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Abstract—The constrained capacity of a coherent coded
modulation (CM) digital communication system with data-aided
channel estimation and a discrete, equiprobable symbol alphabet
is derived under the assumption that the system operates on a flat
fading channel and uses an interleaver to combat the bursty nature
of the channel. It is shown that linear minimum mean square
error channel estimation directly follows from the derivation and
links average mutual information to the channel dynamics. Based
on the assumption that known training symbols are transmitted,
the achievable rate of the system is optimized with respect to the
amount of training information needed. Furthermore, the results
are compared to the additive white Gaussian noise channel, and
the case when ideal channel state information is available at the
receiver.

Index Terms—Channel capacity, fading channels, interleaved
coding, mutual information, synchronized detection.

I. INTRODUCTION

DUE TO complexity constraints, virtually all of today’s
digital wireless communication systems follow the prin-

ciple of synchronized detection for which a channel estimate
is formed and subsequently used for detection as if it were the
true known channel. Here it is assumed that known training
symbols are transmitted to the receiver. Usually, the practicing
engineer estimates the performance of such a communication
system by assuming that the channel estimation error translates
directly into a simple signal-to-noise-ratio (SNR) loss. While
this approach has proven very useful when designing commu-
nication systems, the interesting question of how the principle
of synchronized detection affects the channel capacity is still
largely unanswered, although similar problems have been
treated in the literature; a good overview of the area is given in
[13]. The work in [10], for example, analyzes the capacity of a
system with a fixed, modified nearest-neighbor decoding rule
with respect to errors in the estimation of the channel fading
process. Here, since we make no assumption on the decoding
rule, optimal decoding is implied. Similar problems are also
treated in [11] and [12]. For a discussion, please refer to the
remarks at the end of the paper.

In this paper, the constrained capacity is computed for a
typical coded modulation (CM) transmission system operating
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on flat fading channels and using an interleaver to combat the
bursty nature of the channel. The term constrained capacity
or achievable rate is used throughout the paper in order to
indicate that the capacity results are constrained to a discrete,
equiprobable symbol alphabet. It is shown that the average mu-
tual information is a function of the channel dynamics through
linear minimum mean square error (LMMSE) channel estima-
tion which follows directly from the derivation. The interleaver
is an integral part of the system, since most well-known codes
have been devised to combat statistically independent channel
realizations. Virtually all of today’s communication systems
are based on that assumption, and therefore this type of channel
is of greatest practical interest. The resulting average mutual
information is then used to optimize, via Monte Carlo simula-
tion, the achievable rate with respect to the amount of training
information needed for a given scenario in terms of channel
dynamics and SNR. Furthermore, the results are compared to
the additive white Gaussian noise (AWGN) channel, and the
case when ideal channel state information (CSI) is available at
the receiver. Finally, our approach is compared to the recently
published work by Marzetta and Hochwald [8].

II. CHANNEL MODEL

A CM transmission system operating on a flat-fading channel
and featuring data-aided (DA) synchronized detection is shown
in Fig. 1. The flat fading channel is characterized by a multi-
plicative fading process and AWGN. For synchronized de-
tection, the inner receiver performs DA channel estimation and
delivers the estimated channel coefficients and the received
symbols to the outer receiver. The outer transmission system
comprises channel coding, modulation (symbol mapping), in-
terleaving/deinterleaving, and decoding. The interleaving/dein-
terleaving is employed to transform the bursty channel into an
independently distributed channel. This is necessary, since most
well-known codes have been devised to combat statistically in-
dependent channel realizations.

For the interleaved and encoded data symbols , the fol-
lowing transmission model results:

(1)

where symbol power is assumed and the noise
power is given by . The fading process is
modeled as a stationary, zero mean, circularly symmetric com-
plex Gaussian process of variance and Doppler spectrum

. Thus the average SNR per symbol is .
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Fig. 1. Transmission system with synchronized detection.

For purposes of DA channel estimation, it is assumed that
known training symbols

(2)

are introduced at positions within the
length- interleaved message . Thus, the transmission model
for the received training symbols can be written as

(3)

Based on the received training symbol, the DA channel estima-
tion produces estimates of the fading process . Both
the channel estimates and the received data symbols are passed
to the de-interleaver which maps and

. If we assume an ideal interleaving/de-interleaving op-
eration with a sufficiently deep memory then, the mapping of

results in the following channel model:

(4)

where is an i.i.d. fading process.
Note that, for ease of explanation, the sets and

were introduced as time-multiplexed sequences. How-
ever, the model encompasses code- and frequency-multiplexed
transmission as well. We only require symbols in set to be
transmitted on different time, frequency, or codeword coordi-
nates than the symbols in set , and that the sets and are
separable at the receiver. In the case of DS-CDMA systems,
this can be accomplished by despreading the received signal
with the pseudorandom sequence that is assigned to the pilot
channel. For OFDM systems, the pilot tones can be separated
using the orthogonality of the subcarriers. Furthermore, we
would like to point out that coded modulation is assumed
throughout the paper, but that the results obtained using this
approach also give a very good indication of the achievable
rate of bit-interleaved coded modulation (BICM) schemes, a
concept which underlies many practical systems. In [7], it is
shown that the achievable rate for BICM over known flat fading
channels approaches that of CM very closely, if the modulator
employs Gray mapping. The constrained capacity for CM is
derived in the following Section.

III. DERIVATION OF THE CONSTRAINED CAPACITY

In this section, the average mutual information for the afore-
mentioned channel model is derived. Since the transmission
model assumes the usage of pilot symbols in order to estimate
the channel, the channel is said to be partially known to the

receiver. We denote this channel P-CSI. In contrast, if com-
plete (perfect) channel knowledge is available, we choose to
use C-CSI. The P-CSI channel described in the previous sec-
tion, with input , output , and known parameter
is completely characterized by the joint channel transition pdf

. Hence, for a given, discrete symbol constella-
tion, and under the constraint of equiprobable symbols, the ca-
pacity of this channel is given by the average mutual informa-
tion [15]. We will denote this constrained capacity with as
compared to which is reserved for the true channel capacity
that requires the maximization of the average mutual informa-
tion over the input symbol distribution. Mutual information is
measured in bits per second per hertz. If we consider a block
of transmitted symbol vectors, of which
are usable data symbols vectors, the expression for the average
mutual information for this block per channel use is given by

(5)

Compare this to the average mutual information per channel use
of the C-CSI channel which is given by [9]

(6)

where Due to training symbol insertion,
the achievable rate of the P-CSI channel will be a factor
lower than the achievable rate of the C-CSI channel. In addition
to that, noisy channel estimates will further reduce the achiev-
able rate of the P-CSI channel.

Now, according to the chain rule for mutual information we
can rewrite as follows:

(7)

(8)

where , since conditioned on does not
convey any information about . Having that in mind, it is now
possible to write

(9)

Note that, since is the known training sequence, the expec-
tation does not have to be taken with respect to . The channel
characterized by the distribution is not memory-
less, in general, because the fading coefficients are not per-
fectly known to the receiver. However, with ideal interleaving,
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Fig. 2. Monte Carlo evaluation of the achievable rate.

and a finite-index set with , we can write [7]
(Appendix I outlines the effect of the interleaver/de-interleaver
on mutual information in more detail)

(10)

or equivalently

(11)

This is a key assumption in our derivation. It must be mentioned
that, exactly because the correlation between received data sym-
bols is not used, some information is actually “thrown away.”
However, it is also true at the same time that, the better the
channel is known, the less information is contained in these cor-
relations. This is plausible, since for a perfectly known channel,
the channel is indeed memoryless. A system with a reasonably
good channel estimation scheme will therefore nevertheless ex-
ploit almost all the available information.

Remembering that our transmission model is given by
, it becomes obvious that and , conditioned on

and , are jointly Gaussian. Therefore, is
also normally distributed and completely described by its con-
ditional mean and variance. From estimation theory, we know
that the conditional mean is the estimator

of in the minimum mean square error (MMSE) sense.
Since the channel model is linear and all associated quantities
are Gaussian, the corresponding estimator is itself linear. The
conditional mean computes as

(12)

where it is recognized that is the linear MMSE
channel estimator . The variance of is given
by

(13)

where for the LMMSE channel estimator it can be shown that
the corresponding minimum MSE is given by [4]

(14)

Therefore, the distribution is normal ac-
cording to

(15)

where denotes a complex Gaussian distribution. It is no-
ticed that this distribution is a function of the MMSE

of the channel estimate which depends on the
time index for which we wish to estimate (interpolate) the
channel. However, it will be shown later on that this dependence
disappears, if the channel is sampled at least with Nyquist rate.
Assuming an adequately sampled channel, the achievable rate
of the P-CSI channel can therefore be written as

(16)

Note that, because is a linear combination of the Gaussian
variables of , it is too Gaussian [4]. The corresponding mean
and variance are given by

(17)

The first result is due to the fact that for the LMMSE estimator
the mean of the error is zero [4], and the latter
result is a consequence of the orthogonality principle.

The average mutual information, as given by (9), can
be evaluated numerically by a simple Monte Carlo sim-
ulation. Firstly, it is necessary to generate drawn
according to . This is accomplished by generating

, multiplying them with ,
and adding . The sequences

, and can then be used to calculate mutual
information, or the constrained capacity, as shown in Fig. 2.
If we wanted to numerically evaluate the mutual information
for the C-CSI channel, we would simply have to replace
with , and with .
Comparing these two schemes, two separate effects are noticed.

• The Gaussian process has a higher variance than the
channel AWGN , which leads to an effective loss in
SNR.

• The optimal LMMSE estimator delivers channel es-
timates that are orthogonal to the estimation error. This
implies that the estimated fading coefficients have a
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TABLE I
SUMMARY OF P-SCI AND C-CSI CHANNELS

lower variance than the true fading coefficients, since we
have . This, again, leads to an additional
effective SNR loss.

In summary, we have just shown that, when mutual infor-
mation is evaluated numerically as outlined above, the P-CSI
channel is related to the C-CSI channel by making use of the
substitutions shown in Table I.

IV. BOUNDS TO CHANNEL CAPACITY

It is illustrative to formulate the following transmission
model:

(18)

where it is noted that the effective noise depends on the
channel input and is therefore, in general, not Gaussian. As a
result, the expression
in the denominator of (9) is not Gaussian either, as would be the
case if the fading channel was perfectly known at the receiver.
This is exactly the reason why it is easy to obtain an expression
for the mutual information in terms of the SNR for the C-CSI
channel, and very difficult in our case, for the P-CSI channel.
It is interesting to note, however, that in the case of M-PSK
signaling the effective noise is in fact Gaussian, since
is Gaussian and its statistics are therefore rotationally invariant
to a multiplication with ( ). Therefore, in
that particular case, a channel estimate with a higher MSE will
degrade in exactly the same way as a simple SNR loss.
We will illustrate this special case with an example in Section V
of this paper.

The equivalent transmission model given by (18) can also be
used to derive upper and lower bounds on . Firstly, we
write in terms of its differential entropies.

(19)

(20)

A lower bound can be obtained, as shown by Medard in [11], by
upper-bounding in (20) as

(21)

Since and are independent, we have .
Furthermore, assuming Gaussian signaling
which maximizes , it is possible to obtain a lower bound
on the true channel capacity of the P-CSI channel.

(22)

Equation (19), on the other hand, can be used to obtain an upper
bound on by noting that the entropy is upper
bounded by the entropy of a Gaussian variable with variance

. Since given and is Gaussian and de-
scribed by of (15), we have that

(23)

It is noted that upper and lower bound are related via where,
by Jensen’s inequality, we have that . For Gaussian sig-
naling, is therefore a measure for the tightness of the upper
and lower bounds. Furthermore, it is seen that the smaller the
estimation error is, the tighter both bounds become, and for

, apart from the linear factor , both converge to
the capacity expression of the perfectly known (C-CSI) fading
channel. Additionally, it is noted that, for M-PSK signaling, the
upper bound of (23) is identical to the lower bound of (22) for
Gaussian signaling.

V. CHANNEL ESTIMATION

In the previous section, it was shown that LMMSE channel
estimation follows directly from the derivation of the average
mutual information for the synchronized detection (P-CSI)
channel. In a receiver, LMMSE channel estimation would
be performed in the so-called inner receiver, as illustrated by
Fig. 1. For the purpose of channel estimation, known training
symbols are inserted into the data message . There are several
possible formats for pilot insertion. Here, for the capacity
analysis, we assume pilot symbols which are distributed with
a period of symbols, as indicated by way of example in
Fig. 3. LMMSE channel estimation is then performed by
firstly computing maximum likelihood (ML) channel snapshots

; one might also say that the channel
is thus sampled at a normalized rate of . Secondly, a
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Fig. 3. LMMSE (Wiener) channel estimation.

Wiener interpolator is lowpass-filtering these channel snap-
shots in order to calculate the LMMSE channel estimates at
any desired time instant within the data message . This
process is illustrated in the lower part of Fig. 3. For a detailed
discussion on Wiener channel interpolation, please refer to [1,
ch. 14].

The quality of the LMMSE channel estimate is character-
ized by the error covariance which is directly related to
the channel dynamics via the Doppler spectrum and the
normalized channel sampling rate . On mobile channels,
the fading process is often modeled to exhibit the U-shaped
Jakes Doppler spectrum (or Clarke Doppler spectrum, following
the original publication) [6], [5]. The Jakes spectrum, which is
based on the isotropic scattering assumption, accentuates in-
stantaneous Doppler shifts near the cutoff frequency ( is
normalized to the symbol rate ). However, since the actual
shape of the Doppler spectrum has no noticeable effect on the
estimator performance [1, pp. 651 and 658], for the purpose of
the capacity calculations, the Jakes Doppler spectrum may as
well be replaced by an ideal low-pass spectrum with the same
cutoff frequency , i.e., we have

if
otherwise

(24)

Assuming, in an information theoretic framework, an infinite
length pilot symbol vector , frequency-domain Wiener filter
theory becomes applicable. Denoting the optimal Wiener filter

, the error covariance is given by

(25)

with

(26)

The error covariance is independent of the time index as long
as the fading process is strictly bandlimited and the channel is
sampled at least with Nyquist rate. Therefore, when computing

, no additional averaging over error covariances is nec-
essary. The derivation of the Wiener filter and its error covari-
ance is outlined in Appendix II. Furthermore, note that (25)
refers to the error covariance of the channel estimates for the
fading process which is characterized by its Doppler spec-
trum . Since the de-interleaver maps , we
have that

(27)

Before the de-interleaver, the channel estimates are the colored
sequence with power spectrum and, after de-inter-
leaving, the channel estimates become the white sequence .
Since the pilot symbols are inserted into the transmitter after the
interleaver, the received pilots and the received data are corre-
lated via , whereas the de-interleaver has destroyed any
correlation between received data symbols.

Before the Monte Carlo simulation results are discussed in
the next section, we would like to give an outlook as to what
kind of results can be expected. Therefore, we briefly consider
the SNR loss as a function of the normalized channel sampling
period for a simple M-PSK system with .
The SNR of the P-CSI channel is given by

(28)

and hence we may define an SNR loss factor such that
. From the previous equation, it

is noted that, in order for to vanish (i.e., ) as ,
it is necessary that faster than . This condition
is satisfied if we choose

(29)

where is a real number in the open set . The SNR loss
is minimized for some in this interval. Due to pilot symbol
insertion, the total amount of usable data symbols is

. Since the channel is sampled with a rate , the
fraction of training symbols to data symbols is given by

(30)

Therefore, in this example, the constrained capacity can be
written as

(31)

In other words, in the case of M-PSK modulation, the achiev-
able rate of the P-CSI channel can be written as a function of
the achievable rate of the C-CSI channel which is subject to
an SNR loss and scaled proportional to the fraction of in-
serted training symbols . Furthermore, since
for the appropriate choice of , both and approach 1
as , it can be concluded that the mutual information
of the P-CSI channel approaches the mutual information of the
C-CSI channel for . Additionally, it is noticed that the
SNR loss of the flat fading channel is strongly dependent on
the channel dynamics (via ), but only weakly dependent on
the SNR itself. This indicates that, for rapidly varying channels,
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Fig. 4. C versus normalized channel sampling period T .

the mutual information of the C-CSI channel overestimates the
achievable rate, since it is entirely independent of the channel
dynamics.

VI. CONSTRAINED CAPACITY ANALYSIS

With the results outlined in the previous two sections, the
constrained capacity as given by (5) was calculated via
Monte Carlo simulation. All simulations assume a -ary com-
munication system with QAM modulation and equally probable
symbols, i.e., . It is important to note that mu-
tual information is a function of , the Doppler frequency of
the channel fading process, and , the channel sampling pe-
riod. Therefore, it becomes possible to optimize the constrained
channel capacity for a flat fading transmission system with re-
spect to the channel sampling rate. Fig. 4 shows the result for

, plotting versus the normalized channel sam-
pling period for several typical SNRs and channel dynamics.
In the figure, the curves are only shown for channel sampling
periods smaller or equal to the Nyquist rate .
The results indicate clearly that for slow fading channels the dif-
ference between the optimal and Nyquist rate channel sam-
pling is much larger than for the fast fading channels. In that
sense, an optimal choice of is much more important for a
slow fading channel than for a fast fading channel, because the
capacity gains are larger. It is also observed that the maximum
for the slower fading channels becomes flatter, indicating that,
provided one is in the proper range, the constrained channel ca-
pacity is not very sensitive to the choice of . Therefore, it
would be possible to choose a sampling period which is some-
what larger than the optimum without incurring any noticeable
degradation. This finding is a very useful guideline for receiver
design, since a lower channel sampling rate translates directly
into a reduced computational effort required for the synchro-
nization tasks of the inner receiver. Finally, another interesting
conclusion that can be drawn from Fig. 4 is that sampling the
channel at the Nyquist rate of never results in an
optimal constrained channel capacity.

Next, in Fig. 5, the achievable rate is shown as a function
of SNR for three different types of channels: The AWGN
channel, the Rayleigh fading channel with perfectly known

Fig. 5. Achievable rates of the AWGN channel, the C-CSI channel, and the
P-CSI channel with Nyquist rate channel sampling.

Fig. 6. Achievable rates of the P-CSI channel with optimal channel sampling
period T for two different Doppler frequencies and the C-CSI channel.

fading process, and Rayleigh fading with channel estimation
based on (suboptimally) sampling the channel at Nyquist rate

. In this case the function solely
depends on the average SNR . Note, that the curves show

, thereby ignoring any losses directly
due to pilot symbol insertion. This simply means that for a
specific Doppler frequency , the curve has to be compressed
correspondingly by to arrive at the corresponding
achievable rate. If, for example, we assume a fairly slowly
varying fading process with , the capacity shown
in Fig. 5 has to be adjusted by . The Nyquist
rate is the slowest sensible rate at which to sample the channel.
Therefore, this representation allows us to illustrate the range
of typical SNR losses for the synchronized detection channel
(P-CSI) as compared to the AWGN channel and the Rayleigh
fading channel with perfectly known fading process (C-CSI).
Comparing the results of the C-CSI channel with the results of
the P-CSI channel, the figure demonstrates, that the SNR loss
is limited to approximately 3 dB for slowly varying channels,
but it can be somewhat higher for rapidly varying channels,
since then the factor cannot be neglected. In Fig. 6,
the results of the channel sampling rate optimization are
shown in conjunction with the constrained capacity curves for
64-QAM of Fig. 5. For clarity, only the two extreme Doppler
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Fig. 7. C versus Marzetta’s approach.

frequencies , and where chosen, and their
corresponding optimal capacities for SNRs of 0, 6, and 12 dB
are plotted. Again, we do not include the factor . This
figure reinforces the results shown earlier, demonstrating that,
for the slowly varying channel , the capacity of
the perfectly known channel is almost achieved, whereas for
the rapidly varying channel , the SNR loss comes
close to that of Nyquist rate channel sampling.

Finally, we would like to compare our approach to some as-
pects of the recently published work by Marzetta and Hochwald
[8]. To our knowledge, theirs is the first publication which con-
siders channel capacity as a function of channel dynamics. In
[8], the capacity calculations neither assume a known channel
nor a given symbol constellation, as in our case, and indeed per-
form the required optimization over the input symbol distribu-
tion. In order to keep the analysis of this complicated problem
tractable, Marzetta et al. assume that the fading process, which
neither the transmitter nor the receiver knows, are constant for

symbol periods, after which it changes to a new independent
random value which they maintain for another symbol pe-
riods, and so on. The resulting capacity is displayed in Fig. 7
as a function of , along with the perfect channel knowledge
upper bound and a lower bound, for an SNR of 12 dB. In the
same figure, the stars underneath the capacity curves indicate
the constrained capacity obtained from Fig. 4 for the different

s and their respective optimal channel sampling period . The
problem, however, are the incompatible channel models used,
and hence it is difficult to find a meaningful correspondence be-
tween and . Here, since is a function of , we just ar-
bitrarily set . As a consequence, the absolute values of
the resulting capacities cannot be compared, but it nevertheless
shows that both approaches lead to the same qualitative result.

VII. CONCLUSION

The achievable rate, or constrained capacity, of a typical
digital communication system following the principle of syn-
chronized detection was derived under the assumption that the
system operates on a flat fading channel and uses an interleaver

to combat bursty error events. This framework was used to
calculate the optimal channel sampling rate with respect
to the achievable rate. It was shown that the optimal channel
sampling rate is always above Nyquist rate .
For slowly varying channels, a proper choice of is very
important in order to limit any losses in the achievable rate. In
the case of rapidly varying channels, the optimum sampling
interval translates into constrained capacities which do not
differ much from what would be obtained by sampling the
channel at Nyquist rate. Furthermore, for the more slowly
varying channels, a flat maximum means that a somewhat
lower than optimal sampling rate can be used which reduces
receiver complexity. Furthermore, it was shown, that in most
cases the principle of synchronized detection leads to SNR
losses no more than approximately 3 dB, except channels that
suffer from fast fading. For slower fading, the achievable rate of
the perfectly known fading channel is almost achieved. Finally,
it was shown that the results presented here are of the same
qualitative nature as the results recently published in [8].

For clarity, in this paper we focused solely on so-called single
input-single output communication systems. However, it is very
straightforward to extend the principles presented here to the
more general case of multiple input-multiple output communi-
cation systems which recently has been paid so much attention
to in the literature. In the case of MIMO systems the correct
choice of training data becomes much more important, since a
lot more channels have to be estimated which implies a greatly
increased need of training data. A corresponding paper has been
published [14].

VIII. REMARKS TO [11] AND [12]

The reviewers brought to our attention [11] and [12] which
were published after submission of our paper. We would like
mention here that, even if these papers consider a similar
problem, the approach taken is entirely different. Here, the
achievable rate of a flat fading communication system with
perfect interleaving is computed, whereas [11] derives capacity
bounds for a channel without interleaving, and [12] uses these
bounds in the framework of block-fading channels. Further-
more, it is shown here that the MMSE channel estimator and
the corresponding error covariance follow directly from the
derivation of mutual information, whereas in [11] channel
estimation is introduced in an ad-hoc fashion and not an
outcome of the derivation. The quantitative results presented
here assume a continuously time-varying (Rayleigh fading)
channel model unlike the block-fading model used in [12].

APPENDIX I
MUTUAL INFORMATION OF A FLAT FADING CHANNEL WITH

INTERLEAVER/DE-INTERLEAVER

If the chain rule for information [2] is applied to (8), it can be
rewritten as

(32)
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Furthermore, it is assumed that the interleaving/de-interleaving
operation has completely broken up the channel memory. Con-
sequently, a received symbol does not convey any informa-
tion about . Thus, for , we have that

(33)

Likewise, since any or do not depend on either
nor on , for , we arrive at

(34)

The flat fading channel with interleaver/de-interleaver
is therefore completely characterized by the distribution

.

APPENDIX II
DERIVATION OF THE WIENER CHANNEL INTERPOLATOR

In order to compute a simple, analytic expression for the
error covariance, it proves convenient to apply frequency-do-
main Wiener filter theory. Therefore, in an information theo-
retic framework, an infinite length pilot symbol vector is
assumed. Denoting the ML channel estimates , and the
Wiener filter , the channel estimate can be expressed as

(35)

where is used to indicate that the channel is in-
terpolated at time index relative to the ML channel samples
which are available at time indices . Applying the orthog-
onality principle and the discrete-time Fourier transform, and
provided that the channel is sampled at least with Nyquist rate,
the optimal Wiener filter in the frequency domain is given by

(36)

It is recognized that has the same spectral characteris-
tics for every relative time index , except for a phase shift ,
which justifies the second step in the above equation. Therefore,
rewriting (35), the channel estimate can now be expressed as

(37)

with

(38)

Similarly, defining the channel autocorrelation function as
, we can compute the error

covariance using the orthogonality principle and
applying Parseval’s theorem.

(39)

where the rectangular Doppler spectrum of (24) was as-
sumed. It is important to note that the error covariance does not
depend on the relative time index (or the absolute time index

) at which we wish to interpolate the channel. This indepen-
dence is a direct result of applying Parseval’s theorem which is
invariant to a time shift.
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