of the iterative process by which fingerprints are
generated from seed sequence alignments, before being annotated and
deposited in the PRINTS database and made available via the PRINTS Web
server. The Web resource includes tools both to access the full database
contents or specific subsets of it and to search the database interactively.
The combination of these tools has allowed us to build a GPCR-specific
fingerprint facility, termed gpcrPRINTS.

the sequence belongs (e.g. whether rhodopsin-like, secretin-
like, etc.), of which family it is a member (e.g. whether
muscarinic, adrenergic, etc.) and which subtype its sequence
signature most resembles (e.g. whether M1, M2, M3, etc.). We
describe here a number of applications that illustrate the power
of this hierarchical approach to receptor classification:
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/printscontents.
html#Receptors.

Materials and methods
Protein fingerprints
Fingerprints are groups of conserved ungapped motifs that are
excised from multiple sequence alignments and used to derive
potent signatures of family membership through iterative
database scanning (Parry-Smith and Attwood, 1992; Attwood
and Findlay, 1993, 1994). The source database for the finger-
printing process is a SWISS-PROT/TrEMBL (Bairoch and
Apweiler, 2000) composite, minus fragments, which we term
SPTr. The procedure commences with manual sequence align-
ment and excision of conserved motifs; these are used to trawl
SPTr independently. For each motif, the scanning algorithm
calculates a frequency matrix; in other words, no mutation or
other similarity matrices are used to weight the searches. The
scoring process uses a sliding-window approach, whereby each
motif in a fingerprint is scanned across each database sequence
in turn. For each position of the window (which, by definition,
is the width of the motif), the algorithm simply sums the
residue scores with reference to the motif frequency matrix.
The best match is achieved when a position is found in the
sequence where most of the residues within the sliding window
match high-scoring terms in the frequency matrix. For each
motif, results are stored in a hitlist that is rank-ordered

8

Fig. 2. Search output returned by FingerPRINTScan. For a given query
sequence, the program makes an ‘intelligent’ best guess, based on the
occurrence of the highest-scoring full or partial fingerprint matches; deeper
levels of matches, pushing further into the Twilight Zone, are presented in
additional HTML tables. In this example, the program’s best guess confirms
the query sequence O73667 (title panel) as being a rhodopsin-like GPCR
and, additionally, diagnoses it as a member of the melanocortin receptor
superfamily belonging to the melanocortin family, being specifically a type
4 receptor (middle panel). In the next level of output, the top 10 best-
scoring matches are given (bottom panel). This table shows the number of
motifs matched, the computed P- and E-values, and a thumb-nail sketch,
which gives an instant visual diagnosis of the match (I represents a strong
match to a motif, i a weak match and . indicates no match); hyperlinks to
the graphical output option allow such sketches to be visualized in more
detail (see Figure 3).

by score; match probabilities are not calculated. Diagnostic
performance is enhanced by iterative database scanning. The
motifs therefore grow and mature with each database pass, as
more sequences are matched and assimilated into the process.
The procedure terminates when no more sequences that match
all the motifs can be identified between successive database
scans, i.e. when the scans have reached convergence. At
this point, fingerprints are formatted and annotated prior to
deposition in the PRINTS database.

Note that, during the iterative process, the population of the
database determines how the motifs, and therefore fingerprints,
evolve. As the scoring method is not biased by substitution
matrices, pseudo-counts or more sophisticated schemes, it
performs cleanly, with very little noise; the drawback is that
its absolute scoring potential is low, depending on the depth
of the motifs (which reflects the size of the family within the
database). However, the approach derives potency principally
from the use of multiple motifs, which can compensate for
low-scoring elements; and the requirement to match all motifs
in the correct order, with appropriate distances between them,
reduces the chance of making random matches. Experience in
building PRINTS (which currently contains 1550 fingerprints)
demonstrates that the approach works well and provides a
valuable complement to probabilistic techniques.

Deriving GPCR fingerprints
Sequence alignments were constructed manually, using the
CINEMA colour alignment editor (Parry-Smith et al., 1998).
Alignments were created for each of the different clan members
and for their constituent families and receptor subtypes. A
number of different processes were used to determine which
family members to use to seed the fingerprint process, but
typically involved either simple text or BLAST searches of
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Fig. 3. Graphical output returned by FingerPRINTScan. Within each profile,
the horizontal axis represents the sequence and the vertical axis the
percentage score (identity) of each fingerprint element (0–100 per motif).
Shaded blocks, whose widths denote motif widths, mark the positions of
matches above a 15% threshold. The profile depicts the rhodopsin-like
GPCR fingerprint of type 4 melanocortin receptor O73667. Blocks
appearing in a systematic order along the length of the sequence and above
the level of noise indicate matches with the constituent motifs. The
sequence is clearly a true family member, matching all seven TM domains
of the rhodopsin-like GPCR architecture (for the purpose of illustration, we
have shown the TM domains schematically beneath the plot).

SWISS-PROT to identify suitable candidates. Seed alignments
did not need to be exhaustive (since the iterative process attracts
further sequences), but included a representative selection of
family members, including outliers, in order to highlight both
conserved and gapped areas effectively. If motifs failed to
perform well during the iterative process, the alignment was
revisited to determine the cause and the motifs were re-seeded.

Individual alignments were compared visually to determine
both the regions of similarity and, importantly, the regions of
difference between them. Motifs were excised from these
discriminatory regions and used to create a range of diagnostic
fingerprints using the iterative technique outlined above. The
process of alignment visualization and comparison was carried
out by expert human inspection rather than algorithmically, as
current pattern-recognition algorithms work on the principle
of identifying areas of similarity shared between groups of
sequences; for the purposes of this study, however, it was
the regions of difference between family members that we
particularly wished to identify.

Once fingerprints had been iteratively refined and annotated,
they were deposited in PRINTS and made available through
its quarterly releases. As an integral part of PRINTS, finger-
prints may be searched with user-specified sequences, using
the tools outlined below. The entire process of fingerprint
generation and database searching is charted in Figure 1.
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Searching PRINTS
Fingerprint diagnoses are made using the FingerPRINTScan
suite (Scordis et al., 1999). By contrast with the highly
selective technique used to derive fingerprints, the algorithm
employed by FingerPRINTScan to search PRINTS uses a
sensitive ungapped profile approach and rank-orders hits
according to combined motif expectation (E)-values. The
suite provides facilities for individual and bulk sequence
searches against PRINTS and for single sequence searches
against individual fingerprints: http://www.bioinf.man.ac.uk/
dbbrowser/fingerPRINTScan/. Two options are provided for
individual sequence searches: FPScan and FPScan_fam. The
latter details results in the context of the full PRINTS
family hierarchy, so that familial and ancestral relationships
between matched fingerprints can be understood more readily.

In an attempt to cater for both novice and expert users,
results of individual searches against the database (whether
using FPScan or FPScan_fam) are returned on different levels:
first, an ‘intelligent’ best guess is provided, based on the
occurrence of the highest-scoring fingerprint match above an
E-value threshold (the default value, 0.0001, can be changed
by the user); more detailed results are then provided in different
layers via extended HTML tables, one of which gives the top
10 best-scoring matches, which necessarily include the ‘best
guess’ match or matches, at the top of the table (Figure 2).
The result of searching a single sequence with a named
fingerprint takes the form of a graphical cartoon of the
fingerprint profile, offering an instant diagnosis of the query
(Figure 3).

PRINTS BLAST
Sequences matched in the current release of PRINTS are
used to create a FASTA-format database and SRS indexing
(Etzold et al., 1996) is used to extract the relevant fingerprint-
and sequence-specific information. An implementation of
BLAST allows searches with either protein or DNA queries
(Wright et al., 1999) and results are again returned
in formatted HTML tables: http://www.bioinf.man.ac.uk/
dbbrowser/PRINTS/printsBLAST.cgi. For ease of interpreta-
tion, retrieved matches are linked directly to the sequence
and fingerprint databases and to the graphical component
of the FingerPRINTScan suite (Figure 4).

Results and discussion
Using the combination of manual alignment, visual inspection
and iterative database searching described above, ~250 GPCR-
specific fingerprints have been created, annotated and stored
in the PRINTS database (http://www.bioinf.man.ac.uk/
dbbrowser/ PRINTS/printscontents.html #Receptors). A typical
result of querying PRINTS using the FingerPRINTScan suite
is shown in Figure 2. For the TrEMBL query sequence O73667
(default parameters and E-value 10–6), the output reveals a
four-tiered diagnosis, indicating the sequence to be (i) a
member of the rhodopsin-like GPCR superfamily, (ii) a member
of the melanocortin receptor superfamily (which includes
melanocortin-, adrenocorticotrophin- and melanocyte-stimulat-
ing hormone receptors), (iii) a member of the melanocortin
family and specifically (iv) a type 4 melanocortin receptor
(MC4R). For this same example, PROSITE and Pfam suggest
only that the query is a rhodopsin-like GPCR.

From the output shown in Figure 2, the actual PRINTS
hierarchy can only be inferred, based on the E-values of the
four ‘best guess’ matches because, for convenience, FPScan



T.K.Attwood, M.D.R.Croning and A.Gaulton

Fig. 4. Comparative fingerprint profiles invoked from PRINTS BLAST, following a search with query sequence RDC1_HUMAN (P25106). The top non-
RDC1 match in the hitlist is G10D_RAT (Q64166), which matches all nine motifs of its own family fingerprint, as illustrated in the right-hand profile; by
contrast, the query sequence, in the left-hand profile, matches none of the motifs. This result illustrates the difference between the diagnostic potential of
BLAST, which identifies the shared 7TM receptor scaffold, and fingerprints, which are able to make more precise, family diagnoses (see Figure 4).

Fig. 5. GPCR fingerprints mapped schematically on to the 7TM architecture
(the shaded bars denote the relative locations of the constituent motifs of
each fingerprint). The depicted fingerprints are those for (i) the rhodopsin-
like superfamily (black), (ii) the muscarinic family (grey) and (iii) the
muscarinic M1 receptor subtype (white). The different regions that
characterize the receptors at each level are clearly evident and provide an
insight into the different perspectives of BLAST and family-specific
fingerprint diagnoses: whereas the former ‘sees’ the shared 7TM scaffold,
the latter sees particular parts of TM and loop regions, which are likely to
encode many of their functional determinants. Here, for example, motifs 3,
4, 5, 8 and 9 include residues known to be involved in either agonist or
antagonist binding (Kuipers et al., 1997; Beukers et al., 1999).

was used to generate these results. The complete, extended
hierarchy can be visualized by means of FPScan_fam (however,
this output is not shown because the resulting table is very
large).

We can gain a better appreciation of what such diagnoses
mean by plotting graphical profiles of query sequences against
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their matched fingerprints (the ‘graphic’ or ‘GRAPHScan’
options in Figure 2). Figure 3 illustrates the profile produced
when the rhodopsin-like GPCR fingerprint, which encodes the
seven transmembrane (TM) domains of the GPCR scaffold, is
scanned against the type 4 melanocortin receptor. Where a
motif matches above a given threshold, a shaded block is used
to mark its location. In the example shown, seven blocks are
clearly observed, from N- to C-terminus, indicating matches
with each of the seven TM domains.

The MC4R example, although perhaps highlighting the
limitations of the more generic pattern recognition approaches,
is not particularly outstanding when we know that BLAST
can easily diagnose the query as a type 4 melanocortin receptor
(albeit without shedding light on its family and superfamily
relationships). However, BLAST does not always provide clear
answers. Consider, for example, the human RDC1 orphan
receptor. BLAST reveals the top non-RDC1 match to be a
G10D receptor, with a confident P-value (6�10–53). However,
when we scan the RDC1 sequence against the G10D receptor
fingerprint, we find no match at all, as shown in Figure 4.

At first sight, this may seem curious. Yet it reveals something
extremely important about the way in which BLAST and
fingerprints ‘see’ sequence similarity: BLAST can identify
generic similarities between sequences (based on high-scoring
sequence pairs), but cannot reveal differences between them.
Here, the greatest generic similarity to RDC1 is seen in the
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Fig. 6. Comparative fingerprint profiles depicting rhodopsin-like GPCR fingerprints of OPSD_SHEEP (P02700), NY5R_HUMAN (Q15761) and O70271.
OPSD_SHEEP and NY5R_HUMAN are known true-positive family members, matching all seven TM domains, but differences in TM domain 3 mean that
NY5R_HUMAN is not diagnosed by PROSITE; and O70271 is an outlying partial match that demonstrates a poor, but nevertheless tantalizing, set of
matches with motifs 1, 3 and 7.

Fig. 7. Diagnosis of a mosaic GPCR. The example illustrates the murine
7TM O35161, which contains multiple N-terminal cadherin repeats (white),
a central EGF-containing domain (grey), followed by a C-terminal 7TM
secretin-like signature (black).

TM signature of the G10D receptor. However, the sequences
are different in their loop and N- and C-terminal regions,
which is where we might expect to discover many of their
functional determinants: it is these features that family-specific
fingerprints encode; and clearly, these tell-tale traits are not
shared by RDC1 and G10D. This result has important ramifica-
tions for off-the-shelf automatic genome analysis packages,
highlighting the danger of reliance on top-scoring BLAST hits
to provide functional diagnoses.

We can perhaps better understand these different perspectives
by mapping superfamily, family and receptor subtype finger-
prints on to the 7TM architecture. Figure 5 compares finger-
prints for the rhodopsin-like superfamily, for the muscarinic
family and for its M1 receptor subtype. The different regions
that characterize the receptors at each level are clearly evident:
the superfamily fingerprint focuses on the shared 7TM scaffold;
the family fingerprint encodes specific parts of TM and loop
regions; and the subtype fingerprint is drawn from the third
cytoplasmic loop and the N- and C-terminal domains. This is
consistent with our expectations that the highly conserved TM
segments are likely to constitute the ligand-binding domain,
whereas the large intracellular region, unique to each subtype,
is likely to constitute part of the receptor–effector coupling
domain (Peralta et al., 1987).

Fingerprints gain diagnostic potency by virtue of the mutual
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context provided by motif neighbours. A sequence matching
all the motifs in a fingerprint can therefore be confidently
diagnosed as a true match. Perhaps more importantly, a
sequence matching only some of the motifs can still be
diagnosed as a distant relative, provided that the motifs are
matched in the correct order, with appropriate distances
between them. This offers a significant advantage over single-
motif pattern-matching methods, which can only report that a
match has been made and provide no biological context within
which to assess its significance, leaving the user to verify this
manually.

Regular expression methods, such as those embodied in
PROSITE, suffer the further limitation that patterns do not
tolerate similarity: a sequence either matches or not, because
the patterns are encoded explicitly. Thus, for example, a query
that shows only a single residue difference from a pattern will
be treated as a mis-match. This problem is addressed in
PROSITE by annotating such sequences as false negatives
where it is known that matches have been missed. The difficulty
arises with hypothetical sequences, where it is not realized
that the pattern has missed them. Consider, for example,
sequences OPSD_SHEEP (P02700), NY5R_HUMAN
(Q15761) and O70271, whose fingerprint profiles are illustrated
in Figure 6. OPSD_SHEEP is a known true member of the
rhodopsin-like superfamily, matching all seven TM domains;
NY5R_HUMAN is again a clear family member, but is not
diagnosed by PROSITE because it contains changes in the
third TM domain, which alone provides the basis for the
PROSITE pattern; and O70271 makes a partial fingerprint
match, lacking significant matches with TM domains 2, 4, 5
and 6 (this sequence fails to match the PROSITE pattern, is
not annotated as a false negative, but falsely matches the class-
II aminoacyl-transfer RNA synthetase pattern). For Twilight
matches such as that for O70271, sequence analysis techniques
cannot provide unequivocal functional diagnoses: such tentat-
ive matches must always be followed up by appropriate
laboratory experiments. Nevertheless, for this sequence,
FingerPRINTScan indicates strong similarity to the olfactory
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receptors, thereby revealing a relationship that is missed by
PROSITE and Pfam.

A final example of the utility of the GPCR resource is in
the detection and depiction of GPCR mosaics. There are now
many known examples of such molecules, including members
of the rhodopsin-like superfamily that contain N-terminal
leucine-rich repeats (e.g. gonadotrophin receptors such as
bovine thyrotropin receptor, Q27987), N-terminal leucine-rich
and LDL-receptor repeats (e.g. the GRL101 GPCR from
Lymnaea stagnalis, P46023) and the more recently character-
ized secretin-like receptors that contain cadherin and laminin
EGF-like repeats (e.g. the human myeloblast KIAA0279 pro-
tein, Q92566 and rat MEGF2 protein, O88278) (Stacey et al.,
2000). By virtue of the GPCR resource being embedded within
the PRINTS database, the detection of additional domains is
possible with a single database query. The example shown in
Figure 7 illustrates the result of searching PRINTS with the
murine 7TM O35161, which contains N-terminal cadherin
repeats, a central EGF-containing domain, followed by the
C-terminal 7TM secretin-like signature.

Conclusion
The diagnostic resource described here has two main strengths.
First, the use of multiple motifs to build characteristic signatures
offers a biological context within which to assess the signific-
ance of a given match. Thus, a distantly related sequence that
lacks matches with some components of a fingerprint may still
be identified, by virtue of the diagnostic framework provided
by neighbouring motifs; such a framework is not afforded by
single-motif approaches. Second, by exploiting differences as
well as similarities between related sequences, we have been
able to create a range of potent GPCR fingerprints, encoding
individual subtypes through to family and superfamily levels;
no other diagnostic resource currently available offers such a
powerful hierarchical discriminatory system for this funda-
mentally important class of cell-surface receptors. Moreover,
by focusing on conserved loop and N- and C-terminal traits,
such fingerprints offer the potential to make highly specific
functional diagnoses. Fingerprint selectivity thus offers new
opportunities to explore in more detail correlations between
specific motifs and ligand binding and G protein coupling and
consequently may provide insights in the ongoing quest to
characterize orphan receptors. The resource is therefore valu-
able in cases where primary and other secondary database
searches either produce ambiguous results or fail completely
to return a match. Used wisely, as part of an integrated analysis
strategy, GPCR fingerprints provide sensitive diagnostic oppor-
tunities that have not been realized by other computational
approaches.
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