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Complex turbine wake interactions play an important
role in overall energy extraction in large wind farms.
Current control strategies optimize individual turbine
power, and lead to significant energy losses in wind
farms compared with lone-standing wind turbines.
In recent work, an optimal coordinated control
framework was introduced (Goit & Meyers 2015 J.
Fluid Mech. 768, 5–50 (doi:10.1017/jfm.2015.70)). Here,
we further elaborate on this framework, quantify the
influence of optimization parameters and introduce
new simulation results for which gains in power
production of up to 21% are observed.

This article is part of the themed issue ‘Wind energy
in complex terrains’.

1. Introduction
In large-scale wind farms, a large number of wind
turbines are clustered together, and complex turbine
wake interactions play an important role in energy
extraction from the atmospheric boundary layer (ABL).
Current control strategies typically maximize power
extraction at turbine level, but do not take into account
wind-farm wake interactions, leading to power deficits in
downstream regions of the wind farm. More specifically,
efficiency losses of up to 40% compared with lone-
standing turbines have been reported in operational
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offshore wind farms [1,2]. Recently, Goit & Meyers [3] introduced an optimal coordinated control
framework for dynamic induction control of wind-farm boundary layers for maximal energy
extraction. In this framework, wind turbines are used as active flow actuators that optimally
influence turbine wake interactions as well as the interplay of the wind farm with the turbulent
ABL. To this end, a model-predictive optimal control approach was employed, in which the wind-
farm boundary layer is modelled using large-eddy simulations (LES) of the Navier–Stokes partial
differential equations (PDEs). As also explained in this paper, the method is not directly usable
as a real controller, but instead provides benchmark results that yield insights into the potential
of wind-farm control, which may help in elucidating new control mechanisms for wind farms.
The framework was applied earlier to fully developed wind farms [3] as well as wind farms
with entrance effects [4], for which gains in energy extraction of 16% and 7% were achieved,
respectively.

Here, we review and further elaborate on the work introduced by Goit & Meyers [3]. We
quantify the influence of optimization parameters, and reveal differences with previous studies.
In addition, we present new results, further illustrating the potential of optimal control methods
applied to wind-farm boundary layers. The paper is structured as follows: §2 introduces key
aspects of the methodological approach. Section 3 introduces recent results, and quantifies
the sensitivity of the performance of the overall optimal control framework to user-defined
parameters. Finally, §4 provides a concise summary and indicates directions for future research.

2. Methodology
We discuss the aforementioned optimal control methodology, highlighting key aspects of and
differences with previous work [3,4]. First, our receding horizon optimal control approach is
discussed, and compared with classical model-predictive control methods. Subsequently, the
PDE-constrained optimization problem is introduced. Afterwards, the actuator disc wind turbine
model and the adjoint gradient calculation are discussed. Finally, an updated optimization
algorithm is presented, that is based on the L-BFGS-B quasi-Newton method.

(a) Receding horizon optimization
In a conventional optimal control approach (figure 1a), the system (the wind farm) is controlled
by a controller that optimizes the controls (ϕ) in a state model that represents the system. Usually,
a receding horizon approach is used (e.g. figure 2), in which the controls are optimized for a
future time window [t, t + T], after which the obtained optimum (ϕ•) is used during a control
time step TA. In addition, the model state is regularly adapted based on measurements in the
system, minimizing the errors between the state model and the real system. The challenge for
wind farms is that the detailed turbulent flow state in the ABL is very high-dimensional, and an
accurate state model (e.g. based on LES) is computationally very expensive, so that it is impossible
to implement in a real-time controller. Therefore, wind-farm control in practice requires extensive
simplifying assumptions that may limit a priori the performance of the controller. Because of
this, the development of practical cooperative wind-farm controllers remains an open issue to
date, in particular for the case of power maximization through mitigation of unfavourable wake
interactions.

Instead of focusing on the direct formulation of a real wind-farm controller for increased
energy extraction, Goit & Meyers [3] concentrated on finding optimal controls in a very accurate
state representation of the wind-farm boundary layer, i.e. based on LES that resolve the large
turbulent flow structures in the ABL and their interaction with the wind turbines both in space
and in time (figure 1b). Such an approach is not yet feasible for real control, as LES is, to date,
still significantly slower than real time, but it allows one to explore the potential of improved
energy extraction by wind-farm control, and may help in identifying new ways in which large
wind farms can optimally interact with the ABL.



3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160100

.........................................................

system 

real
wind-farm 

system 

j ∑

j ∑

wind-farm
LES 

optimizer 

optimizer 

model 

wind-farm
state model

state
estimator

model 

wind-farm
LES

(a)

(b)

Figure 1. Model-predictive control applied to wind farms. (a) Conventional feedback model-predictive control of a wind farm.
(b) Benchmark optimal control framework of a wind-farm LES considered in the current study.
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Figure 2. Receding horizon optimization framework for optimal control of wind farms. Figure adapted from ref. [3]. (Online
version in colour.)

In the current work, we further elaborate and adapt the framework of Goit & Meyers [3,4],
using a receding horizon optimization approach as shown in figure 2. Given a control time
horizon T, controls are optimized to yield maximum energy extraction. Further details are
provided in §§2b–e. Part of the resulting optimal controls ϕ• are then used for a time period
TA ≤ T, during which we advance the wind-farm LES system in time. Subsequently, control
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optimization over a new time horizon is initiated, etc. The flow advancement time TA is chosen
based on a trade-off between limiting overall computational expenses, favouring TA/T → 1, and
averting finite-horizon optimization effects, favouring TA/T → 0. The influence of the ratio TA/T
on the dynamic behaviour of the optimized wind farm is discussed in §3, presenting results for
both TA = T/2 and TA = T/4, and evaluated over a total wind-farm control time Ttot = NATA of
approximately 30 min of real wind-farm time.

(b) Definition of the optimization problem
Within each window of the receding horizon framework introduced above, we maximize
aggregated energy extraction by solving the following PDE-constrained optimization problem:

min
ϕ,q

J (ϕ, q) =
∫T

0

Nt∑
i=1

−Pi(t) dt (2.1)

s.t.
∂ũ
∂t

+ ũ · ∇ũ = − 1
ρ

∇(p∞ + p̃) − ∇ · τ sgs +
Nt∑
i=1

f i in Ω × (0, T], (2.2)

∇ · ũ = 0 in Ω × (0, T], (2.3)

τ
dĈ′

T,i

dt
= C′

T,i − Ĉ′
T,i for i = 1, . . . , Nt in (0, T] (2.4)

and 0 ≤ C′
T,i ≤ C′ max

T for i = 1, . . . , Nt in (0, T]. (2.5)

The cost functional to be minimized in (2.1) is the total wind-farm energy extraction from
the boundary layer over a time horizon T, with switched sign for convention of notation.
The control variables in the problem defined above are the time-dependent disc-based thrust
coefficients for all turbines ϕ ≡ [C′

T,1(t), C′
T,2(t), . . . , C′

T,Nt
(t)], whereas the state variables q ≡

[ũ(x, t), p̃(x, t), Ĉ
′
T(t)] (where Ĉ

′
T ≡ [Ĉ′

T,1, . . . , Ĉ′
T,Nt

]) consist of the velocity and pressure field in
the ABL, and time-filtered turbine thrust coefficients. The explicit dependence of both turbine
power Pi and thrust force f i on the latter is discussed in the next section on turbine modelling.
The optimization problem is solved in a reduced form, i.e. instead of explicitly considering the
differential equations in (2.2)–(2.4) as constraints and optimizing over the parameter space [ϕ, q],
the dependence of the state on the controls q(ϕ) is satisfied explicitly through means of LES,
leaving only the control parameter ϕ as decision variable to optimize the reduced cost functional
J̃ (ϕ) ≡ J (ϕ, q(ϕ)).

The filtered Navier–Stokes state equations in (2.2) and (2.3) are solved using an in-house
LES solver [3,5,6]. The equations are discretized using a Fourier pseudo-spectral approach
in the horizontal directions, combined with a fourth-order finite-difference scheme in the
vertical direction [7]. The top surface is treated using a free-slip condition, whereas the bottom
surface applies a wall stress boundary condition. The influence of Coriolis forces and thermal
stratification is not taken into account, i.e. all cases considered here involve half-channel flows
serving as a surrogate for a neutral ABL. The high Reynolds numbers associated with the latter
justify neglecting resolved effects of molecular viscosity. Instead, the effect of subgrid-scale (sgs)
phenomena on resolved scales is represented using a classical Smagorinsky model with a constant
coefficient Cs = 0.14, in which the Smagorinsky length scale is reduced near the surface using a
wall damping function [8]. Inflow conditions are extracted from an auxiliary periodic precursor
simulation and are imposed using a fringe region [9]. The flow field is advanced in time using
an explicit fourth-order Runge–Kutta scheme using a constant time step corresponding to a
Courant–Friedrichs–Lewy number of 0.4. The time-filtering state equation (2.4) applies a first-
order exponential time filter to the control input C′

T to generate the thrust coefficient Ĉ′
T that is

used in the thrust force felt by the flow. An implicit Euler scheme is used to integrate the time-
filtering equation. To give an indication of the influence of the wind-turbine response time τ ,
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Figure 3. Illustration of the response of the thrust coefficient Ĉ′T to a square-wave variation in the control signal C
′
T for varying

wind-turbine response times τ . (Online version in colour.)

defined as the filter time constant, on the thrust coefficient behaviour, the response of the latter
to a square-wave variation in the control signal is illustrated in figure 3. Note, however, that the
control signals originating from the optimal control simulations will be more complicated. In this
way, (2.4) allows one to incorporate a finite wind-turbine response time τ to temporal variations in
optimized thrust coefficient setpoints C′

T. This would, for example, fit in a hierarchical approach
to wind-farm control, in which wind-farm control signals are passed on to individual turbine
controllers that themselves may not react instantaneously to these control signals. In the current
work, we use different time constants τ to investigate the effect of control smoothness on possible
power gains. Finally, the box constraints (2.5) on the controls are added that prevent the turbine
from operating as a fan on the one hand, and limit the maximal thrust coefficient to technically
feasible values on the other hand (see below).

(c) Wind-turbine modelling
The forces exerted by turbine i on the boundary layer flow are parametrized using a non-rotating
actuator disc method as

f i(x, t) = − 1
2 Ĉ′

T,i(t)V
2
d,i(t)Ri(x) e⊥, (2.6)

where Ĉ′
T,i is the time-filtered disc-based thrust coefficient (e.g. [5,6]), e⊥ is the unit vector

perpendicular to the rotor plane, and Ri(x) is a smoothed representation of the geometric
footprint of the rotor on the LES grid. Furthermore, the disc-averaged velocity is calculated as
Vd,i = (1/Ai)

∫
Ω Ri(x)ũ · e⊥ dx, with Ai the rotor disc area. Note that, through the time-filtering

equation (2.4), the actual time-filtered thrust coefficient Ĉ′
T employed by the turbine can be

rendered arbitrarily smooth in time, which allows one to model a finite wind-turbine response
time. This is in contrast to previous studies [3,5,6], where turbine inertia was modelled through
time filtering of the disc velocity Vd,i. The actual mechanical power captured by the wind turbine
is calculated as

Pi(t) = 1
2 C′

P,i(t)V
3
d,i(t)Ai. (2.7)

In contrast to earlier work [3,5,6], where C′
P = Ĉ′

T, here the disc-based power coefficient C′
P =

aĈ′
T, with a = 0.9 for the simulation grids applied in this paper. This relation is derived from a

fitting operation of LES results to momentum theory as described in appendix A. This is done in
order to eliminate overpredictions in power extraction observed using turbine parametrizations
on typical wind-farm grid resolutions (e.g. [10,11]). Owing to the linear nature of this fit, this does
not influence the relative gains in power production discussed below, which are normalized by a
reference case.

Following the methodology in Goit & Meyers [3], dynamic induction control is performed
by controlling the disc-based thrust coefficient C′

T for every turbine and in every time step,
such that the aggregated power extraction of the entire wind farm is maximized. In the
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Figure 4. Thrust coefficient CT (a) and power coefficient CP (b) as a function ofmodified thrust coefficient C′T for a steady turbine
based on one-dimensional momentum theory.

remainder of this section, we discuss steady-state turbine operation, hence C′
T and Ĉ′

T can be
used interchangeably. Using relations from one-dimensional (1D) momentum theory for an ideal
turbine [12], straightforward algebraic manipulation relates the disc-based thrust coefficient C′

T
with the conventional power coefficient CP and thrust coefficient CT as

CP = 64
C′

T
(C′

T + 4)3 and CT = 16
C′

T
(C′

T + 4)2 . (2.8)

As shown in figure 4, CP achieves a maximum at the well-known Betz limit of 16
27 ≈ 0.593, for

which C′
T = 2. In order to obtain any lower CP value, two possible C′

T setpoints can be chosen: an
underinductive (C′

T < 2) and an overinductive (C′
T > 2) coefficient. In the work of Goit & Meyers

[3], a maximum coefficient C′ max
T = 4 is used. It can be seen from figure 4 that this corresponds to a

maximal thrust force, with CT = 1. Furthermore, it is worth noting that CP is quite insensitive to C′
T

in the range 1.5–2.5, indicating that, in this zone, turbine thrust forces can be varied significantly
without sacrificing a lot of power.

(d) Gradient calculation
Owing to the combination of a high control space dimensionality (ϕ ∈ R

n, with n ≈ 104–105) with a
computationally expensive system of state equations, calculating the gradient of the reduced cost
functional ∇J̃ using classical finite-difference methods is computationally infeasible. Instead, we
employ the continuous adjoint method, in which the gradient is identified through the solution of
an additional set of PDEs. The simulation of these adjoint equations involves a computational cost
similar to a single state system evaluation, independent of control space dimensionality n. The
adjoint equations are derived by appending the state constraints to the cost function in (2.1)–(2.4)
to form the Lagrangian, introducing the triplet of adjoint variables q∗ = [ξ , π , σ ] as the Lagrange
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multipliers to the state variables q = [ũ, p̃, Ĉ
′
T]. Postulating vanishing gradients of the Lagrangian

with respect to the state variables directly produces the adjoint equations [3,13,14]:

−∂ξ

∂t
+ (∇ũ)Tξ − (ũ · ∇)ξ = − 1

ρ
∇π − ∇ · τ∗

sgs +
Nt∑
i=1

f∗
i in Ω × (0, T], (2.9)

∇ · ξ = 0 in Ω × (0, T] (2.10)

and − τ
dσi

dt
= −σi + 1

2
V2

d,i

∫
Ω

Ri(x)(aũ − ξ ) · e⊥dx for i = 1, . . . , Nt in (0, T]. (2.11)

The definition and derivation of the adjoint equations is identical to the previous work [3,4].
However, due to the addition of a time-filtering equation on the controls and the resulting
definition of the turbine forces, the adjoint forcing terms f∗

i associated with each of the turbines
differ from the latter studies, and are given by

f∗
i (x) = 1

2 Ĉ′
T,iVd,i(3aVd,i − 2Xd,i)Ri(x)e⊥, (2.12)

where Xd,i = (1/Ai)
∫

Ω Ri(x) ξ · e⊥dx is the disc-averaged adjoint velocity, defined similarly to
Vd,i. The gradient can then be evaluated as

∇J̃ = −σ . (2.13)

The derivation of the adjoint time-filtering equation and the novel expressions for both the adjoint
forcing terms and the cost functional gradient are presented in appendix B.

(e) Optimization algorithm
In this work, we solve the optimal control problem within each prediction window using the
quasi-Newton L-BFGS-B algorithm by Byrd et al. [15]. This is in contrast to the classical use of
nonlinear conjugate gradient (CG) methods in flow control, for instance, in earlier studies on drag
reduction [14], noise reduction [16] and wind farms [3,4]. First, the main steps in the algorithm
are briefly outlined. Afterwards, the convergence behaviour of the method is compared with a
nonlinear CG method for a typical wind-farm control case.

At the beginning of each iteration, a quadratic model of the cost functional mk(ϕ) is constructed
based on the current iterate (ϕk, J̃k), the current gradient ∇J̃k and a positive definite limited-
memory Hessian approximation Bk as

mk(ϕ) = J̃k + ∇J̃ T
k (ϕ − ϕk) + 1

2 (ϕ − ϕk)TBk(ϕ − ϕk). (2.14)

As discussed in [15], this model is minimized while satisfying the box constraints (i.e. 0 ≤ ϕ ≤
C′ max

T ), yielding a solution ϕ̄k+1. Subsequently, a Moré–Thuente line search [17] along direction
dk = ϕ̄k+1 − ϕk is employed to identify the new iterate ϕk+1 = ϕk + αkdk, such that the strong
Wolfe conditions are satisfied [18,19]. The line search is initialized with a unit step length αk = 1,
which, as shown below, often directly meets the Wolfe conditions. Note that each iteration
requires a minimum of one LES and one adjoint simulation, since the construction of mk requires
both the current functional value Jk and its gradient ∇Jk. In addition, checking the Wolfe
conditions entails an additional pair of LES and adjoint evaluations per inner line search iteration.
The limited-memory Hessian approximation Bk is constructed from information retained from
previous iterations through a set of m correction pairs {(ϕi+1 − ϕi), (∇J̃i+1 − ∇J̃i)}, for i =
k − 1, . . . , k − m [20].

Figure 5 presents the cost function decrease for a typical wind-farm optimization window
as a function of PDE evaluations for the Polak–Ribière nonlinear CG method and the L-BFGS-
B method. Figure 5 illustrates that the use of additional knowledge of curvature information
employed by the L-BFGS-B algorithm significantly speeds up convergence compared with CG.
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typical wind-farm optimization window. Filled circles, LES; open circles, adjoint. (Online version in colour.)

Recently, this behaviour was also shown for a low-Reynolds-number turbulent channel flow case
[21]. Note that, for PDE-constrained optimization, the most important driver for computational
costs is, by far, the amount of PDE evaluations. Therefore, it can be seen from Figure 5 that, for a
given decrease in the cost functional, computational efforts are reduced by a factor 4 for L-BFGS-
B compared with CG. The convergence rate of the optimization algorithm and its sensitivity to
user-defined parameters are further discussed based on a set of recent optimal control cases in §3.
In addition to the updated optimization algorithm, a further decrease in time to solution of the
optimal control simulations is achieved by the upgrade of the grid partitioning scheme used in
the code parallelization from a 1D slab decomposition to a two-dimensional pencil decomposition
[22,23], which allows the PDE solver to scale to core counts in the order of a hundred to a
thousand cores for the simulation grids considered here.

(f) Simulation set-up
In the remainder of the paper, we show new results of optimized wind farms. We focus mainly
on the justification of methodological choices and parameter settings, with the aim of quantifying
the influence of optimization parameters on convergence rate and value of the optimized cost
functional for the optimal control framework described in this paper.

We consider a 12 × 6 aligned wind farm where turbines are spaced apart by six rotor diameters
in axial and transverse directions. The spatial domain of 10 × 3.6 × 1 km3 is discretized using
a standard numerical grid of 384 × 192 × 244. A driving pressure gradient of ∂xp∞/ρ = 2.5 ×
10−4 m s−2 results in a free-stream hub-height velocity slightly over 8 m s−1. Figure 6 illustrates a
typical snapshot of the LES velocity field for the wind farm considered here. It can be seen from
figure 6 that, starting from the second row, turbines are subjected to significantly lower velocities
with increased variability. Moreover, it is shown that the LES allows one to capture complex
unsteady wake behaviour, including meandering and turbulent entrainment, that can potentially
be harnessed by the optimal control approach. Unsteady turbulent inflow conditions are the same
for all cases, and are generated by running a separate precursor simulation of a periodic ABL
without turbines on a domain identical to that of the wind-farm simulation. Wind-farm operation
is optimized over NA = 15 prediction windows, resulting in a total time of Ttot = NATA = 30 min.
Time integration is performed using a constant time step 	t = 0.75 s. We employ a prediction
horizon of T = 240 s, and a flow advancement horizon of TA = T/2 = 120 s. Moreover, we retain
m = 5 correction pairs for the BFGS Hessian updates, and stop the optimization algorithm after
Nit = 60 iterations. The chosen values for these additional optimization parameters are justified
based on parameter studies discussed below.
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3. Results and discussion
In this section, we discuss optimization results using the set-up mentioned above. First, the
different cases are distinguished. Subsequently, the energy gains in optimized cases are quantified
and discussed. Finally, the influence of optimization parameters is quantified.

We define a reference case R, in which all turbines are controlled statically and greedily, i.e.
with thrust coefficients equal to the Betz-optimal value C′

T = 2. In addition, we define a total of six
optimal control cases. The latter are distinguished by whether or not overinduction is allowed,
i.e. with C′ max

T = 3 or 2, respectively, and by the wind-turbine response time τ of 0, 5 or 30 s.
Optimized cases are denoted by C〈X〉t〈Y〉, where X and Y represent C′ max

T and τ , respectively, e.g.
C3t30 for the case with C′ max

T = 3 and τ = 30 s. The upper bound C′ max
T = 3 of the overinductive

cases is justified based on figure 7, which contains results of blade element momentum theory
calculations for the maximum attainable C′

T in the NREL 5 MW turbine [24] for region II operation
through the increase of the tip speed ratio λ = ωr/V∞, with r the turbine radius, ω its rotational
speed and V∞ the undisturbed upstream velocity. The calculations are performed for a turbine in
region II operation at below rated wind speeds, in which λ is controlled through regulation of the
turbine generator torque. It can be seen that in this way, for V∞ ≈ 8 m s−1, a C′

T of approximately
2.5 is feasible. This value could still be increased, e.g. through a minor increase in blade chord
length. Therefore, the upper bound of 3 for the overinductive cases in this work is reasonable.

Figure 8 depicts the energy extraction of the optimally controlled wind farms normalized by
the reference case. The energy extraction is integrated starting from the second optimization
window, since the optimized wind farms are still in a transient phase during the first window.
It is shown in figure 8a that all cases, except for the most restrictive case C2t30, achieve significant
energy gains ranging between 8% and 21%. This illustrates the potential of dynamic coordinated
control approaches over greedy individual control. As can be expected, decreasing flexibility with
regard to C′ max

T and τ reduces the margins for increased power extraction. It is worth noting that
the slow-response overinductive case C3t30 achieves power gains close to the underinductive
fast-response case C2t0 and C2t5. This observation is promising for the eventual actual roll-out
of dynamic wind-farm controllers, as it shows that fast temporal variations in turbine control
settings, with associated detrimental effects on turbine structural loading, are not a prerequisite
for significant improvements in power extraction. The error bars in figure 8 indicate two standard
deviations from the sampled mean. Error estimates are within ±1.2% points for all cases except
C3t0, for which ±1.9% points are observed. The variances of relative energy gains are estimated
using variances and covariances defined on the optimization window level, as further elaborated
in appendix C. Note that the cases considered here feature significantly larger energy gains than
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the comparable case of Goit et al. [4], for which an increase in energy extraction of approximately
6% was reported. This fact can be attributed to a better convergence of the current results
due to a judicious choice of optimization parameters as elaborated below and the update to a
quasi-Newton optimizer discussed previously. In figure 8b, it is shown that energy extraction
is increased in every downstream row by slightly downrating the first row for all cases except
C3t30. Moreover, the first row aside, the last row extracts the most energy for all cases, since
it does not have to take into account any downstream neighbours. We further performed for
the overinductive case with τ = 0 s a case in which only the first row turbines were optimally
controlled (details not further shown here). We found energy gains of only 5% instead of 21%,
indicating that all turbines contribute significantly to the energy gains.

Figure 9 shows time-averaged axial velocities throughout the wind farm. Figure 9a illustrates
the axial velocity for the reference case. It can be seen that downstream turbines are subjected
to the wakes of their upstream neighbours, and that wake behaviour, i.e. spanwise wake extent
and wake recovery, achieves a fully developed regime in the downstream rows of the wind farm.
Figure 9b–d depicts the difference between axial velocities in the optimized case and the reference
case for cases C3t0, C3t30 and C2t0, respectively. It is shown that, for all cases, rows 2–12 are
subjected to higher incoming velocities. For the overinductive cases C3t0 and C3t30, it can be
seen that the near wake behind some turbines is deeper, yet the wake recovers more than in the
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reference case before reaching the next row. This is caused by enhanced turbulent wake mixing,
consistent with observed increased turbulence intensities for downstream rows in these cases
(not shown here). Contrastingly, the underinductive case C2t0 features higher axial velocities
throughout the entire wind farm. Considering the comparable power gains of 10% for C3t30
and C2t0, this indicates that different cases are characterized by complex different mechanisms
for power increase. These are not further elaborated here, and are the subject of current work.
Ongoing research focuses on identifying the physical mechanisms behind the increase in energy
extraction and the identification of possible correlations between turbines.

Figure 10 qualitatively illustrates the influence of TA on the temporal smoothness of the wind-
farm power extraction for case C3t0. Figure 10 shows the normalized power extraction for TA =
T/2 = 120 s (a) and TA = T/4 = 60 s (b), where both simulations apply an equal prediction horizon
T = 240 s. For TA = T/2, it can be seen in figure 10 that, within each window, power extraction is
initially reduced. This causes flow conditions that lead to an increased power extraction later in
the window. By stringing the windows together, a sawtooth-like behaviour of power extraction
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is created. Reducing TA diminishes this effect, as shown in figure 10b, but leads to a doubling
in computational cost for a given total time Ttot. Although present-day computational resources
have limited us to using TA = T/2 = 240 s for the cases presented in this paper, we aim to reduce
TA/T in the future to obtain reduced ramps in power production and mitigate finite-horizon
effects.

Given that limitations on computational resources prevent formal convergence of the
optimal control problems considered here, we further investigate convergence rates, parameter
sensitivities and the existence of local minima. Figure 11 illustrates the convergence behaviour
for all optimal control simulations. From figure 11a, it can be seen that, for most cases, the
amount of PDE evaluations is only slightly higher than twice the amount of BFGS iterations
Nit, illustrating that the optimization algorithm mostly takes steps with unit length, and only
rarely has to resort to a line search when α does not satisfy the Wolfe conditions. Note that case
C2t30 achieved convergence after 120 iterations, with a large increase in PDE simulations in the
preceding iterations. This indicates that, upon approaching convergence, inconsistencies between
the gradient obtained from the continuous adjoint approach and the actual cost functional
gradient are making it harder to satisfy the Wolfe conditions, and more line searches are needed.
This behaviour also starts to show in the later iterations of the other cases. Figure 11b depicts
the relative improvement in the cost function within an optimization window in terms of the
amount of iterations. It can be seen that, after 60 iterations, the improvement rate of the cost
function significantly diminishes. Therefore, in order to limit computational expenses, in practice
we stop all optimizations after Nit = 60. Figure 11c shows the cost functional as a function of PDE
evaluations. The circle markers indicate the data points for which Nit = 60. Figure 11c shows that
all cases achieve reasonable convergence for the chosen iteration limit, i.e. further improvements
of the cost functional are minimal.

Figure 12 shows the sensitivity of convergence rate of C3t0 to m, i.e. the amount of retained
correction pairs used in the update for the Hessian approximation in the L-BFGS-B algorithm. It
can be seen from Figure 12 that m = 3 converges more slowly than m = 5, 7 or 9. The fact that using
more Hessian correction pairs, i.e. m = 9 over m = 7, does not always lead to an improvement in
convergence rate can be attributed to the irrelevance of gradient information from many iterations
earlier. In the remainder of this work, we choose m = 5, as this proved to be an adequate parameter
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choice, both here and for a varied set of constrained problems in the CUTE collection [25], as
illustrated by Byrd et al. [15].

Given the non-convexity of the Navier–Stokes constrained optimization problems considered
here, the cost functional landscape is expected to be characterized by a multitude of local optima.
Figure 13 shows the cost functional and a subset of the optimized controls for different starting
points ϕ0, i.e. a greedy control case on the one hand, for which all turbines operate Betz-optimal
at ϕ0 = [2, 2, . . . , 2], and a case with ϕ0 = [1.33, 1.33, . . . , 1.33] (e.g. [3,6]) on the other hand.
Figure 13a illustrates cost functional decrease in terms of BFGS iterations. It can be seen that,
although the choice of initial conditions has an influence on the power extraction, the relative
order of which conditions yield better results is not uniform across all cases. Figure 13b shows the
optimized controls for the first row of the wind farm after 1, 60, 120 and 180 iterations. Although
some regions of the controls correspond between both initial conditions, mainly at the start of the
optimization window, the controls differ significantly. Since the overall energy extraction seems
only modestly dependent on the initial condition, the greedy control with ϕ0 = 2 is a suitable
starting point for wind-farm optimal control.

In this section, new optimization results were introduced, illustrating the further potential of
the optimal dynamic induction control framework introduced by Goit & Meyers [3]. Moreover,
the choice of TA = T/2 is justified. The convergence behaviour of the optimization in terms of the
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amount of iterations and Hessian correction pairs m is illustrated. Finally, although the existence
of local optima is shown, overall energy gains are found to be only slightly dependent on initial
control parameters in the optimization problem.

4. Conclusion
In this work, we discuss and further elaborate on the PDE-constrained optimal control framework
for dynamic induction control of wind farms introduced in Goit & Meyers [3]. Key components
of the framework are discussed in detail, and the increase in convergence rate due to the
upgrade of the optimization algorithm from a nonlinear CG method used in earlier work
[3,4] to a quasi-Newton L-BFGS-B method is shown. New results indicate power gains for
wind farms with optimal coordinated control in the order of 8–21% compared with a greedily
controlled case. Simulation results show that fast variations in turbine thrust coefficients are
not a prerequisite for significant gains in energy extraction. Finally, user-defined values of
key parameters in the optimization approach are justified based on parameter studies. Future
application of the optimization framework will focus on identifying the physical mechanisms
behind the observed gains in energy extraction, and the translation of simulation-based optimal
controllers with high computational costs towards practical cooperative wind-farm controllers.
For instance, reduced-order state models, e.g. based on proper orthogonal decomposition or
dynamic mode decomposition, provide a possible route to real-time implementation of optimal
dynamic induction controllers. Another area of interest is the use of higher-fidelity wind turbine
models, such as the rotating actuator disc model [26], the actuator sector model [27] or the
actuator line model [28,29]. Furthermore, the addition of yaw to the optimal control problem and
the inclusion of thermal stratification effects in the atmosphere are interesting topics for further
research.
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Appendix A. Relationship between modified power coefficient and modified
thrust coefficient
Owing to present-day computational constraints, state-of-the-art wind-farm LES grids in pseudo-
spectral codes are limited to ≈ 10 grid points across the turbine diameter. As illustrated below,
actuator disc models for wind turbines in these resolutions lead to overpredictions in turbine
power production (see e.g. refs [10,11]). Reviewing the expression for the disc-averaged velocity,

Vd,i(t) = 1
Ai

∫
Ω

Ri(x)ũ · e⊥ dx, (A 1)

it can be shown that the main culprit in this overprediction is the geometric footprint Ri, which is
based on a Gaussian filter kernel G(x) = [6/(π	2

f )]3/2 exp(−6||x||2/	2
f ), as discussed in more detail

in [5,6]. We select the characteristic filter width as 	f = 3
2 	, with 	 the LES grid spacing. The

diffuse smearing of the rotor geometry on the LES grid, which is required for numerical stability,
leads to an overestimation of disc velocity Vd,i, entailing an overprediction in power production
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compared with momentum theory. Note that this overprediction is not unique to actuator disc
models; also in actuator line models overpredictions in turbine power are observed, for which a
heuristic blade tip correction is often applied [10,11].

Figure 14 illustrates CP as a function of Ĉ′
T, obtained from a steady-state actuator disc

under uniform inflow. The circle markers indicate simulation results with C′
P = Ĉ′

T for the same
resolution employed for the cases in §3, and illustrate an overpredicted CP. Consistent with the
fact that the overprediction in power is caused by an overestimation in disc velocity due to the
diffuse rotor representation, the error increases for increasing Ĉ′

T, since velocity gradients are
higher for larger thrust forces. Although it is shown that this overprediction is diminished for
higher grid resolutions (triangles), this is not a practical solution since present-day computational
constraints do not allow optimal control simulations on finer grids. Therefore, a solution to this
problem is to calibrate C′

P based on a least-squares fit to results obtained from 1D momentum
theory, yielding C′

P = aĈ′
T, with a = 0.9. From figure 14 it can be seen (squares) that this improves

the CP values significantly, and that the Betz limit is not surpassed. Physically, this implies that
10% of the power depleted from the boundary layer due to the turbine presence is not captured
by the rotor, but can be ascribed to dissipation losses. We remark that the coefficient a depends
on the simulation grid, and will tend to a value of 1 for finer and finer grids. It is worth noting
that, since the proposed fit is linear, introducing a C′

P differing from Ĉ′
T eventually boils down to

a postprocessing step, and does not influence the optimization itself. In other words, the actual
results on power increase reported in this paper, which are all non-dimensionalized by a reference
power, are not affected by the value of a.

Appendix B. Derivation of adjoint forcing and cost functional gradient
In this appendix, we expand on the derivation of the adjoint forcing terms and the cost functional
gradient in equations (2.12) and (2.13), respectively. For the derivation of the standard adjoint
transport terms in the Navier–Stokes equations, we refer the reader elsewhere [13,14,31]. The
derivation of the adjoint formulations of the wall stress model and Smagorinsky model is
elaborated by Goit & Meyers [3]. Following the same approach as the latter study, we construct the
Lagrangian of the optimization problem by adding the state constraints, with shorthand notation
B(ϕ, q), to the cost functional J through an inner product with a set of Lagrange multipliers
q∗ = [ξ , π , σ ] to form

L (ϕ, q, q∗) = J (ϕ, q) + (q∗, B(ϕ, q)) (B 1)

= J (ϕ, q) +
∫T

0

∫
Ω

π∇ · ũ dx dt +
Nt∑
i=1

∫T

0

(
τ

dĈ′
T,i

dt
− (C′

T,i − Ĉ′
T,i)

)
σi dt

+
∫T

0

∫
Ω

⎛
⎝∂ũ

∂t
+ ũ · ∇ũ + 1

ρ
∇(p∞ + p̃) + ∇ · τ sgs −

Nt∑
i=1

f i

⎞
⎠ · ξ dx dt. (B 2)
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The adjoint equations in (2.9)–(2.11) can then be found by expressing Lqi
(δqi) = (∂L /∂qi, δqi) = 0

for each of the state variables qi.

(a) Adjoint of time-filtered thrust coefficient
We find the adjoint time filter equation by expressing the Riesz representation of L

Ĉ
′
T
(δĈ

′
T) = 0.

Using equations (B 2), (2.1), (2.6) and (2.7), and applying partial integration to the transient term,
leads to

L
Ĉ

′
T
(δĈ

′
T) = J

Ĉ
′
T
(δĈ

′
T) −

∫T

0

∫
Ω

f
Ĉ

′
T

· ξ dx dt +
∫T

0

Nt∑
i=1

(
τ

dδĈ′
T,i

dt
+ δĈ′

T,i

)
σi dt (B 3)

=
∫T

0

∫
Ω

Nt∑
i=1

1
2

V2
d,iRi(x)

(
−

dC′
P,i

dĈ′
T,i

ũ + ξ

)
· e⊥δĈ′

T,i dx dt

+
∫T

0

Nt∑
i=1

(
τ

dδĈ′
T,i

dt
+ δĈ′

T,i

)
σi dt (B 4)

=
∫T

0

Nt∑
i=1

(
−τ

dσi

dt
+ σi + 1

2
V2

d,i

∫
Ω

Ri(x)(−a ũ + ξ ) · e⊥ dx
)

δĈ′
T,i dt

+
Nt∑
i=1

τ [δĈ′
T,iσi]

T
0 . (B 5)

This equation directly leads to the adjoint time-filter equation (2.11). The boundary term
introduced by partial integration vanishes by imposing the terminal condition σk(T) = 0. The
factor a originates from the relationship between Ĉ′

T and C′
P derived in appendix A.

(b) Adjoint forcing term
Similar to the derivation of the corresponding term in [3], we find the adjoint forcing term through

(−f∗, δũ) = Jũ(δũ) +
∫T

0

∫
Ω

−f ũ(δũ) · ξ dx dt (B 6)

=
∫T

0

∫
Ω

Nt∑
i=1

−3
2

C′
P,iV

2
d,iRi(x)e⊥ · δũ dx dt

+
∫T

0

∫
Ω

Nt∑
i=1

Ĉ′
T,iVd,i

(
1
Ai

∫
Ω

Ri(x)ξ · e⊥ dx
)

Ri(x)e⊥ · δũ dx dt (B 7)

=
∫T

0

∫
Ω

Nt∑
i=1

−1
2

Ĉ′
T,iVd,i

(
3

C′
P,i

Ĉ′
T,i

Vd,i − 2Xd,i

)
Ri(x)e⊥ · δũ dx dt (B 8)

=
∫T

0

∫
Ω

Nt∑
i=1

−1
2

Ĉ′
T,iVd,i(3aVd,i − 2Xd,i)Ri(x)e⊥ · δũ dx dt, (B 9)

leading to equation (2.12).
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(c) Gradient
The gradient of the reduced cost functional ∇J̃ with respect to the control variables ϕ ≡
[C′

T,1, . . . , C′
T,Nt

] is derived from (B 2) as

(∇J̃ , δϕ) =
∫T

0

∫
Ω

−σ · δϕ dx dt, (B 10)

or ∇J̃ = −σ , with σ ≡ [σ1, . . . , σNt ].

Appendix C. Variance estimation of energy gains
We can estimate the standard deviation of EO/ER based on N optimization windows, where
N = 14, including all windows except the first, which exhibits transient behaviour for the
optimized cases (figure 10). Because the integral time scale of power extraction Λ ≈ 50 s is
significantly smaller than the window time horizon TA = 120 s, time-integrated quantities over
different windows can be assumed to be statistically independent. First, the total time-averaged
power is defined as

P̄ = 1
Ttot

∫Ttot

0
P(t) dt = E

Ttot
, (C 1)

hence EO/ER = P̄O/P̄R. Furthermore, the window-averaged power extraction for each
optimization window i is

P̄TA
i = 1

TA

∫ (i+1)TA

iTA

P(t) dt for i = 1, . . . , N. (C 2)

Using a Taylor series approximation for the ratio P̄O/P̄R, the variance thereof can be expressed in
terms of statistical quantities of its numerator and denominator (e.g. [32]) as

var

(
P̄O

P̄R

)
≈ E(P̄O)2

E(P̄R)2

[
var(P̄O)
E(P̄O)2

− 2
cov(P̄O, P̄R)
E(P̄R)E(P̄O)

+ var(P̄R)
E(P̄R)2

]
, (C 3)

where var, cov and E denote the variance, covariance and expected values respectively.
Since P̄ = (

∑N
i=1 P̄TA

i )/N, the variances in equation (C 3) can be written as var(P̄) = var(P̄TA )/N.
Furthermore, combining properties of the covariance operator with the fact that mean powers in
different optimization windows can be assumed to be statistically independent, the covariance in
equation (C 3) can be rewritten as

cov(P̄O, P̄R) = cov

⎡
⎣ (
∑N

i=1 P̄TA
O,i)

N
,

(
∑N

j=1 P̄TA
R,j)

N

⎤
⎦ (C 4)

= 1
N2

N∑
i=1

N∑
j=1

cov(P̄TA
O,i, P̄TA

R,j) (C 5)

= 1
N2

N∑
i=1

cov(P̄TA
O,i, P̄TA

R,i) (C 6)

= 1
N

cov(P̄TA
O , P̄TA

R ). (C 7)
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Finally, since E(P̄) = P̄, equation (C 3) can be readily evaluated in terms of quantities that can
either be directly obtained from total time-averaged powers P̄O and P̄R, or calculated from the
distribution of window-averaged powers P̄TA

O and P̄TA
R as

var

(
P̄O

P̄R

)
≈ 1

N

P̄2
O

P̄2
R

[
var(P̄TA

O )

P̄2
O

− 2
cov(P̄TA

O , P̄TA
R )

P̄RP̄O
+ var(P̄TA

R )

P̄2
R

]
, (C 8)

leading to a standard deviation σ = (var(P̄O/P̄R))1/2. Note that, even though P̄O and P̄R are
normally distributed, the ratio between them is not. Therefore, the interval of E(P̄O/P̄R) ± 2σ , as
shown in the error bars in figure 8, does not correspond to a 95% confidence interval as would be
the case for a normal distribution of P̄O/P̄R. Nonetheless, by definition of the standard deviation,
the E(P̄O/P̄R) ± 2σ interval provides a good uncertainty estimate for the gains reported in figure 8.
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