Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

Using /; Regularization to Improve Numerical Partial
Differential Equation Solvers

Theresa Scarnati - Anne Gelb - Rodrigo
Platte

Received: date / Accepted: date

Abstract Sparse regularization plays a central role in many recent developments
in imaging and other related fields. However, it is still of limited use in numerical
solvers for partial differential equations (PDEs). In this paper we investigate the
use of £; regularization to promote sparsity in the shock locations of hyperbolic
PDEs. We develop an algorithm that uses a high order sparsifying transform which
enables us to effectively resolve shocks while still maintaining stability. Our method
does not require a shock tracking procedure nor any prior information about the
number of shock locations. It is efficiently implemented using the alternating di-
rection method of multipliers. We present our results on one and two dimensional
examples using both finite difference and spectral methods as underlying PDE
solvers.
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1 Introduction

Hyperbolic systems of partial differential equations (PDEs) model a variety of
phenomena in fields such as gas dynamics, acoustics, elastodynamics, optics and
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geophysics, [20]. Solutions to hyperbolic PDEs often contain discontinuities such
as shock waves and fronts, which can develop in finite time even when the ini-
tial conditions are smooth. Although numerical algorithms for solving hyperbolic
PDEs have been broadly investigated, [9,17,19-21,35-38], the presence of shock
discontinuities still causes complications in the solutions. For example, high-order
methods must include viscosity or slope limiters of some kind in order to avoid
oscillations that lead to instabilities. On the flip side, too much viscosity yields
a loss of resolution near shock discontinuities. Clever upwinding algorithms can
reduce the amount of dissipation and still retain sharp features in the solution,
but can be more difficult and computationally intensive to implement. Finally, the
stability condition for non-linear PDEs is often more stringent, making long term
solutions more computationally expensive, [19-21].

The use of ¢; regularization methods to promote sparsity is frequently encoun-
tered in imaging and signal processing applications, but they are still of limited use
in solving PDEs. Sparse dynamics for hyperbolic PDEs with solutions exhibiting
behaviors on multiple spatial scales was investigated in [31], where it was pro-
posed to include the constraint that the approximate solution resides on a sparse
subspace of a basis. However, solutions with singularities in the physical domain
were not considered. In particular, the solutions were such that they exhibited
high frequencies on a small spatial scale so that they had sparse representation
when projected onto a Fourier basis. Moreover, the algorithm consists of advancing
the PDE forward in time and then projecting the updated solution onto a sparse
subset. This requires additional transformations between spatial and coefficient
domains at each iteration, thereby adding considerable computational complexity.
In [17], a method was proposed to approximate solutions to viscous conservation
laws. The method utilizes sparse and low-rank decompositions for which sharp-
contrast features are separated from smooth, low-energy behaviors. While higher
accuracy is achieved, the technique relies on knowledge of the sharp-contrast fea-
ture locations, which is not always practical.

A hybrid, spatially-adaptive, weighted, essentially non-oscillatory (WENO)
scheme was developed in [9]. With this technique, the spatial scheme is updated
based on the given spatial location and the dynamics of the system at a given
time. At each iteration of the algorithm, the shock is detected using various shock
detection algorithms, then the domain is divided into non-smooth and smooth sub-
domains, where appropriate schemes are then used to approximate the solution
in each sub-domain The method is non-linear and also relies on accurate shock
detection. In [38] the spectral viscosity (SV) method was adapted to include a step
that locates the region containing the shock location. By doing so, less viscosity is
enforced in the smooth regions of the solution. High order post-processing, which
typically requires knowledge of each shock location, is required to recover spectral
accuracy from the SV solution, [15,32].

One of the main difficulties with the approaches discussed above is their reliance
on detecting discontinuities. Mis-identification leads either to instability, when a
shock goes undetected, or to unnecessary dissipation, when a shock is determined
to exist in smooth regions. Typically, the algorithms are also computationally
intensive, and often require small time steps to satisfy the CFL stability conditions.

In this investigation we offer an alternative approach that incorporates an ¢;
regularization term directly into a PDE solver. Our method yields some distinct
advantages. First, because we account for the sparsity of the singularities in the
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physical domain as part of the PDE solver, we do not need to explicitly locate
any shock discontinuities or subdivide the domain. Second, because we use the
polynomial annihilation (PA) operator as our ¢1 regularization term, our method
is high-order [3,4,40]. We note that using TV would recover piecewise-constant
solutions; that is, it yields first order approximations. Finally, our numerical results
demonstrate that our method maintains stability even when the time step is larger
than normally dictated by the CFL condition. Therefore, it is efficient when fast
optimization algorithms are employed.

The rest of this paper is organized as follows. In §2 we briefly discuss ¢1 regu-
larization, which is often used to numerically solve ill-posed inverse problems. We
also review the PA transform which we will use as the #; norm operator. In §3 we
describe how a given PDE solver can be enhanced using the PA operator in the ¢;
regularization term. While the PDE solver can take on a variety of forms, we use
standard finite-difference schemes and pseudo-spectral methods to demonstrate
our results. To ensure efficiency, we then propose an alternating direction method
of multipliers algorithm for solving the resulting convex optimization problem. We
present our numerical results in §4. Examples of hyperbolic PDEs include Burgers
and Euler’s equations. We also test our method on a two dimensional multiplica-
tive noise model, which is often used to reduce speckle in images. In all cases we are
better able to resolve functions and images with discontinuities without explicit
knowledge of the jump locations. Concluding remarks are provided in §5.

2 Preliminaries
2.1 41 regularization

Let f € RY be an unknown image or signal. We assume that some measurable
features of f have sparse representation in a particular domain or basis. Define
f € RM to consist of data samples corresponding to f, and let F : RN — RM be
the forward model that projects f to f . Typically, F is defined as a linear operator
or invertible matrix. Define H : RN — R to be the regularization operator. The
objective is to solve the following optimization problem:

z = 0. (1)

argmfinH(f) s.t. H}_fff

Note that if the data f are under-sampled, then F may only contain a subset
of rows of the forward model matrix. The equality constraint, known as the data
fidelity term, measures how well the reconstructed function fits the given data
for the particular forward model. The regularization term H enforces the known
sparsity present in the underlying image by penalizing highly varying solutions
and restricting the solution space to a desired class of functions. We will consider
H to be the ¢1 norm of f (or some transformation of f) and note that any ¢, norm
with p < 1 will enforce sparse solutions.

Typically, for measured data which is inherently noisy, the related total vari-
ation (TV) denoising problem is solved, which relaxes the equality constraint on
the data fidelity term. It is formulated as

argmfinH(f) s.t. H]:f—sz<a, (2)
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where o € R is some regularization parameter [27,39]. Equivalently, the TV de-
noising problem can be formulated as the following unconstrained problem by the
introduction of a non-negative regularization parameter A € R that represents the
trade-off between smoothness and fidelity to the original data as ( [11,24-27])

armin (#10)+ 3|71 - 1] Q)

The problem is often solved with H(f) = TV (f), although other operators, such
as wavelets, are commonly used in conjunction with the ¢; norm ( [11]) as

H(f) = LS

2.2 Polynomial annihilation

Consider a function f : [a,b] — R. For all y € (a,b), let f(y~) and f(y™) respec-
tively denote the left and right hand limits of f. The jump function of f at y is

defined at each y as
[F1w) = Fu) = fFy). (4)

Let [a,b] be partitioned into N points, and let us assume that there is at most
one jump within a cell I; = [z,z;4+1) for j =0, ..., N — 1. We can write the jump
function (4) on [a, b] as

N—
Z [F1(z5)x5 (v), (5)

where [f](z;) is the value of the jump occurring within cell I;, and x; is the
indicator function defined as
1 y €l
xi(y) = { ’

0 else.

Because [f](zj) = 0 everywhere except in cells containing jumps, we say that
[f](y) has sparse representation.

The polynomial annihilation (PA) edge detection method, originally proposed
in [4], is defined as

L™ fy) = Z iy (6)

:cES

where m is the order of approximation to (4), S is a local set of m + 1 grid points
about y from the set of given grid points, and the annihilation coefficients c; are
obtained by solving

Yo eipe) =p™ @), j=1.om+1. (7)

Tj

Here p;, [ =0, ...,m, is a basis for the space of polynomials of degree less than or
equal to m. An explicit formula based on Newton divided differences was provided
in [4] as

m'

cj(y) = ma w; (S) = Iy izj(xj — 24), (8)
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for j =1,---,m. When the grid points are equally spaced, that is x; = jAz with
Az =(b—a)/N and j =0,---, N, (8) leads to
m)!
G = (9)
[ (G—k) Az
=1

k=

k#j
The normalization factor ¢ ensures convergence to the jump value at each dis-
continuity and is given by

=Y ), (10)

z;€S8T

where ST is the set of points z; € S such that x; > y. It was shown in [4] that
(6) yields mth order convergence in smooth regions (outside the stencil containing
the jump discontinuity) as long as f has m continuous derivatives in those regions.
The method yields a first-order approximation to the jump value in regions where
singularities are present. As m increases, oscillations develop in each jump loca-
tion region. Post-processing methods can reduce the impact of these oscillations.
However, because we are using (6) to enforce sparsity, and not to explicitly detect
edges, the oscillations occurring in jump regions do not directly impact our results.
That is, we are only interested in those locations which produce a high response
when the function is transformed by the PA operator. Specifically, the PA method
was used to design a high order {1 regularization operator in [3] as

H(f) = [IL" f]]x.

Consequently, the sparsity of edges in f are enforced when solving (3). A main
advantage in using PA with m > 1 is that it enables distinction of jump discon-
tinuities from steep gradients, which is critical in solving non-linear conservation
laws and when approximating functions that are not simply piecewise constant.
This will help to eliminate the staircase effect that occurs when using the TV
operator (equivalently, m = 1) as the regularization operator.

In the current investigation, (6) is included inside the optimization problem (3),
and therefore only solved on the discrete set of grid points y = z;, 5 =0,--- , N.
Hence (10) can also be determined explicitly and we are able to write the PA
transform matrix for any integer m. For example, when considering a uniform grid
spread over the domain [a,b] and a periodic solution f, we have

3 -3 1 -1
1 -1
. 13 -3 1
£ ] =y L (11)
C 13 -3 1
» ) 1 13 -3
-3 1 13

As noted previously, when m = 1, the PA transform is equivalent to using TV
regularization. In this regard, the PA transform can be seen as a high-order total
variation (HOTYV) operator. Also note that (11) assumes periodicity. For non-
periodic problems, there is an analogous transform that becomes one-sided as the
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boundaries are approached, [4]. Finally, even orders may also be used, since they
still achieve sparsity in the edge domain.! Indeed even order transforms may be
advantageous for some PDE solvers, and also in the case where there is some
information known about the underlying solution. As will be demonstrated later,
using m = 2 for Sod’s shock tube problem yields the best results because the
solution between the shock discontinuities is essentially piecewise linear. More
information on the general properties of the PA transform used for recovering
piecewise smooth solutions can be found in [3,4,34,40].

3 Proposed algorithm
3.1 Using ¢1 regularization in PDE solvers

Consider the one-dimensional non-linear conservation law of the form
ue(z,t) + fu(z,t))e =0 (12)

on a bounded domain, 2. Here, f : {2 — R is the flux function and v : 2 - R is a
conserved quantity with appropriate initial and boundary conditions. We will use
(12) as a prototype to develop our new ¢; regularization PDE solver. We seek an

approximation UJ" € RY to the solution uj = u(x;,tn) of (12) given by

At
n+1 n n n .
urtt =uj - e (Fiy1e—Fj1/2), §=0,...,N—1, (13)

J
where Fjﬂ_1 /2 is an approximation of the average flux along = 1, /2. That is,
in reference to (12),

1 tnt1

Frap g [ (e d (14)

tn
and Ax and At are the appropriate grid size and time step size, respectively. We

note that our technique does not require a uniform grid, as the PA operator can
be formulated for any set of data points. For our purposes, we will write (13) as
Uttt =D (F",U™) = b", (15)
where U™t represents the vector of approximations U™ 1! at time tnt+1, F™ repre-
sents the vector of approximations an+1/2 at time ¢, for j =0,..., N —1, and D is
the operator representing the chosen numerical method. Observe that b™ is simply
a vector of values explicitly calculated at time ¢, which will be incorporated into
the data fidelity term. We consider only explicit schemes, since an implicit scheme
may lead to non-convexities in the objective function. This will be explored more
in future research.
As noted previously, one of the main challenges in solving (12) is balancing the
amount of viscosity introduced for stability purposes with maintaining desirable
high resolution properties, especially near shocks. This is particularly difficult when

1 Even orders were not used in [4] because the post-processing techniques used for pinpoint-
ing the edges assumed that maximum (minimum) values occurred at the edge, which is true
only for odd orders.
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the shock locations are unknown. Applying the techniques described in §2.2, we
can now adapt (13) to include an ¢; regularization term, reflecting that the jump
discontinuities in the solution of (12) are sparse. Specifically, our new algorithm is
given by

n . m A n
0 argugn (11C7V I+ S1IV - 0711). (16)

which is analogous to the convex optimization problem given in (3). Observe that
minimizing ||[U™" —b"||3 obtains the best solution in the least squares sense, but
does not adequately capture the shocks that may appear in (12). However, by
augmenting (15) with the PA transform ¢; regularization term, we encourage the
solution U™ to have sparse representation jump function domain. Consequently,
we obtain a stable solution without introducing too much artificial viscosity, and
thus are able to maintain high resolution near shock locations. Moreover, by using
m > 11in (6), we are able to see greater variation in smooth regions. The fidelity
term in (16) contains the numerical method chosen to solve (12), and the ¢; reg-
ularization term includes the PA transform of order m. The parameter A € R
determines the influence of the sparsity constraint upon the fidelity term, and its
tuning is typically application-dependent. Our numerical results demonstrate that
(16) is robust for a range of A, but more study is needed to verify its impact on
stability.

3.1.1 £1 enhancement for finite difference methods

We first demonstrate our technique using the second order Lax Wendroff (LW)
scheme for (12) in the spatial domain z € [a, b]. Assume we are given grid points

rj=a+jAzx, j=0,..,N—1, Ax:b]:]a,
and define
Uppst =5 (U +Ul) — 54 (F(U7) = F(U))
n+§ 1 n n At n n
Uj_% =3 (Uj— + Uj) — By (f(U7) = F(U;-1)) -
The LW scheme is then given by
At n+1 ntl
n+l _ rm . 20 2\ 2
U =0 A, [f (Uj+%) f(Uj—é )} (17
D(Fn+1/2)

It is well known that using (17) to solve (12) results in unwanted oscillations behind
shock locations and may also lead to instability, [19,20]. To apply ¢1 enhancement,
we define

n __ rm ﬁ n+1/2
b =U" = DR, (18)

and insert it directly into (16). We will refer to this particular combination as the
41 enhanced LW method, and note that while we only employ LW in our numerical

examples, the ¢1 enhancement can be applied to any finite difference method that
can be written in the form (16).
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In general, (17) is stable for

At < AT

= [¢lmax”

where |(|max is the maximum characteristic speed in magnitude. However, the
LW method yields significant dissipation, leading to a loss of shock information
at each time step. Thus, as will be seen in our results, it is beneficial to consider
high-order methods which are better at resolving shocks. Of course, in this case
stability becomes a concern as we discuss in the next section.

3.1.2 €1 enhancement for spectral methods

Spectral methods provide highly accurate approximations for sufficiently smooth
functions u : [a,b] — R. When u contains discontinuities, the resulting Gibbs phe-
nomenon leads to O(1) oscillations in neighborhoods of discontinuities and first
order accuracy in smooth regions. The method becomes unstable as a result of
non-linear interactions within the partial differential equation. Filtering or addi-
tional viscosity is often introduced to mitigate this problem. However, too much
dissipation is undesirable as the shocks are “smeared over” and information is lost.
Methods such as (super) spectral viscosity (SV), [36,37], were introduced to apply
minimal amounts of diffusion near shocks, and in [38] some attempt was made to
localize the effects of dissipation even further by determining the discontinuous
regions as time evolved. The SV methods are computationally expensive, as they
amount to adding high-order viscosity in the underlying conservation law. Never-
theless, they offer an alternative to standard filtering. In §4 we demonstrate that
using ¢1 regularization improves the accuracy of standard filtering and vanishing
viscosity methods.?
We first consider the Fourier pseudo-spectral (PS) approximation of u : [—7, 7] —

R given by [7,16]

N/2-1 N—-1
Pyu(z,t) = > dx(t)e™,  an(t) =Y ulws,t)e (19)
k=—N/2 §=0

with z; = —m + jAz, and Az = %’T The pseudo-spectral (PS) approximation of
(12) takes the form
(un)t + (Pn f(un))e =0, (20)

with ux denoting the numerical solution. As noted previously, even when given
a smooth initial condition, the solution to (12) may develop singularities. Due to
the non-linear interaction, the resulting Gibbs phenomenon will yield instabilities
within finite time, [35].

Let us now define

N/2—1
= {GUM) = At > ikfu(ta)e™,  j=0,- N1}, (21)
k=—N/2

2 We also applied ¢; enhancement to the spectral viscosity method for the Fourier and
Chebyshev cases. Both resulted in improved accuracy that essentially mirrored the approxi-
mations displayed in Figures 4 and 7. Hence they are not reported here.
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where
N-1

Fe(®) =" f(un(zj,t) e ™ (22)

=0

and G(U™) represents a linear time-stepping scheme, e.g. Runge Kutta. All of
our numerical examples (except Lax-Wendroff and denoising) use fourth order
Runge Kutta. The ¢; enhanced pseudo-spectral method is now constructed by
substituting b™ into the fidelity term of (16) and using (6) to enforce sparsity in
the jump discontinuity domain.

A small amount of viscosity is often introduced in the numerical solver to
reduce oscillations and overshoots resulting from the Gibbs phenomenon, [7,16].
The approximation of (12) takes the form

(un)e + (P f(un))z = €(un)aa, (23)

where € > 0 and un denotes the numerical solution. Following the terminology
in [7,16], we refer to (23) as the vanishing viscosity (VV) method. To incorporate
¢1 regularization into (23), we define

N/2—1 N/2—-1
Ot ={GU")-At > ikfe(tn)e™ i reAt D KPag(t)e™, j=0,..,N-1}

k=—N/2 k=—N/2

(24)

with fy,(¢) defined in (22) and i (t) defined in (19). The ¢1 enhanced VV method is
constructed by inserting (24) into the (16). We note that (20) and (23) could have
been written in collocation form, and subsequently the corresponding ¢; enhanced
collocation method. However, applying the FFT is sufficiently efficient in the given
form.

Filtering also helps to reduce oscillations and improve stability, [16]. In our
experiments, we applied an exponential filter (EF) to the solution after each time
step. Enhancement with ¢; regularization is straightforward.

Since most PDEs do not admit periodic solutions, we also consider the Cheby-
shev collocation method. In this case we modify the interval to [—1, 1] and define
the Chebyshev grid points as

y; = — cos (%J) j=0,..N. (25)

The Chebyshev approximation of u(z,t) is [7,16]

N N

Pyu(z,t) = Y ar()Ti(z), ax(t) = %k > ulw)Tu(ws)w;, (26)

k=0 j=0
where the Chebyshev polynomials are
Ty (x) = cos(k arccos(z)), (27)

and the weights and normalizing factors are given respectively as

j=0,N [ k=oN
w; = , = .
J j=1,..N-1" "7z k=1,..N-1

g
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To improve computational efficiency, we map the Chebyshev points according to
[18] given by

2
v = arcsin (By;), Jj=0,...,N, (28)

where we have chosen parameters

_ 2 —5 —in (0T
a—l—&—mlog(lo )s ﬁ—sm(Q). (29)

We note that no attempt was made to optimize the mapping parameters. The
Chebyshev approximation of (12) takes the form

(un)e +D(Py f(un)) =0, (30)

with u denoting the numerical solution and D denoting the Chebyshev differen-
tiation matrix. Each entry in D is

N i
D(i,j) = L Z M, (31)

where c; =1for1<j< N —-1landco =cn = 2.4 In our experiments, we used
the software described in [10] to construct the Chebyshev differentiation matrix
(31). To implement the sparsity enforcing PDE solver we first define

b" ={G(U") — AtD(Pn [")}, (32)

where
Pnf" ={f(un(zj tn)), j=0,---,N}
so that
D (Pyf(un)) = D(Pnf").

Here again G(U™) represents an appropriate time stepping method. Inserting (32)
into (16) with the PA transform operator (6) yields the ¢1 enhanced Chebyshev
method. Boundary conditions are implemented at the end of each time step. When
the enhancement is not implemented, we then apply an exponential filter of order
p = 16 to maintain stability, [16].

3 With a small decrease in accuracy, the mapped Chebyshev method allows the time step
to increase to O(%), [18].

4 The explicit matrix entries for (31) for (25) can be found in [7,16]. In our examples, we
use the mapped Chebyshev points, [18], so the derivative matrix depends on the chosen grid
points ;.
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3.2 The alternating direction method of multipliers (ADMM)

Many techniques have been developed for solving (2). Here we use an alternating
direction method of multipliers (ADMM) algorithm, [22,23,28,29], which we de-
scribe below. In this regard, it is important to eliminate the non-linear term within
the ¢1 norm in (16). This is accomplished by formulating an equivalent problem

: o n+1 n |2 myrn+1
arg min ([lglh + 50" "3 st Lm0 =g), (39)

where we have introduced the slack variable g € RY. It is now evident that non-
linearities are not present within the ¢; term. To approximate (33), we introduce
the Lagrangian multipliers 0,8 € RY and solve the unconstrained minimization
problem given by
arg min J,5(U"1" g) (34)
Un+1 N

where

Tos(@" 1, g) 1= llgll + B0 = 573 + DJ1em o — g3
— (LU — g o) — (U™ — b7, 6).

(35)

Here u, 8 € R are non-negative regularization parameters. In particular, if the
Lagrangian multipliers are updated a sufficient number of times, then the solution
will converge to the solution of the constrained problem. The objective function is
minimized using ADMM, [12,22,23]. Specifically, the solution is approximated by
alternating between minimizations of U™ and g.

Given the current values of U™! and the multipliers, the optimal ¢ can be
exactly determined using the shrinkage-like formula, [13,22]:

EmUn+1 _ Ok

i il %,0) sign (LmU,?H - %) . (36)

The gradient descent method is used to find the minimum over U™ as

Jk+1 = max (

Uil = Ui — aVpnn Jo s (U™ giera), (37)
where the gradient of Jg,(;(U”Jrl, gk+1) with respect to Ut s given by

VynirJos (U, g) =p(U™TH = b") + B(L™)" (L£"U" T = grpa) (38)
—(L™)" o1, — b,

and the step size « is chosen to give sufficient descent in the gradient direction.
The Lagrange multipliers § and o are updated at each iteration as

orp1 = ok — BILTUNT = grr)
Sk = Ok — (U —b"). (39)

Algorithm 1 describes the general ADMM procedure. More details for Algorithm
1 in the context of synthetic aperture radar imaging can be found in [29].°

5 MATLAB code is available at [28].
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Algorithm 1

1: Determine parameters u, 8 and tol.
2: Initialize U(’)"H, 9o, oo and dg.

3: for k=0 to K do

4: while |[UH — U] > tol do

5 Minimize J for g according to (36).

6: Minimize J for U"*! according to (37) and (38).
7 end while
8

9:

Update Lagrangian multipliers according to (39).
end for

4 Numerical results

We are now ready to demonstrate our ¢; enhanced numerical solver, (16), by
employing Algorithm 1, for Burgers’ and Euler’s equations. Our results show that
we are able to resolve solutions without explicit knowledge of shock locations. We
are also able to relax the usual CFL conditions so that our method is cost efficient.

In each case we will compare our new method to standard techniques based
on the log of the point-wise error

Elog(un (z,t)) = logg [un (z,1) — u(z, )] (40)

where un (z,t) is the numerical approximation to the true solution wu(z,t) at the
final time step. To demonstrate the stability gained when using (16), we define

At = amin|zj11 —z4], j=0,...,N—1, (41)

so that the step size is increased with . We then measure the error of the solution
at a grid point neighboring a discontinuity. Hence we are able to determine the
value of o for which each method becomes unstable. Our results show that stability
is maintained for larger values of « (and correspondingly At) when using the ¢;
enhanced PDE solver as compared to traditional solvers.

As a final example, we solve an image denoising problem, demonstrating that
the /1 enhanced PDE solver may be used in multi-dimensions, again without ex-
plicit knowledge of the jump discontinuities.

4.1 Burgers’ equation

Let u : (—m,m) — R be the solution to

ut + (%u2)x =0 x € (—m,m), t>0
uo(z) =1+ 1 sin(x) z € (—mm), t=0 (42)
u(—m,t) = u(m,t) t>0

A shock develops in the solution to (42) when the wave breaks at time

1 2
t = i _——_— = 1 —_—— :27
b er[IE}rlﬂr][ ua<x>] ze?llﬁﬂ{ cos(mJ
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Point-wise Error
Point-wise Error

Fig. 1: Approximation of the solution to (42) for N = 16,32,64 and 128 with
At = %. (top-left) LW (top-right) ¢; enhanced LW method. Here we used the
PA transform with m = 2 and A = .35. Point-wise errors given in logarithmic scale

for (bottom-left) the LW and (bottom-right) the ¢1 enhanced LW methods.

after which it will continue to re-form at each time step and propagate throughout
the domain. In our simulations we advance our solutions to time ¢t = 7 so that the
shock will be fully developed. The exact solution for this case is calculated using
characteristic tracing, as is done in [38].

Figure 1 (a) and (b) compare the LW scheme solution to (42) with and without
{1 regularization. Here we choose m = 2 for the PA transform and A = .35 in
(16). The point-wise errors are shown in Figure 1 (¢) and (d). In both cases the
time step is chosen as At = % to ensure stability. As is apparent in Figure 1,
augmenting the LW method with /; regularization improves the accuracy near the
shock locations. Away from the shock locations the accuracy is dictated by the
LW approximation.

Figure 2 demonstrates that by enhancing the Fourier pseudo-spectral (PS)
method with ¢; regularization, we are able to achieve accurate and stable results.
As mentioned previously, the fourth order Runge-Kutta time stepping method was
used for both the Fourier and Chebyshev cases.

Figure 3 compares the approximation to (42) using VV (23) with and without
¢1 regularization, for which we chose PA transform order m = 2 and regulariza-
tion parameter A = .12. Due to the numerical dissipation present in (23), the ¢1
enhancement does not appear to significantly improve the results.
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Fig. 2: Approximation of the solution to (42) for N = 16,32,64 and 128 with
At = %. (top-left) PS (top-right) ¢1 enhanced PS method. Here we used the PA
transform with m = 2 and A = .22. Point-wise errors given in logarithmic scale
for (bottom-left) the PS and (bottom-right) the ¢; enhanced PS methods.

The solutions to (42) using the pseudo-spectral Fourier method with a tenth
order exponential filter (EF), [16], with and without ¢; enhancement are shown
in Figure 4. Here we used the PA transform with m = 2 and A = .22 in (16). As
expected, filtering improves the accuracy away from the jump discontinuities, but
the ¢1 enhancement dramatically reduces the oscillations and overshoot.

Note that no post-processing was applied to any of the ¢; enhancement approx-
imations. It has been shown that spectral reprojection, [15], improves the accuracy
in smooth regions of the spectral viscosity method, [32]. However, this requires a
priori knowledge of jump discontinuity locations. While the task is manageable
in one dimension, it becomes increasingly difficult in multi-dimensions. In future
investigations we will use the methods proposed in [3,34] to post-process the £;
enhanced solutions. Indeed, Figures 1-4 demonstrate that in all cases the ¢; en-
hancement improves resolution and reduces oscillations near shocks. Although the
enhancement does not have significant impact on the vanishing viscosity results,
it is interesting to note that using ¢1 enhancement directly on the pseudo-spectral
method without filtering yields the best approximation. This is also the most cost
efficient choice, and it does not require additional derivative approximations or
additional parameter inputs, such as amount of viscosity.
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Fig. 3: Approximation of the solution to (42) for N = 16,32,64 and 128 with
At = %‘ (top-left) VV (top-right) VV with ¢; regularization. Here we used the
PA transform with m = 2 and A = .12. Point-wise errors given in logarithmic scale
for (bottom-left) VV and (bottom-right) VV with ¢; regularization.

Figure 5 shows the results of our stability analysis experiment. We consider
four different numerical solvers with and without the ¢; enhancement for a grid
size of N = 128. For each solution, for various choices of « in (41), we calculate
the error at location x = —0.2454, which is four grid points behind the shock at
time ¢ = w. Observe that the ¢; enhancement yields greater accuracy for larger
values of At than the standard solvers. Figure 5 also displays the final ¢; enhanced
solutions for a@ = 2, so to show that accuracy is maintained along with stability
when using a high order method in the fidelity term of (16).

4.2 Euler’s equations

The Riemann problem for the one dimensional Euler equations is given as

9 P 9 rq
o | P4 + o pi*+P | =0, (43)
E (E+ P)q

where p : (a,b) — R is density, ¢q : (a,b) — R is velocity and E : (a,b) — R is the
total energy. The pressure P : (a,b) — R is related to the conserved quantities
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Fig. 4: Approximation of the solution to (42) for N = 16,32,64 and 128 with
At = %. (top-left) EF (top-right) EF with ¢; regularization. Here we used the
PA transform with m = 2 and A\ = .22. Point-wise errors given in logarithmic scale
for (bottom-left) EF and (bottom-right) EF with ¢1 regularization.

through the equation of state:

P=(y-1) <E+pg2>,

with v = 1.4 defined as the ratio of specific heat constants. The set of initial
conditions we consider describe Sod’s shock tube problem, [8], and are given by

po(x) =1, qo(x) =0, Po(zr)=1, when z € [-1,0)
po(x) = 0.125, go(x) =0, Po(z)=0.1, when x € [0, 1]. (44)
We demonstrate the result of approximating the solution to (43) with (44)

using the two-step Lax-Wendroff method (17) with and without regularization.
The stability condition for this numerical scheme is

At
max{[G[} 5o < 1,

where (;, i = 1,2,3 are the eigenvalues of the Jacobian matrix df/0u, regarded
as the propagation speeds of the corresponding characteristic waves. It can be
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Fig. 5: (left) Stability analysis results. (right) The ¢; enhanced solutions for a value
of o = 2 at final time ¢t = 7 for N = 128.

shown [19] that for the Euler system of equations, the stability condition leads to
an adaptive time step given by

At=cfl 27 <1 (45)
lg| +a

where a = /~P/p is the local speed of sound. We chose cfl = .8 for our numerical
experiments.

Figure 6 compares solutions using the LW and ¢; enhanced LW methods for
density p, velocity ¢ and pressure P when N = 256. While it is evident that the
£1 enhancement reduces the size of the overshoots and oscillations that occur near
discontinuities, the LW method appears to be too dissipative for the 1 enhance-
ment to be very effective.

Figure 7 displays the approximation results using the filtered (mapped) Cheby-
shev method (30). The approximation results using the ¢; enhanced Chebyshev
method (32) are also displayed. In the non-regularized version, a 16th order expo-
nential filter is implemented to the solution after each time step to ensure stabil-
ity. No additional filtering is needed in the ¢; enhancement case. Time stepping
was implemented using fourth order Runge Kutta, with the time step At chosen
according to the stability requirements in [18]. We approximate the solution at
resolutions N = 64,128,256 and 512. In each case, we use PA transform order
m = 2 and regularization parameter y = 100. The parameter (3 varies with N,
with § = .75 for N = 64,256, § = 1.25 for N = 128, and 8 = .5 for N = 512.
Although these values for 8 represent the “best” results, in general the choice of 3
did not greatly affect the quality of the results. Future investigations will consider
parameter optimization To obtain the results in Figure 7, Algorithm 1 requires 5
outer and 5 inner iterations. Hence there is a maximum of 25 iterations per time
step. The efficiency of Algorithm 1 ensures that no additional significant compu-
tational time is required. Figure 8 displays the point-wise errors associated with
estimating the final density for various resolutions with and without ¢; regulariza-
tion. As noted previously, due to the low order of accuracy, £1 enhancement does
not significantly improve the results in the LW case. However, the ¢; enhancement
does dramatically improve the resolution properties near the discontinuities in the
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Fig. 6: (top-left) Density (top-right) Pressure (bottom) Velocity. Here, for the 1
enhancement, we used the PA transform with m =2 and A\ = .35.

Chebyshev case. Future investigations will include studies on post-processing these
solutions.

4.3 Image denoising — A two-dimensional example

Let 2 C R? denote an open bounded set with a Lipschitz (sufficiently regular)
boundary. Consider an image u : 2 — R? corrupted with multiplicative noise
v: 2 — R? such that

g=uv (46)

where g € L?(£2). We assume that v follows a Gamma distribution. The model in
(46) often is used to represent speckle noise, which occurs in any form of coherent
imaging where the objects being illuminated have surface features that are rough
on the microscopic scale of the illuminating wavelength, and it is the result of the
constructive and destructive summation of many random phasors being reflected
from a single resolution cell [14]. Many filtering techniques have been explored
to reduce the effects speckle. TV regularization has also been used with some
success, [5].

Variational techniques can also be used to reduce speckle. For example, in [6],
maximum a-posteriori probability (MAP) estimation theory is used in generating
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Fig. 7: (top-left) Density (top-right) Pressure (bottom) Velocity. For the ¢1 en-
hancement we used the PA transform with m = 2.

the model
5%15/9 {|Vu| +n (logu + %)} . (47)

Here 1 > 0 is the inherent model parameter. We will refer to (47) the AA model.
As is classically done in image denoising, the solution to (47) is computed by
embedding the integral equation into a dynamical system using the Euler-Lagrange
equation, which is driven to a steady state, [27]. The Euler-Lagrange equation is
a second-order PDE with solutions that are functions for which a given functional
is stationary. Because a differentiable function is stationary at local minima and
maxima, this is a useful tool for optimization. The time dependent Euler-Lagrange
equation associated with solving the AA model is

Ou _ 1 3; Vu g—u i
o "dlv<¢m)+ w2 (48)
%ZO on Of2

with given initial conditions. To remove the possible singularity when |Vu| = 0,
(u > 0 so u? # 0) the model has been relaxed with € > 0, where we define

div(—Nu  \_9 (e N O uy
Ve +VuP ) ox\ /e ruZtud Iy \ Ve +uZ+u )
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Fig. 8: Pointwise error in approximating the solution to Sod’s shock tube problem
using the (top) LW method (bottom) Chebyshev method, (left) without regular-
ization and (right) with the ¢; enhancement.

As time increases, the energy in (47) will decrease leading to a denoised image at
steady state.

To discretize the solution to (48), for 0 < 14,7 < M, let

x; = 1Az,

y; = jAx,

where Ax is the pixel size. A forward Euler time stepping scheme was proposed

to

solve (48) and is given by [6,27]

iy Wi _ Wi — i ! (uﬂ »
At (un))®  2mda? g
Cc3 n
LB (u ,
2nAx? hitl

n+1 c2 ntl _,mn
n+1 ¢4 ntl _,n.

(49)
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where
1
= 2 2’
n n n
2 '+lf " Yigpr i
\/6 + ) +( Ax
1
2= \/ 2 2’
n n
2 Ui~ %io1,5 Uilq 41" Yi1,j
e+ (M) (M)
xT
1
€= 2 2’
n n n
2 1+1J % Yij+1 "%
\/6 + ) +< Ax
1
c4 =

n n 2 n n 2
2 Witr,j—1"%ij1 Wig—Wij—1
\/6 + < Ax ) + ( Ax

for interior grid points 1 < 4, j, < M —1 and time step At. The boundary conditions
imposed are

uo,; = U1,j, UM, =UM-1,5, U0 = Ui,1, Ui M = Uj M—1,

Up,0 = U1,1, UO,M = UL,M—1, UM, =UrM—1,1 and Up, M = UM —1,M—1-

The PDE is advanced in time for n = 0,..., N;. We note that using higher or-
der temporal and spatial derivatives might yield higher accuracy, especially when
using the ¢; regularization enhancement. We will explore this idea in future inves-
tigations.

To reduce speckle and preserve the edges present in images, we augment the
Euler-Lagrange PDE associated with the AA model with ¢; regularization using
the PA transform. To accomplish this, we first solve (49) for u?jl and define By';
for 1 <i4,5 < M — 1 to be the right hand side of of the resulting expression

1 uy s — fi c1 At co At
n o ,__ n 1,7 »J n n
] |:ui,j + At (ur ‘)2 + 2nAx2“i,j-1 + W”i—l,j
4,3 (50)
cs At , ca At o,
YA vy
where
At
A=1+ AL (c1+c2+c3+ca).
Analogous to (15), we write
ul 1 ufo - ul o1 BT, Bty -+ Bly—
ol uBe e wha B B - Biwo
Uu" .= b" =
: . . . ’ . . .
u?/lfl,l uanl,Q u}bfl,Mfl B]?/[fl,l Banl,z B?\L/Ifl,Mfl

These matrices are embedded into (16) to determine the solution at time t,41 at
the interior grid points.
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Fig. 9: (left) Noisy 512x512 pixel images corrupted with multiplicative speckle
with parameter (top) L = 200 and (bottom) L = 5. (middle) Images that have
been despeckled using the AA model as in Equation (49) with n = .2, At = .1
and Az =~ .2. (right) Images denoised using the ¢; enhanced AA method with
parameters m = 4, p = 10 and 8 = 40.
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Fig. 10: Cross section of results in Figure 9 at location y = 50 for noise modeled
with (left) L = 200 and (right) L = 5.

Consider the image u : [—50, 50] x [—50,50] — R defined as

(z —50) + (y — 50)* < r?
r<z,y<r+25 (51)
otherwise,

u(z,y) =

NN SR I]
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where r = 37.5. The scene is discretized using N = 512 equally spaced grid points
in the x and y directions as

1
z; = =50+ 1Az, y; =50+ Az, 1,j=0,...,N—1, sz%.

The multiplicative noise in (46) is modeled as gamma distributed and is given by
v~ I(L,1/L), (52)

where L > 1 represents the number of independent noisy signals (or looks) avail-

Fig. 11: Noisy Gotcha parking lot image (left). Data processed using the AA
method (center) and corresponding ¢; enhancement with m = 4, p = 100, and

B =5 (right).

able. Figure 9 displays the noisy image for L = 200 (SNR ~ 5.05dB) (top-left)
and L =5 (SNR =~ .13dB) (bottom-left). As is evident in Figure 9(top-middle),
when the SNR is large enough, the AA method is sufficient in despeckling the
piecewise constant image. However, as the noise level is increased, the low order
TV is insufficient as it attempts to generate piecewise constants from the noisy
data (Figure 9 (bottom-middle)). On the other hand, although the higher order
PA transform is not necessary when the SNR is high (Figure 9 (top-right)), as
seen in Figure 9 (bottom-right), it is better able to recognize the smooth regions
between the internal boundaries of the image when SNR is low, resulting in a more
accurate recovery. We applied the ¢1 enhancement using the PA transform with
m =4, u =10 and 8 = 40. Cross sectional reconstructions at y = 50 are provided
in Figure 10.

Table 1: Gotcha Speckle Reduction Metrics

ENL Ospeck  DBias

Noisy Image - 5.6291 -
AA Model 1752.7 1.3544  0.0072
AA + 4 3517.5 0.9615 0.0159
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Fig. 12: Noisy MSTAR image (left). Data processed using the AA method (center)
and corresponding ¢; enhancement with m = 4, p = 100, and 8 = 5 (right).

Finally, Figures 11 and 12 depict two scenes provided in [1] and [2] respectively.®
In both cases, we compare the results using the AA method and its 1 enhanced
version with PA transform parameters m = 4, u = 100 and 8 = 5. It is evident
that the speckle is reduced in each scene.

To further validate our results, we calculate three noise suppression metrics.
The equivalent number of looks (ENL) is a metric used for evaluating the level
of smoothing in homogeneous areas. In particular, the scene variation should be
negligible with respect to speckle noise fluctuations. The ENL calculates the num-
ber of multiple looks necessary to create an image with the same level of reduced
speckle. A good despeckling technique would yield a high ENL number. In refer-
ence to (46), if u is the despeckled image, then in the homogeneous areas h we
have

(53)
The speckle standard deviation given by

Ospeck = v/ vary [u] (54)

measures the average variation in speckle amplitude throughout homogeneous re-
gions h. A small speckle standard deviation is indicative of desirable smoothness
and speckle reduction. To calculate (53) and (54), we must select a region in each
image where only noise is expected to be present (no signal), [5]. For the MSTAR
image, we chose the bottom twenty rows of the image matrix to correspond to a
homogeneous region, and in the Gotcha image, the image data corresponds to a
patch within the parking lot.

Finally, the reconstruction bias, B, measures the level of bias in the estimated
image. One way to calculate the bias is to measure the relative expected value of
the reconstructed image to the cluttered image g, and is given by

B::E{g;u}. (55)

A bias measurement of zero would represent a completely unbiased estimate, while
a value of B > .2 would indicate a high level of bias, [33].

6 More information about these images can be found at [1], [2], and [30].
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Table 2: MSTAR Speckle Reduction Metrics

ENL Ospeck ~ DBias

Noisy Image - 5.6843 -
AA Model 203.3 2.7396  0.0026
AA + 4 933.67 1.2820 0.0777

Tables 2 and 1 display the results of calculating these metrics for the MSTAR
and Gotcha parking lot image respectively. It is evident that our proposed ¢
enhanced AA method reduces the noise beyond the AA method while maintaining
acceptable image bias in the reconstructions.

5 Concluding Remarks

In this paper we introduced a method for solving non-linear partial differential
equations using ¢; regularization, and specifically, using the polynomial annihi-
lation (PA) transform operator in the ¢; term. Our results demonstrate that it
is possible to efficiently implement a method that is accurate and resolves shock
discontinuities. The method does not require advance knowledge of the shock lo-
cations.

Our new method is particularly useful for numerically solving hyperbolic par-
tial differential equations that develop shocks or discontinuities. The ¢; regular-
ization enhanced method exploits the knowledge that there are a sparse number
of singularities in the solution. Our method is made numerically efficient by em-
ploying the alternating direction of multipliers algorithm. We used our technique
to approximate the solution to Burgers’ equation with a smooth initial condi-
tion, Euler’s equations with initial conditions describing Sod’s shock tube, and a
two-dimensional PDE often employed for denoising imagery corrupted with mul-
tiplicative gamma noise. In all cases, our new method showed improved accuracy
near the shock locations. These results are obtained without post-processing or
the need for shock tracking. However, post-processing may further improve our
results. In addition, our method remains stable for larger time steps than those
typically used by conventional solvers. In future investigations we will study how
to optimize the parameters of our method as well as develop a more rigorous
understanding of stability conditions.

Other areas to explore include using different PDE solvers, such as the discon-
tinuous Galerkin method, in the data fidelity term. We anticipate that this will
help localize the effect of smoothing to only those cells that contain discontinuities.
Also beneficial could be the inclusion of time dependent regularization to enforce
the knowledge that the solutions do not vary significantly from one time step to
the next. Both topics will be explored in future studies.
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