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Deblurring in the presence of noise is a hard problem, especially in ultrasonic and CT
images. In this paper, we propose a new method of image deblurring in presence of noise,
using symmetric Daubechies complex wavelet transform. The proposed method is based
on shrinkage of multilevel Daubechies complex wavelet coefficients, and is adaptive as it
uses shrinkage function based on the variance of wavelet coefficients as well as the mean
and the median of absolute wavelet coefficients at a particular level. The results obtained
after the application of the proposed method demonstrate an improved performance over
other related methods available in literature.
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1. Introduction

The major challenge of medical imaging science is to provide a way to enable faithful
extraction of scientific and clinical information. The images obtained from medi-
cal instruments are generally of poor contrast and corrupted by blur and noise
due to applications of various quantization, reconstruction and enhancement algo-
rithms. For example, an ultrasound image can be viewed as a distorted version of
original image, where the distortion operator is a convolution with a point spread
function (PSF) of the imaging system.1 Wagner et al.2 suggested a special PSF,
called scatter PSF for modeling blur in X-ray image. Images like PET and SPECT
are also reported to be blurred.3,4 Recently it has been shown that CT scanners
cannot resolve many important bone details, especially those of millimeter or sub-
millimeter sized features due to presence of blur.5 In this context, deblurring is an
effective strategy5 to resolve these minute details. These blurred images are often
corrupted with various types of noise, for example, ultrasonic images are assumed
to contain speckle noise and CT images are supposed to be corrupted by Poisson
distributed random noise.6 Corruption of blurred images with noise makes them
poor for visual analysis.

Sparseness, decorrelation and locality properties of wavelets make them very
useful for blur as well as noise removal7 from images. Although real-valued wavelet
transform based techniques have given good results, but real-valued wavelet trans-
form suffers from two serious disadvantages.7–11 (i) its shift-sensitive nature and
(ii) no phase information. Recently a few attempts12 have been made for shift-
invariant deblurring but the use of cycle-spinning make them computationally
costly. To achieve shift-invariance, stationary wavelet transform13 can also be used,
but again this transform is computationally costly and it does not provide phase
information as well. The use of complex-valued wavelet transform (CxWT) can min-
imize both the shortcomings of real-valued discrete wavelet transform (DWT).7–11

The complex wavelet transform has not been explored much when compared to the
DWT. From the implementation point of view, complex wavelet transform can be
implemented in different ways. For constructing an approximately shift-invariant
redundant wavelet transform, Gopinath14 has given the concept of phaselet trans-
form that includes the Kingsbury’s Dual Tree Complex Wavelet Transform8,15,16 as
a special case. Fernandes9 has developed a framework of one dimensional mapping
based CxWT on controllable redundancy while Bharath17 constructed steerable
pyramid complex wavelet transform. These complex wavelet transform uses real
filters instead of complex filters. Lawton18 and Lina–Mayrand19 have proposed
complex Daubechies wavelets, which is a natural extension of the real Daubechies
wavelets.

During the deblurring of an image in presence of noise, the application of pseudo-
inverse filter or its variants introduce colored noise in the image. A few authors dealt
with this problem in real wavelet domain. Donoho20 suggested wavelet-vagullete
deconvolution (WVD) algorithm, which uses vagullete that can simultaneously
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invert the data and perform wavelet transform. After computing wavelet coeffi-
cients, the coefficients were shrunk by a certain parameter and inverse wavelet
transform of shrunk coefficients give the estimate of deblurred image. A mirror
wavelet based deconvolution for solving inverse problems was given by Kalifa et al.21

Kalifa–Mallat22 have done a study on various wavelet thresholding estimators for
the linear inverse problem and deconvolution. A theoretical analysis for solving
deconvolution problem in wavelet domain is given by Fan and Koo.23 Guo et al.24

proposed a method for restoration of blurred noisy images without any prior knowl-
edge of the blurring function and the statistics of noise. Their proposed method24

combine wavelet transform with radial basis function (RBF) neural network to
restore the given image. Recently Neelamani et al.25 had developed a method which
applies regularized inverse filter followed by shrinkage in Fourier as well as wavelet
domain, as Fourier domain represent information of colored noise economically. An
iterative regularization method in translation invariant wavelet transform based
denoising has been proposed by Li et al.26 for better denoising effect. Jhonstone
et al.27 developed a simple method in which colored noise is removed by apply-
ing multilevel hard thresholding in wavelet domain using Meyer wavelet. Much
improved version of Johnstone’s method27 is given by Donoho–Raimondo,12 for
achieving translation invariant deblurring.

A novel method for blur removal from blurred and noisy images, where unknown
type of noise is present, is proposed in the present paper, which is based on shrinkage
of wavelet coefficients in multilevel6,7,34,35 Daubechies complex wavelet domain. The
proposed method has been compared with earlier state-of-art deconvolution meth-
ods: Fourier-Wavelet Regularized Deconvolution (ForWaRD)25 and Translation-
Invariant Wavelet Deconvolution (TI-WaveD),12 based on real wavelet transform.
The results have also been compared with the traditional Wiener filter.

The rest of the paper is organized as follows: we briefly described the basic
concepts of Daubechies complex wavelet transform and its properties in Sec. 2.
Details of the proposed method are given in Sec. 3. In Sec. 4, the results after the
application of the proposed method for deblurring in presence of noise are shown
and they are compared with other methods with respect to mean square error
(MSE), signal-to-noise ratio (SNR) and wavelet based blur measure (W). Finally
in Sec. 5 conclusions are given.

2. Daubechies Complex Wavelet Transform

The basic equation of multiresolution theory is the scaling equation

φ(t) = 2
∑

n

anφ(2t− n). (2.1)

where an’s are coefficients. The an’s can be real as well as complex valued and∑
an = 1. Daubechies’s wavelet bases {ψj,k(t)} in one dimension are defined

through the above scaling function and multiresolution analysis of L2(�).28 During
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the formation of general solution, Daubechies considered an to be real-valued only.
Relaxing the condition for an to be only real-valued will lead to Daubechies complex
scaling function and this leads to complex Daubechies wavelet transform. The con-
struction of complex Daubechies wavelet has been done as in Lina and Mayrand.19

The generating wavelet ψ(t) is given by,

ψ(t) = 2
∑

n

(−1)na1−nφ(2t− n). (2.2)

Here ψ(t) and φ(t) share the same compact support [−N, N + 1].
Any function f(t) can be decomposed into complex scaling function and mother

wavelet as:

f(t) =
∑

k

cj0k φj0,k(t) +
jmax−1∑

j=j0

dj
kψj,k(t). (2.3)

where, j0 is a given resolution level, {cj0k } and {dj
k} are known as approximation and

detail coefficients. The Daubechies complex wavelet function can be made symmet-
ric.10 We have used Symmetric Daubechies complex Wavelet (SDW) transform.10

The Symmetric Daubechies complex Wavelet transform has the following advan-
tages:

(i) It has perfect reconstruction property.
(ii) No redundancy: Other popular CxWT like DTCWT11 has a redundancy

of 2m : 1 for m-dimensional signal, while Daubechies CxWT has no such
redundancy.

(iii) Number of computations in Daubechies CxWT (although it involves compu-
tation on complex numbers) is same as that of DWT, while DTCWT have 2m

times computations as that of DWT for an m-dimensional signals.
(iv) It is symmetric. This property makes it easy to handle edge points during the

signal reconstruction.

All the usual properties of real Daubechies wavelet bases are derived from the ampli-
tude.28 Thus those properties are maintained in the complex solution. However,
complex Daubechies wavelets exhibit two other important properties as follows.

2.1. Reduced shift sensitivity

Daubechies complex wavelet transform is approximately shift invariant. A trans-
form is shift sensitive if an input signal shift causes an unpredictable change in
transform coefficients. In DWT shift sensitivity arises from downsampling in the
implementation. Figure 1 shows a circular edge structure reconstructed using real
and complex Daubechies wavelets at single scale. From Fig. 1, it is clear that as the
circular edge structure moves through space, the reconstruction using real valued
DWT coefficients changes erratically, while complex wavelet transform reconstructs
all local shifts and orientations in the same manner.29 From Fig. 1, it is also clear
that Daubechies complex wavelet transform is rotational invariant.
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(a) (b) (c)

Fig. 1. (a) A circular edge structure, (b) reconstructed using real-valued DWT at single scale
and (c) reconstructed using Daubechies complex wavelet transform at single scale.

2.2. Availability of phase information

The phase of an image plays an important role in many coherent image processing
applications like ultrasonography. The phase of complex wavelet coefficients rep-
resents the skeleton of the signal. Two dimensional DWT does not provide phase
information at all. The results presented in Clonda10 suggest that the magnitude
and the phase of wavelet coefficients are collaborating in non-trivial way to describe
the data. The phases encode most of the coherent (in space and scale) structure
of the image while the modulus mostly encodes the strength of local information
that could be corrupted with noise. The complete understanding of informational
content of the phase of wavelet coefficients is still an open problem.

3. The Proposed Model

3.1. The problem and the related work

The image observation model is represented as

y = h ∗ x+ n (3.1)

where y is an observed image consisting of degradation of unknown desired image
x by circular convolution (denoted by ∗) with a point spread function of impulse
response h and n is the amount of noise. The objective is to recover x from known
y. Simple denoising followed by deblurring will distort the image and create block-
ing artifacts,30 while simple deblurring creates a complicated noise structure.25 If
the noise is Gaussian additive then the problem is comparatively easier and some
literatures are available for wavelet based deconvolution in the presence of Gaussian
noise.12,20–23,25,27 However, if the noise is non-Gaussian then the problem becomes
very difficult and a few literature deal with blur removal in presence of salt-and-
pepper noise.30 In Fourier domain, the observation model given by Eq. (3.1) is

Y = HX +N (3.2)
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where Y, H, X and N are discrete Fourier transforms of the observations y, impulse
response h, desired signal x and noise n.

If the system frequency response H is invertible, an unbiased estimate of x can
be obtained in Fourier domain,

X̃ = H−1Y = X +H−1N. (3.3)

However, if H is very small, the noise is enormously amplified, which yields an
extremely noisy estimate. Here the term H−1N introduces colored noise in the
image. Thus the problem is an ill-posed inverse problem, as the noise contaminates
the data and the inversion process strongly amplifies the noise. Noise amplification
can be alleviated by using an approximated, regularized inverse filter instead of
a pure inverse filter. Regularization aims to provide a better solution by reducing
noise in exchange for some bias in the estimate and becomes essential in situations
involving ill-conditioned systems. Most of wavelet based deconvolution approaches
attempt to use shrinkage function to remove colored noise.12,25,27

The important contributions for wavelet based deconvolution problem are
WVD,20 ForWaRD25 and WaveD.27 All of these methods work in two stages —
deblurring followed by removal of colored noise. WVD algorithm employs a scale
dependent universal threshold to estimate the signal wavelet coefficients. Unfor-
tunately, WVD was designed to deconvolve only a limited class of scale invari-
ant systems. ForWaRD applies Fourier domain shrinkage after computing pseudo-
inverse filter estimate followed by wavelet domain shrinkage. The performance of
ForWaRD is good only for Boxcar blur with low noise levels. WaveD uses Meyer
wavelet for computing wavelet transform. It applies hard thresholding on wavelet
coefficients by computing threshold at multiple levels. One modification in WaveD
has been done by Donoho and Raimondo.12 They proposed translation-invariant
wavelet deconvolution (TI-WaveD) for getting translation invariant deblurred esti-
mate. The limitation of WaveD and TI-WaveD is dependence of their performance
on tuning of some parameters. Also TI-WaveD is computationally costly due to use
of cycle-spinning.

3.2. The method

The white noise is uniformly distributed across the subbands, while the image trans-
form concentrates over a small number of coefficients. Figure 2 shows the fact that
the wavelet transform corresponding to the actual image gives a small number of
significant wavelet coefficients. If we consider deconvolution as a denoising prob-
lem, then we have to deal with colored noise. It has been shown in Fig. 3 that
the high frequency subbands are contaminated by the deconvolved noise, so that
the signal present in these subbands is not recoverable by any simple thresholding
method.31

We have proposed a method, which applies pseudo inverse filter in Fourier
domain. Colored noise due to application of pseudo inverse filter can be removed by
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(a) (b)

Fig. 2. (a) An image and (b) magnitude of complex wavelet transform of the image.

(a) (b)

Fig. 3. (a) Blurred image and (b) magnitude of complex wavelet transform of the image decon-
volved without regularization.

multilevel thresholding of the complex wavelet coefficients. The proposed method
works in two stages — deblurring followed by the residual noise removal.

3.2.1. Deblurring

Apply the pseudo-inverse filter in Fourier domain, to get X̃, an estimate of X in
Fourier domain, as in (3.3),

X̃ =

X +
N

H
, if |H | > 0

0, otherwise
. (3.4)

Inverse Fourier transform of X̃ gives deblurred estimate x̃. Here the term N/H

causes colored noise in deblurred estimate which is removed in the next stage.
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3.2.2. Noise removal

Recently we have proposed a multilevel adaptive threshold6,7 and a soft-shrinkage
function, which depends on three statistical parameters of complex wavelet coef-
ficients: the variance of wavelet coefficients, the mean and the median of absolute
wavelet coefficients at a particular level. The theoretical derivation of soft-shrinkage
function has been given in the Appendix. It has been shown6,7 that the proposed
threshold is capable of removing the signal dependent as well as signal independent
noise. We extended our proposed multilevel threshold based denoising framework to
remove colored noise in complex wavelet domain. Our proposed method for colored
noise removal is as follows:

(i) Compute symmetric Daubechies complex wavelet transform of pseudo inverse
filtered estimate x̃, called w.

(ii) Set the level-dependent threshold

Tj =
1

2j−1

(
σ

µ

)
M (3.5)

where j is resolution level, σ is the standard deviation of wavelet coefficients,
µ and M are the mean and the median of absolute wavelet coefficients at the
jth level for a particular subband.

(iii) Compute the soft-shrinkage function

f(σ) =


0, if |w| ≤ T(

1 − T 2

w2

)
, if |w| > T

. (3.6)

Apply this soft-shrinkage function on magnitude of complex wavelet coeffi-
cients (w) to get w̃ = f(σ).w, as discussed in the Appendix, using computed
threshold of Eq. (3.5), at different resolution levels. Retain the phase compo-
nent of complex wavelet coefficients.

(iv) Apply inverse wavelet transform on shrunk wavelet coefficients to obtain the
denoised image.

Our proposed multilevel algorithm is fully adaptive and the parameters depend
on the blurred and noisy image. This algorithm also enjoys the translation-
invariance due to the use of complex wavelet transform. The algorithm can deblur
the blurred images corrupted by signal dependent non-Gaussian as well as signal
independent Gaussian noise.

4. Experiments and Results

Here we present the results of the proposed method and compared our results
with other popular methods. We have performed our experiments on simulated
256×256 medical images. As a quantitative performance measure the mean square
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error (MSE),33 the signal to noise ratio (SNR)33 and the wavelet based blur measure
(W)32 has been used. The wavelet based blur measure (W) is defined as,

W =

√
‖hw(x)‖2

‖x‖2 − ‖hw(x)‖2

where hw(x) are the high pass wavelet coefficients of signal x. Because of norm
preservation in the wavelet based blur measure (W ), blurring of image decreases
the energy in the high pass bands and simultaneously increases the energy in the
low pass bands, so the measure, W, decreases by increasing the blur amount.

For one representative case, the findings of our proposed method is shown in
Fig. 4 which shows the visual superiority of the proposed method over the Weiner
filter,33 ForWaRD25 and TI-WaveD12 on one representative reference image. For
this we have added a small amount of noise and blur in the reference image and then
restored image is estimated by the Weiner filter, the ForWaRD, the TI-WaveD and
the proposed method. By means of experiments, we found that the proposed new
multilevel algorithm gives good results at 7–10 resolution levels. In all the results

Original Image Blurred and Noisy Image Weiner Filter Deblurred Image

(SNR = 13.97 dB, W = 0.43) (SNR = 13.88 dB, W = 0.36)

ForWaRD Deblurred Image TI-WaveD Deblurred Image The Proposed Method

(SNR = 14.37 dB, W = 0.42) (SNR = 15.72 dB, W = 0.51) (SNR = 16.51 dB, W = 0.63)

Fig. 4. Visual performance of the proposed method, compared to other methods.
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Original Image Blurred and Noisy Image Weiner Filter Deblurred Image

(SNR = 1.3 dB, W = 0.13) (SNR = 0.99 dB, W = 0.26)

ForWaRD Deblurred Image TI-WaveD Deblurred Image The Proposed Method

(SNR = 8.96 dB, W = 0.31) (SNR = 9.14 dB, W = 0.32) (SNR = 10.16 dB, W = 0.48)

Fig. 5. Visual performance of the proposed method, compared to other methods on a blurred
image corrupted by heavy noise.

we have done shrinkage upto the 8th level and used SDW14 complex wavelet, as it
has been reported7 that it is an optimal choice for denoising. Figure 5 shows the
superiority of the proposed method over others when the blurred image is corrupted
by heavy amount of noise (SNR = 1.3 dB).

Table 1 present the results for deblurring of three different test blurred and
noisy diagnostic images. The wavelet based performance measure (W ) and SNR
have been used for comparison of results in Table 1.

Figure 6 shows the plot of the mean square error (MSE) of noisy and blurred
image with MSE of images deblurred by the proposed method as well as TI-WaveD,
ForWaRD and the Weiner filter. Here in this experiment we have taken a combina-
tion of Uniform, Boxcar and Gaussian blurs and noise as combination of Gaussian
additive, speckle and impulsive noise. These results clearly demonstrate the supe-
riority of the proposed method over others. The results for the presence of specific
types of noise in blurred images are shown in the Tables 2 and 3 in terms of SNR
values. Here a test diagnostic image has been taken and blurred by various types
of blur and different amounts of noise were added.
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Table 1.

Blurred Weiner Filter ForWaRD TI-WaveD The Proposed
Image Restored Restored Restored Method

(A) Value of wavelet based blur measure (W ) of different deblurred images.

Test Image 1 0.26 0.31 0.37 0.41 0.45
Test Image 2 0.32 0.37 0.41 0.43 0.44
Test Image 3 0.47 0.52 0.59 0.65 0.69

(B) SNR value (in dB) of different deblurred images.

Test Image 1 08.3214 08.9451 10.1098 12.0456 12.0952
Test Image 2 10.5913 11.6710 13.3534 14.9254 15.1878
Test Image 3 14.8046 15.8227 17.0473 17.8649 18.1772

Fig. 6. MSE performance of the proposed method with TI-WaveD, ForWaRD and Weiner filter.

From the results presented in Table 2 it is clear that the performance of the
proposed method is better than that of ForWaRD, TI-WaveD and the Weiner filter,
for image having any type of blur and corrupted by signal dependent speckle noise.

The results presented in Table 3 indicate that for the image corrupted by signal
independent Gaussian noise and having uniform blur, the proposed method is better
at medium noise level while at low and high noise levels, TI-WaveD is better.
Performance of the proposed method is also better at low and medium noise level
for the images having Gaussian blur, while at high noise level TI-WaveD is better.
In the presence of boxcar blur, at low noise level ForWaRD is better, at medium
noise level the proposed method is better and at the high noise level TI-WaveD is
better.
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Table 2. Deblurring results of blurred image corrupted with speckle noise in term of SNR (in dB).

Noise Density (d) Blurred Weiner Filter ForWaRD TI-WaveD The Proposed
Image Restored Restored Restored Method

(A) Blurred image corrupted by uniform blur.

Low Noise (d = 0.001) 11.8571 11.8026 12.6670 12.8101 15.1729
Medium Noise (d = 0.05) 10.0059 9.9010 10.4957 10.7910 12.4987
High Noise (d = 0.4) 9.1091 9.2317 10.5639 11.8845 12.0013

(B) Blurred image corrupted by Gaussian blur.

Low Noise (d = 0.001) 14.7340 15.9648 17.9999 18.1934 18.6183
Medium Noise (d = 0.05) 11.7403 11.2830 13.4201 13.8733 14.8201
High Noise (d = 0.4) 9.1350 8.9800 11.5620 11.6999 12.1104

(C) Blurred image corrupted by boxcar blur.

Low Noise (d = 0.001) 16.8357 17.7274 18.8956 18.2410 19.1610
Medium Noise (d = 0.05) 13.7403 13.8560 16.0139 16.3717 16.5610
High Noise (d = 0.4) 10.4327 10.0729 11.6671 12.3795 12.9903

Table 3. Deblurring results of blurred image corrupted with Gaussian noise in term of SNR
(in dB).

Noise Variance (σnoise) Blurred Weiner Filter ForWaRD TI-WaveD The Proposed
Image Restored Restored Restored Method

(A) Blurred image corrupted by uniform blur.

Low Noise (σlow = 0.05) 11.4950 12.3418 13.3889 15.2349 14.6358
Medium Noise (σmed = 0.5) 9.1243 9.3749 11.9755 12.9186 12.9659
High Noise (σhigh = 1.0) 8.2342 7.5817 10.5961 11.1141 11.0963

(B) Blurred image corrupted by Gaussian blur.

Low Noise (σlow = 0.05) 12.8745 13.5883 14.1306 14.4175 16.3515
Medium Noise (σmed = 0.5) 10.5431 10.8405 12.1323 13.1752 14.1005
High Noise (σhigh = 1.0) 9.0543 9.9732 10.6117 11.4872 11.1894

(C) Blurred image corrupted by boxcar blur.

Low Noise (σlow = 0.05) 12.0159 13.7430 16.6145 14.4112 15.1698
Medium Noise (σmed = 0.5) 9.7340 10.6470 12.6594 11.8326 13.4972
High Noise (σhigh = 1.0) 8.2432 8.2146 10.3150 11.8777 10.6297

Although the proposed method is far better than the Weiner filter, ForWaRD
and TI-WaveD. However, here it is necessary to mention that deblurring in the
presence of noise adds some artifacts in the image, which cannot be completely
removed by the proposed method as well as other methods. However, Figs. 4 and
5 support the fact that the artifacts added are quite less in case of the proposed
method compared to those of other methods.

5. Conclusions

Deblurring of blurred image in presence of noise is always a great challenge, because
the removal of blur converts part of noise into colored noise. In this paper, we
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addressed this issue and presented a new, robust and efficient complex wavelet
domain deblurring method in presence of noise. The presented method first applies
pseudo inverse filtering in complex wavelet domain on blurred and noisy image.
Application of pseudo inverse filter removes blur, but adds colored noise, which is
more difficult to remove. We have shown experimentally that the colored noise can
be removed by applying multilevel soft-shrinkage in complex wavelet domain, using
an adaptive level-dependent threshold, whose threshold value depends on the stan-
dard deviation of complex wavelet coefficients, the mean and the median of absolute
complex wavelet coefficients, at a certain level. Application of multilevel shrinkage
up to 7–10 levels gives good results. The proposed method is translation invariant
due to use of Daubechies complex wavelet transform and can be applied to images
having different types and amounts of blur and noise. The results presented in the
paper demonstrate superiority of the proposed method over the Weiner filtering,
ForWaRD and TI-WaveD.
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Appendix. The Soft Shrinkage Function

Wavelet coefficients of a noise free image are modeled as Gaussian.10 Figure 7 shows
scatter plot of detailed complex wavelet coefficients of a noise free image. From this
figure it is evident that the scatter plot is symmetric.

In most of the cases the noise can be modeled as additive and multiplicative noise
or their combinations.6 Hence the general observation model in complex wavelet
domain can be represented as,

w = θ + nG + nS (A.1)

where, θ represents the wavelet coefficients of noise free image. nG and nS are
the contributions to the wavelet coefficient due to Gaussian additive and speckle
multiplicative noise. The distribution of Gaussian additive noise in wavelet domain
is assumed to be zero-mean,

p(nG) =
1

σnG

√
2π

exp
{
− n2

G

2σ2
nG

}
. (A.2)

The distribution of speckle noise in wavelet domain can be modeled as Gamma
distribution, as

p(nS) =
1

Γλ
(nS)λ−1 exp{−n2

S}. (A.3)

We have observed that for fitting of actual wavelet coefficients of speckle noise to
this model requires value of parameter λ to be positive odd integer greater than 2.
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Fig. 7. Scatter plot of distribution of detailed Daubechies complex wavelet coefficients.

The objective is to estimate θ from known w. For this, Maximum A Posteriori
(MAP) estimator is used as,

θ̂ = argmax
θ
p(θ|w)

using Bayes rule for conditional probability p(θ|w) = p(w|θ)p(θ)
p(w) , so the MAP esti-

mator becomes,

θ̂ = arg max
θ
p(w|θ)p(θ)

or, after taking logarithm,

θ̂ = argmax
θ

[log p(w|θ) + log p(θ)]. (A.4)

The probability distribution ofw|θ is the distribution of noise n = w−θ and since
the wavelet coefficients of a noise free signal is modeled as a Gaussian distribution so,

p(θ) =
1

σ
√

2π
exp

{
− θ2

2σ2

}
. (A.5)

Let us estimate θ̂ for each case of noise with the help of a shrinkage function of the
form θ̂ = f(·)w.
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A.1. Estimation of θ̂

A.1.1. Gaussian additive noise

Since the distribution of noise is zero mean Gaussian in wavelet domain, as in
Eq. (A.2), so

p(w|θ) =
1

σnG

√
2π

exp
{
− (w − θ)2

2σ2
nG

}
. (A.6)

Substituting this into MAP for θ̂ in Eq. (A.4),

θ̂ = arg max
θ

[
log

1
σnG

√
2π

exp
{
− (w − θ)2

2σ2
nG

}
+ log

1
σ
√

2π
exp

{
− θ2

2σ2

}]
or,

θ̂ = arg max
θ

[
log

1
σnG

√
2π

+ log
1

σ
√

2π
− (w − θ)2

2σ2
nG

− θ2

2σ2

]
.

For a maximum value of θ
d

dθ

[
− (w − θ)2

2σ2
nG

− θ2

2σ2

]
= 0

or,

2(w − θ)
2σ2

nG

− 2θ
2σ2

= 0

and after solving we get

θ̂ =
σ2

σ2 + σ2
nG

w (A.7)

here f(·) = f(σ) = σ2

σ2+σ2
nG

.

A.1.2. Speckle noise

Distribution of speckle noise in wavelet domain is given by Eq. (A.3), so

p(w|θ) =
1

Γλ
(w − θ)λ−1 exp{−(w − θ)2}. (A.8)

Substituting this into MAP for θ̂ in Eq. (A.4), we get

θ̂ = arg max
θ

[
log

1
Γλ

(w − θ)λ−1e−(w−θ)2 + log
1

σ
√

2π
e−θ2/2σ2

]
or,

θ̂ = arg max
θ

[
log

1
Γλ

+ log
1

σ
√

2π
+ log(w − θ)λ−1 − (w − θ)2 − θ2

2σ2

]
or for a maximum value,

d

dθ

[
log(w − θ)λ−1 − (w − θ)2 − θ2

2σ2

]
= 0
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or,

− λ− 1
w − θ

+ 2(w − θ) − θ

σ2
= 0

gives,

(2σ2 + 1)θ2 − (4σ2 + 1)wθ + (2w2 + 1 − λ)σ2 = 0,

solving this,

θ̂ =
(4σ2 + 1)w ± √

w2 − 4σ2(λ− 1)(2σ2 + 1)
2(2σ2 + 1)

. (A.9)

Here (λ− 1) is a positive constant and since at a particular level of wavelet coeffi-
cients, σ2 is also a constant, therefore the term 4σ2(λ− 1)(2σ2 + 1) can be approx-
imated by a constant k1, which depends on σ and in turn on w . Hence the term√
w2 − k1 can be written as c1w, for some chosen constant c1 which depends on σ

and λ. Thus,

θ̂ =
(4σ2 + 1)w ± c1 · w

2(2σ2 + 1)
. (A.10)

Hence θ̂ may be expressed as θ̂ = f(σ)w.

A.2. Soft-shrinkage function

For the Eq. (A.1),

θ = w − (nG + nS)

= w − nT

=
(
1 − nT

w

)
w (A.11)

where, nT is the contribution of wavelet coefficients due to combination of various
noise types. We found that the estimated value of θ is of the form, θ̂ = f(·)w, so
the nature of f(·) = 1 − nT

w .
We have chosen the nature of f(·) as,

f(·) =
x2

x2 + x2
n

(A.12)

where x and xn are measurements of noise free signal and noise.
Solving it,

f(·) =
x2

x2 + x2
n

=
(

1 +
x2

n

x2

)−1

≈ 1 − x2
n

x2
. (A.13)
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From Eqs. (A.11) and (A.13), our selected soft-shrinkage function based on idea of
soft-thresholding is,

f(σ) = 1 − T 2

w2
(A.14)

where, T is threshold. If we restrict f(σ) ∈ {0, 1}, resulting in a soft-shrinkage
function as,

f(σ) =


0, if |w| ≤ T(

1 − T 2

w2

)
, if |w| > T.

(A.15)
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