
SEISMIC: SEcure In-lined Script Monitors for
Interrupting Cryptojacks

Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu,
Kevin W. Hamlen, and Shuang Hao

The University of Texas at Dallas
{wenhao.wang,benjamin.ferrell,xiaoyang.xu,hamlen,shao}@utdallas.edu

Abstract. Amethod of detecting and interrupting unauthorized, browser-
based cryptomining is proposed, based on semantic signature-matching.
The approach addresses a new wave of cryptojacking attacks, including
XSS-assisted, web gadget-exploiting counterfeit mining. Evaluation shows
that the approach is more robust than current static code analysis defenses,
which are susceptible to code obfuscation attacks. An implementation
based on in-lined reference monitoring offers a browser-agnostic deploy-
ment strategy that is applicable to average end-user systems without
specialized hardware or operating systems.

Keywords: web security, WebAssembly, cryptomining, intrusion detec-
tion, in-lined reference monitors

1 Introduction
Cryptojacking—the unauthorized use of victim computing resources to mine and
exfiltrate cryptocurrencies—has recently emerged as one of the fastest growing
new web cybersecurity threats. Network-based cryptojacking attacks increased
600% in 2017, with manufacturing and financial services as the top two targeted
industries, according to IBM X-Force [31]. Adguard reported a 31% surge in
cryptojacking attacks in November 2017 alone [32]. The Smominru botnet is
estimated to be earning its owners about $8,500 each week via unauthorized
Monero1 mining, or an estimated $2.8–3.6 million total as of January 2018 [19].

The relatively recent escalation of cryptojacking threats can be traced to
several converging trends, including the emergence of new mining-facilitating
technologies that make cryptojacking easier to realize, next-generation cryptocur-
rencies that are easier to mine and offer greater anonymity to criminals, and
the rising value of cryptocurrencies [23]. Among the chiefs of these new tech-
nologies is WebAssembly (Wasm),2 a new bytecode language for web browsers
that affords faster and more efficient computation than previous web scripting
languages, such as JavaScript (JS). By implementing cryptomining algorithms
in Wasm, legitimate miners can make more efficient use of client computing
resources to generate greater revenue, and attackers can covertly establish illicit
1 https://cointelegraph.com/news/monero
2 http://webassembly.org

https://cointelegraph.com/news/monero
http://webassembly.org

mining operations on browsers around the world with only average hardware
and computing resources, thereby achieving the mass deployment scales needed
to make cryptojacking profitable. For this reason, a majority of in-browser coin
miners currently use Wasm [35].

Unfortunately, this availability of transparent cryptomining deployment mod-
els is blurring distinctions between legitimate, legal cryptomining and illegitimate,
illegal cryptojacking. For example, in 2015, New Jersey settled a lengthy law-
suit against cryptomining company Tidbit, in which they alleged that Tidbit’s
browser-based Bitcoin mining software (which was marketed to websites as a
revenue-generation alternative to ads) constituted “access to computers ... without
the computer owners’ knowledge or consent” [36]. The definition and mechanism
of such consent has therefore become a central issue in protecting users against
cryptojacking attacks. For example, numerous top-visited web sites, including
Showtime [28], YouTube [11], and The Pirate Bay [17], have come under fire
within the past year for alleged cryptojacking attacks against their visitors. In
each case, cryptocurrency-generation activities deemed consensual by site owners
were not deemed consensual by users.

In order to provide end-users an enhanced capability to detect and consent to
(or opt-out of) browser-based cryptomining activities, this paper investigates the
feasibility of semantic signature-matching for robustly detecting the execution
of browser-based cryptomining scripts implemented in Wasm. We find that top
Wasm cryptominers exhibit recognizable computation signatures that differ sub-
stantially from other Wasm scripts, such as games. To leverage this distinction for
consent purposes, we propose and implement SEcure In-lined Script Monitors for
Interrupting Cryptojacks (SEISMIC). SEISMIC automatically modifies incoming
Wasm binary programs so that they self-profile as they execute, detecting the
echos of cryptomining activity. When cryptomining is detected, the instrumented
script warns the user and prompts her to explicitly opt-out or opt-in. Opting out
halts the script, whereas opting in continues the script without further profiling
(allowing it to execute henceforth at full speed).

This semantic signature-matching approach is argued to be more robust than
syntactic signature-matchers, such as n-gram detectors, which merely inspect
untrusted scripts syntactically in an effort to identify those that might cryptomine
when executed. Semantic approaches ignore program syntax in favor of monitoring
program behavior, thereby evading many code obfuscation attacks that defeat
static binary program analyses.

Instrumenting untrusted web scripts at the Wasm level also has the advantage
of offering a browser-agnostic solution that generalizes across different Wasm
virtual machine implementations. SEISMIC can therefore potentially be deployed
as an in-browser plug-in, a proxy service, or a firewall-level script rewriter.
Additional experiments on CPU-level instruction traces show that semantic
signature-matching can also be effective for detection of non-Wasm cryptomining
implementations, but only if suitable low-level instruction tracing facilities become
more widely available on commercial processors.

To summarize, this paper makes the following contributions:

2

• We conduct an empirical analysis of the ecosystem of in-browser cryptocur-
rency mining and identify key security-relevant components, including Wasm.

• We introduce a new proof-of-concept attack that can hijack mining scripts
and abuse client computing resources to gain cryptocurrency illicitly.

• We develop a novel Wasm in-line script monitoring system, SEISMIC, which
instruments Wasm binaries with mining sensors. SEISMIC allows users to
monitor and consent to cryptomining activities with acceptable overhead.

• We apply SEISMIC on five real-world mining Wasm scripts (four families)
and seven non-mining scripts. Our results show that mining and non-mining
computations exhibit significantly different behavioral patterns. We also
develop a classification approach and achieve ≥ 98% accuracy to detect
cryptomining activities.

The remainder of the paper is structured as follows. Sections 2 and 3 begin
with an overview of technologies of rising importance in web cryptomining,
and a survey of the cryptomining ecosystem, respectively. Section 4 presents a
new cryptojacking attack that demonstrates how adversaries can bypass current
security protections in this ecosystem to abuse end-user computing resources
and illicitly mine cryptocurrencies. Section 5 introduces our defense strategy
based on semantic signature-detection and in-lined reference monitoring, and
Section 6 evaluates its effectiveness. Finally, Section 7 summarizes related work
and Section 8 concludes.

2 Background
2.1 Monero
Monero (XMR) is a privacy-focused cryptocurrency launched in April 2014. The
confidentiality and untraceability of its transactions make Monero particularly
popular on darknet markets. Monero’s mining process is egalitarian, affording
both benign webmasters and malicious hackers new funding avenues.

The core of Monero involves the CryptoNight proof-of-work hash algorithm
based on the CryptoNote protocol [48]. CryptoNight makes mining equally efficient
on CPU and GPU, and restricts mining on ASIC. This property makes Monero
mining particularly feasible on browsers. A majority of current browser-based
cryptocurrency miners target CryptoNight, and miner web script development
has become an emerging business model. Page publishers embed these miners
into their content as an alternative or supplement to ad revenue.

2.2 WebAssembly
Wasm [14] is a new bytecode scripting language that is now supported by all
major browsers [7]. It runs in a sandbox after bytecode verification, where it aims
to execute nearly as fast as native machine code.

Wasm complements and runs alongside JS. JS loads Wasm scripts, whereupon
the two languages share memory and call each other’s functions. Wasm is typically
compiled from high-level languages (e.g., C, C++, or Rust). The most popular

3

HTML

Mining
Bar

...

JavaScript

UI functions

Websocket functions

WASM

cryptonight create

cryptonight destroy

cryptonight hash

...

Fig. 1: Browser-based mining workflow

toolchain is Emscripten,3 which compiles C/C++ to a combination of Wasm, JS
glue code, and HTML. The JS glue code loads and runs the Wasm module.

Browsers can achieve near-native speeds for Wasm because it is designed to
facilitate fast fetching, decoding, JIT-compilation, and optimization of Wasm
bytecode instructions relative to JS. Wasm does not require reoptimization or
garbage collection. These performance advantages make Wasm attractive for
computationally intensive tasks, leading most browser-based cryptocurrency
miners to use Wasm.

3 Ecosystem of Browser-based Cryptocurrency Mining
Although cryptomining is technically possible on nearly any browser with scripting
support, efficient and profitable mining with today’s browsers requires large-
scale deployment across many CPUs. Webmasters offering services that attract
sufficient numbers of visitors are therefore beginning to adopt cryptomining as an
alternative or supplement to online ads as a source of revenue. This has spawned
a secondary business model of cryptomining web software development, which
markets mining implementations and services to webmasters.

Thus, although mining occurs on visitors’ browsers, miner developers and page
publishers play driving roles in the business model. As more miner developers
release mining libraries and more page publishers adopt them, a browser-based
cryptocurrency mining ecosystem forms. To better understand the ecosystem, we
here illustrate technical details of browser-based mining.

Page publishers first register accounts with miner developers. Registration
grants the publisher an asymmetric key pair. Publishers then download miner
code from the miner developer and customize it to fit their published pages,
including adding their public keys. The miner developer uses the public key to
attribute mining contributions and deliver payouts to page publishers.

Figure 1 illustrates the resulting workflow. After publishers embed the cus-
tomized miner into their pages, it is served to client visitors and executes in
their browsers. The HTML file first loads into the client browser, causing the
mining bar to trigger supporting JS modules, which share functionalities with
Wasm modules. The Wasm code conducts computationally intensive tasks (e.g.,
cryptonight_hash), whereas UI and I/O interactions (e.g., Websocket commu-
nications) are implemented in JS. The code framework is typically created and
maintained by miner developers.
3 http://kripken.github.io/emscripten-site

4

http://kripken.github.io/emscripten-site

Table 1: Security-related features of popular miners
Wasm Domain Whitelisting Opt-In CPU Throttle

Adless X 7 7 X
Coinhive X 7 X X
CoinImp X 7 7 X
Crypto-Loot X 7 7 X
JSECoin X X 7 X
WebMinePool X 7 7 X

Table 1 summarizes security-related features of top web miner products:

– Wasm: Most miners use Wasm for performance. For example, Coinhive mines
Monera via Wasm, and has about 65% of the speed of a native miner.4

– Domain Whitelisting: To help deter malicious mining, some miner developers
offer domain name whitelisting to webmasters. If miner developers receive
mining contributions from unlisted domains, they can withhold payouts.

– Opt-In Tokens: To support ad blockers and antivirus vendors, some miner
products generate opt-in tokens for browsers. Mining can only start after an
explicit opt-in from the browser user. The opt-in token is only valid for the
current browser session and domain.

– CPU Throttling: Using all the client’s computing power tends to draw com-
plaints from visitors. Miner developers therefore advise page publishers to
use only a fraction of each visitor’s available computing power for mining.
Webmasters can configure this fraction.

4 Counterfeit Mining Attacks
To underscore the dangers posed by many browser-based mining architectures,
and to motivate our defense, we next demonstrate how the ecosystem described
in §3 can be compromised through counterfeit mining—a new cryptojacking
attack wherein third-party adversaries hijack mining scripts to work on their
behalf rather than for page publishers or page recipients.

Our threat model for this attack assumes that miner developers, page pub-
lishers, and page recipients are all non-malicious and comply with all rules of the
cryptomining ecosystem in §3, and that mining scripts can have an unlimited
variety of syntactic implementations. Specifically, we assume that miner develop-
ers and webmasters agree on a fair payout rate, publishers notify visitors that
pages contain miners, and mining only proceeds with visitor consent. Despite
this compliance, we demonstrate that malicious third-parties can compromise
the ecosystem by abusing the miner software, insecure web page elements, and
client computing resources to mine coins for themselves illegitimately.

To understand the attack procedure, we first illustrate how publishers embed
miners into their web pages. Listing 1.1 shows the HTML code publishers must
4 https://coinhive.com

5

https://coinhive.com

1 <script src="https://authedmine.com/lib/simple-ui.min.js" async></script>
2 <div class="coinhive-miner"
3 style="width:256px;height:310px"
4 data_key="YOUR_SITE_KEY">
5 Loading...
6 </div>

Listing 1.1: Embedded miner HTML code

1 var elements = document.querySelectorAll('.coinhive-miner');
2 for (var i = 0; i < elements.length; i++) {
3 new Miner(elements[i])
4 }

Listing 1.2: JavaScript gadget

typically add. Line 1 imports the JS library maintained by miner developer. Line 3
specifies the dimensions of the miner rendered on the page. Line 4 identifies the
publisher to the miner developer. To receive revenue, publishers must register
accounts with miner developers, whereupon each publisher receives a unique data
key. This allows miner developers to dispatch payroll to the correct publishers.

Our attack is predicated on two main observations about modern web pages:
First, cross-site scripting (XSS) vulnerabilities are widely recognized as a signif-
icant and pervasive problem across a large percentage of all web sites [52,13].
Thus, we realistically assume that some mining pages contain XSS vulnerabilities.
Second, although some XSS mitigations can block injection of executable scripts,
they are frequently unsuccessful at preventing all injections of non-scripts (e.g.,
pure HTML). Our attack therefore performs purely HTML XSS injection to
hijack miners via web gadgets [24]—a relatively new technique whereby existing,
non-injected script code is misused to implement web attacks.

Examining the JS library called in line 1 reveals several potentially abusable
gadgets, including the one shown in Listing 1.2. This code fragment selects all
div elements of class .coinhive-miner on the page, and renders a miner within
each. Unfortunately, line 1 is exploitable because it cannot distinguish publisher-
provided div elements from maliciously injected ones. This allows an adversary
to maliciously inject a div element of that class but with a different data key,
causing the recipient to mine coins for the attacker instead of the publisher. We
emphasize that in this attack, the exploited gadget is within the miner software,
not within the publisher’s page. Therefore all web pages that load the miner are
potentially vulnerable, creating a relatively broad surface for criminals to attack.

To verify our counterfeit miner attack, we deploy two proof-of-concept attacks.
Since the attacks begin with XSS exploits, we give two demonstrations: one
using a reflected XSS vulnerability and one with a stored XSS vulnerability. The
reflected XSS attack crafts a URL link containing the injected HTML code, where
the injected code is a div element similar to Listing 1.1. After enticing visitors to
click the URL link (e.g., via phishing), the visitor’s browser loads and executes

6

Fig. 2: Reflected (left) and stored (right) counterfeit mining attacks

the counterfeit miner. The left of Figure 2 shows a snapshot of the infected page,
in which the counterfeit miner is visible at the bottom.

The stored XSS attack involves a page that reads its content from a database,
to which visitors can add insufficiently sanitized HTML elements. In this scenario,
injecting the malicious miner HTML code into the database causes the counterfeit
miner to permanently inhabit the victim page. The right of Figure 2 illustrates
the attack procedure. The three screenshots show sequential phases of the attack.

Counterfeit mining attacks illustrate some of the complexities of the cryp-
tomining consent problem. In this case, asking users to consent to mining in
general on affected web pages does not distinguish between the multiple miners
on the compromised pages, some of which are working for the page publisher
and others for a malicious adversary. The next section therefore proposes an
automated, client-side consent mechanism based on in-lined reference monitoring
that is per-script and is page- and miner-agnostic. This allows users to detect and
potentially block cryptomining activities of individual scripts on a page, rather
than merely the page as a whole.

5 Detection
In light of the dangers posed by counterfeit and other cryptomining attacks,
this section proposes a robust defense strategy that empowers page recipients
with a more powerful detection and consent mechanism. Since cryptojacking
attacks ultimately target client computing resources, we adopt a strictly client-
side defense architecture; supplementary publisher- and miner developer-side
mitigations are outside our scope.

Section 5.1 begins with a survey of current static approaches and their limita-
tions. Section 5.2 then proposes a more dynamic strategy that employs semantic
signature detection, and presents experimental evidence of its potential effective-
ness. Finally, Section 5.3 presents technical details of our defense implementation.

7

Fig. 3: Antivirus detection of CryptoNight before and after function renaming

5.1 Current Methods
Antivirus engines detect browser mining primarily via script file signature
databases. The most popular Wasm implementation of the CryptoNight hashing
algorithm [48] is flagged by at least 21 engines. A few of these (e.g., McAfee)
go a step further and detect cryptomining implementations based on function
names or other recognized keywords and code file structures.

Unfortunately, these static approaches are easily defeated by code obfuscations.
For example, merely changing the function names in the CryptoNight Wasm
binary bypasses all antivirus engines used on VirusTotal. Figure 3 shows detection
results for the original vs. obfuscated CryptoNight binary.

Web browsers also have some detection mechanisms in the form of plugins or
extensions, but these have similar limitations. The No Coin [21] Chrome extension
enforces a URL blacklist, which prevents miners from contacting their proxies.
However, criminals can bypass this by setting up new proxies not on the blacklist.
MinerBlock5 statically inspects scripts for code features indicative of mining. For
instance, it detects CoinHive miners by searching for functions named isRunning
and stop, and variables named _siteKey, _newSiteKey, and _address. These
static analyses are likewise defeated by simple code obfuscations.

5.2 Semantic Signature-matching
A common limitation of the aforementioned detection approaches is their reliance
on syntactic features (viz., file bytes and URL names) that are easily obfuscated
by attackers. We therefore focus on detection via semantic code features that are
less easy to obfuscate because they are fundamental to the miner’s computational
purpose. Our proposed solution monitors Wasm scripts as they execute to derive
a statistical model of known mining and non-mining behavior. Profiling reveals a
distribution of Wasm instructions executed, which we use at runtime to distinguish
mining from non-mining activity.
5 https://github.com/xd4rker/MinerBlock

8

https://github.com/xd4rker/MinerBlock

i32.add i32.and i32.shl i32.shr_u i32.xor

A-Star 86.78 4.71 5.52 0.44 2.54
Asteroids 89.67 4.33 5.10 0.44 0.42
Basic4GL 75.78 8.43 13.75 1.78 0.27
Bullet(1000) 84.42 3.55 11.30 0.20 0.51
CoinHive 19.90 17.90 22.60 17.00 22.60
CoinHive_v0 20.20 17.50 22.70 17.00 22.70
CreaturePack 54.70 0.52 44.27 0.21 0.40
FunkyKarts 77.89 8.68 12.28 0.44 0.71
HushMiner 62.53 6.45 17.87 6.23 6.93
NFWebMiner 28.00 15.80 20.40 15.30 20.40
Tanks 61.90 12.29 22.27 2.02 1.51
YAZECMiner 57.99 4.37 30.75 3.26 3.63

Table 2: Execution trace average profiles

Using Intel Processor Tracing (PT), we first generated native code instruction
counts for Wasm web apps. We recorded native instruction counts for 1-second
computation slices on Firefox, for web apps drawn from: 500 pages randomly
selected from Alexa top 50K, 500 video pages from YouTube, 100 Wasm embedded
game or graphic pages, and 102 browser mining pages. Detailed results are
presented in Appendix A. The traces reveal that cryptomining Wasm scripts rely
much more upon packed arithmetic instructions from the MMX, SSE, and SSE2
instruction sets of CISC processors than do other Wasm scripts, like games.

Although PT is useful for identifying semantic features of possible interest, it
is not a good basis for implementing detection on average client browsers since
PT facilities are not yet widely available on average consumer hardware and
OSes. We therefore manually identified the top five Wasm bytecode instructions
that JIT-compile to the packed arithmetic native code instructions identified by
the PT experiments. These five instructions are the column labels of Table 2.

We next profiled these top-five Wasm instructions at the Wasm bytecode
level by instrumenting Wasm binary scripts with self-profiling code. We profiled
four mining apps plus one variant, and seven non-mining apps. The non-mining
apps are mostly games (which is the other most popular use of Wasm), and the
rest are graphical benchmarks. For each app, we executed and interacted with
them for approximately 500 real-time seconds to create each profile instance. For
each app with configurable parameters, we varied them over their entire range of
values to cover all possible cases.

Figure 4 displays the resulting distributions. There is a clear and distinct
stratification for the two CoinHive variants and NFWebMiner, which are based on
CryptoNight. YAZEC (Yet Another ZEC) Miner uses a different algorithm, and
therefore exhibits slightly different but still distinctive profile. Table 2 displays
an average across the 100 distributions for all of the profiled applications.

5.3 SEISMIC In-lined Reference Monitoring
Our profiling experiments indicate that Wasm cryptomining can potentially be
detected by semantic signature-matching of Wasm bytecode instruction counts.
To implement such a detection mechanism that is deployable on end-user browsers,
our solution adopts an in-lined reference monitor (IRM) [39,8] approach. IRMs

9

Fig. 4: Semantic profiles for mining vs. non-mining Wasm apps

automatically instrument untrusted programs (e.g., web scripts) with guard code
that monitors security-relevant program operations. The code transformation
yields a new program that self-enforces a desired policy, yet preserves policy-
compliant behaviors of the original code. In browsing contexts, IRM formalisms
have been leveraged to secure other scripting languages, such as JS and Flash
(cf., [37]), but not yet Wasm. In this scenario, our goal is to design and imple-
ment an IRM system that automatically transforms incoming Wasm binaries to
dynamically compute their own semantic features and match them to a given
semantic signature.

Wasm scripts are expressed in binary or human-readable textual form. Each
can be translated to the other using the Wasm Binary Toolkit (WABT). Typically
scripts are distributed in binary form for size purposes, but either form is accepted
by Wasm VMs. The programs are composed of sections, which are each lists of
section-specific content. Our automated transformation modifies the following
three Wasm section types:

– Functions: a list of all functions and their code bodies
– Globals: a list of variables visible to all functions sharing a thread
– Exports: a list of functions callable from JS

Figure 5 shows a high-level view of our Wasm instrumentation workflow.
We here explain a workflow for a single Wasm binary file, but our procedure
generalizes to pages with multiple binaries. As a running example, Listing 1.3
contains a small C++ function that computes the sum of the squares of its two
inputs. Compiling it yields the Wasm bytecode in Listing 1.4.

10

WASM

(original)

WAT
import:
...
functions:
...
globals:
...
exports:
...

1© WAT

(profiled)

5©

3©
2©
4©

WASM

(profiled)

6© JS

module[asm][f1]
module[asm][f2]
...

7©

8©
9©

Fig. 5: SEISMIC transformation of Wasm binaries

1 int pythag(int a, int b) { return a * a + b * b; }

Listing 1.3: C++ source code for compilation to Wasm

1 (module (table 0 anyfunc) (memory $0 1)
2 (export "memory" (memory $0))
3 (export "pythag" (func $pythag))
4 (func $pythag (; 0 ;) (param $0 i32) (param $1 i32) (result i32)
5 (i32.add (i32.mul (get_local $1) (get_local $1))
6 (i32.mul (get_local $0) (get_local $0)))))

Listing 1.4: Original Wasm compiled from C++

Our prototype implementation of SEISMIC first parses the untrusted binary
to a simplified abstract syntax tree (AST) similar to the one in Listing 1.4 using
wasm2wat from WABT with the –fold-exprs flag (1). It next injects a fresh
global variable of type i64 (64-bit integer) into the globals section for each Wasm
instruction opcode to be profiled (2). The JS-Wasm interface currently does not
support the transfer of 64-bit integers, so to allow JS code to read these counters,
32-bit accessor functions getInstLo and getInstHi are added (3). An additional
reset function that resets all the profile counters to zero is also added, to allow
the security monitor to separately profile different time slices of execution. All
three functions are added to the binary’s exports (4).

The transformation algorithm next scans the bodies of all Wasm functions
in the script and in-lines counter-increment instructions immediately after each
instruction to be profiled (5). Our prototype currently takes the brute-force ap-
proach of in-lining the counter-increment guard code for each profiled instruction,
but optimizations that improve efficiency by speculatively increasing counters by
large quantities in anticipation of an uninterruptable series of signature-relevant
operations are obviously possible.

The modified Wasm text file is now ready to be translated to binary form,
which we perform by passing it to wat2wasm from WABT (6). At this point, we
redirect the JS code that loads the Wasm binary to load the new one (7). This
can be done either by simply using the same name as the old file (i.e., overwriting
it) or by modifying the load path for the Wasm file in JS to point to the new one.

Listing 1.5 shows the results of this process when profiling Wasm instructions
i32.add and i32.mul. Lines 4–6 export the IRM helper functions defined in
lines 15–17. Lines 18 and 19 define global counter variables to profile i32.add and

11

1 (module (table 0 anyfunc) (memory $0 1)
2 (export "memory" (memory $0))
3 (export "pythag" (func $pythag))
4 (export "_getAddsLo" (func $_getAddsLo))
5 ...
6 (export "_reset" (func $_reset))

8 (func $pythag (; 0 ;) (param $0 i32) (param $1 i32) (result i32)
9 (i32.add (set_global 0 (i64.add (get_global 0) (i64.const 1)))

10 (i32.mul (set_global 1 (i64.add (get_global 1) (i64.const 1)))
11 (get_local $1) (get_local $1))
12 (i32.mul (set_global 1 (i64.add (get_global 1) (i64.const 1)))
13 (get_local $0) (get_local $0))))

15 (func $_getAddsLo (; 1 ;) (result i32) (return (i32.wrap/i64 (get_global 0))))
16 ...
17 (func $_reset (; 5 ;) (set_global 0 (i64.const 0)) (set_global 1 (i64.const 0)))
18 (global (;0;) (mut i64) (i64.const 0))
19 (global (;1;) (mut i64) (i64.const 0)))

Listing 1.5: Instrumented Wasm

i32.mul instructions, respectively. The two i32.mul instructions are instrumented
on lines 10 and 12, and the single i32.add instruction is instrumented on line 9.

SEISMIC’s instrumentation procedure anticipates an attack model in which
script authors and their scripts might be completely malicious, and adversaries
might know all details of SEISMIC’s implementation. For example, adversaries
might craft Wasm binaries that anticipate the instrumentation procedure and
attempt to defeat it. We therefore designed our instrumentation in accordance
with secure IRM design principles established in the literature [39,15,29]. In
particular, the Wasm bytecode language does not include unrestricted computed
jump instructions, allowing our transformation to implement uncircumventable
basic blocks that pair profiling code with the instructions they profile. Moreover,
Wasm is type-safe [14], affording the implementation of incorruptible state vari-
ables that track the profiling information. Type-safety ensures that malicious
Wasm authors cannot use pointer arithmetic or untyped references to corrupt the
IRM’s profiling variables (cf., [41,40]). These language properties are the basis
for justifying other Wasm security features, such as control-flow integrity [50].

To start the enforcement, Listing 1.6 instantiates a JS timer that first executes
at page-load and checks whether Wasm code has been loaded and compiled (8).
If so, all Wasm instruction counters are queried, reset, and logged to the console.
The timer profiles another slice of computation time every 5000 milliseconds.
This affords detection of scripts that mine periodically but not continuously.

6 Evaluation
To evaluate our approach, we instrumented and profiled the web apps listed in
Table 2. The majority of Wasm code we profiled was identifiable as having been

12

1 function wasmProfiler() {
2 if (Module["asm"] != null && typeof _reset === "function") {
3 console.log(_getAddsHi() * 232 + _getAddsLo() + "␣adds");
4 console.log(_getMulsHi() * 232 + _getMulsLo() + "␣multiplies");
5 _reset();
6 } else { console.log("Wasm␣not␣loaded␣yet"); }
7 setTimeout(wasmProfiler, 5000);
8 }
9 wasmProfiler();

10 ...
11 Module["asm"] = asm;
12 var _getAddsLo = Module["_getAddsLo"] = function() {
13 return Module["asm"]["_getAddsLo"].apply(null, arguments) };
14 ...

Listing 1.6: SEISMIC JavaScript code

Table 3: Mining Overhead
Vanilla Profiled

CoinHive v1 36 hash/s 18 hash/s
CoinHive v0 40 hash/s 19 hash/s
NFWebMiner 38 hash/s 16 hash/s
HushMiner 1.6 sol/s 0.8 sol/s
YAZECMiner 1.8 sol/s 0.9 sol/s

compiled with Emscripten, an LLVM-based JS compiler that yields a JS-Wasm
pair of files for inclusion on web pages. The JS file contains an aliased list of
exported functions, where we insert our new entries for the counters (9). The
remaining Wasm programs we profiled have a similar structure to the output of
Emscripten, so they can be modified in a similar manner.

We profiled every instruction used in the CoinHive worker Wasm, which is
a variant of the CryptoNight hashing algorithm, and determined the top five
bytecode instructions used: i32.add, i32.and, i32.shl, i32.shr_u, and i32.xor.
Normalized counts of how many times these instructions execute constitute
feature vectors for our approach.

Runtime Overhead. Table 3 reports runtime overheads for instrumented binaries.
The data was obtained by running each miner in original and instrumented form
over 100 trials, and averaging the results. CoinHive and NFWebMiner were set to
execute with 4 threads and their units are in hashes per second. HushMiner and
Yet Another ZEC Miner are single-threaded and display units in solutions per
second. In general, the miners we tested incurred a runtime overhead of roughly
100%. We deem this acceptable because once mining is explicitly allowed by the
user, execution can switch back to the faster original code.

Non-mining code overhead must be calculated in a different way, since most are
interactive and non-terminating (e.g., games). We therefore measured overhead
for these programs by monitoring their frames-per-second. In all cases they

13

Table 4: SVM stratified 10-fold cross validation
Miner Fold Precision Recall F1 Fold Precision Recall F1

N 1 1.00 0.99 0.99 2 1.00 1.00 1.00
Y 0.96 1.00 0.98 1.00 1.00 1.00
N 3 1.00 1.00 1.00 4 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00
N 5 1.00 1.00 1.00 6 1.00 0.99 0.99
Y 1.00 1.00 1.00 0.96 1.00 0.98
N 7 1.00 1.00 1.00 8 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00
N 9 1.00 1.00 1.00 10 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00

remained at a constant 60 frames-per-second once all assets had loaded. Overall,
no behavioral differences in instrumented scripts were observable during the
experiments (except when mining scripts were interrupted to obtain user consent).
This is expected since guard code in-lined by SEISMIC is implemented to be
transparent to the rest of the script’s computation.

Robustness. Our approach conceptualizes mining detection as a binary classi-
fication problem, where mining and non-mining are the two classes. Features
are normalized vectors of the counts of the top five used Wasm instructions. For
model selection, we choose Support Vector Machine (SVM) with linear kernel
function. We set penalty parameter C to 10, since it is an unbalanced problem
(there are far fewer mining instances than non-mining instances). To evaluate
this approach, we use stratified 10-fold cross validation on 1900 instances, which
consist of 500 miners and 1400 non-miners.

The results shown in Table 4 are promising. All mining activities are identified
correctly, and the overall accuracy (F1 score) is 98% or above in all cases.
SEISMIC monitoring exhibits negligible false positive rate due to our strict
threhhold for detection. Visitors can also manually exclude non-mining pages if
our system exhibits a false positive, though the cross-validation results indicate
such misclassifications are rare.

7 Related Work
Browser-based cryptocurrency mining is an emerging business model. A recent
study has provided preliminary analysis of in-browser mining of cryptocurren-
cies [9], while we strive to inspect its security issues in depth. In particular, our
work is the first to investigate the specific security ramifications of using Wasm
for cryptomining.

7.1 Cryptocurrencies
Researchers have conducted a variety of systematic analyses of cryptocurrencies
and discussed open research challenges [4]. A comprehensive study of Bitcoin

14

mining malware has shown that botnets generate additional revenue through
mining [18]. MineGuard [47] utilizes hardware performance counters to generate
signatures of cryptocurrency mining, which are then used to detect mining
activities. Other research has focused on the payment part of cryptocurrencies.
For example, EZC [1] was proposed to hide the transaction amounts and address
balances. Double-spending attacks threaten fast payments in Bitcoin [20]. Bitcoin
timestamp reliability has been improved to counter various attacks [46]. Through
analysis of Bitcoin transactions of CryptoLocker, prior studies revealed the
financial infrastructure of ransomware [27] and reported its economic impact [6].
In contrast, in-browser cryptomining, such as Monero, is less studied in the
scholarly literature. In this work, we conducted the first analysis to study Wasm-
based cryptomining, and developed new approaches to detect mining activities.

7.2 Cross-Site Scripting
Our counterfeit mining attack (§4) leverages cross-site scripting (XSS). The
attacks and defenses of XSS have been an ongoing cat-and-mouse game for
years. One straightforward defense is to validate and sanitize input on the server
side, but this places a heavy burden on web developers for code correctness.
XSS-GUARD [3] utilizes taint-tracking technology to centralize validation and
sanitization on the server-side. Blueprint [30], Noncespaces [12], DSI [34], and
CSP [42] adopt the notion of client-side HTML security policies [51] to defend
XSS. Large-scale studies have also been undertaken to examine the prevalence
of DOM-based XSS vulnerabilities [25] and the security history of the Web’s
client side [44], concluding that client-side XSS stagnates at a high level. To
remedy the shortcomings of string-based comparison methods, taint-aware XSS
filtering has been proposed to thwart DOM-based XSS [45]. DOMPurify [16] is
an open-source library designed to sanitize HTML strings and document objects
from DOM-based XSS attacks. Recently, attacks leveraging script gadgets have
been discovered that circumvent all currently existing XSS mitigations [24]. We
showed that in-browser crypomining is susceptible to such gadget-powered XSS
attacks to hijack Wasm mining scripts.

Although our SEISMIC defense detects and warns users about cryptomining
activities introduced through XSS, XSS can still potentially confuse users into
responding inappropriately to the warnings. For example, attackers can potentially
leverage XSS to obfuscate the provenance of cryptomining scripts, causing users
to misattribute them to legitimate page publishers. This longstanding attribution
problem is a continuing subject of ongoing study (cf., [38]).

7.3 Related Web Script Defenses
A cluster of research on defense mechanisms is also related to our work. Oblivi-
Ad [2] is an online behavioral advertising system that aims to protect visitors’
privacy. MadTracer [26] leverages decision tree models to detect malicious web
advertisements. JStill [54] compares the information from both static analysis and
runtime inspection to detect and prevent obfuscated malicious JS code. Analysis
of access control mechanisms in the browser has observed that although CSP

15

is a clean solution in terms of access control, XS-search attacks can use timing
side-channels to exfiltrate data from even prestigious services, such as Gmail
and Bing [10]. Blacklist services provided by browsers to thwart malicious URLs
have been shown to be similarly limited [49]. BridgeScope [55] was proposed to
precisely and scalably find JS bridge vulnerabilities. Commix [43] automates
the detection and exploitation of command injection vulnerabilities in web
applications. Our system is orthogonal to these prior defense mechanisms, in
that it profiles Wasm execution and helps users detect unauthorized in-browser
mining of cryptocurrencies.

7.4 Semantic Malware Detection and Obfuscation
Our semantic signature-matching approach to cryptomining detection is moti-
vated by the widespread belief that it is more difficult for adversaries to obfuscate
semantic features than syntactic ones (cf., [5,22]). Prior work has demonstrated
that semantic features can nevertheless be obfuscated with sufficient effort, at
the cost of reduced performance (e.g., [33,53]). While such semantic obfuscations
could potentially evade our SEISMIC monitors, we conjecture that the perfor-
mance penalty of doing so could make obfuscated cryptojacking significantly
less profitable for attackers. Future work should investigate this conjecture once
semantically obfuscated cryptojacking attacks appear and can be studied.

8 Conclusion
SEISMIC offers a semantic-based cryptojacking detection mechanism for Wasm
scripts that is more robust than current static detection defenses employed by an-
tivirus products and browser plugins. By automatically instrumenting untrusted
Wasm binaries in-flight with self-profiling code, SEISMIC-modified scripts dy-
namically detect mining computations and offer users explicit opportunities to
consent. Page-publishers can respond to lack of consent through a JS interface,
affording them opportunities to introduce ads or withdraw page content from
unconsenting users. Experimental evaluation indicates that self-profiling overhead
is unobservable for non-mining scripts, such as games (and is eliminated for
miners once consent is granted). Robustness evaluation via cross-validation shows
that the approach is highly accurate, exhibiting very few misclassifications.

Acknowledgments
This research was supported in part by NSF award #1513704, ONR award N00014-
17-1-2995, AFOSR award FA9550-14-1-0173, and an NSF I/UCRC award from
Lockheed-Martin.

References
1. E. Androulaki, G. Karame, and S. Capkun. Hiding transaction amounts and

balances in Bitcoin. In Proceedings of the 7th ACM International Conference on
Trust and Trustworthy Computing (TRUST), pages 161–178, 2014.

16

2. M. Backes, A. Kate, and M. Maffei. ObliviAd: Provably secure and practical online
behavioral advertising. In Proceedings of the 33th IEEE Symposium on Security
and Privacy (S&P), pages 257–271, 2012.

3. P. Bisht and V. Venkatakrishnan. XSS-GUARD: Precise dynamic prevention of
cross-site scripting attacks. In Proceedings of the 5th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
pages 23–43, 2008.

4. J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten.
SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies. In
Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P), pages
104–121, 2015.

5. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-
aware malware detection. In Proceedings of the 26th IEEE Symposium on Security
& Privacy (S&P), pages 32–46, 2005.

6. M. Conti, A. Gangwal, and S. Ruj. On the economic significance of ransomware
campaigns: A Bitcoin transactions perspective. arXiv:1804.01341, 2018.

7. J. DeMocker. WebAssembly support now shipping in all major browsers. Mozilla
Blog, November 2017.

8. Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: A
retrospective. In Proceedings of the New Security Paradigms Workshop (NSPW),
pages 87–95, 1999.

9. S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark. A first look at browser-
based cryptojacking. In Proceedings of the 2nd IEEE Security & Privacy on the
Blockchain Workshop (IEEE S&B), 2018.

10. N. Gelernter and A. Herzberg. Cross-site search attacks. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS), pages
1394–1405, 2015.

11. D. Goodin. Now even YouTube serves ads with CPU-draining cryptocurrency
miners. Ars Technica, January 2018.

12. M. V. Gundy and H. Chen. Noncespaces: Using randomization to defeat cross-site
scripting attacks. Computers & Security, 31(4):612–628, 2012.

13. S. Gupta and B. Gupta. Cross-site scripting (XSS) attacks and defense mechanisms:
Classification and state-of-the-art. International Journal of System Assurance
Engineering Management, 8(1):512–530, 2017.

14. A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. Bastien. Bringing the Web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 185–200, 2017.

15. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for
enforcement mechanisms. ACM Transactions On Programming Languages And
Systems (TOPLAS), 28(1):175–205, 2006.

16. M. Heiderich and C. Späth. DOMPurify: Client-side protection against XSS and
markup injection. In Proceedings of the 22nd European Symposium on Research in
Computer Security (ESORICS), pages 116–134, 2017.

17. J. Hruska. Browser-based mining malware found on Pirate Bay, other sites. Ex-
tremeTech, September 2017.

18. D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. Mccoy,
S. Savage, N. Weaver, A. C. Snoeren, and K. Levchenko. Botcoin: Monetizing
stolen cycles. In Proceedings of the 21st Network and Distributed System Security
Symposium (NDSS), 2014.

17

19. Kafeine. Smominru Monero mining botnet making millions for operators. ProofPoint
Threat Insight, January 2018.

20. G. Karame, E. Androulaki, and S. Capkun. Double-spending fast payments in Bit-
coin. In Proceedings of the 19th ACM Conference on Computer and Communications
Security (CCS), pages 906–917, 2012.

21. R. Keramidas. Stop coin mining in the browser with No Coin. https://ker.af/stop-
coin-mining-in-the-browser-with-no-coin, September 2017.

22. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious code
by model checking. In Proceedings of the 2nd International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA), pages 174–187,
2005.

23. H. Lau. Browser-based cryptocurrency mining makes unexpected return from the
dead. Sympantec Threat Intelligence, December 2017.

24. S. Lekies, K. Kotowicz, S. Groß, E. V. Nava, and M. Johns. Code-reuse attacks for
the web: Breaking cross-site scripting mitigations via script gadgets. In Proceedings
of the 24th ACM Conference on Computer and Communications Security (CCS),
pages 1709–1723, 2017.

25. S. Lekies, B. Stock, and M. Johns. 25 million flows later: Large-scale detection of
DOM-based XSS. In Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), pages 1193–1204, 2013.

26. Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing your enemy: Understanding
and detecting malicious web advertising. In Proceedings of the 19th ACM Conference
on Computer and Communications Security (CCS), pages 906–917, 2012.

27. K. Liao, Z. Zhao, A. Doupé, and G.-J. Ahn. Behind closed doors: Measurement and
analysis of CryptoLocker ransoms in Bitcoin. In Proceedings of the 11th APWG
Symposium on Electronic Crime Research (eCrime), pages 1–13, 2016.

28. S. Liao. Showtime websites secretly mined user CPU for cryptocurrency. The Verge,
September 2017.

29. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.
ACM Transactions on Information and System Security (TISSEC), 12(3), 2009.

30. M. T. Louw and V. N. Venkatakrishnan. Blueprint: Robust prevention of cross-site
scripting attacks for existing browsers. In Proceedings of the 30th IEEE Symposium
on Security and Privacy (S&P), pages 331–346, 2009.

31. D. McMillen. Network attacks containing cryptocurrency CPU mining tools grow
sixfold. IBM X-Force SecurityIntelligence, September 2017.

32. A. Meshkov. Cryptojacking surges in popularity growing by 31% over the past
month. AdGuard Research, November 2017.

33. A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC), pages 421–430, 2007.

34. Y. Nadji, P. Saxena, , and D. Song. Document structure integrity: A robust basis
for cross-site scripting defense. In Proceedings of the 21st Network and Distributed
System Security Symposium (NDSS), 2014.

35. R. Neumann and A. Toro. In-browser mining: Coinhive and WebAssembly. For-
cepoint Security Labs, April 2018. https://blogs.forcepoint.com/security-labs/
browser-mining-coinhive-and-webassembly.

36. OAG, New Jersey. New Jersey Division of Consumer Affairs obtains settlement with
developer of Bitcoin-mining software found to have accessed New Jersey computers
without users’ knowledge or consent. Office of the Attorney General, Department
of Law & Public Safety, State of New Jersey, May 2015.

18

https://ker.af/stop-coin-mining-in-the-browser-with-no-coin
https://ker.af/stop-coin-mining-in-the-browser-with-no-coin
https://blogs.forcepoint.com/security-labs/browser-mining-coinhive-and-webassembly
https://blogs.forcepoint.com/security-labs/browser-mining-coinhive-and-webassembly

37. P. H. Phung, M. Monshizadeh, M. Sridhar, K. W. Hamlen, and V. Venkatakrishnan.
Between worlds: Securing mixed JavaScript/ActionScript multi-party web content.
IEEE Transactions on Dependable and Secure Computing (TDSC), 12(4):443–457,
2015.

38. N. C. Rowe. The attribution of cyber warfare. In J. A. Green, editor, Cyber
Warfare: A multidisciplinary Analysis, Routledge Studies in Conflict, Security and
Technology. Routledge, 2015.

39. F. B. Schneider. Enforceable security policies. ACM Transactions on Information
and Systems Security (TISSEC), 3(1):30–50, 2000.

40. M. Sridhar and K. W. Hamlen. ActionScript in-lined reference monitoring in
Prolog. In Proceedings of the 12th International Symposium on Practical Aspects
of Declarative Languages (PADL), pages 149–151, 2010.

41. M. Sridhar and K. W. Hamlen. Model-checking in-lined reference monitors. In
Proceedings of the 11th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 312–327, 2010.

42. S. Stamm, B. Sterne, and G. Markham. Reining in the Web with content security
policy. In Proceedings of the 19th International Conference on World Wide Web
(WWW), pages 921–930, 2010.

43. A. Stasinopoulos, C. Ntantogian, and C. Xenakis. Commix: Automating evalu-
ation and exploitation of command injection vulnerabilities in web applications.
International Journal of Information Security, pages 1–24, 2018.

44. B. Stock, M. Johns, M. Steffens, and M. Backes. How the Web tangled itself:
Uncovering the history of client-side Web (in)security. In Proceedings of the 26th
USENIX Security Symposium, pages 971–987, 2017.

45. B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns. Precise client-side
protection against DOM-based cross-site scripting. In Proceedings of the 23rd
USENIX Security Symposium, pages 655–670, 2014.

46. P. Szalachowski. Towards more reliable Bitcoin timestamps. arXiv:1803.09028,
2018.

47. R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Caesar, and
N. Borisov. Mining on someone else’s dime: Mitigating covert mining operations
in clouds and enterprises. In Proceedings of the 20th International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID), pages 287–310, 2017.

48. N. van Saberhagen. CryptoNote v 2.0. Technical report, CryptoNote Technology,
October 2013.

49. N. Virvilis, A. Mylonas, N. Tsalis, and D. Gritzalis. Security busters: Web browser
security vs. suspicious sites. Computers & Security, 52:90–105, 2015.

50. WebAssembly Community Group. Security. http://webassembly.org/docs/
security, 2018.

51. J. Weinberger, A. Barth, and D. Song. Towards client-side HTML security policies.
In Proceedings of the 6th USENIX Conference on Hot Topics in Security (HotSec),
pages 8–8, 2011.

52. WhiteHat Security. Application security statistics report, vol. 12, 2017.
53. Z. Wu, S. Gianvecchio, M. Xie, and H. Wang. Mimimorphism: A new approach to

binary code obfuscation. In Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS), pages 536–546, 2010.

54. W. Xu, F. Zhang, and S. Zhu. JStill: Mostly static detection of obfuscated malicious
JavaScript code. In Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY), pages 117–128, 2013.

19

http://webassembly.org/docs/security
http://webassembly.org/docs/security

55. G. Yang, A. Mendoza, J. Zhang, and G. Gu. Precisely and scalably vetting JavaScript
bridge in Android hybrid apps. In Proceedings of the 20th International Symposium
on Research in Attacks, Intrusions, and Defenses (RAID), pages 143–166, 2017.

A Processor Tracing Experiments
Table 5 itemizes the 30 most significant opcodes that discriminate between mining
and non-mining web contents. Our feature selection process treats all distinct
Intel native opcodes as features and their number of occurrences as feature values.
We employ forests of trees to evaluate the importance of features. The ranking is
based on the feature importance as determined by SVM (see §6).

Table 5: Top 30 native opcode features that distinguish mining from non-mining
Rank Opcode Rank Opcode

1 SUB 16 LOCK
2 CMOVS 17 CMOVB
3 UNPCKHPS† 18 SETBE
4 DIVSD‡ 19 SETNZ
5 SETB 20 ROL
6 MOVQ? 21 MUL
7 MAXPS† 22 SETNLE
8 CMOVNLE 23 CVTTSD2SI‡

9 COMVLE 24 MOVMSKPS†

10 PSUBUSW? 25 CMOVZ
11 CMOVNL 26 TEST
12 UNPCKLPS† 27 CMOVNZ
13 ROUNDSD† 28 ROUNDSS†

14 CMPPS† 29 STMXCSR†

15 MOVLHPS† 30 CMOVNB
? MMX instruction † SSE instruction ‡ SSE2 instruction

20

	SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks
	Introduction
	Background
	Monero
	WebAssembly

	Ecosystem of Browser-based Cryptocurrency Mining
	Counterfeit Mining Attacks
	Detection
	Current Methods
	Semantic Signature-matching
	SEISMIC In-lined Reference Monitoring

	Evaluation
	Related Work
	Cryptocurrencies
	Cross-Site Scripting
	Related Web Script Defenses
	Semantic Malware Detection and Obfuscation

	Conclusion
	Processor Tracing Experiments

