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Abstract

Although the Normalized Difference Vegetation Index (NDVI) time-series data, derived from NOAA/AVHRR, SPOT/VEGETATION,

TERRA or AQUA/MODIS, has been successfully used in research regarding global environmental change, residual noise in the NDVI time-

series data, even after applying strict pre-processing, impedes further analysis and risks generating erroneous results. Based on the

assumptions that NDVI time-series follow annual cycles of growth and decline of vegetation, and that clouds or poor atmospheric conditions

usually depress NDVI values, we have developed in the present study a simple but robust method based on the Savitzky–Golay filter to

smooth out noise in NDVI time-series, specifically that caused primarily by cloud contamination and atmospheric variability. Our method

was developed to make data approach the upper NDVI envelope and to reflect the changes in NDVI patterns via an iteration process. From

the results obtained by applying the newly developed method to a 10-day MVC SPOT VGT-S product, we provide optimized parameters for

the new method and compare this technique with the BISE algorithm and Fourier-based fitting method. Our results indicate that the new

method is more effective in obtaining high-quality NDVI time-series.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Time-series data for the Normalized Difference Vegeta-

tion Index (NDVI) derived from NOAA/AVHRR, SPOT/

VEGETATION, TERRA, or AQUA/MODIS have proven

to be appropriate for detecting long-term land-use/cover

changes and for modeling terrestrial ecosystems on the

global, continental, and regional scales, since NDVI carries

valuable information regarding land-surface properties

(IGBP, 1992; Justice et al., 1985; Myneni et al., 1997;

Potter et al., 1993; Prince, 1991; Reed et al., 1994;

Running & Nemani, 1988; Tucker & Sellers, 1986; Tucker

et al., 1985 and others). Theoretically, NDVI, calculated

from a normalized transform of the near-infrared (NIR)
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and red reflectance ratio, is an index of the absorptive and

reflective characteristics of vegetation in the red and near-

infrared portions of the electromagnetic spectrum. For this

reason, changes in NDVI time-series indicate changes in

vegetation conditions proportional to the absorption of

photosynthetically active radiation (Sellers, 1985). Howev-

er, there are nearly always disturbances in these time-

series, caused by cloud contamination, atmospheric vari-

ability, and bi-directional effects. These disturbances great-

ly affect the monitoring of land cover and terrestrial

ecosystems and show up as undesirable noise (Cihlar et

al., 1997; Gutman, 1991). Although the most often-used

NDVI data sets are 10-day Maximum Value Composite

(MVC) products (Holben, 1986), such as the Pathfinder

land data set, the GIMMS NDVI data set, and the SPOT

VGT product, these still include a lot of such noise. For

this reason, a number of methods for reducing noise and

constructing high-quality NDVI time-series data sets for

further analysis have been formulated, applied, and eval-
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uated in the last two decades. These methods can be

broadly grouped into three general types: (1) threshold-

based methods, such as the best index slope extraction

algorithm (BISE) (Viovy et al., 1992); (2) Fourier-based

fitting methods (Cihlar, 1996; Roerink et al., 2000; Sellers

et al., 1994); and (3) asymmetric function fitting methods

such as the asymmetric Gaussian function fitting approach

(Jonsson & Eklundh, 2002) and the weighted least-squares

linear regression approach (Swets et al., 1999). Each

abovementioned approach possesses its own advantages

and has been successfully applied to NDVI time-series pre-

processing for some applications. The BISE algorithm has

been used to extract seasonal metrics of vegetation phe-

nology (e.g. Reed et al., 1994), to classify vegetation or

land cover types (e.g. Lovell & Graetz, 2001; Xiao et al.,

2002) and to estimate gross primary productivity (GPP)

and net primary productivity (NPP) (e.g. Ruimy et al.,

1996). The Fourier-based fitting approach has been

employed to derive terrestrial biophysical parameters

(e.g. Sellers et al., 1994) and to evaluate NPP dynamics

(e.g. Malmstrom et al., 1997). Asymmetric function fitting

methods have been mainly used to extract seasonality

information for phenological studies (Jonsson & Eklundh,

2002).

However, these methods also suffer several drawbacks

that limit their use (Jonsson & Eklundh, 2002). For

example, the BISE algorithm requires the determination

of a sliding period and a threshold for acceptable percent-

age increase in NDVI for re-growth during a sliding period

based on an empirical strategy that is usually subjective

and depends on the skills and experience of the analyst.

Therefore, like other threshold-based methods, the remain-

ing noise after applying the BISE algorithm may make the

extracted temporal information unreliable. Fourier-based

fitting methods may be problematic when applied to

irregular or asymmetric NDVI-data, since they depend

critically on symmetric sine and cosine functions. In

addition, they may generate spurious oscillations in the

NDVI time series. Compared with the above methods, the

asymmetric Gaussian function-fitting approach is more

flexible and effective in obtaining a high-quality NDVI

time-series. However, it may be difficult to identify a

reasonable and consistent set of maxima and minima to

which the local functions can be fitted, especially for noisy

data or for data from areas where there is no clear

seasonality. Additionally, the complexity of this approach

makes it more time-consuming.

In light of the abovementioned drawbacks, this paper

presents a simple but robust method based on the

Savitzky–Golay filter, to more efficiently reduce contam-

ination in the NDVI time-series that is caused primarily by

cloud contamination and atmospheric variability. Our

method was developed to make data approach the upper

NDVI envelope and to portray patterns of NDVI change

through an iteration process. The method was tested with a

10-day MVC SPOT VGT-S product generated by the
VEGETATION Programme, which is developed jointly

by France, the European Commission, Belgium, Italy and

Sweden.
2. Methodology

Similarly to other strategies for reducing noise and

constructing a high-quality NDVI time-series, our method

is based on two assumptions: (1) that the NDVI data from

a satellite sensor is primarily related to vegetation

changes. As such, an NDVI time-series follows annual

cycle of growth and decline; and that (2) clouds and poor

atmospheric conditions usually depress NDVI values,

requiring that sudden drops in NDVI, which are not

compatible with the gradual process of vegetation change,

be regarded as noise and removed. In line with these two

assumptions, a new method based on the Savitzky–Golay

filter was developed to make data approach the upper

NDVI envelope and to best fit the NDVI variations

during full vegetational season through an iteration pro-

cess. The method can be applied to NDVI data sets

sampled at different intervals, including daily data, 10-

day, or monthly MVCs. In addition, there are no restric-

tions regarding the scaling of the NDVI and specific

sensors. In the following, we first briefly introduce the

Savitzky–Golay filter, and then describe the main steps

for implementing the new method according to the

flowchart shown in Fig. 1.

2.1. The Savitzky–Golay filter

Savitzky and Golay (1964) proposed a simplified least-

squares-fit convolution for smoothing and computing deriv-

atives of a set of consecutive values (a spectrum). The

convolution can be understood as a weighted moving

average filter with weighting given as a polynomial of a

certain degree. The weight coefficients (referred to below as

coefficients), when applied to a signal, perform a polyno-

mial least-squares fit within the filter window. This polyno-

mial is designed to preserve higher moments within the data

and to reduce the bias introduced by the filter. This filter can

be applied to any consecutive data when the points of the

data are at a fixed and uniform interval along the chosen

abscissa, and the curves formed by graphing the points must

be continuous and more or less smooth. NDVI time-series

clearly satisfy these conditions. The general equation of the

simplified least-squares convolution for NDVI time-series

smoothing can be given as follows:

Yj* ¼

Xi¼m

i¼�m

CiYjþi

N
ð1Þ

where Y is the original NDVI value, Y* is the resultant

NDVI value, Ci is the coefficient for the ith NDVI value of



Fig. 1. Flowchart of the newly developed method.
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the filter (smoothing window), and N is the number of

convoluting integers and is equal to the smoothing window

size (2m + 1). The index j is the running index of the

original ordinate data table. The smoothing array (filter

size) consists of 2m + 1 points, where m is the half-width
of the smoothing window. The coefficients of a Savitzky–

Golay filter (Ci) can be obtained directly from Steinier et

al. (1972) as a corrected version of Savitzky and Golay’s

work (1964), or calculated from the equations presented by

Madden (1978).



Fig. 2. An example showing the NDVI time-series in different steps of the

newly developed method (NDVI data from No. 8 test pixel): (a) Original

NDVI time-series and cloud flag points (circled in the figure). (b) Long-

term change trend curve (thick solid line) fitted by the Savitzky–Golay

filter. Noisy NDVI points are circled. (c) The first fitted NDVI time-series

by the Savitzky–Golay filter. The first fitted NDVI time-series is plotted as

a thick solid line, and the linear interpolated NDVI time-series (ti,Ni
0) is

plotted as a solid line. (d) The final NDVI time-series using the Savitzky–

Golay filter (thick solid line).
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When the filter is applied to NDVI time-series smooth-

ing, there are two parameters that must be determined

according to the NDVI observations. The first parameter

is m, the half-width of the smoothing window. Usually, a

larger value of m produces a smoother result at the expense

of flattening sharp peaks. The second parameter is an integer

(d) specifying the degree of the smoothing polynomial,

which is typically set in a range from 2 to 4. A smaller

value of d will produce a smoother result but may introduce

bias; a higher value of d will reduce the filter bias, but may

‘‘over fit’’ the data and give a noisier result.

2.2. Implementation of the new method

2.2.1. Step 1: linear interpolation of cloudy NDVI values

Most NDVI time-series data sets such as the Pathfinder

land data set or the SPOT VGT product have included the

cloud flag band as ancillary data (Stowe et al., 1991); these

data provide a valuable indicator of the cloud status of each

data point in the time-series although these data do not

include all cases in which NDVI data points were affected

by cloud and poor atmospheric conditions. It is important to

take advantage of such flag data to estimate the uncertainty

of the NDVI value (Jonsson & Eklundh, 2002). In this study,

cloud flag data were used to improve the NDVI time-series

by linear interpolation of the cloudy NDVI values. Specif-

ically, assuming that there is a NDVI time series of data

points (ti,Ni,Fi), i = 1, 2, 3. . .n, where ti is the date, Ni is the

NDVI value, and Fi is the cloud flag, if Fj of the jth point is

identified as a cloudy point, then the Nj will be replaced by a

linearly interpolated value using adjacent points that are not

identified as cloudy points. In addition, points with a random

NDVI increase greater than 0.4 during 20 days are also

rejected and replaced by linearly interpolated values using

the adjacent points, as such increases cannot be caused by

natural vegetation changes. As a result, we obtain a new

NDVI time series of data points (ti,Ni
0), i = 1, 2, 3. . .n, where

ti is the date and Ni
0 is the new NDVI value after the linear

interpolation. Fig. 2a shows examples of the linear interpo-

lation of cloudy NDVI values according to the cloud flags,

marked by circles. It can be seen that two points identified by

cloud flags show sudden drops in the NDVI, while some

other sudden drops in the NDVI are not indicated by cloud

flags, which implies difficulties in categorizing cloud flags

based on applying certain thresholds to visible and near

infrared reflectance (VNIR) bands and thermal bands.

2.2.2. Step 2: long-term change trend fitting using the

Savitzky–Golay filter

According to the assumptions mentioned above, a NDVI

time-series should follow the gradual process of the annual

vegetation cycle, so sudden falls in the NDVI time-series that

are not compatible with the process can be regarded as noisy

points affected by clouds or poor atmospheric conditions.

Therefore, if we can obtain a long-term change trend curve

representing the gradual process of annual vegetation cycle,
it is helpful to identify these noisy data points and treat them

as being less important in further fittings (Jonsson &

Eklundh, 2002). To obtain a satisfactory long-term change

trend curve, two criteria need to be considered: (1) the long-

term change trend curve should follow the gradual process of

annual vegetation cycle without too great a loss of temporal

detail in the NDVI time-series; (2) most noisy points should

be below the long-term change trend curve, since noise

caused by clouds and poor atmospheric conditions is nega-

tively biased. Based on these two criteria, the Savitzky–
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Golay filter is used to smooth the NDVI variation and obtain

the long-term change trend. From the characteristics of

Savitzky–Golay filter, it can be found that setting too small

a value of m (half-width of the smoothing window) may

‘‘over fit’’ the data points and cause difficulties in capturing

the long-term change trend, while setting too large a value of

m may neglect some important variations in the NDVI time-

series. Therefore, middle values of m in the range of 4–7 can

be considered as appropriate parameters for generating the

long-term change trend curve. Consequently, there are 4� 3

combinations of m and d (degree of polynomial) when d is

typically set in a range from 2 to 4. Considering the

importance of temporal detail in NDVI time-series for

phenological studies, a combination of m and d corres-

ponding to the best fit using the least-squares fitting method

of all the combinations is automatically selected as the

optimal set of parameters for generating the long-term

change trend curve. According to our experimental results,

shown below, this type of parameter selection can provide a

good trade-off between preserving temporal detail in NDVI

time-series and identifying noisy points. Fig. 2b shows a

long-term change trend curve for NDVI time-series (ti,Ni
0)

obtained using the Savitzky–Golay filter. It is clear that the

long-term change trend curve preserves temporal detail in

NDVI time-series and all sudden drops are seen to fall below

the long-term change trend curve.

2.2.3. Step 3: determination of weight for each point in

NDVI time-series

After the NDVI time-series (ti,Ni
0) is smoothed, a new

time-series representing the NDVI long-term change trend is

obtained as (ti,Ni
tr). This new time-series is used to deter-

mine the weight of each point in the NDVI time-series by

comparing it with the time-series (ti,Ni
0). The weights of

NDVI points will be used to calculate the fitting-effect index

below such that the final NDVI time-series is the best

description of NDVI variations during the full vegetation

season and approach to the upper NDVI envelope. As

shown in Fig. 2b, the points that are above or more and

which approach the long-term change trend curve are more

likely reflect the actual vegetation cycle and can be regarded

as acceptable points, so we give them relatively higher

weights. The local dropped points that are below the long-

term change trend curve (circled points in Fig. 2b), on the

other hand, are most likely to be the result of disturbance

factors in the data rather than actual physical phenomena.

Therefore, we give these locally dropped points relatively

lower weights than the acceptable points. Based on the

above idea, the weight (Wi) for each NDVI point can be

calculated according to its distance from the long-term

change trend curve as:

Wi ¼
*
1 when N0

i zN tr
i

1� di=dmax when N 0
i < N tr

i

ð2Þ
where di= jNi
0-Ni

trj and dmax is the maximum of the absolute

difference value of Ni
0 and Ni

tr.

2.2.4. Step 4: generation of a new NDVI time-series

In Fig. 2b, it can be seen that the time-series (ti,Ni
tr)

representing the NDVI long-term change trend displays

larger NDVI values than the time-series (ti,Ni
0) at the noisy

NDVI points. The above suggests that if we can generate a

new NDVI time-series by replacing the noisy NDVI points

in the time-series (ti,Ni
0) with the corresponding points in

the time-series (ti,Ni
tr), then refitting the new NDVI time-

series will more closely approach the upper envelope of the

original NDVI data. It is obvious that approaching the upper

NDVI envelope is a gradual process and should be designed

as an iteration process in the new method. As such, a new

time-series (ti,Ni
1) is generated by

N 1
i ¼

*
N 0
i when N0

i zN tr
i

N tr
i when N0

i < N tr
i

ð3Þ

2.2.5. Step 5: fitting the new NDVI time-series using the

Savitzky–Golay filter

Based on the new time-series (ti,Ni
1), the Savitzky–Golay

filter is used again to fit variations in the new time-series

(ti,Ni
1) rather than smoothing the time-series to obtain the

long-term change trend. Therefore, a smaller value ofm and a

larger value for the degree (d) of the polynomial are set in the

Savitzky–Golay filter to better fit the new time-series. From

our experiments discussed below, m set to 4 and d set to 6 are

recommended to fit the variations in the new time-series. As a

result of this fitting, a new time-series (ti,Ni
k + 1) is generated,

where k = 1 for the first fitting. Fig. 2c shows the initially

fitted curve (ti,Ni
2) and time-series (ti,Ni

0). It is clear that the

initially fitted curve is closer to the upper NDVI envelope.

2.2.6. Step 6: calculation of a fitting-effect index

A fitting-effect index is defined to evaluate the degree to

which the fitted NDVI values approach the more highly

weighted NDVI points during one fitting process. The

fitting-effect index (Fk) for a kth times fitting is calculated

as:

Fk ¼
Xn
i¼1

ðjNkþ1
i � N0

i j �WiÞ ð4Þ

where Ni
k + 1 is the ith NDVI value of the kth fitted time-

series, Ni
0 is the ith NDVI value of the original NDVI time-

series after linear interpolation of cloudy NDVI values, and

Wi is the weight of ith NDVI point determined in Step 3.

From this definition, it can be seen that with decreasing Fk,

the fitted curve more closely approaches the higher-weight-

ed NDVI points (the upper envelope of the original NDVI

data).

After fitting the NDVI time-series, a fitting-effect index

(Fk) can be obtained. If Fk does not achieve its minimum, a

new fitting process is iterated from Step 4 to Step 6. Here, it



Fig. 3. The fitting-effect index ( Fk) change pattern with increasing fitting

times.
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should be noted that a new time-series generated by the

following formula will be fitted for the new iteration.

Nnew
i ¼

*
N 0
i when N 0

i zNkþ1
i

Nkþ1
i when N 0

i < Nkþ1
i

ð5Þ

2.2.7. Step 7: conditions for exiting iteration

Fig. 3 shows the Fk change pattern with increasing fitting

times. It can be seen that Fk decreases very quickly in the

first few fittings, and that after it reaches its minimum, Fk

begins to increase. Although the figure shows only the first

100 fittings, our experimental results indicate that this

increasing trend continues. This pattern of change suggests

that the exit condition of the iteration can be defined as:

Fk�1zFkVFkþ1 ð6Þ

where Fk� 1 is the fitting-effect index for the (k� 1)th times

fitting, Fk is for the kth times fitting, and Fk + 1 is for the

(k + 1)th times fitting. This condition ensures that the fitting-

effect index reaches its minimum. After the above iterating

process satisfies this condition, it will terminate and we can

obtain the final NDVI time-series, as shown in Fig. 2d. The

figure demonstrates a good fit to the upper NDVI envelope.

Here, it should be noted that the edge effect of the

Savitzky–Golay filter has an adverse effect on the fitting

quality of the first four points and the last four points,

because such points can not constitute a complete filter

window. To address the problem, we can assume that the

NDVI series is cyclic (Sellers et al., 1994), hence the

neighbors for the last four points are the first four points,

and the neighbors for the first four points are the last four

points. Naturally, if a longer NDVI time series than fitting

NDVI time series is available, the edge effects of Savitzky–

Golay filter can be avoided.
3. Results

As test data for evaluating the new method’s perfor-

mance, SPOT VGT-S product (1�1 km, 10-day MVC

Product) for Southeast Asia (68–147jE, 5–55jN) during
the period from January 2000 to December 2000 was used

to construct a high-quality NDVI time-series data set.

Considering the edge effect seen in the Savitzky–Golay

filter, the same SPOT VGT-S product of Nov., Dec. 1999

and Jan., Feb. 2001 was employed to constitute a complete

filter window for the first four points and the last four

points of the NDVI time series. During the data prepara-

tion stage, NDVI values from the NDV band were

recalculated to the range of � 1 to 1 according to the

formula (VEGETATION Programme, 1998): NDVI =

0.004�DN� 0.1. The cloud flag for each NDVI data

point was extracted from Bit NR 0 and Bit NR 1 of the

Status Map (SM) band. As is well known, the SPOT VGT-

S product has been preprocessed using a consistent pro-

cessing algorithm including geometric, radiometric, and

atmospheric corrections. The atmospheric correction is

based on SMAC to correct water vapor, ozone, and aerosol

effects (Rahman & Dedieu, 1994; VEGETATION

Programme, 1998). As such, further pre-processing of the

SPOT VGT-S product was not implemented.

To determine the parameters of the new method and

compare the new method with existing methods, 438 test

pixels were selected from the SPOT VGT-S product using

the randomly stratified sampling method, in which the

China vegetation map (Wu, 1980) was used for stratifica-

tion. Fig. 4 shows the vegetation type of China (Wu, 1980)

and the distribution of the 438 test pixels. For each of the

selected 438 test pixels, NDVI time-series during the period

from Nov. 1999 to Feb. 2001 were plotted, respectively, and

then the possibly noisy points of each NDVI time-series

were identified by visual interpretation. These interpretation

results were used as the reference data for assessing the new

method’s performance.

3.1. Determination of m and d for the Savitzky–Golay filter

in the fitting iteration

To obtain the final NDVI time-series that best

approached the upper envelope of original NDVI data and

reflecting the NDVI change pattern, it is necessary to

determine optimal m and d of the Savitzky–Golay filter in

the fitting iteration process. These two parameters were

determined through a series of experiments using data from

the 438 test pixels. Table 1 shows the fitting-effect index

(Fk) of the No. 8 test pixel using different m and d

combinations. It is seen that the fitting-effect decreases

quickly (Fk increases), with m increasing when the degree

(d) of polynomial is fixed. It can also be seen that increasing

d can improve the fitting effect when m is fixed, but the

extent of this improvement is not so evident as the changes

in m. From the results of experiments similarly carried out

for 438 test pixels, it was found that smaller values of m and

larger values of d result in a better fitting effect; therefore

the (m,d) combination of (4,6) was determined to be optimal

for the Savitzky–Golay filter in the fitting iteration process

because it can provide the best-fitting effect in most cases.



Fig. 4. Vegetation type in China and distribution of 438 test pixels.
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3.2. Comparison of new and existing methods

To test the performance of the new method, we carried

out a comparison among three methods using 438 test

pixels: (1) the new method developed in the study; (2) a

BISE algorithm (Viovy et al., 1992) and (3) a Fourier-based

fitting method (Sellers et al., 1994). The latter two methods

are widely used for reducing noise in the NDVI time-series.

In contrast with the new method, the BISE algorithm

requires determination of a sliding period and a threshold

of acceptable percentage increase in NDVI for re-growth

during a sliding period according to an empirical strategy. It

then reconstructs an NDVI time-series by scanning the time
Table 1

Fitting effect assessment of m and d combinations in fitting iteration

d 2 3 4 5 6

m

2 278.6 278.6

3 353.5 353.5 255.4 255.4

4 383.4 383.4 316.6 316.6 243.4

5 404.5 404.5 348.6 348.6 303.7

6 414.9 414.9 376.7 376.7 332.4

7 424.8 424.8 406 406 363.8

8 451.4 451.4 408 408 393.1

The figures in the table is fitting-effect index ( Fk).
period, ignoring low values, and selecting high values based

on the threshold in a sliding period. On the other hand, a

Fourier-based fitting method is similar to some extent to the

new method. It is also a weighted fitting method with the

exception of selecting symmetric sine and cosine as fitting

function. It constructs a new NDVI time series by means of

a robust least-squares optimizing method using the first

three harmonics of the Fourier series and taking their

weights into account. In this comparison, for the new

method, the (m,d) combination of (4,6) was used in the

Savitzky–Golay filter. For the BISE algorithm, the sliding

period was set at 1 month and the threshold of acceptable

percentage increase was determined by a manual trial-and-

error procedure to obtain the best result for each pixel.

Fig. 5 gives the final NDVI time-series obtained using

the three methods. Due to limitations on space, only the

results of 38 test pixels are shown in the figure. The location

of 38 test pixels can be seen in Fig. 4. The general pattern of

changes of NDVI time series is apparent from these meth-

ods, all three of which identify and correct most noisy

points. The results suggest that the three methods are

effective for constructing high-quality NDVI time-series

data sets.

Of the three methods, the Fourier-based fitting method

obtained the smoothest fitted curve, but shows a large

displacement away from the original NDVI values. Such
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Fig. 5. The final NDVI time-series generated using the new method, the BISE algorithm and the Fourier-based fitting method (dashed line is the linearly

interpolated NDVI time-series (ti,Ni
0); the thick solid line is the smoothed NDVI time-series using the new method; the solid line with circles is the smoothed

NDVI time-series using the BISE algorithm; the solid line with asterisks is the smoothed NDVI time-series using the Fourier-based fitting method).
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displacements are more obvious when Fourier-based fitting

method was used with irregular or asymmetric NDVI time

series such as in No. 8, No. 9, No. 16, No. 18, No. 23, No.

27, No. 35 and No. 36. These displacements can be

explained by the fact that the method depends critically on
symmetric sine and cosine functions. In addition, a Fourier-

based fitting method also generates spurious oscillations in

the NDVI time series. This can be observed in No. 23. In

contrast with the Fourier-based fitting method, the new

method and BISE algorithm obtained almost identical
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results for most of these test pixels. The final NDVI time

series comes close to the upper NDVI envelope, and most of

the noisy points in the NDVI time series were successfully

identified and corrected. However, it is notable that the

threshold of the BISE algorithm for each test pixel needed to

be set using a manual trial-and-error procedure to obtain the

best result, and the parameters of the new method were only

set as constant combinations (4,6). In short, the new method

is able to reconstruct a comparably high-quality NDVI time-

series as the BISE algorithm, but without the difficulty of

finding an optimal threshold such as that in the BISE

algorithm. Here, in addition, as a result of this manual

trial-and-error procedure, the optimal threshold for each test

pixel displays several differences from pixel to pixel,

although most of the optimal thresholds were in the range

of 0.1–0.4. These results suggest that the BISE algorithm

needs some improvement, such as the development of an

automatic or semi-automatic method for effectively deter-

mining the threshold for each pixel in NDVI time-series data

sets.

To test the applicability of the new method to large

images, we applied the new method to SPOT VGT-S

product for Southeast Asia during the period from No-

vember 1999 to February 2001, which includes 8849�
Fig. 6. NDVI data from July 2000 (a) and the results of implementing the

new method (b).
5601 pixels and 48 layers. Using a DELL Dimension 8100

desktop computer system (4 CPU, 1800 MHz, 1 GB

RAM), the time for processing the product was 22 h using

the new method. For comparison with the new method, we

also applied the BISE algorithm and the Fourier-based

fitting method to the same product. The processing times

for the two methods were 17 and 29 h, respectively,

showing that the computing efficiency of the new method

is higher than the Fourier-based fitting approach but lower

than the BISE algorithm. For such larger images, we think

that the computation time cost of the new method is

acceptable. There is clear potential to greatly shorten it

by using more powerful computer systems and improving

the program used for the new method. Fig. 6 illustrates the

results of implementing the new method on an NDVI

image in July 2000. It should be noted that there are large

numbers of low NDVI values (depicted in yellow) in

China’s Sichuan Basin and in India due to atmospheric

perturbations during this 10-day period. The new method

effectively replaces these low values with higher NDVI

values that are more typical of the cropland found in these

areas.
4. Conclusion

The noise in NDVI time-series data, caused primarily by

cloud contamination and atmospheric variability, is an

important problem faced by global environmental change

research when these NDVI data sets are used as input.

However, existing methods for reducing noise in NDVI

time-series are not sufficiently flexible or effective. Based

on the assumptions that an NDVI time-series follows an

annual cycle of growth and decline in vegetation, and that

clouds or poor atmospheric conditions usually depress

NDVI values, we have described herein a simple but robust

method, based on the Savitzky–Golay filter, to smooth out

the noise present in NDVI time-series. The method was

developed to make data approach the upper NDVI envelope

and to reflect the NDVI pattern of change through an

iteration process. By applying the newly developed method

to a 10-day MVC SPOT VGT-S product and by comparing

the results with those from the BISE algorithm and Fourier-

based fitting method, we have found that the new method

shows the following four advantages over existing methods:

(1) it takes advantage of ancillary data in the form of cloud

flags; (2) it can reconstruct high-quality NDVI time-series

by setting only two parameters in the Savitzky–Golay filter:

the half-width of the smoothing window (m) and the degree

of the smoothing polynomial (d). The results of our series of

experiments suggest the optimal parameters to be (4,6) for

the new method. The recommended parameters are robust in

most cases. (3) It is very simple in theory and easy to

implement because commercial software such as MATLAB

and IDL include the Savitzky–Golay filter in their function

library; and (4) it can be applied to NDVI data sets sampled
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at different intervals such as daily data, 10-day, or monthly

MVCs. In addition, there are no restrictions on the scaling of

the NDVI and the specific sensor. For these reasons, we

anticipate that the new method can be applied to recon-

structing high-quality NDVI time-series data sets for use in

global environmental change research, such as extracting

seasonal metrics of vegetation phenology, land cover clas-

sification and change detection, deriving terrestrial biophys-

ical parameters and modeling terrestrial ecosystems.
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