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ABSTRACT 

A Neural Network-based Controller for a Single-Link 

Flexible Manipulator Using the Inverse Dynamics Approach 

This thesis presents an intelligent strategy for controlling the tip position of 

a flexible-link manipulator. Motivated by the well-known inverse dynamics control 

approach for rigid-link manipulators, two multi-layer feedforward neural networks 

are developed to learn the nonlinearities of the system dynamics. The re-defined 

output scheme is used by feeding back this output to guarantee the minimum phase 

behavior of the resulting closed-loop system. No a prion' knowledge about the non- 

linearities of the system is needed where the payload mass is also assumed to be 

unknoa-n. The weights of the networks are adjusted using a modified on-line error 

backpropagation algorithm that is based on the propagation of the redefined output 

error, derivative of this error and the tip deflection of the manipulator. Numencal 

simulations as well as real-time controller hplernentation on an experimental setup 

are carried out. The results acliieved by the proposed neural network-based con- 

troller are compared in simulations and experimentally with conventional PD-type 

and inverse dynamics controls to substantiate and demonstrate the advantages and 

the promising potentials of this scheme. 
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Chapter 1 

Introduction 

The outline of the topics addressed in this introductory chapter is as follows. The 

motivation and objectives of this research, mhich deals with a fle-uible-link manipu- 

lator, are proposed in Section 2 .1 .  The literature review including both theoretical 

contributions as well as practicd applications to flexible manipulators is present ed 

in two sections. Section 1.2 is mainly concened wïth typical conventional control 

strategies developed in this area in the literature, specifically, joint-based control 

approach, inverse dynarnics cont rol strat egies, non-causal cont rollers, transmission 

zero assignment, singular perturbation theory and integral manifold strategy, and 

adaptive control schemes. Neural network-based control strategies are reviewed in 

Section 1.3. Finally, the contributions of this research and the organization of the 

thesis are presented in Section 1.4. 



1.1 Motivation and Objectives 

Modeling and control of flexible-link manipulators have received a lot of attention 

in the past few years. The interest in lightweight fle~ible-link manipulators has 

increased largely due to their potential benefits to space robotics and industrial 

applications. 

There is a n  increasing demand imposed by a variety of applications due 

to higher productil-ity needs to have manipulators that can operate wïth higher 

speed, more precision, less energy consumption, and irnproved payload handling 

capabilities. These requirements translate into manipulators that have structural 

fle-iübility and are lightweight . For instance, a manipulator that is cleaning a delicate 

surface [l] needs to have significant structural Aexibility so that errors in position 

control do not generate large forces that may damage the sufiace. 

The space shuttle arm possesses a very long and slender geometric structure, 

which contribut es to certain mechanical vibrations. In general, flexible arms need 

to  be much lighter in weight compared to rigid robots in order t o  achieve a quick 

response with lower energy requirements, and at the same time ensure precise motion 

and output tracking. 

S a t i e i n g  the above demanding requirements for flexible manipulators is a 

very challenging problem in this area. From the control point of view, the inherent 

structural f lexibi l i~ in a rnanipulator makes it impossible to have an  exact finite- 

dimensional mode1 of the system due to the distributed nature of the dynamics of 

the arm. Secondly, since the sensor and the actuator (input and output signals) are 

non-colocated, taking the tip position as an output feedback control will result in a 



non-minimum phase dy namic represent ation. In ot her words, the open-loop t ransfer 

function of the manipulator from joint torque to  tip position tt-ill have zeros that are 

located in the right half s-plane. This property can impose limitations on the con- 

trouer design as Far as closed-loop stability rnargins are concerned. Thirdly, due to 

the infinite-dimensional characteristics of the a m ,  the control system is underactu- 

ated, which imposes severe limitations on what the coatrol can achieve. And, fina.lly, 

the flexible manipulator is characterized by a complicated set of nonhear dynarnical 

equations as well as inherent unmodeled dynamics and unstructured uncertainties, 

n&ïch add furt her limitations t O the control capabilities- 

To address the above challenges as far as the control design is concerned, 

the classical frameworks of neither adaptive nor non-adaptive control schemes may 

be adequate. If high performance requirements are desired, necessarily, an accurate 

dynamic model should be avdable to design an appropriate controller. However, 

as discussed above, an accurate model is not easy to obtain for a flexible-link ma- 

nipulator- In attempts to find a solution to these problems, much research has been 

directed toward intelligent-based approaches. 

An understanding of the biological rnechanism of the human nemous system 

and its structure has been influential in the design of artificial neural networks and 

their mide applications. The abilities of these artificial neural networks in paràllel 

pro cessing, learning, nonlinear rnapping and generalizat ion have motivat ed extensive 

research and development in their use as a powerful tool for identification and control 

of dynamic systems. It would appear that artificial neural networks with their ability 

to learn complex mappings show promise in providing better solutions for trackng 



control of fle.uible manipulators, 

The objective of the present research is to study more advanced control 

techniques for a flexible-link manipulator in order to achieve a higher performance 

both in simulation and experirnentation, Specifically, a novel neural network-based 

control configuration is developed for precise tip position tracking control of a single- 

link flexible rnanipulator. The dynarnic features of neural networks combined t h  a 

simple con\-entional linear controuer would allow the following design goals for this 

dynamic system to be attained, 

Good t ransient and steady-state tracking of desired motion trajectory, 

Suppression of u ~ w m t e d  vibrations, 

High-speed and precision manipulation relative to structural flexibility, and 

Good performance and stability robustness against unknown task condition 

variations. 

1.2 Review of Conventional Control Schemes 

Considerable research has been conducted on the subject of the modeling and control 

of flexible-link manipulators. Much of the research has involved nonlinear conven- 

tional control strategies which are well developed for ngid robots. A review of the 

research in which nonlinear conventional control strategies have been applied to a 

flexible-link manipulator follows. 

WTithout taking into consideration the flexibility of the manipulator as feed- 

back, a joint-based strategy was experimentally implemented by De Luca, et al [2] on 



a two-link robot u<th a flexible forearrn, The control algorithms were presented as 

a linear feedback plus a model-based feedfomard term. The aim m-as to compensate 

nominally, nonlinearities and interactions of the dynamic mode1 in order to improve 

the tracking accuracy Cetinkunt and Book [l] applied adaptive mode1 following 

control (AMFC) to  a stmcturaly flexible manipulator assuming that the Coriolis 

and centrifuga1 nonlinear forces were negligible- Only the joint. variable feedback 

was taken into the control algorithm to avoid the closed-loop non-minimum phase 

problem. The performance limitations due to the joint variable as feedback was 

also discussed. The adaptation algorithm provided good tracking of joint variables 

against large nonlinear forces only by increasing the feedback gains. This resulted 

in very stiff joints and persistent structural vibrations. If joint position control was 

too stiff relative to  the arm flexibility, it was not possible to provide well-darnped 

dominant modes, no matter how large the velocity feedback gain was selected. As 

a result, vibrations of the structural flexibility took a longer tirne to die out so that 

the performance of the tip position was degraded, especially during transient. Tt 

should be noted that when only the joint variables were used as feedback, the dy- 

narnic nonlinearities were dominant as the speed of a manipulator motion increased. 

Since there was no direct control for the tip position, the structural flexibility in the 

response of the manipulator became very apparent. 

Arnong the various control strategies developed for tracking control of a 

rigid rnanipulator, the .inverse dynarnics control scheme is by far the most corn- 

mon nonlinear scheme found in the literature. Because this control scheme is rela- 

tively straightforward, it has attracted a great deal of the research targeted towards 



flesi ble-link manipulator cont rol. The essential idea is to  t ransform nonhear syst ern 

dynanlics into a linear one, such that linear control approaches could be applied. 

However, the non-minimum phase charact erics of a flexible-link manipulat or has hui- 

dered this approach being applied to  a direct tip position control, unless the output 

re-definition approach is utilized. Consequently, it might be possible to apply this 

%put-redefined output" linearization approach to the tip position tracking control 

for a class of structuraLly flexible dynamic systems. 

Wang and Vidyasagar [3] developed a t r a d e r  function modeling of a single- 

link flexible manipulator through re-defining output as "reflected" tip position to 

achieve stable zero dynarnics- According to this definition, the output variable 

ntas the rigid body deflection minus the elastic deflection, instead of the net tip 

position. However, the disadvantage of this scheme is that it might not be easy 

to relate the desired net tip position to the desired reflected tip position. Tt might 

also show a signscant discrepancy between the net tip position and the reflected 

tip position in the follom-ing situations: (i) the speed of the flexible-link manipulator 

motion increases substantially or the joint makes a large rotation, which may excite 

more higher frequency flexible modes, (ii) the manipulator has a structurally higher 

flexibility. De Luca and Siciliano [4] f d y  investigated an input-output nonlinear 

inversion algorithm which ensured exact tracking of any smooth trajectory. Both 

the joint and an arbitrary point dong the link were considered as output signals. 

In these studles the closed-loop-dynamics were always stable when the output was 

chosen to  be the joint angle. The "re-defined output" concept was proposed to allow 

the possibility for the tracking control of a range of angular outputs defined dong  



the link. The purpose was to stabilize the zero dynamics of the resulting input- 

output map. De Luca and Lanari [5] fûrther considered a suitable range of input- 

output locations along the link, in which it was possible to achieve a minimum phase 

behavior based on a linear finite-dimensional mode1 of the flexible beam. The other 

approach discussed for achieving a minimum phase closed-loop behavior kept the 

output fixed at  the tip and let the actuation point Vary along the link. This idea may 

be only of theoretical interest due to the physical difficulty of allocating an actuator 

along a lightmeight flexible h k .  Madhavan and Singh [6] suggested a joint position 

added to a scaling of the tip elastic deformation as a "te-defined output". A feasible 

region of the output along the flexible Link mas studied to achieve the minimum 

phase property for a two-link manipulator. Talebi et al. [7] advanced the idea that 

an output re-definition scheme could be used without any a pr ior i  knowledge of 

the payload mass. Considering this, it might be possible to design controllers that 

~ o u l d  remain robust to payload variations. This more general output re-definition 

concept was developed and implemented on a multi-link flexible manipulator with 

the input-output linearization technique by Modem et al. [8]. A major difficulty in 

implementing this type of approach would be its heavy dependence on the accuracy 

of the inverse mode1 used in the controller, despite the presence of disturbances, 

unmodeled nonline&ties and uncertainties. 

Consideration was even gïven to the application of non-causal controllers to  

sol\-e the non-minimum phase problem when employing an inverse dynamics control 

scheme. Bayo and Moulin [9] computed a non-causal torque by integrating the end- 

point acceleration profile, which acted before the tip started moving and after the tip 



stopped mo~-hg.  Kwon and Book [IO] decomposed the inverse dynamics of a flexi- 

ble manipulator into a causal system, which ms integrated fomard in time, and an 

anti-causal system which was integrated backward in time. This was done in order 

to compute the required torque and the trajectory of flemble mode coordinates in 

the time domain for a desired tip position trajectory. The preceding two approaches 

seem to solve the non-minimum phase problern of flexible-fink manipulators. How- 

ever, the substantial amount of computation necessary and the requirements of the 

h e a r  approximation mode1 of the flexible-link manipulator significantly limit their 

application. 

Influenced by the irnplementation of transm.ission zero assignrnent for h e a r  

systems by Pat el and Misra [Il], the principle was experimentally applied to a çingle- 

link flexible rnanipulator by Geniele et al. [12] to  achieve tip position tracking 

control. The dynamic mode1 was first linearïzed about an operating point. Then an 

inner stabilizing control loop incorporated a feedthrough term to assign the system's 

transmission zeros at desired locations in the complex plane, and a feedback term 

to move the system's poks t o  appropriate positions in the left half s-plane. 

Siciliano and Book [13] applied the singular perturbation theory to control 

a lightweight flexible manipulator. The composite control design consisted of two 

parts: (i) tracking the slow subsystem output and, (ii) stabilizing the fast subsys- 

t em around the equilibrium traject ory corresponding to the slow su bsystem under 

the effect of the slow control. The slow control was designed based on the well- 

established cont rol schemes for rigid manipulators. The in tegral manifold strategy 

for the control of flexible-joint manipulators was proposed by Khorasani and Spong 



[I 41, and Spong et al. [15]. The objective was t O obtain a more accurate slow subsys- 

tem, n-hich ~ o u l d  then facilitate the împlementation of a more accurate controller. 

Hashtnidi-Zaad and Khorasani (161 hirther developed these methodologies for an 

approximate model of the Canadarm (shuttle a m )  by measuring the hub angle and 

the tip position to  control the arm to an arbitrary degree of accuracy. Moallem et 

al. [17] used a similar approach for a multi-link flexible manipulator that was then 

venfied experimentally for a single-link arm. These control approaches may also be 

viewed as belonging to a class of output re-definition strategies. 

Researchers have also investigated adaptive control schemes because they 

provide a possibility to update estimation of uncertainties on-line. Due to para- 

metric uncertainties, in rnost cases of payload variations, nonlinear adaptive control 

schemes have d s o  been investigated for the flexible-link manipulator. The recursive 

least square (RLS) algorithm was used by Yurkovich and Pacheco [18] to adjust 

the pararneters of a simple P D  cont rouer for a flexible-link manipulat or, which 

was subject to varying, unknown payloads. Lucibello and Bellezza [19] studied a 

self-tuning adaptive scheme for a two-link flexible robot arrn- A least square identi- 

fication scheme estimated the unknown payload m a s  on-line. The result was used 

to tune the computation of a bounded solution for the inverse reduced systern and 

the computation of the nominal torques. The unmodeled dynarnics were not con- 

sidered. A rather simple, finite-dimensional model of the robot was incorporated in 

the controller design. This was done to keep the algebra as simple as possible and 

to retain the relevant nonlinear behavior of the systern. In their experiments Rokui 

and Khorasani [20] used an indirect adaptive control scheme for a single-link flexible 



manipulator. The research was based on a discrete-time nonlinear model of the sys- 

tem denved by using the fomard difference method. This type of control strategy 

assumed that the payload m a s  had to enter linearly înto the dynamic model of the 

fle,uible-link manipulator. Based on this assumption in the newly obtained discrete- 

time model, a new regressor was proposed. The multi-output recursive-least-square 

(RIS) algorithm was used to identZy the upper bounded unknovm payload mass. Si- 

ciliano et al. [21], and Yuh [22] applied a model reference adaptive control (MRAC) 

approach to regulate the tip position tracking of a flexible-link manipulator. The 

former [21] designed a proportional plus derivative (PD) controller so that its gains 

were adaptively changed using the M M C  algorithm. On the other hand Yuh [22] 

irnplemented a discrete-tïme MRAC to a simplified dynarnic model, which was a 

rïgid manipulator plus the disturbance term (process noise). The simulation was 

carried out under two conditions Le., a colocated sensor and actuator as well as a 

non-colocated tip sensor and actuator. For the non-colocated system, the tracking 

performance degraded wïth higher frequency modes when the power limitation of 

the actuator was considered. The MRAC type adaptive control scheme established 

t hat a t radeoff between the condition of persistent excitation and closed-loop syst em 

stability restrained the achievement of the exact t ip position tracking. 

From the above s w e y  of typical conventional nonlinear control strategies, 

it is worth noting tha t  the greatest obstacle for applications of the current modern 

nonlinear control techniques to flexible-link manipulators is the strong dependence 

of these techniques on accurate dynamic models. By estimating the parametric and 



dynamic uncertainties, the adaptive control schemes reduce the dependence of ac- 

curate models to some degree. However the linearities in the parameters requlre 

the assumption of a fixed structure, despite the existence of nonlinear uncertainties. 

Furthermore, in order for the parameters estimates to converge to t heir true values, 

the reference trajectory- must be "sufficiently rich". In other m-ords, the reference 

trajectory must sufficiently excite the dynamic modes of the system such that the 

effects of various parameters c m  be distinguished. This raises potential problems 

and limitations for this type of schemes to be hplemented on flexible-link manipu- 

lators because the unmodeled flexible modes may also be excited that could make 

the closed-loop system unstable. 

1.3 Review of Neural Network- based Control Schemes 

The advantages of using an  artificial neural network as a viable method to reduce the 

dependence of a controller on limitations discussed above have been demonstrated 

in many systems and application areas. In particular, lineariw in the parameters 

is not required and certainty equîvalence principle is also not used. This resolves 

the above limitations for implementing a standard adaptive control scheme. Va& 

ous configurations are proposed to "intelhgently" control flexible-Lnk manipulators. 

Essentially, in one configuration the information of the dynamic mode1 is partially 

used, whereas in the other configuration almost no a priori knowledge of the system 

is assumed. 

An adaptive type direct neural controller was proposed by Takahashi and 

Yamada [23], and experimentally tested on a single-link flexible arm for the tip 



angular position control. A three layer neural network =-as trained on-line to learn 

the inverse dynarnics of the mode1 through minimîzing a quadratic cost function 

that took into account both output error and control input. However, when taking 

the deflection modes directly as feedback into the neural controller in the forward - 

path, no solution for the non-minimum phase problem was presented. 

A multi-layer perceptron controuer was constructed by Register et al. [24] 

to learn the inverse dynarnics model of a single-link manipulator for the tip position 

control. The simulation model was based on a lïnearized state-space model that has 

neglected natural damping. The network was trained by an error-backpropagation 

algorithm, Better results were obtained through penalizing the hub velociv in a 

modified cost function. However this approach failed when the link measurement 

evceeded a certain critical length. 

An alternative neural network-based cont roller was designed taking advan- 

tage of the weU-established knowledge of the dynamic model. For instance, two 

multi-layer neural networks were configured by L-in and Yih [25] to  cope with a 

priori knowledge of the corresponding model of a rigid manipulator for identifica- 

tion and control of a flexible-link manipulator- The objective was to try to use 

fewer neurons and a shorter learning time in an effort to reduce the tracking error. 

Weights of two networks were adjusted off-line after 40 training cycles through error- 

backpropragat ion algorithm, and later used as initial weight s for on-line adaptation 

simulations. 

Surdhar et al. [26] proposed two different neural network-based control 

structures for a flexible-link manipulator: (i) a radial basis function (RBF) and, (ii) 



a multi-layered perceptron (MLP). The networks were both trained off-line using 

backpropagation algorithm in a supervised fashion and the training data was copied 

from an existing fuzzy PD controller. A discussion on the difference due to  the 

generalization properties between the tmo Ends of networks was also presented, 

Le., the RBF generalized the data locally and the MLP had global generalization. 

Results showed that the MLP network was l e s  sensitive to the loading of the arm 

than the FtBF network, 

An error-backpropagation neural network was used in Zeman et al. [27] 

to model the inverse dynamics of a flexible-joint manipulator. Given the difficul- 

t ies in det ermining the training signal and a "sufficient ly rich/persistently exciting" 

training set, the network was initially trained off-line by performing a generalized 

learning to establish an accurate inverse dynamics model. Then the system was 

operated under specialized learning with a slower leaning rate to compensate for 

variations in the plant dynamics. 

The problem of how to obtain an error signal for training a neural controller 

has been an issue for researchers for a long time. Miyamoto et al. [28] dealt with 

t his essential pro blem by developing the concept of fedback-evor-Zeanzing. It was 

pointed out later by Gomi and Kawato [29] that "in supervised learning, the error for 

a neural controller adaptation should not be the trajectory-error, but the command- 

error". Using this method, the neural network model for a feedforward control 

acquires the inverse dynarnics model of a control object. The benefit of this learning 

strategy is that the "target signal" for the output of the network, which is impossible 

to determine, is not required. 



The feedback-error-learning  vas conceptually adopted by Newton and Xu 

[30] for control of a flexible manipulator. In (301, a recurrent three-layer perceptron 

neural network controller was designed for a space flexible manipulator- The small 

gain constants were used for irnplementing experirnentally a lon--pas filter to prevent 

excitation of the vibration modes. However, to  bypass the non-minimum phase 

problem, no strain or tip measurernents were used, instead only joint variables were 

used as feedback for the closed-loop control systern. These esperiments rnay be 

viewed as an e-xtension of a ngid manipulator case. 

Later, feedback-error-learning and re-defined output concepts were devel- 

oped further by Talebi et al. (71 to  design neural network-based controllers for 

flexible-link manipulators, hplementations were conducted in simulation for a 

tn-O-link manipulator with a flexible forearm and experimentally for a single-link 

flexible mariipulator. Four different architectures were proposed, and all of them 

were trained on-fine to learn the inverse dynamics mode1 of the manipulator to be 

represented by a neural network. In this way the tip position tracking control was 

achieved. The first two schemes were developed to learn the inverse dynamics of 

the fie-xible-link manipulator. Different information was taken from the system out- 

p u t ~  and desired reference signals as inputs to the corresponding neural network. 

These two schernes needed conventional linear controllers in the forward path to 

help stabilize the closed-loop systern and acc~rnplish the contro! objectives. A third 

scheme was based on tracking the joint position, sirnultaneously penalizing the tip 

deflection by t&ng it into the cost function. The fourth scheme ernployed two 

neural networks which were applied on-line to learn the re-defined output and the 



inverse dynamics controller respectively, without an'- a priori knowledge of the dy- 

narnics model. Promising results were obtained in comparison to those obtained 

from PD-type control schemes. 

1.4 Synopsis and Contributions of the Thesis 

The aim of the research presented in thîs thesis is to implement a proposed neural 

network-based control strategy on a single-link flexible manipulator both in simu- 

lation and experirnentation. From the literature review, the advantages of utillzing 

the neural network-based schemes in motion control of a flexible manipulator have 

been established. Motivated from the work of Talebi et al. [7], the first two schemes 

in which partial knowledge of the modei mas incorporated in the design gave sa t i s  

facto? results. Less favorable results were obtained with the other two schemes in 

m7hich the assurnption of some a priori knowledge of the dynamic model was dimin- 

ished. Thus, it seems reasonable as well as preferable to take the available knowledge 

of the dynamic model as a basis in designing a neural network-based controller. 

Bearing this fact in mind, in this research instead of treating the whole 

inverse dynamics model of a single-hk flexible manipulator as a "black box", ad- 

vantage was taken of the existing knowledge of the structure of the inverse dynamics 

model in designing the proposed neural network-based controller. It will be shown 

experimentally as well as in simulation results that when two neural networks are 

configured to couple with a conventional linear controller, more accurate tip position 

tracking of a single-link flexible manipulator may be achieved. 

There are 6 chapters in this thesis. Chapter 2 presents the mathematical 



dynamic model of the experirnental single-link flexible manipulator used for simu- 

lations. The representation of an existing physical model is derived following the 

recursive Lagrangian approach using the Euler-Bernoulli beam theory and the as- 

sumed modes method (Geniele [XI). 

For the purpose of cornpaison with the neural network-based scheme, two 

conventional control schemes, namely the PD-type, and the inverse dynarnics con- 

trollers are reviewed in Chapter 3. The mathematical models are developed and 

the design scenarïos are reviewed briefly with respect to a specific single-link flex- 

ible manipulator. Special emphasis is devoted to employing neural networks in 

the motion control of a single-link flexible rnanipulator. Initially, some theoreti- 

cal background is provided concerning the underlying principles of neural networks. 

For instance, the philosophy of neural networks and their mathematical basis are 

addressed, mainly emphasizùig multi-layer perceptron architectures and the related 

training algorithm, namely error-backpropagation. Next the function approximation 

b a i s  of neural networks is presented. Finally the proposed neural network-based 

control strategy developed in this research is presented, 

Numerical simulations are outlined in Chapter 4 based on the mathematical 

dynamic model of a single-link flexible manipulator derived in Chapter 2. The neural 

network configurations and their related design consîderations are presented. Resufts 

and performances from simulations are discussed and compared with conventional 

cont rol schemes. 

In Chapter 5 the experimental implementations of the proposed neural 



network-based control strategy on a single-link flexible manipulator test-bed (Ge- 

niele [31]) are demondrated. The hardware configurations and the software compo- 

nents of this real- the system are introduced. Considerations related to the experï- 

mental implementation of the proposed control scheme are also addressed. FinaUy, 

experimentd results are presented, along wit h discussions and corn parisons with 

t hose O btained from conventional control schemes. 

The concluding remarks of this research, and proposals for the future work 

in neural network-based control for the flexible-link manipulator are provided in 

Chapter 6. 



Chapter 2 

Dynamic Mode1 of a Single-Link 

Flexible Manipulat or 

In this chapter the mathematical model of an experimental single-link flexible ma- 

nipulator is reviewed. The mathematical formulae will be utilized for numerical 

simulation studies. In Section 2.1, several approaches in the literature for modeling 

the flexible-link manipulator are discussed. The characteristics of a physical mode1 

for a planer single-link flexible manipulator is described in Section 2.2. In particu- 

lar, the derivations for the dynamic model are given in Section 2.3 by utilizing the 

energy-based Lagrangian formulation and the Euler-Bernoulli bearn theory as well 

as the assumed modes method. 



Introduction 

An accurate dynamic model plays an important role in the design of an advanced 

model-based nonlinear controller, as well as for the numerical simulation purposes. 

The rnodel should possess the most relevant properties of the system, should provide 

a clear understanding of the dynamic interaction and couplings, and fina.lly should 

be useful for control design. The flexible-link manipulator is a highly nonlinear, 

distributed parameter systern consisting of a rigid body motion with the ability to 

make elastic vibrations. With these considerations, as pointed out by Tokhi and 

Azad [32], several approaches have been used in deriving the dynamic model of 

flexible-link manipulators for obtaining the mapping between the force exerted on 

the joint and the positions, velocities and accelerations of the joint and the tip. These 

approaches include the Lagrangian formulation and assumed modes method, the 

Lagrangian formulation and finite element method, the Newton-Euler equations and 

assumed modes method, and the Hamilton's prïnciple and finite element technique. 

The Lagrangian formulation is simple and systematic. In the assumed 

modes method, the deflection of a flexible-link manipulator is represented as a sum 

of modes. Each mode is assumed t o  be a product of the distance along the length of 

the manipulator and a generalized coordinate which depends on time. An infinite 

number of modes are truncated in order to synthesize a finite-dimensional dynamic 

rnodel for practical purposes. The work done by Book [33], Cannon and Schmitz 

[34], Wang and Vidyasagar [3], Cetinkunt and Yu [35], and Geniele [31] feu into this 

category. The finite element approach is conceptually similar to the assumed modes 

method except that the generalized coordinates are the displacernent or slope a t  



specific points aIong the manipulator. Usoro et al- [36! inrestigated this approach 

in their research, 

The Newton-Euler equations and assumed modes method is a direct and 

an efficient method for the numerical evaluation of the syçtem dynamics. Newton's 

second law is used to  balance the rate changes of linear and angular momentum with 

the applied forces. The basic principle is to divide the manipulator into a nurnber 

of elements. Raksha and Goldenberg [37] developed this strategy for modeling a 

single-link flexible robot - 

The major advantage of the Hamilton's principle and a finite element a p  

proach is that different material properties and boundary conditions like hubs, tip 

load and changes in crosssection can be handled in a simple manner. Bayo (381, 

and Tokhi et al. [39] used this concept in their work. 

The necessity for cornputing the internai forces to  arrive at the generalized 

forces presents difficulties when the Newton-Euler formulation is used. However, 

for control purposes, it is not necessary to calculate these internal forces. The 

Lagrangian formulation directly cornputes the generalized forces in a straightfomard 

manner using the Lagrangian function. In this thesis, the Lagrangian formulation 

and assumed modes method as discussed in Geniele [31] for modeling a planar single- 

link flexible manipulator is adopted. The re-defined output concept of [28] and [6] 

has been used here to facilitate the design of the feedback controllers. 



2.2 Characterestics of the Physical Arm 

The schematic of a planar single-LUik flexible manipulator is shown in Figure 2.1. 

(XO , Yo) is an inertial coordinate frame, and ( X I ,  YI) is the coordinate assigned for 

a flesible link. 6, ~ ( x ,  t) and T represent the hub position, the deflection dong the 

a.rrn, and the torque applied tu the hub, respectively- 

Y0 

t Payload Mp 

FIGURE 2.1. A Planar Single-Link Flexible Manipulator 

The Wsting experimental single-link flexible manipulator is a 1.2-rn-long, 

very flexible structure that c m  bend freely in the horizontal plane but not in the 

vertical plane. At one end, the arm is clamped on a ngid hub mounted directly on 

the vertical shaft of a DC motor. A torque applied by the DC motor rotates the 



arm in a horizontal plane. The other end of the a.rm with payload mas attached 

is free. The beam of the manipulator consists of a central stainless steel tube with 

annular surface conugations. Alurninum blocks are bolted to the tube and two thin 

parallel steel spring strips slide within slots cut into the blocks. 

2.3 D ynamic Mo deling 

The dynamic model of the single-link flexible manipulator is derived here by first 

ut ilizing the Euler-Bernoulli beam t heory to O bt ain a partial different ial equation 

(PDE) a i th  the corresponding boundaq conditions representing the motion of the 

manipulator. Shen, from the system energy point of view, the Lagrangian for- 

mulation approach along with the assumed modes method results in a state-space 

representation of the dynarnics of the flexible manipulator. 

In order to derive a mathematical model, the following assumptions have 

to be made, 

Rotary inertia and defornation of the beam due to shear forces may be ne- 

glected because the cantilever beam assumes that the cross-sectional area of 

the link is s m d  in cornparison with its length h, 

Beam inertia and flexibility are uniforrnly distributed over the Link length, 

assurnuig that ET is a constant, and 

The motion of the flexible link is limited to small displacements. 



2 -3.1 Euler-Bernoulli Equation 

By applying Euler-Bernoulli beam theory, the dynarnic equation of motion of the 

flexible-link manipulator may be obtained. The distnbuted nature of the system is 

evident in the presence of a fourth-order partial differential equation (PDE), 

where x is the normalized position along the link of length h, 1 is the link cross- 

sectional moment of inertia, E is the Young's modulus of the material, y is the mass 

per unit length, and $(x, t )  is the deflection of a point located at  a distance x along 

the beam. 

With the cantilever beam assumption, the following boundary conditions 

are used to solve the above PDE, 

where Mp is the payload m a s ,  B and S represent bending moment and shear force, 

respect ively. 

The assumed form for the solution of (2.3.1) is anived at by solving an 

infinite set of eigenvalues and corresponding eigenfunctions, 



i=I 

where qi(t)  is the generalized coordinate of the i th  mode of the h k ,  and &(x) is 

the normalized, clamped-free eigenhinction of the i th  mode [3], which iç given by 

sin lz,h + sinh kih 
@i (1) = d, (sin k~ - sinh kr~ - ( COS X;X -  COS^ kz) ) (2-3.3) 

cos kih + cosh h 

with determined from the folloming transcendental frequency equation, 

M I ,  
A ( s i n ~ c , h c o s h k ~ h  -cosbhsinhli,h) - coshkihcoskh- 1 = O  (2.3.4) 

-i 

2.3.2 Lagrangian Approach 

The energy-based Lagrangian formulation of the motion is oriented tomards the 

analytical computation of the rnanipulator dynamics. It gives more insight into the 

sensitivity of the model to the changes in parameter values. 

The mathematical dynamic model is developed to reveal the dynamic be- 

havior of the system using the Lagrangian approach which is defined as 

where 



is the Lagrangian expressed as the difference between the kinetic energy K and the 

elastic potential energy U of the total system. q is the generalized force at the joint 

The mathematical equation (2.3.2) indicates that a n  exact solution to the 

Euler-Bernoulli partial derivative equation (PDE) requires an infinite number of 

modes. A truncated model is obtained using the assurned modes shape wïth a finite 

number of modes/eigenvalues to approlrimate the exact solution, 

-4s a result, a mathematical representation for the dynamic model of the 

single-link flexible manipulator may be derked (Geniele [31]) in the state-space form 

with the re-defined output expressed as 

where 

and q is the elastic variable, 9 is the joint variable, h is the length of the link, and 

u(t) is an input torque applied to the hub, cr is a parameter which varies between 
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[- 1 11 nith a = 1,0, -1 corresponding t o  the tip position, the joint angle, and 

the reflected tip position, respectively. For the re-defined output case, a is chosen 

betiveen [O 11. 

The matrix M(q) is the positive-definite symmetnc inertia matrix with the 

definition, 

where 

h 

= [-f Jlh 4 , ~ d ~  + Mph$i (h) 7 J 42xd~  + M p h h  (h)  - - - 
O 

The matrix C(q, q) which is the Coriolis and viscous damping matrix is 

defined as 

where 



The term ~ ( 9 )  may be defined as 

and 

K2 = 

and the combination of B 2 q ~ 2  yields the vector of centrifuga1 forces. 
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The terrn ~ r i c ( 8 )  represents Coulomb friction at the hub, a-hich is modeled 

as ~-ls~n(ë) with Cmi as a coefficient of the Coulomb fiction. 

The design of a controller for a flexible-link manipulator requires the knowl- 

edge of the parameters presented in the above dynarnic model. The specific values 

for these parameters corresponding to Our experïmental single-link flexible m a n i p  

ulator may be found in Geniele [31]. They mere experimentally obtained through 

on-line system identification techniques. 



Chapter 3 

Control Schemes 

As proposed in Chapter 1, the major objectives for control design of a flexible-link 

manipulator are to have an accurate and fast tip position tracking, and sirnultane- 

ously to ensure that arm deflections are well suppressed. In order to reach these 

goals, a novel neural network-based control scheme is proposed in this chapter. In 

Sections 3.1 and 3.2 basic concepts and mathematical fundamentals of conventional 

control schemes are reviewed. These control schemes, namely PD-type control and 

inverse clynamics control, will be compared with the proposed neural network-based 

control. The design for the neural network-based control scheme is presented in Sec- 

tion 3.3, which focuses spec%ca.lly on certain mathematical prelirninary, theoretical 

foundations of function approximation, and control design considerations. 



3.1 PD-type Control Schemes 

Fundarnentally, a PD-type (Proportional and Derivative) controller is designed to 

tune gains with a position and a velocity feedbacl;, and to  meet transient and steady- 

state specifications of a closed-loop system. Its mathematical representation is as 

follo~-s, 

U = &(Y, - &) - KP(yr - y,) (3.1.1) 

mhere y, is the tip position reference trajectory, y, is the re-defined output, and Kd 

and Kp are gains to be tuned with respect to proportional and derivative terms, 

respect ively. 

From (3.1.1), an advantage of not requiring knowledge of either a mode1 

structure (2.3.8) or mode1 parameters is noticeable. However, a PD-type control 

scheme shows its inadequacy in robustness, optimization, as well as  handling non- 

linearities. These limitations will be made more clear later, when t his cont rol scherne 

is implemented on a single-link flexible manipulator, which is a highly nonlinear, and 

a complicated dynamic systern. 

3.2 Inverse D ynarnics Control Schemes 

3.2.1 Mat hemat ical Fundamentals and Error D ynamics 

The development of an inverse dynarnics control law is approached by first defining 

an  inverse of the inertia matrir (2.3.10) as 



Dynamic equa 

be re-arranged as follows, 

tions of the single-link flexible manipulator (2.3.8) rnay now 

In order to obtain the inverse dynamics of the system, a successive derivative 

of the re-defined output y, (2.3.9) with respect to time t is taken, until an input 

u( t )  appears. In this case, tmo differentiatîons of y, are required, such that 

\I?ien combined mith (3.2.2), (3.2.3) becomes 

By some mat hematical manipulations of (3.2.4), the inverse dynamics con- 

trol law may now be defined according to 

FI-here V is a new input to be specified subsequently, and 
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(MZ + i < f > ~ ~ )  ( ~ 2 4  + pKl - K*) 
F ( B , ~ , ~ , ~ )  = (C'le t ~ r i c )  + a 

mu + h@Min 

Su bstituting (3 -2 -5) in (3.2.4), the equivalent dynamic mode1 becomes 

which is an input-output (re-defined output) linearized system with respect to the 

new input to the system. It should be noted that there are several ways for selecting 

V(-). In general, it may be chosen as 

Applying (3.2.7) to  the input-output linearized representation of (3.2.6), the 

closed-laop error dynamics is now governed by 

mhere the error e is defined as e = y, - y,. This error will be used subsequently for 

the weights tuning algorithm of the neural networks. 

3.2.2 Design Strategies 

As pointed out earlier, the inverse dynamics technique, also h o w n  as feedback lin- 

earization, has been successfully applied tu rigid manipulators. This may be due 

to its straightfomard design procedure. The essentid idea of this approach is to  
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transform algebraically a nonlinear systern dynamics into a h e a r  one, so that lin- 

ear control techniques can then be easily applied. This is to be realized by exact 

state-space coordinate transformations and feedback, rather than by a linear a p  

proximation of the dynarnic model. 

From the preceding mathematical development, a rather remarkable result 

is achieved, such that the "new" system (3.2.6) is both linear and decoupled. It 

implies that an input V(-) can be designed to control a linear system. Moreover, if 

it is assumed that V(-) is a function of only y, and its derivatives, then V(-) wïll affect 

y, independent of the link motions. In other words, the highly nonhear  and coupled 

dynamics of the manipulator are cancelled and replaced by a simple decoupled linear 

second-order system. This concept is depicted in Figure 3.1. However, the exact 

cancellat ion of nonlinearities leaves the door open t O many questions on issues such 

as sensitivity and robustness. 

An important issue whkh has to be addressed when an inverse dynamics 

scheme is appIied to a flexible-link manipulator is the problem of stability. GeneraUy, 

with an inverse dynamics controller, an original nth order systern is divided into two 

parts. One part is observed from an output, and its derivative with a relative degree 

of "r". The other part which is not obsenred has an order of "n - r". Since the 

design of the controller is based on the observed part only, the stability of the whole 

system depends on the stability of the unobsemed part which is also known as 

internal dynamics. A simplified version of the internal dynamics is referred to as 

zero- dyn arnics. 

The zer+dynamics are dynamics left in the system when the input is chosen 



in such a way that it forces the output to remain exactly at zero. If the zero- 

dynamics are stable, the closed-loop system using inverse dynamics may be designed 

to be stable. On the other hand, the system is internally unstable, and the inverse 

dynamics scheme can not be implemented for this type of system which is known 

as a non-rnznzmum phase. 

The tip position tracking control of a flexible-link manipulator has a non- 

minimum phase nature, due to  the actuator-sensor non-colocated configuration. In 

other words, an open-loop transfer function from a joint torque to a tip position hm 

zeros that are located in the right half s-plane. Therefore, a closed-loop system under 

non-colocated control is only conditionally stable. The re-defined output concept 

([4], [JI, [6]) is adopted in this research to alleviate this specific problem. 

3.3 Neural Network- based Control Schemes 

3.3-1 Introduction 

An artificial neural network is essentially a network of suitably inter-connected non- 

linear elements of very simple forms that possesses an ability for learning and adap- 

tation. It is characterized in principle by a network topology, a connection pattern, 

neural activation properties, train strategy, and an ability to process information. 

Neural networks have emerged as very powerful tools for modeling nonlinear 

dynamic systems and for designing intelligent control systems. Increasingly sophisti- 

cated tasks required of flexible-link manipulators demand better control techniques 

to achieve higher systern performance. 



?lest some mathematical prelirninarïes for neural networks are introduced- 

The capabilities of neural networks for nonlinear functional approximation are re- 

vïewed from a theoretical and a fundamental point of view. Finally, a neural 

network-based control configuration for the single-link flexible rnanipuIator is pr* 

posed- 

3.3.2 Mat hernat ical Prelirninaries 

An artificial neural network is made up of densely parallel layers of simple non- 

linear synaptic neurons/units. They are intercomected %<th varying weights that 

cornpletely spec* the behavior of the network once it has been trained. The neurons 

of a network are arranged in such a manner as to proces information in a p a r d e l  

manner and simultaneously. Each neuron sends activated signals to other neurons 

while its activation depends on signals received from other neurons to *ch it is 

connected. Suit able interconnection of these simple elements can yield powerful 

networks n i th  an abilky to learn, adapt and infer. 

Multi-Layer Perceptrons 

A multi-layer perceptron is a feedforward neural network consisting of a number of 

units (neurons). The perceptron is'directly applicable as a nonlinear controller as a 

consequence of its ability to produce any arbitrary input-output mappings connected 

by weighted links. Typically units are organized in several layers, namely an input 

layer, one or more hidden layers, and an output layer. The Input layer receives an 

cxternal signal, and passes it via weighted connections to units in the first hidden 



FIGURE 3.2. A Multi-Layer Perceptron with One Hidden Layer 



layer. These units compute their activations and p a s  them to neurons in succeeding 

layers until the output layer is reached. Figure 3.2 illustrates a typical feedforward 

network with one hidden layer. 

FIGURE 3.3. A Nonlinear Mode1 of a Neuron 
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A nonlinear mode1 of a neuron is shown in Figure 3.3. Each neuron i in a 

network is a simple processing unit that has a Linear combiner/surnming junction, 

Yi 0 

""i'5~ 

whose output neti is a meighted sum of its inputs xj, that is 
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An output yi of a unit i is computed by passing the neti input through a nonlinear 

activation function p(.), 

where wl, q2, . . ., w h  are synaptic weights of neuron i, and p(-) is an activation 

function. Bi is the bias which bas the effect of increasing or lowering the net input of 

the activation function, depending on whether it is positive or negative, respectively. 

It can be treated like a connection weight from an input. 



The output y of a multi-Iayer perceptron network in Figure 3.2 is a vector 

with h components that are determined in terms of m components of a n  input vector 

x and n components of the hidden layer. Its mathematical representation may be 

expressed as 

n i th  s j k  denoting first-layer interconnection weights, and u i j  denoting second-layer 

interconnection weights. & and Bsj represent biases of the output and hidden 

layers, respectively- A vector form of (3.3.3) is expressed as 

Learning Algorithm 

Learning is one of the most important features of a neural network. -411 knowledge 

in neural networks is encoded in interconnection meights, and the weights are deter- 

mined during a learning process which is ùiterpreted through an appropriate training 

algorithm. The network training is a basis for establishing a functional relationship 

between inputs and outputs of any neural network. A supenriçed learning and an 

unsupervised learning are two essential types of network training. In the course of a 

s u p e ~ s e d  learning phase, which is the most widely used for control, desired outputs 

of the network for every given input condition are specified. The network learns an 

appropriate functional relationship between them following repeat ed application of 

training sets of input-output pairs. 



An e m r  back-propagation algorithm or generalized delta ntle, which is 

adopted in this research, belongs to the supervïsed leaming type of network train- 

ing. Weights of a multi-layer network are adapted iteratively by propagating some 

measurernent of an error between a desired and an actual output of the network from 

its output back to its input. Homever, in neural network-based control applications, 

the relationship between an input and an output signal of a network is more com- 

plicated to specify and may be unknown. A typical way to alleviate this problem 

is to formulate a training process as a minimization of an  energy function in weight 

space. In this research, the error signal for training the neural network-based con- 

trouer is taken from a discrepancy between an output of the system and its desired 

reference trajectory. A feedback-error-learning ([28]) approach is employed based on 

this error, 

The mathematical basis for an error back-propagation algorithm is an opti- 

rnization technique h o W n  as a gradient descent method. According to this method 

there is an error function that defines a surface over weighi; space, and weights are 

modified in the opposite direction of gradient of this surface, Generally, three stages 

are involved in training a network through error back-propagation algorithm, 

the forward propagation of an input training pattern through the network, 

rn the calculation and backward propagation of associated errors, and 

the adjustment of weights to  reduce the error. 

An error function is defined as 



which is a continuous and a differentiable function. d, is the desired output of unit 

i. A weight adjustment procedure is derived by computing a change in the error 

function with respect to a change in each weight. The above error function may 

be minimized by changïng weights according to a recursive algorithm starting a t  

output units and working back to the first Eidden layer. Therefore, the weights 

update recursion is expressed as 

The weight change Awij is calculated by a steepest descent method 

where the partial derivative is to be evaluated a t  current weight values using a chain 

rule for dxerentiation. In particular, for a linear activation function, an output is 

defined as y j  = Ci u:ijxi. Then weight change is evaluated as 

with 6, defined as an error signal (d j  - y j ) .  For a non1inea.r activation function, an 

output becomes yj = v(xi and the corresponding weight evaluation is 

Successively, starting with an output layer, a gradient VE is dcu l a t ed  and 

is propagated back through network layers until an input layer is reached. The 

only difference betmeen weight updating calcuiations in an output layer and those 

in hidden layers is that, for the output layer, an error depends on the difference 



between the desired and its actual network output values, whereas for hidden layers, 

local errors are calculated on the basis of errors in a next (output) layer. 

The learning rate r] in (3.3.7) is a constant, and determines convergence 

speed of the n-eight adjustment step. Generdy speaking, if 77 is small, a search pat h 

will closely approximate a gradient path, but the convergence will be very slow due 

to  a large number of update steps needed to reach a local minima. If 77 is large, the 

convergence initially be very fast, but the algorithm may eventually oscillate 

and thus not reach a minima- 

Activation Function 

Activation functions for hidden units are needed to introduce nonlinearity into the 

network. It is the nonlinearity that makes multi-Iayer networks very powerful. Sig- 

rnoidal functions such as logistic, tanh and Gaussiaa functions are the most cornmon 

choices. In this research, a bipolar tanh function at a range of (-1, 11 has been cho- 

sen as an activation function for all hidden units. The tanh function produces both 

positive and negative values, and tends to yield M e r  traùiing because of its bet- 

ter numerical conditioning than functions that produce only positive values such as 

logistic. A mathematid representation of a tanh function may be expressed as 

with a steepness parameter X which is a slope of the activation function, and is often 

chosen as 1 or 2. -4 derivative of (3.3.10) is manipulated as 



Tt is noted that weights adjustment is proportional to  a value of p'(neti), when 

calculating the gradient VE of the overall enor function E(-) . 

A linear activation function was chosen for output units, since the output 

signal in this research will  contribute to  a torque that is applied to the flexible-link 

manipulator. Generally, a torque value has no a prion bounded range, so that it 

is better to  choose an unbounded activation function which is most often a linear 

function. 

3.3.3 Funct ion Approximation Fundamentals 

Theoretical foundations for modeling and control of nonlinear dynamic systems with 

neural networks are based on the ability of networks of various types to approximate 

arbitrarily continuous nonlinear mappings. The mathematical basis for this ability 

is a function approximation theory, which deals with the problem of approximation 

and interpolation of a continuous funct ion. 

Mathematicd results such as approximation and learning theories, have 

been utilized by sorne researchers. Kolmogorov's superposition theorem (401, a very 

basic theory refined later by others, proved that: for any continuous function f (-) 

of n real variables, there is a continuous function g(-) (of one variable) on [O, 11 into 

the real line such t hat 



for al1 values of XI, xî, . . .: and x~,+I  in [O, 11. The function 

(3.3.12) 

g(-) was specifically 

chosen a s  a continuous function of one variable, and <p,(-) is a continuous, mono- 

tonically increasing function independent of f (-). The importance of Kolmogorov's 

theorem might not be recognized in its direct application for proving the universality 

of neural networks as function approximators, however it does point to the feasibility 

of using paxalle1 and layered network structures for multivariate function mappings. 

Poggio and Girosi [41] introduced a comection between artificial neural 

networks and approximation t heory. They proposed learning as apprum*mation, so 

that the problem of learning a mapping between an input and an output space was 

equivalent to  a problem of estimating a systern that transforms inputs into outputs. 

In the later case a set of examples of input-output pairs must have been given. 

Rigorous mathematical proofs were provided for the universality of multi- 

layer feedforward networks with continuous sigmoidal activations, as well as other 

general types of functions. Some attention has been paid to the number of hidden 

layers that a network should have. Funahashi [42] showed that any continuous 

mapping could be approximated by a network with at least one hidden layer using 

sigmoidal activation functions. He also stated that activation functions for an input 

and an output layer were linear in the sense of uniform topology. Two theorems 

and several corollaries were given by using an integral formula presented by Irie and 

Miyake [43] to substantiate statements in [42]. An essential concept which foms 

a mat hematical basis for furt her analyzing approximation capabilities of the neural 

44 



networks was also stated- 

Hornik et al. [44] employed the Stone- Weierstrass theorem to prove another 

important result, i-e. a standard multi-layer feedfôrward network with as feu7 as 

one hidden layer using arbitrary squashing functions is capable of approximating 

any measurable funct ion t O any desired degree of accuracy, provided t hat su fficient 

hidden units are available- 

The above results established muki-layer feedforward networks as a class 

of universal approximators. This irnplies that any failure from an approximation 

of a function mapping by a multi-layer network must arise from inadequate choice 

of parameters or an insufficient number of hidden nodes. The researches [44] dso 

showed that these networks could approximate not only an unknown function but 

also its defivatives. 

Considering how many hidden layers are required for an approximation a p  

plication, Chester [45] argued that, in practice, two layers of hidden units might 

give better interpolation capabilities with faster training. A problem a?th only one 

hidden layer, he commented, was that "the neurons therein interact with each other 

globally, making it difficult to improve an approximation at one point without wors 

ening elsewhere." With more than one hidden layer, he continued, "approximations 

in different layers can be adjusted independently of each other, much as is done 

in the finite element method for solving partial differentid equations or the sphe  

technique for fitting curves." 

It should be noted that a functional approximation capabilil of a neural 

network holds for all continuous functions over a compact set. Hence, a neural 



network technique can be applied to approximations of nonlinear functions and 

parameters of these functions may not be linear. 

The most important attribute of a multi-layer feedforward network is that it 

can learn a mapping of aay complexity. Due to its universal approximating capability 

of nonlinear maps to any desired degree of accuracy, the network possesses a capacity 

to  identify and hence is directly applicable to the control of nonlinear dynamic 

qstems. 

3.3.4 Proposed Neural Network-based Control Structure 

The universal approximation properties of neural networks outlined earlier provide 

the motivation for trying to incorporate neural networks into a nonlinear cont rol of 

a complicated dynamic system. Tt is expected that a controller cornprised of neural 

networks would perform better than those normally perforrned by a conventionai 

cont roller. 

As Vemun [40] pointed out, when a neural network plays a role in a control 

action, it could actually be utilized for generating input signals and using these 

signals to control its environment, Those neural networks which are used for actuator 

control functions are intentionally designed and trained in an environment in which 

the neural networks and the systern to be controlled are placed in one closed-loop. 

In this case, using neural networks to control a dynamic system involves on-line 

training of the networks. 

Depending on how and where neural networks are used in a control loop, 

many schemes have been investigated by researchers. Most practical applications 
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probably involve a mix of known and unknown dynamics, given that best results are 

obtained when conventional and neural network-based schemes are applied to h o w n  

and unknown dynamics, respectively. A conventional nonlinear control scheme, such 

as the inverse dynarnics control typically applied to ngid manipulators, is a well- 

established control framework that provides a basis for n o f i e a r  control using neural 

networks. In this research, by taking advantage of this frarnework (depicted in Figure 

3.1), two neural networks are proposed to learn nonlinear dynamics of a single-link 

flexible manipulator on-line. The trained networks will &O work sirnultaneously 

with a conventional lhear  controller to generate a desired torque to the manipulator. 

The neural network-based controller proposed in this thesis is shown in Figure 3.4. 

The block TES(-) is introduced to the systern for the two proposed networks NNl [ - ] 

and NNî[ - ] as a training signal/pattern generator. It is constructed using weighted 

output error, derivative of this error and the tip deflection. It is assumed that the 

nonlinear components of F(-) and G(-) in (3.2.5) are not known a priori. During the 

leaming phase, h o  neural networks NNi [ - ] and NN2[ - ] are trained to functionally 

approxïmat e the nonlinearities of the single-link flexible manipulator, represented 

by F(.) and G(-), respectively, by means of back-propagating the training signal 

(TES). Sirnultaneously, the output ( 7 . 4  of network N&[ - 1  is multiplied by the 

output (V) of the h e a r  contro&r, and the result is added to the output ( K ~ )  of 

network NA$[-1. The combined total signal contributes to the control torque (ü) 

that is applied to the manipulator, 



The neural network-bas& control rnay be presented mathematically as 

with NNl[  -1 and NN2[ -1  as stated above approxirnating the nonlinearïties F(-) 

and G(-) in (3.2.5), respectively, through a learning algorithm proposed in Section 

3.3.2. The a priori assumptions here are as follows: G(-) iç the function of the 

deflection variable (q)  and F(-) iç the function of the joint variable (O), the deflection 

variable (q), and their derivatives (9 and 4). Consequently, the network N N l [  - 1  

receives O , $ ,  q, t j  as inputs and the network NN&] receives only q as input. The 

linear controller V(-) defined in (3.2.7) facilitates an asymptotic stability of the error 

dynamics (3.2 -8) of the closed-loop system during the learnïng process. 

Cost Function and Derivatives 

The learnixig process for an artificial neural network can be viewed as  a process 

of searching in a multi-dimensional parameter space for a state that optimizes a 

pre-defined criterion firnction J ( - ) ,  &O called the wst finction. To leam the char- 

acteristics of the dynamic mode1 and to adapt to varying uncertainties, a neural 

controller must be given the values of its outputs. As discussed previously for a 

control system problem, it may not be easy to know a prion an appropriate target 

control signal and most of tirne it may not be available. This results in a major 

difficulty when one is designing a neural network-based controller by using a super- 

vised learning scheme, as is the case in the standard back-propagation error learning 

algorithm. 



However, a desired "target signal" for the output of the plant is always avail, 

able. In the feedback-emor-6eaniing [28] scheme, the difference between an actual 

output of the plant, which in this research is the re-defined output y,, and its desired 

output y, is taken as an error to be used for the weights adaptation algorithm. 

As previously stated the major objectives of the proposed controuer are to  

achieve as smaU as possible a tip position tracking error, and at  the same time, to 

rninimize deflections of the flexible-link manipulator. In an attempt to  achieve these 

objectives, the derivative of the output error (e) and tip deflections (+(h, t ) )  may 

be added to the original cost function (3.3.5) for training purposes (as suggested by 

Talebi et al- [7]). Consequently, the modified cost function to be minimized by the 

neural networks is proposed as 

J = [eTK2e + t ? T ~ l ~  + qT(h, t )  K0@(h7 t ) ]  
2 

n-here e = y, - y, is the re-defined output error. Consequently, elastic vibrations 

may be directly controlled t hrough Ko . 

Applying the modified cost function (3.3.14) to the weights adjustrnent d e  

(3.3.7) results in 

For the uetwork NNl:  



where wl denotes the NNl weight vector. Since e = y, - ya and é = Gr - &, (3.3- 16) 

becomes 

and frorn Figure 3.4 

Furthemore, 

As suggested by Lightbody et al. (461, the follonring t e m s  are computed using the 

sign of the gradients rather than their real values for training the neural networks: 

dya - dya is approximated by sign(-) = 1 
du du 
ajl, - ai, is approximated by sign(_) = 1 
dü du 
w a< is approximated by sign(-) = -1 a.i; a.ii 

The final expression for (3.3.16) is presented as 

where 



Therefore, the weight adjustment for N , !  becomes 

can be cornputed through the backpropagation algorithm. and - 
durl 

For the network Ni%>: 

where w2 denotes the NN2 weight vector. Since e = y, - y, and é = si, - i,, (3.3-23) 

becomes 

By using (3.3.18), me get 

Using (3.3.19), the final expression for (3.3.23) is presented as 

d J  -=- ai; 
( ~ 2 e ~  + ~ l ë ~  + K&=) - 

dw2 aw2 

where 



Therefore, the meight adjustment for IVN2 becomes 

'lln2 can be cornputed through the backpropagation algorithrn, and the above where - 
dw2 

term (Ir) iç manipulated by using (3.2.7) as follows, 

It nom follows that for NN2, the training signal is a nonlinear function of 

the error and its derivative (as can be seen from the underlined terms in (3.3.28)). 

For sake of simplicity, in the training proces, we have approximated V by setting 

it equal to one, however have used its actual value in the design of the control law 

(3.3.18). In t his way, the linear training signal may be used for network NN2 which 

is the same as that of network NNl (1471). 



Chapter 4 

Simulation St udies 

In this chapter, numerical simulations are presented in which a neural network-based 

control strategy proposed in the previous chapter, as well as two conventional con- 

trol schemes are irnplemented for a single-link flexible manipulator. In Section 4.1 

the objectives and goals of the simulations are stated. Control design considerations 

are addressed in Section 4.2 both for the dynamic mode1 and the neural networks. 

Section 4.3 provides simulation for step and sinusoidal reference trajectorïes hav- 

ing different amplitudes. Quantitative comparisons between the proposed neural 

network-based controuer and the conventional controllers are presented. The final 

comments on the simulation results are provided in Section 4-4- 



4.1 Introduction 

In order to evaluate the effectiveness and illustrate the potential of the control strate- ' 

gies developed in the previous chapter, the proposed neural network-based controller 

as well as a standard inverse dynamics controller and a PD-t-ype controller are ail ap- 

plied to a single-link Aexible maaipulator for performing numerical sùnulations. Due 

to the function approximation capabilities of neural networks and their application 

potential an improvement of the system performance is expected, especially in com- 

parison *th conventional schemes- At the same time, an "intelligent" characteristic 

of neural networks should be clearly demonstrated- 

Tmo neural networks, which are multi-layer perceptrons, are trained on-line 

together n5th a h e a r  controller to generate an appropriate torque that drives the tip 

( y t )  of the flexible link to its desired trajectory (y,) (schematically shown in Figure 

3.4). This task is accomplished by mïnirnizing the cost function J(-) (3.3.14) through 

adjusting weights of the networks using the steepest descent gradient approach. 

AU the simulations are performed using Matlab 5.3/SimuZink 1.1. 

4.2 Design Considerations 

4.2.1 Dynarnic Model Aspects 

-4s stated in Chapter 2, a flexible manipulator has infinite number of modes dis- 

tributed dong its link. For purposes of numerical simulations, the  assurned mode 

method ([33], [34]) iç adopted in the following simulations. Moreover, it is well 



bon-n that the first few modes of the manipulator dominate the dynamic charac- 

teristics of the system. Accordingly, in thk research only the first elastic mode is 

~xtracted. T t  is also assumed that the states chosen for implementation purposes, 

and their derivatives, are a l l  measurable from the system. 

Link parameters associated with the target single-link flexible manipulator 

are shown in Table 4.1. All parameters are origuially taken from Geniele [31] who 

used a mode1 validation technique. 

Table 4.1. Numerical data for the experimental flexible-link manipulator 

Name Value 
h(1ength of Link) 1 ,2m 
rh (hu b inert ia) 0.3kgm2 
~ ( m a s s  per unit length) 12kglm 
C2 (damping coefficient) 0.4 
Mp (payload m a s )  309 

AS pointed out in Section 1.2, the non-minimum phase characterîcs of a 

Name Value 
E f l  1. 94Nm2 
br 1.29 Nmlrad s-' 

w; 3 rad/s 
C L  4.74Nm for 0 > O 
&ur 4.77Nm for O < O 

fl e-xible-link manipulator restricts a direct use of the tip position feedback control. 

f Young's modulus and beam area moment of inertia, 
$ viscous friction at hub, 
* resonance frequency of the vibration, 
* Coulomb friction coefficient. 

However, the re-defined output approach ([4],  [6]) rectified th% problem, by defining 

a nem output as close as possible to the tip of the manipulator ([6]), such that the 

associated zero dynamics are asymptotically stable. 

Details concerning the derivation of the zero dynamics of the single-link 

manipulator may be found in Talebi et al. [?]. In their study a critical 

the re-defined output parameter was determined to guarantee stability 

value a* of 

of the zero 



dynamics of the system. They stated that a value of a* = 0.6 was found to stabitize 

the zero dynamics, and at the same tirne to be robust to payload m a s  variations. 

For this reason, ct = 0.6 is a h  chosen for all simulations conducted in this chapter. 

4.2.2 Neural Networks Aspects 

Networks Configurations 

In principle, one hidden layer is sufficient for any approximation ([4O]). Chester [45] 

suggested that, in practice, fmo layers of hidden units might give better interpola- 

tion capabilities with faster training. In Our simulations, a *O-hidden multi-layer 

perceptron is chosen for the proposed two neural networks. 

Network NNl is configured as N4t3,2,1 which implies that NNl has 4 input 

neurons, 3 first hidden neurons, 2 second hidden neurons, and 1 output neuron- 

NiVI takes as inputs, joint position O,  derivative of joint position 8, elastic deflection 

variable q, and derivative of the elastic deflection variable Q. 

The configuration of network NN2 is N11313,1 rvhich allows N& to have 1 

input neuron, 3 first hidden layer neurons, 3 second hidden layer neurons, and 1 

output neuron. N& only receives elastic deflection variable q as an input. 

Initialization Issues 

The choîce of initial weights will influence whether a network reaches a global /local 

minimum of the error and, if A, how quickly it converges ([48]). Moreover, the 

update of the weight between two units depends on the derivatives of the two acti- 

vation functions. Therefore, it is important to avoid choosing initial weights which 



will force either the activation outputs, or their derivatives to become very small. 

If values for the initial weights are too large, initial input signals to each 

hidden or output unit wiU be likely to Ml into a region known as the saturation 

region, where the derivative of the activation function has a very small value. If 

initial weights are too small, a network input to a hidden or output unit will be 

close to zero, which also causes extremely slow learning. In simulation, all weights 

are initialized to random values between [-0.2 0.21. Within this regioo, values are 

allowed to be either positive or negative, so that final weights after training may 

also be of either sign. The randomoess involved in the initialization prevents units 

from adopting sirnilar functions and becoming redundant. 

An universal approximation prope- of multi-layer perceptrons with most 

commonly-used hidden-layer activation functions does not hold if bias units are 

omitted. -4 bias has the effect of increasing or lowering the network input of an 

actilvation function, depending on whether it is positive or negative, respectively. 

It can be treated as a connection weight from an input called a b i a s  unit with a 

constant value of one. A single bias unit is connected to every hidden or output unit 

that needs a bias value. Hence bias values can be leamed in the same way as other 

weights. In the simulation, the initial value of biases is chosen as 0.6. 

Learning Rate 

The convergence speed of a back-propagation algorithm is directly related to a learn- 

ing rate parameter q in (3.3.7). It determines what amount of calculated error sen- 

sitivity to a weight change will be used for a weight correction. The rationale for 

choosing a learning rate 77 is based on the knowledge of the shape of an error surface, 



which is rarely amilable. 

If Q is too small, a search path will closely approxirnate a gradient path, but 

convergence will be very slow due to a large number of update steps needed ta reach 

a local minima ([49]). On the other hand, if 7 is too large, convergence initially 

will be very fast, but the network may be unstable and overshoot a minimum in a 

weight space, or else a network may oscillate around a minimum without any further 

learning. -4 general rule might be to use the largest learning rate that produces a 

suitable convergence speed but does not cause oscillation. However, it should be 

pointed out that only small learning constants guarantee a true gradient descent. 

In this simulation, a fixed value of = 0.3 is chosen as the learning rate for all 

networks training. 

Other Considerations 

In our simulation results, gains for the h e a r  controller V(-) (3.2.7) are chosen as 

h', = 20 and Kd = 30. The gains for the cost function J(-) (3.3.14) are chosen after 

some trail and error as Ko = 5, KI = 4, and K2 = 4- 

4.3 Results and Analysis 

4.3.1 Step References 

A y, = 0.8 rad step reference trajectory is applied to the proposed neural network- 

based controller, as well as the PD-type controller (with Kp = 80, Kd = 80) and the 

inverse dynamics controller (with Kp = 30, Kd = 35). The PD-type control results 



in a verj- poor control of the tip deflection as c m  be seen from Figure 4.2(a)(c)(e), 

and also poor reaction to payload variations (see Figure 4.l(b) (d) (f)). Even after 

15 sec, the tip position (Figure 4.1 (a)) stiu fluctuates around 0.8 rad. When a 603 g 

payload mass is added to  the tip, significant oscillations occur in the tip response 

(Figure 4.l(b)) .  The standard inverse dynamics control scheme (shown in Figure 

4.2) results in an improvernent over the PD-Wpe control. The small oscillations in 

the transient response depicted in Figure 4.2(a) cause the tip response to reach the 

steady-state in 7sec. Adding a 603 g payload m a s  causes a bigger overshoot and 

more oscillations as shown in Figure 4.2(b). 

The proposed neural network-based controller demonstrates a significant 

improvernent over the other two controllers as illustrated in Figure 4.3. The tip of 

the manipulator tracks the 0.8 rad step reference trajectory with almost no over- 

shoot or undershoot (shown in Figure 4.3(a)). A 6039 payload mass added to the 

tip generates only a 12.3% overshoot at the tip. The payload variations experi- 

enced is clearly much better than the other two conventional control strategies. The 

comparative performances of the tip position tracking for the above three control 

strategies corresponding to the 0.8 rad step reference trajectory are surnmarized in 

Table 4.2. 

When the magnitude of the step reference trajectory is increased to 1.5 rad, 

the transient behaviors of both PD-type control (Figure 4.4(a)(b)) and inverse dy- 

namics control (Figure 4.4(c)(d)) are degraded. Whereas, the performance of the 

proposed neural network-based controller, as can be seen from Figure 4.4(e)(f), re- 

mains almost the same as  that of the 0.8 rad trajectory (see Figure 4.3(a) (c)) , except 



Control 1 Payload 1 Settling 1 Overshoot 1 Undershoot 1 Reference 
Scherne 
PD type 

Inverse 

Table 4.2. Comparative performances for the t hree cont rollers corresponding t O a 
0.8 rad step reference trajectory 

(9) 
30 

Dy namics 
Yeural 
Networks 

that there is less than a 5% overshoot in the tip response (Figure 4.4(e)). 

603 
30 

In the next set of simulations, starting with a 0.4 rad step reference trajec- 

Time(s) 
after 15 

603 
30 
603 

tory, every 10 sec the magnitude of the trajectory is uicreased by 0 -4 rad until2.0 rad 

after 15 
6 

is reached. Applying t his reference t rajectory t O the inverse dynamics cont roller (re- 

(%) 
- 

6 
4 
6 
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performance of the system is substantially improved. Specifically, the settling time 
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is decreasing as s h o w  in Figure 46(a). The tip oscillations are also suppressed, 
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and the magnitude of the tip deflection during transient is reduced in consecutive 

windows as shown in Figure 4.6(b). When the inverse dynarnics scheme is applied, 

we observe no irnprovement in the system performance. Figure 4.5 shows that the 

performance during the five windows are exactly the same, implying that there is 

no learning wïth this conventional control scheme as expected. 



4.3-2 Sinusoidal References 

Figures 4.7 through 4.11 further dernonstrate clear irnprovements that may be 

achieved in tip position tracking control by using the proposed neural network-based 

controller a s  compared u-it h the ot her  two conventiond cont rol schemes correspond- 

ing t O sinusoidd reference t rajectories. 

m e n  a O .8sin (t ) reference trajectory is applied, there is some tracking error 

and transient overshoot in the tip position response with the PD-type control (see 

Figure 4.7(a)). Adding a 603 g payload mass to the tip of the manipulator causes 

irregularities in the tip response (as depicted in Figure 4.7(b)). The performance 

results for the inverse dynarnics control scheme (Figure 4.8) shows improvement 

over the PD-type control (Figure 4.7). The superiority of the neural network-based 

control scheme over the conventional strategies is demonstrated in Figure 4.9. 

When increasing the magnitude of the sinusoidal reference trajectory to 

l.Osin(t), the results are shown in Figure 4.10. These performances are obtained 

when the neural netn-ork-based control scheme is used under different payload con- 

ditions. When a payload is increased t o  603 g, there is some tracking error at  about 

5 sec, however, after 8 sec the tip position tends to track the reference trajectory 

again. The learning ability of neural networks is depicted in Figure 4.10(b). Note 

that the system becomes unstable when a 6039 payload is used for l.Osin(t) ref- 

erence trajectory subject to the two conventional control strategies. Performance 

of the t ip position and the arm deflection under the three control strategies for a 

1.5sin(t) reference trajectory are showa in Figure 4.11. These results reinforce the 

ad\-antage and superiority of the neural netmork-based control scheme when applied 



to singlelink flexible manipulators. 

4.4 Summary 

Numerical simulations are carried out to exhibit the potential and effectiveness of the 

proposed neural network-based controller over conventional control schemes in sup- 

pressing elastic vibrations to obtain satisfactory tip position tracking performance. 

It has been found that wen a well-tuned PD-type control always results in 

oscillations or tracking errors in the tip position response. In other words, the tip 

position tracking performance can not be only improved through PD-type control- 

Since the target model involves many nonlinear dynamics and components, such 

as Coriolis and centrifuga1 forces, Coulomb friction, and uncertainties in model pa- 

rarneters, a linear controller cannot properly compensate these nonlinearities with 

certainty. The simulation results for PD-type control clearly show this limitation 

for our highly nonlinear system. 

Generally reasonable performances for the closed-loop system may be achieved 

at l e s t  in simulations by implementing inverse dynamics control (the typical con- 

ventional nonlinear control scherne) based on a a priori knowledge of the exact 

mathematical model. However, when operating conditions are changed, for instance 

the payload or the magnitude of the reference trajectory are varying, the degrada- 

tion in the overall system performance is obtained. This is due to the dependence of 

the inverse dynarnics control strategy on the knowledge of the exact dynamic model. 

The proposed neural network-based control scheme that is motivated by 

the inverse dynarnics control, clearly demonstrated more robustness to the above 



variations as compared to  the other two conventional control schemes- In particu- 

lar, the transient behavior of the closed-loop system is improved significantly- Two 

networks are trained on-he ,  to approximate the nonlinearïties of the given math+ 

matical mode1 which is assumed to be unknown a priori, and at the sarne time to 

generate the appropriate torque needed to drive the tip position of the manipula- 

tor follow a desired trajectory. The other advantage of the neural network-based 

control scheme is the usage of a lower control effort as ülustrated in Figure 4.12 (c) , 

in particular, when compared to the case of a PD-type control as shown in Figure 

4.12(a). 
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FIGURE 4.1. Simulation results for PD-type control with 0.8 rad step reference 
trajecto, (a) (c) (e) with payload Mp = 30g, (b) (d) (f) with payload Mp = 6039 
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FIGURE 4.2. Simulation results for inverse dynarnics control with 0.8rad step 
reference trajectory. (a) (c) (e) with payload Mp = 309, (b) (d) (f) with payload 
Mp = 6039 



Tirne (s) Xrne (s) 

FIGURE 4.3. Simulation results for neural network-based control wit h 0.8 rad step 
reference trajectory. (a) (c) (e) with payload Mp = 309, (b) (d) (f) with payload 
Mp = 6039 
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FIGURE 4.4. Simulation resdts for f .5 rad step reference trajectory with payload 
MP = 309. (a) (b) PD-type control, (c) (d) inverse dynamics control, (e) (f) neural 
networks- based cont rol 
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FIGURE 4.5. Simulation results for inverse dynarnics control with payload Mp = 
309. Starting with 0.4 rad step reference trajectory, every 10 sec, magnitude of the 
reference trajectory increases by 0.4 rad until 2.0 rad is reached. 
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FIGURE 4.6. Simulation results for neural network-based control with payload 
Mp = 309. Starting with 0.4 rad step reference trajectory, every 10 sec, magnitude 
of the reference trajectory increases by 0.4 rad until 2.0 rad is reached. 
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FIGURE 4.7. Simulation results for PD-type control wit h 0.8sin(t) reference t ra- 
jectory (dashed Line) . (a) (c) (e) with payload Mp = 309, (b) (d) (f)  with payload 
Mp = 6039 
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FIGURE 4.8. Simulation results for inverse dynamics control with 0.8sin(t) refer- 
ence trajectory (dashed line). (a) (c) (e) with payload Mp = 309, (b) (d) (f) with 
payload Mp = 603g 
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FIGURE 4.9. Simulation results for neural network-based control with 0.8sin(t) 
reference trajectory (dashed Iine). (a) (c) (e) with payload Mp = 309, (b) (d) (f) 
with payload Mp = 603g 



Tirne (s) 
10 15 20 25 
Time (s) 

FIGURE 4.10. Simulation results for neural netwark-based control with l.Osin(t) 
reference trajectory (dashed line). (a) (c)  with payload Mp = 309, (b) (d) with 
payload Mp = 6039 
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FIGURE 4.11. Simulation results for ~.5sin(t) reference trajectory (dashed line) 
with payload Mp = 309. (a) (b) PD-type control, (c) (d) Inverse dynamics control, 
(e) (f) Neural network-based control 
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FIGURE 4.12. Simulation results for 0.8 rad step reference trajectory with payload 
Mp = 30g. (a) PD-type control, (b) inverse dynamics control, (c)  neural networks- 
based cont rol 



Chapter 5 

Experiment al Evaluat ions 

In this chapter, the three control strategies discussed in previous chapters are digi- 

tally implemented on an experimental test-bed (Geniele [31]) of a single-link flexible 

manipulator. SpecificalIy, the superiority of the proposed neural network-based con- 

troller is further verified and validated experimentally. In Section 5.1, the real-time 

system configuration consisting of the experimental test-bed, the sensors and actu- 

ators, the DSP board, etc. are described in some detail. The software development 

and its environment with respect to the experimental implementation is addressed 

in Section 5.2- Several aspects related to d igi tdy implementing the proposed neural 

network-based controiler are considered in Section 5.3. Experirnental results, anal- 

ysis, and discussions are provided in Sectéon 5.4, followed by a summary in Section 

5- 5- 



5.1 Hardware Configuration 

The essential components of the experimental real-tirne system (see Figure 5.1) 

are as  follows: a TMS320C30 system DSP board, a host PC, a single-hk flexible 

rnanipulator and an interface board. The DSP board mounted in a 16-bit expansion 

slot within the host PC, implements the control algonthms using a TMS320C30 DSP 

chip that operates on a 33-3 MHz clock cycle and perforrns 16.7 million instructions 

per second. The 16-bit dual-channel A/D and D/A systerns are mounted on the 

system board. The input channel includes sample/hold amplifiers, and both input 

and output channels are buffered through 4th order Sallen-Key lowpass filters. Input 

filters lunit noise and provide anti-aliasing protection when the sarnpling rate is 

much higher than the filter cutoff frequency- Output filters provide a smoothing 

of the otherwise stepped D/A output signal. One channel A/D and D/A system is 

used in this expenment and clocked by a programmable Am9513APC system timing 

controller which is located on a separate interface board outside the host PC. 

An expansion bus of the TMS320C30 DSP chip is connected to this separate 

interface board. Several components are integrated on the interface board, including 

a programmable timing controller and its circuitry, high current sources driving an 

infrared diode mounted at the tip of the flexible link, and circuitry decodulg the 

hub position which is detected by an optical hcremental encoder. 

The host PC interfaces between the user and the executive TMS320C30 

system board to send user commands to, and acquire data from, a dual-ported on- 

board RAM in real-time. Simultaneously, the execution of the whole closed-loop 

control system is monitored on the screen. 



The single-link flexible manipulator is drïven by a DC servo motor located at 

the bottom of the hub. It is a permanent magnet, brush type DC servo motor which 

generates a torque r,(t) = Kti,(t), where Kt = 0.1 175 Nm/A. Since the motor is 

a high-speed and relatively low-torque actuator, it is coupled to the hub through a 

harmonic driue speed reducer with a gear ratio of 50 : 1 which decreases the speed of 

the motor, and provides a sufficient torque to accelerate the hub. The output torque 

has a range of 4~35.25 Nm. The optical incremental encoder is attached to the DC 

semo rnotor making the hub position (8) digitaly available. This digital signal is 

decoded through an integrâted circuitry on the interface board for feeding back the 

hub position ( O )  and its derivative (e)  to the closed-loop control system. 

An Opto Diode OD-50L Super High-Power GaAIAs infrared emztting diode 

is mounted at  the tip of the flexible h k ,  providing the infrared light source for 

an UDT camera. This diode emits 880 nm non-coherent infrared radiant energy 

~ 5 t h  e-xtra output power up to 600 mW* in peaks of optical output pulses. The 

UDT camera consists of a wide angle lens and a lateral-effect photodiode detector 

assembly. It is located on one side of the link positioned on the top of the hub, 

cooperating wïth the photodiode detector to determine the tip deflection ($). After 

being processed by a signal wndztioning amplifier, this analog signal is sent to an 

A/D converter on the DSP board to make the signal digitally available for feeding 

back to the closed-loop control system. It should be noted that beyond a deflection 

range of k0.25 m, the diode cmnot accurately be detected by the camera, even 

though it is stiu within the lens field of view of k0.5 m. 

Other technical and functional details about the experimental test-bed and 



its perïpheral devices may be found in Geniele [31]. 

5.2 Software Components 

The software developed for the TMS320C30 based control system consists of two 

parts, a DSP program and a host PC program. The DSP program is the essen- 

tiaI program wrïtten in C Ianguage with in-line assembly language staternents. It 

is responsible for handling timing controller, control algorithm and interrupt ser- 

vice routine. The interrupt senrice routine is synchronized through an  external 

programmable timing controller mounted o n  the interface board. Once an exter- 

na1 tngger signal from the timing controller initiates the A/D, the A/D starts to 

perforrn the conversion and outputs an end-of-convert signal. This end-of-convert 

signal is an input to the C30 chip as an internipt request. 

The PC program written in C language is a user interface program for the 

host PC which starts up the DSP program to Enteract with it and with the user. This 

program calls functions from the High Level Language Interface Libraq (provided 

by the TMS320C30 system board software package), which lessens the need for the 

user to learn hardware details of how to deal with the host interface rnechanism 

to the TMS320C30. For instance, the library routines are used to download the 

TMS320C30 object code file onto DSP system boad  memory, to start execution of 

this code, and to pass data back and forth between the program running on the 

TMS320C30 and on the host PC. 

A DSP program running on the system board and a program running on the 

host PC communicate with each other through a 64K words dual-ported on-board 
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RAM. The two concurrent-running processors are controlled by using absolute- 

addressed communication flags. Specifically, PGproceed-0ags and DSP-proceed- 

flags are defined to guarantee that the data exchange properly between the DSP 

program and the PC program. 

5.3 Digital Implementat ion of the Proposed 

r d  Network-based Cont roller 

Neu- 

Using the previous hardware and softmare configuration, the proposed neural network- 

1 
based control scheme is digitally implemented. During each sampling penod Ts = - 

200 

sec, the TMS320C30 processor reads two signals, the joint position (6)  and the tip 

deflection (Q) of the manipulator. The processor executes the control algorithm 

and generates a control signal (a voltage of v ( t ) )  which is dispatched into the D/A 

converter port. The resulting analog control signal is sent to a pulse-width modu- 

lated (PWM) switching servo amplifier through the interface board. The amplifier 

serves as a transductance in which the input voltage v(t)  proportionally results in 

a output current i&), where i,(t) = K,v(t) and Ka = 2.0. After being processed, 

this current signal i,(t) drives the DC servo motor which actuates the flexiblelink 

manipulator througb a harmonic drive speed reducer. At every sampluig tirne, the 

control torque is updated according to the output signals of the physical plant and 

related desired signals in order to reach the steady-state. 



5.3.1 Design Considerations 

In ail of the followïng experimental results, the parameter a: in (2.3.9) for specZying 

the re-defined output is experïmentally chosen as a = 0.4 ( [7]) .  This choice is 

obtained in order to have a minimum phase closed-loop systern and to avoid transient 

oscillations that might exceed the sensor range. 

With a PD-type control scheme, control gains are tuned as Kp = 70 and 

Kd = 40 for (3.1.1). For designing the inverse dynamics controller (Figure XI),  it is 

assumed that the exact dynamic mode1 (2.3.8) of the single-link flexible manipulator 

developed in Section 2.3.2 is known precisely, so that the input-output (in this case, 

it is actually a re-defined output) linearization control strategy may be realized using 

( 3 . 2 )  Two gains for the hearized closed-loop error dynarnics (3.2.8) are chosen 

ES K p = 3 5  and Kd=35.  

The configuration of the proposed neural network-based controller is s h o m  

in Figure 3.4. Due to certain physical limitations in the experimental test-bed, such 

as the operational range of the actuator and the tip sensor limited range as described 

in Section 5.1, all weights of the two networks are initialized to zero to avoid possible 

early stage saturation of the sensor and the actuator. Due to the on-he  constraints 

present for implementing these networks for the test-bed, only one hidden layer is 

selected for each network in contrat to the two hidden layer networks used in the 

simulation studies. Consequently, topologies of the two networks NA$ and NN2 are 

configured as N4,8,1 and Ni,ioIi, respectively. Other initialization issues related to 

the neural networks are as follows: 

a Activation functions for all the hidden neurons are chosen as a bipolar tanh 



function limited by [-1, 11, and a linear activation function for the output 

neurons. 

The learning rate 77 for updating the weights of the two networks is chosen as 

77 = 0.8- 

The two gains for the h e a r  controller V(-) defined in (3.2.7) are chosen as 

Kp = 0.6 and Kd = 0.6. 

The values of Ko = 1.2, KI = 0.6 and K2 = 0.6 are asigned to the cost 

function defined in J I - )  (3.3.14) which is to be rninimized by the learning 

algorithm of the two networks. 

5.3.2 Ot her Considerat ions 

One flexible mode shape is used for the experùnental measurements of the states 

of the manipulator. In other words, four states, namely joint position ( O )  and its 

derivative (O), first elastic mode (q) and its derivative (q), are assumed to be fed 

back for the closed-loop control system- Since the above derivatives are not directly 

measurable from the test-bed, a first-order high-pass filter is designed to numerically 

approximate them from their respective positions. Considering the first mode of the 

flexible-link manipulator, the filter is expressed as follows ([47]), 

Which is discretized by the bilinear trânsformation, 



5.4 Results and Analysis 

The performance results frorn the experiinental irnplementation of the three con- 

trollers are shown in Figures 5.2 to  5.6. 

For the PD-type cont rol, applying a 0.2 rad step reference trajectory results 

in a n  undershoot of 33.5%, an overshoot of 5%, a settling time of 6 sec, and slight 

oscillatory transients (see Figure 5.2(a)). By adding a 603 g payload to  the tip of 

the manipulator and using the same gains, an overshoot of IO%, a settling time of 

9 sec, and a noticeable steady-state m o r  with more oscillation during transient are 

obtained (see Figure 5.2(b)). When a 0.4 rad step reference trajectory is applied to 

the syst em, the response becomes sluggish with undershoot and large oscillations, 

and initially a very large input torque is generated (refer to Figure 5.5(a) (c) ( e ) ) .  

In this case, when a 603g payload is added to the tip, the manipulator becomes 

w i s t  able. 

For the inverse dynamics cont rol case, a 0.2 rad step reference trajectory a p  

plied to the manipulator results in the t ip response with some transient oscluations, 

a 33.5% undershoot, no overshoot, and a 4 sec settling tirne (shown in Figure 5.3(a)). 

Adding a 603 g payload to the tip degrades the performance of the closed-loop sys- 

tem, i-e. Little overshoot and longer oscillatory transient responses are obtained 

(refer to Figure 5.3(b)). When the magnitude of the step reference trajectory is 

increased to 0.4 rad, there is considerable undershoot and 8 sec of settling time (see 

Figure 5.5 (b) (d) (f) solid line) . With an additional payload, the transient behavior 

degrades even furt her (refer t O Figure 5 -5 (b) dashed line) . 

For the proposed neural network-based control scheme, it can be seen from 



Figure 5 4 4  (c)  ( c )  that quite a satisfactoq- result for a 0.2 rad step reference t rajec- 

tory is achieved with 4 sec of settling t h e ,  no overshoot and no steady-state error. 

When a 603 g payload is added to the tip, the performance of the system remains 

practically unchanged (see Figure 5.4(b) (d) (f)). By increasing the magnitude of the 

step reference trajectory to 0.4 rad, the performance of the system (refer to Fig- 

ure 56(a)(c)) remains almost the same as that shown in Figure 5.4(a)(c), with the 

exception that slightly bigger elastic deflections are present as compared with the 

results for a 0.2 rad reference trajectov By adding a 603 g payload to the tip, we 

obtain a 10% overshoot (refer to Figure 5.6) which ïs within the standard acceptable 

performance specifications. 

Control 1 Ref.Traj. 1 Payload 1 Settling 1 Over- 1 Under- 1 Reference 
Scheme 
PD-type 

Inverse 
D ynamics 

Table 5.1. Comparative experimental results for the three controllers with step 
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The proposed neural network-based control scheme was successfully implemented on 

the experimental test-bed in rd-tirne. The performances achieved are substantidy 

superior to those obtained from the PD-type controuer and the conventional inverse 

dynamics controller. Quantitative cornparison of these performances are shown in 

Table 5-1. 

In summary, in addition to the satisfactory performance achieved (Figure 

5.4(a)) with the proposed controller, robustness to the payload variations and differ- 

ent magnitudes of the reference trajectory are shown in Figures 5.4 (b) and 5.6(a) (b) . 

These achievements have validated the possibility of experiment ally implementing 

the neural network-based controller for a flexible-link manipulator through on-line 

learning. The results also show that control based on the proposed leaming scheme 

is feasible in real-time mit hout a pre-training stage. Given the states of the process, 

and a training signal, a neural network may approximate the nonlinear functions 

of a given system. This can then provide the appropriate control effort to mini- 

mize the tip tracking error of the manipulator, and simultaneously suppress the a m  

defiections stemming from the elastic characteristics of the flexible-link manipulator- 



FIGURE 5.2. Experimental results for PD-type control with 0-2 rad step reference 
trajectory. (a)  (c)  (e) (g) with payload Mp = 30 g, (b) (d) (f) (h) with payload 
Mp = 603 g. Note that in (e) and (f) the control is shown during the first 20 
sarnples, and in (g) and (h) the control is shoivn for the remaining t h e  
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FIGURE 5.3. Experirnental results for inverse dynamics control with 0.2 rad step 
reference trajectory. (a) (c)  (e) with payload Mp = 30 g, (b) (ci) (f) with payload 
Mp = 603 g 
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FIGURE 5.4. Experimental results for neural network-based control with 0.2 rad 
step reference trajectory. (a) (c) (e) with payload Mp = 30 g, (b) (d) (f) with 
payload Mp = 603 g 
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FIGURE 5.5. Experimental results with 0.4 rad step reference trajectory. (a) (c )  
(e) PD-type control with payload Mp = 30 g, (b)(solid line)(d) (f) inverse dynarnics 
control with payload Mp = 30 g, (b) (dashed line) with payload Mp = 603 g. Note 
that in (e) the control is shown during the first 20 çamples, and in (g) the control is 
shown for the remaining tirne 



FIGURE 5.6. Experimental results for neural network-based control with 0.4 rad 
step reference trajectory. (a) (c) (e) with payload Mp = 30 g, (b) (d) (f) with 
payload Mp = 6039 



Chapter 6 

Concluding Remarks and Future 

Direct ions 

6.1 Conclusions 

The proposed neural network-based controller developed in this work, and which 

was rnotivated from the inverse dynamics structure uçing the re-defined output, 

was successfully tested both in a simulation environment as well as in a real-time 

implementation on a test-bed of a single-link flexible manipulator. The two neural 

networks were trained on-line and no off-line training was required to represent 

the nonluiearïties of this highly nonlinear and complicated system. The proposed 

approach significant ly improved the t ip motion tracking precision of the manipulat or 

through on-line learning. At the sarne time, the tip deflections were suppressed to 

the extent that was possible. These were the main objectives of this research. 

To illustrate the superiority of the proposed intelligent control strategy, the 



cornparisons were conducted nith tn-O conventional control schemes, namely, PD- 

type control and nonhear inverse dynamics control. As a result of the cornparison 

the following conclusion were reached. 

Although the PD-type control is relatively simple, basic and linear, larger 

control gains have to be selected than those for inverse dynamics control. The 

control gains are even larger when compared with the neural network-based 

control scheme. This may be due to the fact that the o d y  way the PD-type 

control tends to overcome the effects of the friction at the hub is by having large 

gains. The penalty one pays for higher gains is a larger torque of 30 N.m. with 

the PD-type controüer (Figure 5.2(e)), as compared with a torque generated 

by the proposed neural network-based scheme of only 0.23 N.m. (see Figure 

5.4(e)j. This is usually an important issue and aspect to consider when a 

control systern is going to be physically implemented, and torque capacity and 

energy consumption must be taken into account. 

When uncertainties and disturbances are present, for instance the payload on 

the tip is varying, or the amplitude of the input reference trajectory is chang- 

hg, then the proposed neural network-based control scheme shows higher ro- 

bustness t O t hese variations t han the other two conventional control strategies. 

This dues validate and veriG the advantage of the learning capabilities of the 

neural network-based scheme. 

Although conventional control techniques may behave reasonably well within 

a certain operating region for this highly nonlinear system, in the experimental test- 

bed they showed an inability to handle uncertainties and disturbances. This is 

94 



especially true in the case of the PD-type control. The inverse dynamics controller 

may compensate to some extent for nonlinearities of the system at the expense of re- 

quiring an exact dynarnic model of the system. In reality, the model rnay be complex 

with nonlinemïties and the parameters that are often unknown or ill-defined- The 

parameters may also exhibit variations, or even may not appear hearly. However, 

the neural network-based approach shows promise in dealing with the above non- 

linearities and uncertainties through weight adaptation and on-line leaming which 

avoids the need for an extensive characterization and knowledge of the dynamics of 

the model being controlled. 

Another conclusion which may be drawn from this research is that a certain 

knowledge of the dynamic model assïsting the neural networks to achieve the c o ~ t r o l  

goal might be preferable to proceeding with a single neural network alone. It has 

been shown that,  by incorporating the neural networks using the structure of a 

typical inverse dynamics approach, the limitations of the inverse dynamics scheme 

which completely depends on an accurate and exact dynarnic model is reduced. In 

this work the neural networks are designed to  cancel out the nonluiearities of the 

dynamic model. Accordingly, if the cancellation is sufficiently accurate, the system 

is no longer nonlinear. Therefore, the control design is simplified to designing a 

linear controller for the system. 

In contrast to conventional control schemes, intelligent control is based on 

advanced computational techniques for reproducing "hurnan" knowledge and experi- 

ence. Thus, in intelligent control, the attention is moved away from the tedious task 



of establishing an explicit, microscopie model of the controlled plant. The subse- 

quent design of the corresponding controller is to emulate the cognitive rnechanisms 

used by humans to  make control deciçions ([50]). In this research, it has been shown 

that the intelligent control is an effective means of enhancing conventional control 

schemes to produce more accurate, sophisticated, and cost-effective configurations 

of control to meet the ever-increasing demands of industry. 

6.2 Future Directions 

Control design for a flexible-link manipulator in order to operate in real-time with 

high precision, especidly when the manipulator picks and places M o u s  payload 

masses, is an extremely important issue for industrial application. The payload 

masses concerned in this research are unknown but constant- An important related 

area for further research would be the investigation of the robustness of neural 

network-based control schemes with respect to a time-varying payload at the tip 

of a flexible-link manipulator. f t  would pose more challenges in the design of the 

control system. 

Tt is well known that a flexible-lïnk manipulator is a non-minimum phase 

dynamic system. Generally, researchers have overcome this problem in control design 

of this type of manipulators by defining a new output dong the link. The a h  is to 

end up with a minimum phase dynamics. But tradeoffs exist in locating this point 

dong the link. Considering the work done by Talebi et al. (71 suggests that another 

important area for additional investigation would be achieving on-line minimum 

phase closed-loop system through neural network techniques based on the proposed 



neural network-baçed control approach described in this thesis. 



Bibliography 

[l] S. Cetinkunt and W. J. Book, "Performance limitations of joint variable- 

feedback controllers due to manipulator structural flexibility," i%EE 7Fans- 

actions on Robots and automation, vol. 6 ,  pp. 219-231, Apr. 1990. 

[2] -4- D. Luca, P. Lanari, P. Lucibello, S. Panzieri, and G.  Ulivi, "Control experi- 

ments on a two-link robot with a flexible foream," in Proceedings of the 29th 

Con ference on  Decision and Cont rol, (Honolulu, Hawaii), pp. 520-527, Dec. 

1990. 

[3] D. Wang and M. Vidyasagar, ''Tramfer fùnction for a single flexible link," in 

Proceedings of IEEE International Conference on  Robotics and Automation, 

vol. 2 ,  pp. 1042-1047, 1989- 

[4] A. D. Luca and B. Siciliano, "Trajectory control of a non-linear one-link flexible 

arm," International Journal of Control, vol. 50, no. 5, pp. 1699-1715, 1988. 

(51 A. D. Luca and L. Lanari, LcAchieving minimum phase behavior in a one- 

link flexible arm," in Proceedings of International Symposium on intellzgen t 

Robotics, (Bangalore, India), pp. 224-235, 1991. 



[6] S. K. Madhaven and S. N. Singh, 'Tnverse trajectory control and zero dynamic 

sensitivity of an elastic manipuiator," International Journal of Robotics and 

Automation, vol. 6 ,  no. 4, pp- 179-191, 1991. 

[7] H. A. Talebi, K. Khorasani, and R. V. Patel, "Xeural network based control 

schemes for flexible-bnk manipulators: simulations and experiments," Neural 

Neturorks, vol. 11, no. 7, pp. 1357-1377, 1998. 

[8] M. Modem,  R. V. Patel, and K. Khorasani, "An inverse dynamics control 

strategy for tip position tracking of flexible multi-link manipulators," Journal 

of Robotic Systems, vol. 14, no. 9, pp. 649-658, 1997. 

[9] E. Bayo and H. Moulin, "An efficient computation of the inverse dynamics of 

flexible manipulators in the tirne domain," in Proceedings of IEEE International 

Conference on Robotics and Automation, vol. 2, pp. 710-715, 1989. 

[IO] D. S. Kwon and W. J. Book, "An inverse dynamics method yieldïng flexible 

manipulator state trajectorîes," in Proceedings of American Control Confmence, 

(San Diego, CA), pp. 186-193, 1990. 

[Il] R. V. Patel and P. Misra, "Transmission zero assignment in linear rnultivaii- 

able systems, part ii: The general case," in Proceedings of Ameficun Control 

Conference, (Chicago, IL),  pp. 644-648, 1992. 

[12] H. Geniele, R V. Patel, and K. Khorasani, "End-point control of a flexible- 

link manipulator: Theory and experiments," IEEE Tkansactions on Control 

Systems Technology, vol. 5, pp. 556-570, Nov. 1997. 



[13] B. Siciliano and W. J. Book, "A singular perturbation approach to control 

of lightweight maaipulators," The Internat ional Jozcmal of Robotics Research, 

vol. 7, pp. 79-90, Augr 1988. 

[14] K. Khorasani and M. W. Spong, "Invariant manifolds and their application to 

robot manipulators with fiexible joints," in Proceedings of IEEE International 

Conference on Robotics and Automation, pp. 978-983, 1985. 

[15] M. W. Spong, K. Khorasani, and P. V. Kokotovic, "An integral manûold a p  

proach to the feedback control of flexible joint robots," IEEE Tkansactions on 

Robotrcs and Automation, vol. 7, pp. 291-300, Aug. 1987. 

[16] K. Hashtrudï-Zaad and K. Khorasani, "Control of non-minimum phase singu- 

larly perturbed systems with application to fiexible link manipulators," Inter- 

national Journal of Control, vol. 63, pp. 679-701, Mar. 1996. 

[17] M. Modem, K. Khorasani, and R. V. Patel, "An integral manifold approach 

for tipposition t racking of flexible multilink manipulator," IEEE Tkansactiom 

on Robotics and Automation, vol. 13, pp. 1-15, Dec. 1997. 

[18] S. Yurkovich and F. E. Pacheco, "On controller tuning for a flexible-link ma- 

nipulator with vaxying payload," Journal of Robotic Systems, vol. 6, no. 3, 

pp. 233-254, 1989. 

[19] P. Lucibello and F. Bellezza, 'Wonlinear adaptive control of a two luik flexible 

robot arm," in Proceedings of the 29th Conference on Decision and Control, 

(Honolulu, Hawaii), pp. 2545-2550, Dec. 1985. 



[20] SI. R Rokui and K. Khorasani, "Experimental results on diçcrete-time nonlin- 

ear adaptive tracking cont rol of a flexible-lïnk manipulat or," IEEE Tkansactions 

on Systems, Man and Cybernetics, vol. 30, pp. 151-164, Feb. 2000. 

[21i B. Siciliano, B. S. Yuan, and W. J. Book, "Mode1 reference adaptive control of 

a one lùlk flexible arm," in Proceedings of the 25th Conference on Decision and 

Control, (Athens) , Dec. 1986. 

[22] J. Yuh, "Application of discrete-time mode1 reference adaptive control to a 

flexible single-link robot," Journal of Robotic Systems, vol. 4, no. 5, pp. 621- 

630, 1987- 

[23] K. Takahashi and 1. Yamada, "Neural-network based learning control of flexi- 

ble mechanism with application to a single-link flexible arm," Pansactions of 

the ASME Journal of Dynamic Systems, Measvrement, and Control, vol. 116, 

pp. 792-795, 1994. 

[24] -4. Register, W. Book, and C .  O. Alford, "Artificial neural network control of 

a nonominimum phase, single-flexible-link," in Proceedzngs of the 1996 IEEE 

International Conference on Robotics and Automation, (Minneapolis, MN), 

pp. 19351940, Apr. 1996. 

[23] L. Lin and T. Yih, "Rigid model-based neural network control of flexible- 

link mênipulators," IEEE Tkansactions on Robotics and Automation, vol. 12, 

pp. 595-601, Aug. 1996. 

[26] J. S. Surdhar, A. S. White, and R. Gill, "Neural network control applied to 

a flexible link manipulator in a tip feedback sensor based configuration," in 

101 



Proceedings of the 2ûth Intenational Conference on CAD/CAM Robotics and 

Factories of the Future, (London, UK), pp. 14-16, h g .  1996. 

[27] V. Zeman, R V. Patel, and K. Khorasani, "Control of a flexible-joint robot 

using neural networks," IEEE Transactions on Control Systems Technolom, 

vol. 5, pp- 453-462, July 1997. 

[28] H. Miyarnoto, M. Kawato, T. Setoyama, and R. Suzuki, LLFeedback-error- 

learning neural network for trajectory control of a robotic manipulator," Neural 

Networks, vol. 1, pp. 251-265, 1988. 

[29] H. Gomi and M. Kawato, "Neural network control for a closed-loop system 

using feedback-error-Iearning," Neural Networks, vol. 6, pp. 933-946, 1993. 

[30] R. S. Newton and Y. Xu, "Neural network control of a space manipulator," 

IEEE Control Systems Magazine, vol. 12, pp. 14-22, 1993- 

[31] H. Geniele, "Control of a flexible-link manipulator," Master's thesis, Concordia 

University, Montreal, Canada, Aug. 1994. 

[32] M. O. Tokhi and A. K. M. Azad, "Modeling of a single-link flexible manipulator 

system: theoretical and practical investigations," Roboticu, vol- 14, pp. 91-102, 

1996. 

[33] W. J. Book, "Recursive lagrangian dynamics of flexible manipulator arms," 

The International Journal of Robotics Reseurch, vol. 3, no. 3, pp. 87-101, 1984, 



[34] R. H. Cannon and E. Schmitz, "Initial evperiments on the end-point control 

of a flexible one-link robot," The International Journal of Robotics Research, 

vol. 3, no. 3, pp. 62-75, 1984. 

[35] S. Cetinkunt and W. Yu, "Closed-loop behavior of a feedbadc-controlled flexible 

a m :  A comparative study," The International Journal of Robotics Research, 

vol. 10, pp. 263-275, June 1991- 

[36] R. B. Usoro, r. Nadira, and S. S. Mahil, "A finite element/lagrange approach to 

m o d e h g  lightweight flexible manipulators," Tkansactions of the ASME Journal 

of dynamic Systems, Meusurement and Control, vol. 108, pp. 198-205, 1986. 

[37] F. Rakçha and A. A. Goldenberg, 'Qynamic modeling of a single-luik flexi- 

ble robot," in Proceedings of IEEE fiternational Conference on Robotics and 

Automation, (San Francisco, C A ) ,  pp. 918-924, Apr. 1986. 

[38] E. Bayo, "A finite-element approach to control the end-point motion of a single- 

link flexible robot," Journal of Robotic Systems, vol. 4, no. 1, pp. 63-75, 1987. 

[39] M. O. Tokhi, M. A. Hossain, and A. K. M. Azad, "Sequential and paralle1 real- 

time simulation of a flexible manipulator system," Robotica, vol. 16, pp. 445- 

456, 1998. 

[40] V. R. Vemuri, ed., Artificial Neural Networks: Concepts and Control AppZica- 

tions. IEEE Cornputer Society Press, 1992. 

[41] T. Poggio and F. Girosi, "Networks for approximation and learning," i n  Pro- 

ceedings of the IEEE, vol. 78, pp. 1481-1 497, Sept. 2990. 



[12] K.-1. Funahashi, "On the approximate realization of continuous mappings by 

neural networks," Neural Networlcs, vol, 2, pp. 183-192, 1989- 

[43] B. Irie and S. Miyake, "Capabilities of three-layered per~eptrons,~' in IEEE 

International Conference on Neural Networks, vol. 1, pp. 641-648, 1988. 

1441 K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks 

are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989. 

[45] D . L. Chester, "Why two hidden layers are better than one," in Proceedings of 

IJCIVN International Joint Conference on Neural Networks, vol. 1, pp. 265-268, 

1990. 

[46] G. Lightbody, W. H. Wu, and G. W. Irwin, "Control application for feedforward 

networks," in Neural Networks for Control (T. W. Miller and et al, A.), pp. 51- 

71, Cambridge, MA: MIT Press, 1990. 

[47] H. A. Talebi, Neural network-bosed control of Flexible-Link Manipulators. PhD 

thesis, Concordia University, Montreal, Canada, 1997. 

[48] L . Fauset t , FLndarnentaLs of Neural Networks: Architectures, Algorithm and 

Applications. Prentice-Hall Inc., 1994. 

[49] M. H. Hassoun, findamentals of Artificial Neural Networks. MIT Press, 1995. 

[50] R. E. King, ed., Computational Intelligence in Control Engineering. Marcel 

Dekker, Inc-, 1999. 



(511 W. J. Book, "Modehg, design, and control of flexible manipulator a,rrns: A 

tutorial review," in Proceedings of the 29th Conference on Decision and Controi, 

(Honolulu, Hawaii), pp. 500-506, Dec. 1990. 

[52j 41. Moallem, K. Khorasani, and R. V. Patel, "Inversion-based sliding control 

of a flexible-link manipulator," International Journal of Control, vol. 71, no. 3, 

pp. 477-490,1998- 

[53] S. S. Ge, T. H. Lee, and G. Zhu, 'Trnproving regulation of a single-link flex- 

ible manipulator with strain feedback," IEEE Ransactions on Robotics and 

Automation, vol. 14, no. 1, pp. 179-185, 1998. 

(541 R. Brogliato, D. Rey, A. Pastore, and J. Bamier, "Experimental cornparison of 

nonlinear controllers for flexible joint manipulators," International Journal of 

Robotics Research, vol- 17, no. 3, pp. 260-281, 2998. 

[55] D. Psaltis, A. Sideris, and A. A. Yamanura, "A multilayered neural network 

controller," in Proceedings of the IEEE International Conference Neural Net- 

works, (San Diego, CA), pp. 500-506, June 1987. 

[56] A. Yesildirek and F. L. Lewis, "Feedback linearization using neural networks," 

Automatica, vol- 31, no. 11, pp. 1659-1664, 1995. 

[57] L. Behera, M. Gopal, and S. Chaudhury, "On adaptive trajectory tracking of a 

robot manipulator using &version of its neural ernulator," IEEE Tkansactiom 

on Neural Networks, vol. 7, pp. 1401-1414, Nov. 1996. 



[58] R. T. Newton and Y. Xu, "Real-time implementation of neural network learning 

control of a flexible space manipulator," in Artificïal Neural Networks: Concepts 

and Control Application (V. R Vernuri, ed.), pp. 150-156, Los Alamitox, CA: 

TEEE Computer Society Press, 1996. 

1591 M. M. Polycarpou and P. A- Ioannou, "Neural networks as on-line approxima- 

tors of nonlinear systems," in Proceedings of the 31th Conference on Decision 

and Control, (Tucson, Arizona), pp. 7-12, Dec. 1992. 

[60] A. 1. Mistry, S. Chang, and S. S. Nair, "Indirect control of a class of nonlinear 

dynamic systems," IEEE irransactions on Neural Networks, vol. 7, pp, 1015- 

1023, July 1996. 

[61] 0. Omidvar and D. L. Elliott, eds., Neural Systems for Control. Chestnut Hill, 

MA: AC-ADEMIC PRESS, 1997- 

[62] C. T. Leondes, ed., Industrial and Manujacturing Systems, vol. 4 OF Neural 

Network Systems Techniques and Applications. San Diego, CA: ACADEMIC 

PRESS, 1998. 

[63] A. Isidori, Nonlinear Control Systems. Springer-Verlag London Limited, 

third ed., 1995. 

[64] C. C. de Wit, B. Siciliano, and G. Bastin, eds., Theory of Robot Control. 

Springer-Verlag London Limited, 1996. 

[65] M. Moallem, Control and Design of Flexible-Link Manipulators. PhD thesis, 

Concordia University, Mont real, Canada, Dec. 1996. 



[66] 2. Su and K. Khorasani, "A neural networks controuer for a single-llink flex- 

ible manipulator based on the inverse dymmics structure," in Proceedings of 

IJCIVIV International Joint  Conference on Neural Networks, vol. 5, (Como, 

Italy), pp. 311-316, Jdy 2000- 

[67] K. Warwick, G. W. Irwin, and K. J. Hunt, eds., Neural networks for wntrol 

and systems. Herts, UK: Peter Peregrinus Ltd., 1992. 

[68] P. K. Simpson, ed., Neural Networks Applicutions. Piscataway, NJ: IEEE Tech- 

nical Activities Board, 1996. 

[69] J.4. E. Slotine and W. Li, eds., Applied Nonlznear Control. Englewood Ciffs, 

NJ: Prentice Hall, fnc., 1991. 

[70] F. L. Lewis, C. T. Abdallah, and D. M. Dawson, eds., Control of Robot Menip- 

ulators. New York, NY: Macmillan Publishing Company, 1993. 

(711 K. Ogata, ed., Modem Gontrol Engineering. Upper Saddle River, NJ: Prentice 

Hall, Inc., third ed., 1997. 

[72] J. M. Zurada, ed., An Introduction to Artificzal Neural Systems. St. Paul: West 

Publishing, 1992. 

[73] G. Gratzer, ed., Math znto B W :  An Introduction to Bî&Yand AM-BQ& 

Birkhauser Boston, 1996. 

[74] SPECTRUM Signal Processing Inc., TMS320C30 SYSTEM BOARD: Technicul 

Reference Manual, Aug. 1990- Issue 1.01. 



[IP] SPECTRUM Signal Processing Inc., TMS320C30 SYSTEM BOARD: User's 

Manual, Aug. 1990. Issue 1.01. 




